
Aneris: A Mechanised Logic for Modular
Reasoning about Distributed Systems

Morten Krogh-Jespersen1 Amin Timany2

Marit Edna Ohlenbusch1 Simon Oddershede Gregersen1

Lars Birkedal1

1Aarhus University, Aarhus, Denmark

2imec-DistriNet KU Leuven, Leuven, Belgium

October 28, 2019

Iris workshop,
Aarhus University

1

Introduction

Distributed systems are ubiquitous

Some applications are critical, e.g., online banking

Hence, there is a need for verification

Efficient implementations often use advanced features like
node-local concurrency and higher-order memory

It is well known that reasoning about distributed programs is
difficult

Traditionally, most works focus on verifying a high-level model of
the system

We introduce Aneris: a program logic for modular verification of
safety of distributed systems’ code

2

In this talk

I AnerisLang: an advanced programming language for
programming distributed systems

I Aneris logic: a program logic for modular reasoning about
AnerisLang programs
I Horizontal modularity: nodes, and threads, are verified in

isolation and the proofs are composed
I Vertical modularity: library code is verified separately and

library clients are verified against the library specs.

node 1
thread 1

user code
...

user code

library
...

library

OS/networking

. . .

thread m1

user code
...

user code

library
...

library

OS/networking

. . .

node k
thread 1

user code
...

user code

library
...

library

OS/networking

. . .

thread mk

user code
...

user code

library
...

library

OS/networking

2

In this talk

I AnerisLang: an advanced programming language for
programming distributed systems

I Aneris logic: a program logic for modular reasoning about
AnerisLang programs
I Horizontal modularity: nodes, and threads, are verified in

isolation and the proofs are composed
I Vertical modularity: library code is verified separately and

library clients are verified against the library specs.
I Concurrent-separation-logic-style specs for distributed

systems
I Examples of distributed network specifications

3

AnerisLang

In this work, we introduce AnerisLang and the Aneris logic.

AnerisLang: an untyped ML-style programming language with
I UDP-like network primitives

I unordered messages
I possibility of dropped packets
I duplicate protection

I Concurrency (multiple threads on each node)
I Higher-order memory (can store code in memory)
I Primitive types and support of (de)serialization to strings
I Can (almost) be directly extracted to running OCaml code

The operational semantics keeps track of
I A heap for each node
I A mapping from socket handles to socket addresses (ip and

port) for each node
I A message soup: a collection of sent messages

4

Aneris logic

Aneris logic: a program logic based on Iris for distributed systems

Hoare triples:

{P } 〈n; e〉 {Φ}

precondition

running node

program postcondition

Hoare triples guarantee safety:

If {P } 〈n; e〉 {Φ} holds then
– given that P holds for the initial state,
– e is safe, i.e. the program (distributed system) will not crash,
– and if it terminates with a final value v, Φ(v) holds.

5

Modularity in Aneris logic

I Thread-local reasoning:

{P1} 〈n; e1〉 {v.Q1} {P2} 〈n; e2〉 {v.Q2}
{P1 ∗ P2} 〈n; e1 || e2〉 {v.∃v1, v2.v = (v1, v2) ∗Q1[v1/v] ∗Q2[v2/v]}

I Node-local reasoning:

{P1 ∗ IsNode(n1) ∗ FreePorts(ip1,P)} 〈n1; e1〉 {True}
{P2 ∗ IsNode(n2) ∗ FreePorts(ip2,P)} 〈n2; e2〉 {True}

{P1 ∗ P2 ∗ FreeIp(ip1) ∗ FreeIp(ip2)} 〈S; (n1; ip1; e1) ||| (n2; ip2; e2)〉 {True}

I Reasoning about network communications (socket protocols)

Φ : Message→ iProp a Z⇒ Φ

I if a Z⇒ Φ and a Z⇒ Ψ then Φ and Ψ are equivalent.
I a Z⇒ Φ a` a Z⇒ Φ ∗ a Z⇒ Φ.

