
Formal Reasoning about Programs and Programming Languages

Amin Timany

Aarhus University,

Aarhus, Denmark

Fri 09 Apr 2021

1

Introduction

It is important for safety and security that programs are correct, especially in critical applications,

e.g., online banking

Aim: use formal and mathematical tools to prove correctness of software systems

Methodology:

I Make a mathematical model of the system

I Study the mathematical model using formal logic and mathematical tools

2

Introduction

There are many levels abstraction consider; all these levels can benet from formal methods

Hardware

Operating
System

Programs

Algorithms &
Protocols

Hardware

Operating
System

Programs

Algorithms &
Protocols

. . .

Hardware

Operating
System

Programs

Algorithms &
Protocols

Network Infrastructure Hardware layer

Machine Language

High-Level Language

Pseude Code, Flow Charts, etc.

Programmer m

Compiler m

However, the program implementation process is particularly error-prone

I Modern PL features, e.g., concurrency, are challenging to reason about (formally and

informally)

I Bugs can introduce serious security vulnerabilities

My research focuses on formal verication of programs and programming languages

2

Introduction

There are many levels abstraction consider; all these levels can benet from formal methods

Hardware

Operating
System

Programs

Algorithms &
Protocols

Hardware

Operating
System

Programs

Algorithms &
Protocols

. . .

Hardware

Operating
System

Programs

Algorithms &
Protocols

Network Infrastructure Hardware layer

Machine Language

High-Level Language

Pseude Code, Flow Charts, etc.

Programmer m

Compiler m

However, the program implementation process is particularly error-prone

I Modern PL features, e.g., concurrency, are challenging to reason about (formally and

informally)

I Bugs can introduce serious security vulnerabilities

My research focuses on formal verication of programs and programming languages

2

Introduction

There are many levels abstraction consider; all these levels can benet from formal methods

Hardware

Operating
System

Programs

Algorithms &
Protocols

Hardware

Operating
System

Programs

Algorithms &
Protocols

. . .

Hardware

Operating
System

Programs

Algorithms &
Protocols

Network Infrastructure Hardware layer

Machine Language

High-Level Language

Pseude Code, Flow Charts, etc.

Programmer m

Compiler m

However, the program implementation process is particularly error-prone

I Modern PL features, e.g., concurrency, are challenging to reason about (formally and

informally)

I Bugs can introduce serious security vulnerabilities

My research focuses on formal verication of programs and programming languages

3

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

I One side sends a heartbeat request message m together with a number l
I The other side sends the rst l characters of m back to signal that it is alive

A simplied version implementation:

What happens if l > length(m)?

m->data Other data in memory including passwords, security keys, etc.

l bytes

Memory:

This is a memory violation and would have been
caught had the program been veried.

3

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

I One side sends a heartbeat request message m together with a number l
I The other side sends the rst l characters of m back to signal that it is alive

A simplied version implementation:

void answer__heartbeat(SSL *req, unsigned int l){
send__reply(l, req->data);

}

What happens if l > length(m)?

m->data Other data in memory including passwords, security keys, etc.

l bytes

Memory:

This is a memory violation and would have been
caught had the program been veried.

3

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

I One side sends a heartbeat request message m together with a number l
I The other side sends the rst l characters of m back to signal that it is alive

A simplied version implementation:

void answer__heartbeat(SSL *req, unsigned int l){
send__reply(l, req->data);

}

What happens if l > length(m)?

m->data Other data in memory including passwords, security keys, etc.

l bytes

Memory:

This is a memory violation and would have been
caught had the program been veried.

3

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

I One side sends a heartbeat request message m together with a number l
I The other side sends the rst l characters of m back to signal that it is alive

A simplied version implementation:

void answer__heartbeat(SSL *req, unsigned int l){
send__reply(l, req->data);

}

What happens if l > length(m)?

m->data Other data in memory including passwords, security keys, etc.

l bytes

Memory:

This is a memory violation and would have been
caught had the program been veried.

3

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

I One side sends a heartbeat request message m together with a number l
I The other side sends the rst l characters of m back to signal that it is alive

A simplied version implementation:

void answer__heartbeat(SSL *req, unsigned int l){
if(l > req->length){return;}
send__reply(l, req->data);

}

What happens if l > length(m)?

m->data Other data in memory including passwords, security keys, etc.

l bytes

Memory:

The x

This is a memory violation and would have been
caught had the program been veried.

4

My Research Focus

In my research I focus on reasoning about programs and programming languages

Machine Language

High-Level Language

Hardware

Operating
System

Programs

Algorithms &
Protocols

For this purpose I use:

I Formal and mathematical logic: program logics (the Iris framework)
I Proof assistants (Coq) to mechanize results (machine-checked mathematical proofs)

5

The Proof Assistant Coq

A proof assistant based on the Calculus of Inductive Constructions

I Coq is itself a programming language:

I Curry-Howard correspondence (types are theorems programs are proofs)

I It has an interesting meta-theory called type theory
I Proofs written and checked against foundational mathematical principles:

I Coq only understands functions and the concept of induction

An example:

I Commutativity of addition for natural numbers

(proven together with Pre-Talent track students)

I Proof automation can help but still this demonstrates

the level of formality

Inductive day :=
| Monday
| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday.

