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Abstract
Constructing solutions to recursive domain equations is a well-known, important problem in the
study of programs and programming languages. Mathematically speaking, the problem is finding
a fixed point (up to isomorphism) of a suitable functor over a suitable category. A particularly
useful instance, inspired by the step-indexing technique, is where the functor is over (a subcategory
of) the category of presheaves over the ordinal ω and the functors are locally-contractive, also
known as guarded functors. This corresponds to step-indexing over natural numbers. However, for
certain problems, e.g., when dealing with infinite non-determinism, one needs to employ trans-finite
step-indexing, i.e., consider presheaf categories over higher ordinals. Prior work on trans-finite
step-indexing either only considers a very narrow class of functors over a particularly restricted
subcategory of presheaves over higher ordinals, or treats the problem very generally working with
sheaves over an arbitrary complete Heyting algebra with a well-founded basis.

In this paper we present a solution to the guarded domain equations problem over all guarded
functors over the category of presheaves over ordinal numbers, as well as its mechanization in the
Rocq Prover. As the categories of sheaves and presheaves over ordinals are equivalent, our main
contribution is simplifying prior work from the setting of the category of sheaves to the setting of
the category of presheaves and mechanizing it — presheaves are more amenable to mechanization in
a proof assistant.
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1 Introduction

Recursive Domain Equations and Step-Indexing Recursive definitions are prevalent in
computer programming. Thus, one of the important problems in the study of programs and
programming languages is finding recursive mathematical objects to construct models of
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programs or the mathematical tools to study them, e.g., program logics. This problem is
often stated as a so-called domain equation [44] in terms of a fixed point (up to isomorphism)
of an endo-functor F : C → C on a suitable category C, i.e., an object X of C such that
F (X) ≃ X.1 The problem was first studied by Dana Scott [42, 41] in the category of
continuous lattices in order to give denotational semantics to untyped λ-calculi. Scott’s
construction [42] takes the inverse limit of an ω-tower of continuous lattices obtained through
successive applications of the functor. As observed by Lawvere [42], the essence of the
proof showing that this construction indeed constructs a fixed point is that the inverse
limit coincides with the direct limit (of a related diagram). This has since been named the
limit-co-limit coincidence theorem [44]. Wand [51] later observed that the essential point,
rather than the category itself, is the structure of its hom-sets. Wand [51], Smyth, and
Plotkin [44] give an abstract account of solving domain equations for endo-O-functors on
O-categories, i.e., categories that are enriched over the category of ω-cpos and ω-continuous
functions and functors over them whose actions on morphisms is ω-continuous.2 America
and Rutten [3] solve domain equations in a certain category of metric spaces. Birkedal et
al. [11] generalize the results of America and Rutten by constructing solutions to domain
equations over so-called M-categories, categories enriched over the category of ultra-metric
spaces and non-expansive maps, where the functors considered are locally contractive in the
sense that the functors’ action on morphisms is a contractive function. This generalization is
inspired [11] by the relationship between bounded bisected ultra-metric spaces (where the
distances belong to the set {0}∪

{ 1
2n

∣∣n ∈ N
}

) and the technique of step-indexing [37, 4, 1, 10].
Birkedal et al. [9] later generalize these results further to a setting where the category is
enriched over the category of sheaves over a complete Heyting algebra with a well-founded
basis; ordinals in general, and ω in particular, being such complete Heyting algebras. These
results [11, 9] have served as a foundation for a multitude of works based on step-indexing,
e.g., to give denotational semantics to programs [39, 14], to construct the model of the Iris
program logic framework [29].

The Need for Step-Indexing Over Higher Ordinals It is well known [7, 13] that if one
uses the step-indexing technique to reason about a programming language with countable
non-determinism, it is no longer sufficient to consider step-indexing over ω. One must [13]
instead use step-indexing over ω1 (the first uncountable ordinal). Another way to look at
this issue is through the lens of the step-indexed logic. The pertinent problem to consider
here is the question of when existence of an object inside the step-indexed logic implies its
existence outside. This is dubbed “the existential property” by Spies et al. [45]. Say we are
given a predicate ϕ over a set A for which we have that ∃x : A. ϕ(x) is a valid sentence in
the model of the step-indexed logic, i.e., |= ∃x : A. ϕ(x). The existential property states that
|= ∃x : A. ϕ(x) implies that there exists some a ∈ A for which we have |= ϕ(a). Question:
when does the existential property hold? Answer: if the cardinality |A| is strictly smaller
than that of the ordinal γ we are step-indexing over (provided that γ is a regular ordinal).
Indeed, if |A| is not smaller than the step-indexing ordinal γ, there are predicates for which
the existential property does not hold. For a detailed, formal discussion of the need for
step-indexing over higher-ordinals see Appendix A.