5

Modularity in Aneris logic

I Thread-local reasoning:

{P1} 〈n; e1〉 {v.Q1} {P2} 〈n; e2〉 {v.Q2}
{P1 ∗ P2} 〈n; e1 || e2〉 {v.∃v1, v2.v = (v1, v2) ∗Q1[v1/v] ∗Q2[v2/v]}

I Node-local reasoning:

{P1 ∗ IsNode(n1) ∗ FreePorts(ip1,P)} 〈n1; e1〉 {True}
{P2 ∗ IsNode(n2) ∗ FreePorts(ip2,P)} 〈n2; e2〉 {True}

{P1 ∗ P2 ∗ FreeIp(ip1) ∗ FreeIp(ip2)} 〈S; (n1; ip1; e1) ||| (n2; ip2; e2)〉 {True}

I Reasoning about network communications (socket protocols)

Φ : Message→ iProp a Z⇒ Φ

I if a Z⇒ Φ and a Z⇒ Ψ then Φ and Ψ are equivalent.
I a Z⇒ Φ a` a Z⇒ Φ ∗ a Z⇒ Φ.

5

Modularity in Aneris logic

I Thread-local reasoning:

{P1} 〈n; e1〉 {v.Q1} {P2} 〈n; e2〉 {v.Q2}
{P1 ∗ P2} 〈n; e1 || e2〉 {v.∃v1, v2.v = (v1, v2) ∗Q1[v1/v] ∗Q2[v2/v]}

I Node-local reasoning:

{P1 ∗ IsNode(n1) ∗ FreePorts(ip1,P)} 〈n1; e1〉 {True}
{P2 ∗ IsNode(n2) ∗ FreePorts(ip2,P)} 〈n2; e2〉 {True}

{P1 ∗ P2 ∗ FreeIp(ip1) ∗ FreeIp(ip2)} 〈S; (n1; ip1; e1) ||| (n2; ip2; e2)〉 {True}

I Reasoning about network communications (socket protocols)

Φ : Message→ iProp a Z⇒ Φ

I if a Z⇒ Φ and a Z⇒ Ψ then Φ and Ψ are equivalent.
I a Z⇒ Φ a` a Z⇒ Φ ∗ a Z⇒ Φ.

6

Specifying socket protocols

Φ : Message→ iProp a Z⇒ Φ

Given

– a predicate P : String→ iProp for message contents,
– and a predicate Q : Message→ iProp

we specify a socket protocol Φ as follows:

Φ(m) , ∃Ψ. from(m) Z⇒ Ψ∗P (body(m))∗(∀m′. Q(m′) −∗ Ψ(m′))

Socket protocols restrict messages and, if necessary, the protocol
of the sender!

This is possible because of Iris’s impredicativity:

given any Φ : Message→ iProp, a Z⇒ Φ : iProp

7

Concurrent-Separation-logic-style specifications

Our specifications for distributed systems are inspired by
concurrent separation logic

This style of specification lends itself quite well to modular
reasoning

To illustrate this point we see the specs for a distributed lock
server

8

CSL specs for a lock

Lock specifications:

∃ isLock .

∧ ∀v,K. isLock(v,K) a` isLock(v,K) ∗ isLock(v,K)

∧ ∀v,K. isLock(v,K) ` K ∗ K ⇒ False
∧ {True} newLock () {v. ∃K. isLock(v,K)}
∧ ∀v. {isLock(v,K)} acquire v {v.K}
∧ ∀v. {isLock(v,K) ∗ K} release v {True}

Intuitively we think of the following state transition system:

unlocked locked

K

9

Aneris specs for a distributed lock

Φlock(m) ,∃Ψ. from(m) Z⇒ Ψ ∗ (acq(m,Ψ) ∨ rel(m,Ψ))

acq(m,Ψ) , (body(m) = ”LOCK”) ∗
∀m′. (body(m′) = ”NO”) ∨ (body(m′) = ”YES” ∗ K)

−∗ Ψ(m′)

rel(m,Ψ) , (body(m) = ”RELEASE”) ∗ K ∗
∀m′. (body(m′) = ”RELEASED”) −∗ Ψ(m′)