About day.

About Friday.

Definition next_day (d : day) : day :=
 match d with
 | Monday => Tuesday
 | Tuesday => Wednesday
 | Wednesday => Thursday
 | Thursday => Friday
 | Friday => Saturday
 | Saturday => Sunday
 | Sunday => Monday
 end.

Eval compute in next_day Tuesday.
Eval compute in next_day (next_day Tuesday).

Theorem next_day_monday : next_day Monday = Tuesday.
Proof.
 reflexivity.
Qed.

Definition previous_day (d : day) : day :=
 match d with
 | Monday => Sunday
 | Tuesday => Monday
 | Wednesday => Tuesday
 | Thursday => Wednesday
 | Friday => Thursday
 | Saturday => Friday
 | Sunday => Saturday
 end.

Theorem previous_next_day : forall d, previous_day (next_day d) =
d.
Proof.
 intros d; destruct d; reflexivity.
Qed.

Fixpoint plus (n m : nat) : nat :=
match n with
| O => m
| S x => S (plus x m)
end.

Theorem S_plus_one n : S n = plus n 1.
Proof.
 induction n as [|x IHx].
 - simpl. reflexivity.
 - simpl. rewrite IHx. reflexivity.
Qed.

Print "+".

Theorem add_com n m : n + m = m + n.
Proof.
 revert m.
 induction n as [|n IHn].
 - intros m.
 simpl.
 induction m as [|m IHm].
 + simpl. trivial.
 + simpl. rewrite <- IHm. reflexivity.
 - intros m.
 induction m as [|m IHm].
 + simpl.
 rewrite IHn. simpl. reflexivity.
 + simpl.
 rewrite IHn.
 simpl.
 rewrite <- IHm.
 simpl.
 rewrite IHn.
 reflexivity.
Qed.

Theorem add_com' n m : n + m = m + n.
Proof.
 revert m.
 induction n; induction m; auto.
 simpl; rewrite IHn; simpl; rewrite <- IHm; simpl; auto.
Qed.

Require Import Coq.micromega.Lia.

Theorem add_com'' n m : n + m = m + n.
Proof. lia. Qed.

Theorem thm : forall x y, x < y -> (x + y) - 2 * x < 2 * y.
Proof. lia. Qed.

Index

This page has been generated by coqdoc

05/04/2021, 15.51
Page 1 of 1

Proof assistants are the highest standard of rigor for mathematical proofs

6

The Proof Assistant Coq

We use Coq to reason about state-of-the-art programs and programming languages:

I We dene the precise mathematical model of program execution

I The level of details in these models necessitates the use of proof assistants and program logics

I We dene program logics (the Iris framework) for these programs

I Use these to prove correctness of programs

This is the sate-of-the-art of research in program verication published at the top international

conferences, e.g., POPL, ESOP, ICFP

In this talk:

I How we achieve this

I Examples of recent work in this area

7

How is this feasible?

How can we reason about the state-of-the-art programs at this level of details?

Modular Proofs!

7

How is this feasible?

How can we reason about the state-of-the-art programs at this level of details?

Modular Proofs!

8

Modular Proofs and Modular Reasoning about Programs

Curry-Howard correspondence: types are theorems programs are proofs

Software Engineering:

To develop and maintain large programs:

I Divide the program into modules:

functions, classes, etc.
I Libraries: data structures, networking,

GUI, etc.
...

Proof Engineering:

To develop and maintain large programs:

I Divide the proof into modules:

theorems, lemmas, etc.
I Libraries: arithmetic, nite sets, etc.

...

Hence, our program logic supports modular reasoning about realistic eectful programs:

Modular reasoning with respect to program modules

I We reason about each module in isolation and compose those proofs

8

Modular Proofs and Modular Reasoning about Programs

Curry-Howard correspondence: types are theorems programs are proofs

Software Engineering:

To develop and maintain large programs:

I Divide the program into modules:

functions, classes, etc.
I Libraries: data structures, networking,

GUI, etc.
...

Proof Engineering:

To develop and maintain large programs:

I Divide the proof into modules:

theorems, lemmas, etc.
I Libraries: arithmetic, nite sets, etc.

...

Hence, our program logic supports modular reasoning about realistic eectful programs:

Modular reasoning with respect to program modules

I We reason about each module in isolation and compose those proofs

9

What is Iris?

A Modular Framework for Constring Program Logics

Coq

Iris Base Logic Operational Semantics

Program Logic

Program Correctness→ : Built on top of

program correctness→ : Iris’s adequacy theorem

Custom Program Logic

: User-dened

9

What is Iris?

A Modular Framework for Constring Program Logics

Coq

Iris Base Logic Operational Semantics

Program Logic

Program Correctness→ : Built on top of

program correctness→ : Iris’s adequacy theorem

Custom Program Logic

: User-dened

9

What is Iris?