1 In this paper we assume the reader is familiar with basic concepts in category theory found in standard
textbooks [5, 34].

2 See Section 3 for a brief explanation of enriched categories and functors. More details can be found in
the book of Kelly [30] on the subject.
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Spies et al. [45], motivated by this need, extend the step-indexed logic underlying the
Iris program logic to trans-finite ordinals. Their work is also mechanized on top of the Rocq
Prover. However, their domain equation solver can only be used to solve domain equations
of functors of a special form. This special form is suitable for constructing Iris’s higher-order
resources [28], but is not sufficient for arbitrary locally contractive functors, e.g., the functor
for constructing so-called guarded interaction trees [17]. We will further discuss the relation
between our work and Spies et al. [45] in Section 6.

Step-Indexing Over All Ordinals In the rest of this paper we talk about step-indexing
over (all) ordinals, e.g., we speak of sheaves or presheaves over Ord, the set of all ordinals
(which we also consider to be a preorder category under the usual order). This is to be
understood as the set of all ordinals definable in a certain Grothendieck universe. (In our
Rocq formalization, the type Ord is a universe polymorphic definition corresponding to the
type of all ordinals in the universe.) In terms of (pre)-sheaves over Ord, this should be
understood as (pre)-sheaves over the ordinal that is the supremum of all ordinals in Ord

— which obviously itself lives in a version of Ord in a larger Grothendieck universe. The
upshot of step-indexing over all ordinals in the universe is that then the existential property
holds for any set/type in the universe (see Appendix A).

The only downside of working with Ord is that it is not closed under suprema. That is,
there are subsets A ⊆ Ord such that sup(A) does not exist (technically it does but it lives
in a copy of Ord in a larger universe). To compensate for this issue, many of our definitions
and constructions are parameterized by an arbitrary downwards-closed subset of ordinals
instead of ordinals. This can intuitively be thought of as working with the completion of
Ord as a lattice instead of Ord itself. This significantly simplifies the presentation, and
more importantly mechanization of our results; see Section 5.

Equivalence of Categories of Sheaves Over Ordinals and Presheaves Over Ordinals As we
will discuss in Section 2 the category of sheaves over ordinals, Sh(Ord), is equivalent (in fact
adjoint equivalent) to the category of presheaves over Ord, PSh(Ord). Thus, technically
speaking, the results of Birkedal et al. [9] subsume the results we present in this paper. That
is, since Birkedal et al. [9] construct solutions to guarded domain equations over sheaves over
complete Heyting algebras with a well-founded basis, and ordinals are a particular instance of
such Heyting algebras, one can obtain solutions to equations over PSh(Ord) from solutions
to equations over Sh(Ord). This is similar to how one obtains solutions to classical domain
equations (over category Dom of domains) from those over the equivalent category CUSL
of conditional upper semi-lattices with a least elements [47, chapter 4].

Contributions Notwithstanding the point above regarding the equivalence of categories of
presheaves and sheaves over ordinals, the main contribution of this paper is simplifying and
mechanizing the results of Birkedal et al. [9] to the setting of presheaves over ordinals and
locally contractive functors on them which is much more amenable to mechanization. In fact,
the aforementioned equivalence is the reason we were convinced that a simplification to the
setting of presheaves, and a direct solution construction in that setting is achievable and
mechanizable. In this paper we present this simplified version and its mechanization in the
Rocq Prover. We also mechanize the symmetrization argument [16] to solve mixed-variance
recursive domain equations and provide an example of solving a concrete mixed-variance
equation using our framework. All results marked with are mechanized [46] in the Rocq
Prover. We only present a few high-level proofs in this paper which help the reader appreciate

FSCD 2025
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the results. For the rest we refer to our Rocq mechanization [46].