10

Sockets and binding

– Socket creation:
Socket
{IsNode(n)} 〈n;socket ()〉 {z. z ↪→n None}

– Binding to a static (fixed/primordial) address

Socketbind-static
{Fixed(A) ∗ a ∈ A ∗ FreePort(a) ∗ z ↪→n None}

〈n;socketbind z a〉

{x. x = 0 ∗ z ↪→n Some a}

– Binding to a dynamic address

Socketbind-dynamic
{Fixed(A) ∗ a 6∈ A ∗ FreePort(a) ∗ z ↪→n None}

〈n;socketbind z a〉

{x. x = 0 ∗ z ↪→n Some a ∗ a Z⇒ Φ}

11

Sending and receiving over sockets

– Sending over a socket

Sendto
{z ↪→n Some from ∗ to Z⇒ Φ ∗ Φ((from, to,msg,Sent))}

〈n;sendto z msg to〉

{x. x = |msg| ∗ z ↪→n Some from}

– Receiving from a socket

Receivefrom
{z ↪→n Some to ∗ to Z⇒ Φ}

〈n;receivefrom z〉

{ x. z ↪→n Some to ∗(
x = None ∨

(
∃m.x = Some (body(m), from(m)) ∗ Φ(m) ∗ R(m)

)) }

12

Adequacy

Let
– P ⊆ Ip,
– and A ⊆ Address.

Given a primordial socket protocol Φa for each a ∈ A, suppose
that the Hoare triple

{Fixed(A) ∗∗
a∈A

a Z⇒ Φa ∗∗
i∈P

FreeIp(i)} 〈n; e〉 {v.True}

is derivable in Aneris.

Then, e is safe, i.e. it will not crash.

13

Example: load balancer

18 Krogh-Jespersen et al.

5 Case Study 1: A Load Balancer

AnerisLang supports concurrent execution of threads on nodes through the
fork {e} primitive. We will illustrate the benefits of node-local concurrency
by presenting an example of server-side load balancing.

Load balancer

C1

...

Cn

Clients

z0

z1T1 : serve

z2T2 : serve

S1

S2

Servers

socket node
communication thread

Fig. 4. The architecture of a distributed system with a load balancer and two servers.

Implementation. In the case of server-side load balancing, the work distribution
is implemented by a program listening on a socket that clients send their requests
to. The program forwards the requests to an available server, waits for the
response from the server, and sends the answer back to the client. In order to
handle requests from several clients simultaneously, the load balancer can employ
concurrency by forking off a new thread for every available server in the system
that is capable of handling such requests. Each of these threads will then listen
for and forward requests. The architecture of such a system with two servers and
n clients is illustrated in Fig. 4.

An implementation of a load balancer is shown in Fig. 5. The load balancer is
parameterized over an ip address, a port, and a list of servers. It creates a socket
(corresponding to z0 in Fig. 4), binds the address, and folds a function over the
list of servers. This function forks off a new thread (corresponding to T1 and T2

in Fig. 4) for each server that runs the serve function with the newly-created
socket, the given ip address, a fresh port number, and a server as arguments.

The serve function creates a new socket (corresponding to z1 and z2 in Fig. 4),
binds the given address to the socket, and continuously tries to receive a client
request on the main socket (z0) given as input. If a request is received, it forwards
the request to its server and waits for an answer. The answer is passed on to
the client via the main socket. In this way, the entire load balancing process is
transparent to the client, whose view will be the same as if it was communicating
with just a single server handling all requests itself as the load balancer is simply
relaying requests and responses.

Φrel (Pval , Pin , Pout)(m) , ∃Ψ, v. from(m) Z⇒ Ψ ∗ Pin (m, v) ∗ Pval (v) ∗
(∀m′. Pval (v) ∗ Pout (m

′, v) −∗ Ψ(m′))

14

Example: load balancer
18 Krogh-Jespersen et al.

5 Case Study 1: A Load Balancer

AnerisLang supports concurrent execution of threads on nodes through the
fork {e} primitive. We will illustrate the benefits of node-local concurrency
by presenting an example of server-side load balancing.

Load balancer

C1

...

Cn

Clients

z0

z1T1 : serve

z2T2 : serve

S1

S2

Servers

socket node
communication thread

Fig. 4. The architecture of a distributed system with a load balancer and two servers.

