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Introduction

It is important for safety and security that programs are correct, especially in critical applications,
e.g., online banking

Aim: use formal and mathematical tools to prove correctness of software systems

Methodology:
> Make a mathematical model of the system

» Study the mathematical model using formal logic and mathematical tools



Introduction

There are many levels abstraction consider; all these levels can benefit from formal methods
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However, the program implementation process is particularly error-prone
> Modern PL features, e.g., concurrency, are challenging to reason about (formally and
informally)

» Bugs can introduce serious security vulnerabilities

My research focuses on formal verification of programs and programming languages



Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

> One side sends a heartbeat request message m together with a number /

> The other side sends the first [ characters of m back to signal that it is alive
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Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

» One side sends a heartbeat request message m together with a number [

> The other side sends the first [ characters of m back to signal that it is alive

A simplified version implementation:

void answer_heartbeat(SSL *req, unsigned int 1){
if(1 > reg->length){return;} <———— T} fix
send_reply(l, reg->data);

} This is a memory violation and would have been
What happens if [ > length(m)? f caught had the program been verified.

I bytes

Memory: m->data Other data in memory including passwords, security keys, etc.




My Research Focus

In my research I focus on reasoning about programs and programming languages

Algorithms &
Protocols

High-Level Language
O eratln 500000055000555505
Svystem |70 .
Y Machine Language

For this purpose I use:
» Formal and mathematical logic: program logics (the Iris framework)

> Proof assistants (Coq) to mechanize results (machine-checked mathematical proofs)



The Proof Assistant Coq

A proof assistant based on the Calculus of Inductive Constructions
» Coq is itself a programming language:

» Curry-Howard correspondence (types are theorems programs are proofs)

> It has an interesting meta-theory called type theory

» Proofs written and checked against foundational mathematical principles:

> Coq only understands functions and the concept of induction

An example:

» Commutativity of addition for natural numbers
(proven together with Pre-Talent track students)

» Proof automation can help but still this demonstrates
the level of formality

addcomnm:n+m=m+n

as [|n IHn].

m as [|m THm].

vial.
ewrite <- Ihm. reflexivity.
s {Im THm).

n. simpl. reflexivity.

Proof assistants are the highest standard of rigor for mathematical proofs




The Proof Assistant Coq

We use Coq to reason about state-of-the-art programs and programming languages:
> We define the precise mathematical model of program execution
> The level of details in these models necessitates the use of proof assistants and program logics
> We define program logics (the Iris framework) for these programs

> Use these to prove correctness of programs

This is the sate-of-the-art of research in program verification published at the top international
conferences, e.g., POPL, ESOP, ICFP

In this talk:
» How we achieve this

» Examples of recent work in this area



How is this feasible?

How can we reason about the state-of-the-art programs at this level of details?
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How can we reason about the state-of-the-art programs at this level of details?

Modular Proofs!



Modular Proofs and Modular Reasoning about Programs

Curry-Howard correspondence: types are theorems programs are proofs

Software Engineering;: Proof Engineering:
To develop and maintain large programs: To develop and maintain large programs:
» Divide the program into modules: » Divide the proof into modules:
functions, classes, etc. theorems, lemmas, etc.
» Libraries: data structures, networking, » Libraries: arithmetic, finite sets, etc.

GUI, etc.



Modular Proofs and Modular Reasoning about Programs

Curry-Howard correspondence: types are theorems programs are proofs

Software Engineering;: Proof Engineering:
To develop and maintain large programs: To develop and maintain large programs:
» Divide the program into modules: » Divide the proof into modules:
functions, classes, etc. theorems, lemmas, etc.
» Libraries: data structures, networking, » Libraries: arithmetic, finite sets, etc.
GUI, etc.

Hence, our program logic supports modular reasoning about realistic effectful programs:
Modular reasoning with respect to program modules

> We reason about each module in isolation and compose those proofs
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— : Built on top of (Program Correctness)

Program Logic
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What is Iris?

A Modular Framework for Constring Program Logics

— : Built on top of (Program Correctness

— : Iris’s adequacy theorem program correctness

O : User-defined

Program Logic

Custom Program Logic)

i {Operational Semantics)

Iris Base Logic




Program Logic

program .
A Hoare-style logic: J binder for return value
{P}efx. O}
precondition postcondition

Examples:

{True} {isCounter(c, n)} {isCounter(c, n)}

newCounter () incr ¢ read ¢
{x. isCounter(x, 0)} {x. x = () = isCounter(c,n+1)} {x. x = nxisCounter(c, n)}

Preconditions, postconditions, and invariants® allow us to specify conditions for other modules.