The Structure of the Rest of the Paper Section 2 introduces some basic constructions
over the category of sheaves and presheaves over ordinals, including their equivalence. In
Section 3 we present categories enriched over (the cartesian structure of) presheaves over
ordinals, including the central concepts of enriched and locally contractive functors. We also
present the concepts of ordinal-partial isomorphism and enriched-pointwiseness of limits,
which play an important role in our construction of solutions of domain equations. Section 4
gives details of our construction of solutions to domain equations as well as their uniqueness.
The technicalities involved in the mechanization of the results are discussed in Section 5. In
Section 6 we discuss other works related to ours, and present our future work and concluding
remarks in Sections 7 and 8 respectively. The Appendix A presents discusses the need for
higher ordinals, while Appendices B–D include some details omitted from the main text.
▶ Remark 1 (Notation). We fix the following notational convention for the rest of the paper:

Notation Convention / Meaning Notation Convention / Meaning

X := Y X is defined as Y Y The Yoneda embedding

α, β, γ, . . . Ordinals A ≃ B Isomorphism

α+ Successor of α
f : A

≃−→ B
The morphism f : A → B has an
inverse and A and B are isomorphic

α ≺ β, α ⪯ β Order of ordinals

F, G, H, . . . (Pre)sheaves, functors
Fβ⪯α

The map F (β) → F (α)
induced by the (pre)sheaf F

A, B, C, . . . Objects, could be (pre)sheaves

η, ξ, ζ, . . . Natural transformation lim
β≺α

F (β)
Limit of the diagram F whose domain
is (restricted to) {β|β ≺ α}; when
obvious, we drop the β ≺ α part

f, g, h, . . .
Morphisms, could be natural
transformations

ΠL
A

Projection from L onto F (A) when
L is the limit of the functor F

lim
β

fβ
The unique morphism from A to
lim

β
F (β) when fβ : A → F (β)

F |A
Restrict the domain of the functor
(or function) F to A

curry (f) The exponential transpose of f

2 On Sheaves and Presheaves Over Ordinals

We start by giving a few basic definitions in the category of presheaves over ordinals,
PSh(Ord). In particular, there are two important endo-functors on PSh(Ord) called later
(▶ : PSh(Ord) → PSh(Ord)), and earlier (◀ : PSh(Ord) → PSh(Ord)). These functors
are defined as follows:

▶F (α) := lim
β≺α

F (β)

(▶F )β⪯α := lim
γ≺β

Π▶F (α)
γ

◀F (α) := F (α+)
(◀F )β⪯α := Fβ+⪯α+

The object map of ▶, at each stage, takes the limit (in Set) of the diagram induced by
the object (presheaf) it is mapping at all smaller stages. In particular, ▶F (0) is always
the terminal (singleton) set, and ▶F (α+) ≃ F (α) (see Lemma 41 in Appendix D). The
morphism map of the functor ▶, (▶F )β⪯α is defined as the amalgamation of projections
Π▶F (α)

γ : ▶F (α) → F (γ) of the limit that is (▶F )(α). The functoriality of ◀ is trivial. The
functoriality of ▶, on the other hand, follows from properties of limits. It is well-known that
these two functors, later and earlier, form an adjunction [9]: ◀ ⊣ ▶ .

There is an important natural transformation Next : idPSh(Ord) → ▶. The map (mor-
phism in Set) NextF (α) : F (α) → ▶F (α) is constructed as follows: given an element
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x ∈ F (α), ({∗} , {Fβ≺α}β≺α) is a cone on the diagram F |{β|β≺α} in Set — the vertex of this
cone, {∗}, is the terminal object of Set. Since ▶F (α) is the limit of this diagram, there is a
unique map from the {∗} into ▶F (α). We take the image this map to be the result of Next:

NextF (α)(x) :=
(

lim
β≺α

Nx
β

)
(∗) where Nx

β (∗) := Fβ≺α(x)

That this construction is natural both in F and α, like most properties that are related to
later, naturality follows from properties of limits.