A Modular Framework for Constring Program Logics

Coq

Iris Base Logic Operational Semantics

Program Logic

Program Correctness→ : Built on top of

program correctness→ : Iris’s adequacy theorem

Custom Program Logic

: User-dened

10

Program Logic

A Hoare-style logic:
{P} e {x . Q}

precondition

program

binder for return value

postcondition

Examples:

{True}
newCounter ()

{x . isCounter(x, 0)}

{isCounter(c, n)}
incr c

{x . x = () ∗ isCounter(c, n + 1)}

{isCounter(c, n)}
read c

{x . x = n ∗ isCounter(c, n)}

Preconditions, postconditions, and invariants
1
allow us to specify conditions for other modules.

1
Not presented in this talk

11

Adequacy Theorem

Theorem (Adequacy)

If we prove
{True} e {x . 𝜙 (x)}

in Iris, then e is safe (e.g., no memory violations) and we have 𝜙 (v) for the computed value v.

Note: this rules out Heartbleed

12

Example of Modular Reasoning: Function Calls

{True}
let c = newCounter () in
incr c;

incr c;

read c

{x . x = 2}

12

Example of Modular Reasoning: Function Calls

{True}
let c = newCounter () in

{isCounter(c, 0)}
incr c;

{isCounter(c, 1)}
incr c;

{isCounter(c, 2)}
read c

{x . x = 2 ∗ isCounter(c, 2)}
{x . x = 2}

No need to look at the implementations of newCounter, incr, or read, we just look at the specs.

13

Example of Modular Reasoning: Concurrency

The parallel composition of two programs e1 and e2 (written e1 | |e2):
I Runs e1 and e2 concurrently in two dierent threads

I Returns a pair of values (v1, v2) corresponding to e1 and e2 respectively
I The two programs may work on shared memory
I The semantics depends on the order of thread scheduling

The following Hoare-par rule enables modular reasoning about parallel composition:

Hoare-par

{P1} e1 {x . 𝜙1(x)} {P2} e2 {x . 𝜙2(x)}
{P1 ∗ P2} e1 | |e2 {x . x = (v1, v2) ∗ 𝜙1(v1) ∗ 𝜙2(v2)}

14

Let’s see a few examples of recent works in this area
by my collaborators and I

15

Reasoning about Distributed Systems (ESOP’20)

Ecient implementations often use advanced features like node-local concurrency and

higher-order memory

It is well known that reasoning about distributed programs is dicult

Traditionally, most works focus on verifying a high-level model of the system

We introduced Aneris: a program logic for modular verication of distributed systems

16

Reasoning about Distributed Systems (ESOP’20)

Modular reasoning about distributed systems:

I Horizontal modularity: nodes, and threads, are veried in isolation and the proofs are

composed

I Vertical modularity: library code is veried separately and library clients are veried against

the library specs

node 1

thread 1

user code

...

user code

library

...

library

OS/networking

. . .

thread m1

user code

...

user code

library

...

library

OS/networking

. . .

node k

thread 1

user code

...

user code

library

...

library

OS/networking

. . .

thread mk

user code

...

user code

library

...

library

OS/networking

17

Reasoning about Causal Consistency (POPL’21)

According to the CAP theorem a distributed database cannot satisfy all of the following:

I Consistency: we always read the latest data

I Availability: every request is responded to

I Partition tolerance: system still functions if some of the replicas fail

Causally consistent databases:

I Sacrice consistency in favor of availability and partition tolerance

I Even if we don’t receive the latest data, we never receive data out of causal order:

I Example of violation of causal order: receiving response to a message in a group onversation

before the message itself

We developed a novel specication (in Aneris) for causally consistent databases, which used to:

I Verify an implementation of a causally consistent database

I Prove correctness of clients of the database (similar to the counter example earlier)

18

Reasoning about Non-interference (POPL’21)

Non-interference (a security property): output does not leak the secret

Program

public input

secret input

output

A common approach: tracking the level of secrecy of data in the type system

I Each type is annotated with a level, e.g., boolH , boolL

I The type system ensures that no data ows from high inputs to low outputs

I Non-interference (termination in-sensitive) in terms of types:

TINI: for any function f : boolH → boolL we have f true ≈ f false

19

Reasoning about Non-interference (POPL’21)

We proved termination-insensitive non-interference:

I For the most advanced type system to date

I Required a novel program logic

I We can reason about both well-typed code and ill-typed code

We do this as follows:

I We dene a program logic for termination-insensitive reasoning

I We use it to express non-interference properties of programs of each type such that:

JboolH → boolLK(f) implies f true ≈ f false

I We prove that any well-typed program e : 𝜏 we have J𝜏K(e)
I Hence, the TINI property holds

20

Other Examples

There are other interesting examples that I did not cover in this talk, e.g.,

I Reasoning about machine code (assembly) of so-called capability machines (POPL’21)

I Studying gradual type systems (POPL’21)

I Reasoning about atomicity of advanced concurrent programs (POPL’20)

I Reasoing about continuations (ICFP’19)

I Properties of the ST-monad (POPL’18)

I etc.

If you are interested, you can nd the full list of my publications at:

https://cs.au.dk/~timany/publications

https://cs.au.dk/~timany/publications

Thanks