INot presented in this talk



Adequacy Theorem

Theorem (Adequacy)
If we prove
{True} e{x. p(x)}

in Iris, then e is safe (e.g., no memory violations) and we have ¢(v) for the computed value v.

Note: this rules out Heartbleed

11



Example of Modular Reasoning: Function Calls

{True}
let ¢ = newCounter () in
incr c;
incr c;
read c

{x. x=2}

12



Example of Modular Reasoning: Function Calls

{True}

let ¢ = newCounter () in
{isCounter(c, 0)}

incr c;
{isCounter(c, 1)}

incr c;
{isCounter(c, 2)}

read ¢
{x. x =2 = isCounter(c,2)}
{x. x =2}

No need to look at the implementations of newCounter, incr, or read, we just look at the specs.
12



Example of Modular Reasoning: Concurrency

The parallel composition of two programs e; and e, (written e;||e;):
> Runs e; and e, concurrently in two different threads
> Returns a pair of values (v;, v;) corresponding to e; and e, respectively
» The two programs may work on shared memory

» The semantics depends on the order of thread scheduling

The following HOARE-PAR rule enables modular reasoning about parallel composition:

HOARE-PAR

{P1} er {x. p1(x)} {Po} e {x. $2(x)}
{Py % P2} erl|ex {x. x = (v1, va) * p1(v1) * pa(v2)}

13



Let’s see a few examples of recent works in this area
by my collaborators and I



Reasoning about Distributed Systems (ESOP’20)

Efficient implementations often use advanced features like node-local concurrency and
higher-order memory

It is well known that reasoning about distributed programs is difficult
Traditionally, most works focus on verifying a high-level model of the system

We introduced Aneris: a program logic for modular verification of distributed systems

15



Reasoning about Distributed Systems (ESOP’20)

Modular reasoning about distributed systems:
» Horizontal modularity: nodes, and threads, are verified in isolation and the proofs are

composed
» Vertical modularity: library code is verified separately and library clients are verified against
the library specs
node 1 node k
thread 1 thread m; thread 1 thread my
i I ibrar;
libx:ary Iibr‘ary Iibr.ary
‘ OS/networking ‘ ‘ OS/networking ‘ ‘ OS/networking ‘ ‘ OS/networking ‘




Reasoning about Causal Consistency (POPL’21)

According to the CAP theorem a distributed database cannot satisfy all of the following:
> Consistency: we always read the latest data
> Availability: every request is responded to

> Partition tolerance: system still functions if some of the replicas fail

Causally consistent databases:

» Sacrifice consistency in favor of availability and partition tolerance
» Even if we don’t receive the latest data, we never receive data out of causal order:

> Example of violation of causal order: receiving response to a message in a group onversation
before the message itself

We developed a novel specification (in Aneris) for causally consistent databases, which used to:

» Verify an implementation of a causally consistent database

> Prove correctness of clients of the database (similar to the counter example earlier)
17



Reasoning about Non-interference (POPL’21)

Non-interference (a security property): output does not leak the secret

public input

Program

output

secret input

A common approach: tracking the level of secrecy of data in the type system
» Each type is annotated with a level, e.g., bool”, bool*
> The type system ensures that no data flows from high inputs to low outputs

> Non-interference (termination in-sensitive) in terms of types:

TINI: for any function f : bool” — bool’ we have f true ~ f false

18



Reasoning about Non-interference (POPL’21)

We proved termination-insensitive non-interference:
» For the most advanced type system to date
> Required a novel program logic

> We can reason about both well-typed code and ill-typed code

We do this as follows:
> We define a program logic for termination-insensitive reasoning

> We use it to express non-interference properties of programs of each type such that:
[bool™ — bool“](f) implies f true ~ f false

> We prove that any well-typed program e : 7 we have [z](e)
> Hence, the TINI property holds

19



Other Examples

There are other interesting examples that I did not cover in this talk, e.g.,

Reasoning about machine code (assembly) of so-called capability machines (POPL’21)
Studying gradual type systems (POPL’21)

Reasoning about atomicity of advanced concurrent programs (POPL’20)

Reasoing about continuations (ICFP’19)

Properties of the ST-monad (POPL’18)

etc.

vV vV v v VY

If you are interested, you can find the full list of my publications at:
https://cs.au.dk/~timany/publications
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