2.1 Equivalence of the Category of Sheaves Over Ordinals and the
Category of Presheaves Over Ordinals

Sheaves are presheaves that additionally satisfy the so-called “sheaf condition” [35]. In the
particular case of ordinals (seen as a topological space) the sheaf condition boils down to the
following: at any limit ordinal, including zero, the value of the sheaf must be the (categorical)
limit of all the sets below it. That is, a presheaf F : Ordop → Set is a sheaf if and only if
we have both that F (0) ≃ {∗} and that F (λ) ≃ limα≺λ F (α) via mediating morphisms, for
any limit ordinal λ.

As per the sheaf condition above, by construction, ▶F is always a sheaf, regardless of
F . Thus, ▶ is also a functor from the category of presheaves over ordinals the category of
sheaves over ordinals. On the other hand, ◀F need not be a sheaf, even if F is. When
viewed as functors between the category of sheaves and presheaves, the earlier and later
functors form not only an adjunction, as noted above, but an adjoint equivalence.3 That is,
the following isomorphisms hold and are both natural in F :

◀(▶(F )) ≃ F for any presheaf F and ▶(◀(F )) ≃ F for any sheaf F

These isomorphisms and their naturality rely on Lemma 41 in Appendix D.
▶ Remark 2. The discussion above of the adjoint equivalence of Sh(Ord) and PSh(Ord) in
fact holds generally for any limit ordinal λ, i.e., for showing adjoint equivalence of Sh(λ)
and PSh(λ).

2.2 Contractive Morphisms and Their Fixed Points
Here, we define contractive morphisms in the category of presheaves (natural transformations)
and show that they always have unique fixed points — the construction and the proof are very
similar to the classical Banach fixed point theorem. Fixed points of contractive morphism are
useful in defining so-called guarded recursive predicates which are particularly useful when
working in step-indexed logics [8]. In addition to this, we present contractive morphisms
and construction of their fixed points not only to highlight the difference in the construction
compared to Birkedal et al. [9], but also because they are used in proving uniqueness of
solutions of domain equations — an important fact in our development; see Section 4.3.

We say a morphism in PSh(Ord), i.e., a natural transformation, is contractive, if it
factors through Next. We write ContrMorph(η) when η is contractive.

▶ Definition 3 ( ). A natural transformation η : F → G is contractive, i.e., ContrMorph(η),
if there is a natural transformation η′ : ▶F → G such that η = η′ ◦ NextF . We call η′ a
witness of contractivity of η.

3 This equivalence was noticed in a discussion the second author had with Daniel Gratzer.
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▶ Lemma 4 ( ). Let η : F → G be a contractive morphism, i.e., ContrMorph(η), with η′ a
witness of contractivity. Then the following holds for any ξ : H → F and any ζ : G → H:

ContrMorph(η ◦ ξ) witnessed by η′ ◦ ▶ ξ

ContrMorph(ζ ◦ η) witnessed by ζ ◦ η′

▶ Definition 5 (Fixed Points ). We define three notions of fixed points of morphisms:
1. ξ : B → A is a fixed point of η : ▶A × B → A if η ◦ ⟨NextA ◦ ξ, idB⟩ = ξ

2. ξ : 1 → A is a fixed point of η : ▶A → A if η ◦ NextA ◦ ξ = ξ

3. ξ : 1 → A is a fixed point of the contractive morphism η : A → A if η ◦ ξ = ξ

▶ Remark 6 ( ). Definition 5 defines three kinds of fixed points each weaker than the one
before in that if (unique) solutions to one kind of fixed point exist, so do (unique) solutions
to the next kind. Theorem 7 below immediately implies existence of unique fixed points of
the first kind and thus existence of unique fixed points of all kinds. We will write fix(f) for
the unique fixed point of map f for any of these kinds of fixed points.

In order to construct these fixed points we show that there is a general fixed point
combinator fixA : A▶A → A. Note that here the fixed point combinator fixA is a natural
transformation (a morphism in the category of presheaves) from the exponential object A▶A

to A.

▶ Theorem 7 ( ). For any presheaf A, there is a natural transformation fixA : A▶A → A in
the category of presheaves over ordinals that acts as the fixed point combinator constructing
unique fixed points. That is, for any η : ▶A × B → A we have fixA ◦ curry (η) is the
unique natural transformation from B to A such that: η ◦ ⟨NextA ◦ fixA ◦ curry (η) , idB⟩ =
fixA ◦ curry (η) where curry (η) is the exponential transpose of η.