Implementation. In the case of server-side load balancing, the work distribution
is implemented by a program listening on a socket that clients send their requests
to. The program forwards the requests to an available server, waits for the
response from the server, and sends the answer back to the client. In order to
handle requests from several clients simultaneously, the load balancer can employ
concurrency by forking off a new thread for every available server in the system
that is capable of handling such requests. Each of these threads will then listen
for and forward requests. The architecture of such a system with two servers and
n clients is illustrated in Fig. 4.

An implementation of a load balancer is shown in Fig. 5. The load balancer is
parameterized over an ip address, a port, and a list of servers. It creates a socket
(corresponding to z0 in Fig. 4), binds the address, and folds a function over the
list of servers. This function forks off a new thread (corresponding to T1 and T2

in Fig. 4) for each server that runs the serve function with the newly-created
socket, the given ip address, a fresh port number, and a server as arguments.

The serve function creates a new socket (corresponding to z1 and z2 in Fig. 4),
binds the given address to the socket, and continuously tries to receive a client
request on the main socket (z0) given as input. If a request is received, it forwards
the request to its server and waits for an answer. The answer is passed on to
the client via the main socket. In this way, the entire load balancing process is
transparent to the client, whose view will be the same as if it was communicating
with just a single server handling all requests itself as the load balancer is simply
relaying requests and responses.

Φrel (Pval , Pin , Pout)(m) , ∃Ψ, v. from(m) Z⇒ Ψ ∗ Pin (m, v) ∗ Pval (v) ∗
(∀m′. Pval (v) ∗ Pout (m

′, v) −∗ Ψ(m′))

{Static((ip, p), A, φrel (λ_.True, Pin , Pout)) ∗ IsNode(n) ∗ ∗
p′∈ports

Dynamic((ip, p′), A)

 ∗
(∗

s∈srvs

∃v. LB(1, s, v) ∗ s Z⇒ φrel (λv. LB(1
2
, s, v), Pin , Pout)

)}
〈n;load_balancer ip p srvs〉

{True}

15

More examples

I We use our load balancer specs to verify an addition service:
I individual servers for adding numbers
I a load balancing server that distributes the load between

worker servers
I demonstrates horizontal modularity

I We prove correctness of a two phase commit (TPC) library
I the implementation is parameterized by functions for:

I voting
I finalizing (aborting/committing)

I We use this to implement a replicated logging service:
I TPC specs guarantee that:

either all log servers commit or they all reject the change
I demonstrates vertical modularity

I We prove correctness of a distributed bag data structure
I clients can store items in the bag or request items
I multiple threads on the server respond to requests
I server-side bag data structure is protected by a lock
I demonstrates thread-local reasoning

15

More examples

I We use our load balancer specs to verify an addition service:
I individual servers for adding numbers
I a load balancing server that distributes the load between

worker servers
I demonstrates horizontal modularity

I We prove correctness of a two phase commit (TPC) library
I the implementation is parameterized by functions for:

I voting
I finalizing (aborting/committing)

I We use this to implement a replicated logging service:
I TPC specs guarantee that:

either all log servers commit or they all reject the change
I demonstrates vertical modularity

I We prove correctness of a distributed bag data structure
I clients can store items in the bag or request items
I multiple threads on the server respond to requests
I server-side bag data structure is protected by a lock
I demonstrates thread-local reasoning

15

More examples

I We use our load balancer specs to verify an addition service:
I individual servers for adding numbers
I a load balancing server that distributes the load between

worker servers
I demonstrates horizontal modularity

I We prove correctness of a two phase commit (TPC) library
I the implementation is parameterized by functions for:

I voting
I finalizing (aborting/committing)

I We use this to implement a replicated logging service:
I TPC specs guarantee that:

either all log servers commit or they all reject the change
I demonstrates vertical modularity

I We prove correctness of a distributed bag data structure
I clients can store items in the bag or request items
I multiple threads on the server respond to requests
I server-side bag data structure is protected by a lock
I demonstrates thread-local reasoning

16

Thanks!