▶ Remark 8. The proof of Theorem 7 differs from the proof given by Birkedal et al. [9] in
that working in the category of sheaves, the value of the fixed point presheaf is uniquely
determined at 0 and all limit ordinals. In contrast, our construction applies η at every single
stage of the construction including at 0 and limit ordinals. In other words, at 0 and limit
ordinals, we apply η “one more time” after computing what one would compute in the case of
sheaves. To see this, note that a natural transformation fixA : A▶A → A essentially amounts
to maps (morphisms in Set) ζα : (Yα × ▶A → A) → A(α) that are natural in α — each ζα

is a map from the set of natural transformations (Yα × ▶A → A) to the set A(α). Thus, at
0, we are given a function, say f : Yα(0) ×▶A(0) → A(0) and need to produce an element of
A(0), for which we will use f . Intuitively, the function f here is the natural transformation
η at stage 0, i.e., the natural transformation we are taking the fixed point of.

3 Enrichment Over Categories of Presheaves Over Ordinals

Enrichment is often studied over monoidal categories [30]. Here, we work specifically with
the monoidal structure of the cartesian closedness of the enriching category, i.e., the category
PSh(Ord). We briefly present the basic definitions here just to fix notation. Our notion of
locally contractive functor is exactly that in Birkedal et al. [9].

3.1 Enriched Categories and Functors; Locally Contractive Functors
▶ Definition 9 (Enriched Category ). We say a category C is enriched over a cartesian
closed category E if we have the following:
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An internal hom object in E, written EhomC
A, B , for any pair of objects A and B in C

A map ⌈·⌉ : HomC(A, B) → HomE(1,EhomC
A, B ) embedding C morphisms into E

A map ⌊·⌋ : HomE(1,EhomC
A, B ) → HomC(A, B) projecting C morphisms out of E

The maps ⌈·⌉ and ⌊·⌋ are inverses of one another
Internal composition morphisms: EcompC

A, B, C : EhomC
A, B × EhomC

B, C → EhomC
A, C

Expressed in terms of equality of morphisms in E, we have that EcompC
A, B, C is in agreement

with composition in C, is associative and respects identity morphisms

▶ Definition 10 (Enriched Functor ). Let C and D be two E-enriched categories. We say a
functor F : C → D is E-enriched if there are morphisms EhmF

A, B : EhomC
A, B → EhomD

F (A), F (B) in E that
acts as the E-internal functor action of F and, expressed in terms of equality of morphisms
in E, the morphisms EhmF

A, B preserve identity and composition.

Following Birkedal et al. [9] we define a locally contractive functor to be an enriched
functor (over the category of presheaves) that also has a contracted internal functor action
morphism. Intuitively, what we want is to say that a functor is locally contractive if its
internal functor action is a contractive morphism in the sense of Definition 3. The definition
below furthermore requires the witness of contractivity of the internal functor action to also
act functorially in the sense that it must also preserve compositions and identities. This extra
requirement, as also pointed out by Birkedal et al. [9], is the reason why we can develop the
theory of ordinal-partial isomorphisms and enriched-pointwise limits as we present in this
section. Birkedal et al. [9] present the theory of ordinal-partial isomorphisms but do not
make enriched-pointwise limits formal — they only mention intuitively that “since limits
are computed pointwise, . . . ” when presenting their approach to constructing solutions to
domain equations. Because we mechanize our solution to the domain equation problem we
had to formalize and mechanize this intuitive line of argument.

▶ Definition 11 (Locally Contractive Functors ). Let C and D be two PSh(Ord)-enriched
categories. We say a PSh(Ord)-enriched functor F : C → D is locally contractive if the
internal action morphisms of F , EhmF

A, B , are contractive with the witness of contractivity being
morphisms E▶hmF

A, B : ▶EhomC
A, B → EhomD

F (A), F (B). Furthermore, expressed in terms of equality of
morphisms in PSh(Ord), the morphisms E▶hmF

A, B must preserve identity and composition.

▶ Lemma 12 (Composition of Enriched and Locally Contractive Functors ). Let C, D, and B
be three E-enriched categories and F : C → D and G : D → B be two E-enriched functors.
The composition G◦F is also an E-enriched functor. Furthermore, G◦F is locally contractive
if at least one of F or G is.

Enriched functors are closed under many useful constructions: constant functors, the
identity functor, products of functors, their sums, diagonal functors (∆n : A 7→ An), etc. In
particular, this includes all finitary polynomial functors. Lemma 12 shows that there also
exists a similarly large collection of locally contractive functors because the later functor,
▶ : PSh(Ord) → PSh(Ord) is both enriched and locally contractive; see Appendix B where
we also show that the earlier functor ◀ : PSh(Ord) → PSh(Ord) is not even enriched, let
alone locally contractive.

3.2 Ordinal-Partial Isomorphisms
In this section, following Birkedal et al. [9], we define a notion of ordinal-partial isomorphisms,
indexed over ordinals, for categories enriched over PSh(Ord) and prove a few useful lemmas
about such morphisms that we will later use in solving domain equations.

FSCD 2025



30:8 Solving Guarded Domain Equations in Presheaves Over Ordinals and Mechanizing It

▶ Definition 13 (Ordinal-Partial Isomorphism ). Let C be a category enriched over PSh(Ord)
and f : A → B be a morphism in C. We say that f is an α-isomorphism if we have an
element x ∈ EhomC

B, A (α) called partial inverse of f at stage α such that

EcompC
B, A, B (α)(x, ⌈f⌉ (α)(∗)) = ⌈idB⌉ (α)(∗) (part-iso-left-id)

EcompC
A, B, A (α)(⌈f⌉ (α)(∗), x) = ⌈idA⌉ (α)(∗) (part-iso-right-id)

By functoriality of EhomC
B, A and naturality of EcompC

A, B, A and EcompC
B, A, B , we know that if f is an

α-isomorphism it is also β-isomorphism for any β ⪯ α. Given a downwards-closed subset of
ordinals A ⊆ Ord, we say a morphism f is an A-isomorphism if it is an α-isomorphism for any
α ∈ A. Whenever A has a maximal element γ being an A-isomorphism is equivalent to being
a γ-isomorphism. However, A-isomorphisms are in general useful for working with morphisms
that are A-isomorphisms for an unbounded downwards-closed subset A. Intuitively, f being
an α-isomorphism means that it behaves like an isomorphism up to stage α, even though an
inverse morphism may not even exist.
▶ Remark 14. Although we define ordinal-partial isomorphisms almost exactly as Birkedal et
al. [9] do, due to the differences between sheaves and presheaves, in the setting of Birkedal
et al. [9] every morphism is a 0-isomorphism, and also any morphism that is a {α|α ≺ λ}-
isomorphism for some limit ordinal λ is also a λ-isomorphism. This is not the case in our
setting.

▶ Lemma 15 ( ). Let C be a PSh(Ord)-enriched category and let f : A → B a morphism
in C. The morphism f is an isomorphism, i.e., there is a morphism g : B → A such that
f ◦ g = idB and g ◦ f = idA, if and only if f is an α-isomorphism for all α ∈ Ord.

▶ Lemma 16 ( ). Let C and D be two PSh(Ord)-enriched categories and F : C → D
an PSh(Ord)-enriched functor. For any α-isomorphism f : A → B in C, F (f) is an
α-isomorphism.

▶ Lemma 17 ( ). Let C and D be two PSh(Ord)-enriched categories and F : C → D a
locally contractive functor. Furthermore, let f : A → B in C be a {β|β ≺ α}-isomorphism.
The image of f under F , F (f), is an α-isomorphism in D.

3.3 Enriched-Pointwise Limits
In this section we develop the theory of enriched-pointwise limits in categories enriched
over PSh(Ord). This is an abstract way of representing the idea that limits are suitably
“pointwise”. In particular, when we consider the self-enrichment of PSh(Ord) and the
enrichment of (PSh(Ord))op over PSh(Ord) this notion directly corresponds to (co-)limits
in PSh(Ord) being pointwise; see Section D.3. We will use enriched-pointwise limits to
state and prove the important Lemma 21 and Corollary 22.

▶ Definition 18 (Enriched-Pointwise Cones ). Let C be a category enriched over PSh(Ord)
and F : J → C be a J -shaped diagram in C. Given an ordinal α, an enriched-pointwise
cone (V, {xj}j∈J) at stage α over the diagram F consists of a vertex object V in C to-
gether with elements xj ∈ EhomC

V, F (j)(α) such that for any morphism f : j → j′ in J we have
EcompC

V, F (j), F (j′)(α)(xj , ⌈F (f)⌉ (α)(∗)) = xj′ .

Since F (j) is a functor (presheaf) and EcompF
V, F (j), F (j′) is natural, a cone at stage α is also a cone

at stage β ⪯ α. In addition, given a cone (V, {Sj}j∈J ) over a diagram F : J → C we obtain
an enriched-pointwise cone (V, {⌈Sj⌉ (α)}j∈J ) of diagram F at any stage α.
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▶ Definition 19 (Enriched-Pointwise Cone Homomorphisms ). Let C be a category enriched
over PSh(Ord) and F : J → C be a J -shaped diagram in C. Moreover, let (V, {xj}j∈J ) and
(V ′,

{
x′

j

}
j∈J

) be two enriched-pointwise cones over F both at stage α. A cone homomorphism
from V to V ′ is an element h ∈ EhomC

V, V ′ (α) such that EcompC
V, V ′, F (j)(α)(h, x′

j) = xj.

▶ Definition 20 (Enriched-Pointwise Limits ). Let C be a category enriched over PSh(Ord)
and F : J → C be a J -shaped diagram in C. Furthermore, let (V, {Sj}j∈J ) be a limit
cone of diagram F in C. We say this limit is enriched-pointwise if we have that for any
enriched-pointwise cone (W, {xj}j∈J ) at stage α there is a unique enriched-pointwise cone
homomorphism from (W, {xj}j∈J ) to the enriched-pointwise cone (V, {⌈Sj⌉ (α)}j∈J ).

▶ Lemma 21 ( ). Let J be a strongly connected preorder category, i.e., for any two
objects j, j′ ∈ J , HomJ (j, j′) ∪ HomJ (j′, j) ̸= ∅. Furthermore, let C be a category enriched
over PSh(Ord) and F : J → C be a diagram such that for any f : j → j′ in J , the
morphism F (f) is an α-isomorphism. Finally, let the limit of F be enriched-pointwise in the
sense of Definition 20. Under these circumstances every projection of the limit of F is an
α-isomorphism.

▶ Corollary 22 ( ). Let C a category enriched over PSh(Ord) and F : {β|β ≺ α} → C be a
diagram whose limit is enriched-pointwise. Fix δ ≺ α. Assume that for any δ ⪯ γ ≺ α the
morphism Fδ⪯γ is a δ-isomorphism. The projection Πδ : lim F → F (δ) is a δ-isomorphism.

4 Solving Domain Equations

In this section we show that for a PSh(Ord)-enriched category C, any locally contractive
functor F : C → C has a unique solution up to isomorphism.

4.1 Uniqueness of Solutions up to Isomorphism

By a well-known result attributed to Lambek [44], the initial F -algebra for a functor F is an
isomorphism, and hence a solution to the domain equation for F . The following theorem
establishes the converse for locally contractive functors showing uniqueness of solutions.

▶ Theorem 23 ( ). Let C be a PSh(Ord)-enriched category and F : C → C a locally
contractive functor. The F -algebra (S, s) induced by a solution s : F (S) ≃−→ S is an initial
algebra.

Proof. The proof we have mechanized is the exact proof given by Birkedal et al. [9, 11].
Given an F -algebra (A, ϕA) we need to construct a unique F -algebra morphism from (S, s)
to (A, ϕA). Observe that a morphism h : S → A is an F -algebra morphism if and only if
we have h = ϕA ◦ F (h) ◦ s−1. A different way to look at this fact is that given a morphism
h : S → A, we can construct another morphism from S to A by taking ϕA ◦ F (h) ◦ s−1. This
mapping induces the following morphism in PSh(Ord):

µ := compLϕA

A ◦ compRs−1

S ◦ EhmF
S, A : EhomPSh(Ord)

S, A → EhomPSh(Ord)
S, A

By Lemma 4 the morphism µ is contractive because F is locally contractive. Thus, by
Theorem 7 and Remark 8 µ has a unique fixed point for which ⌊fix(µ)⌋ = ϕA◦F (⌊fix(µ)⌋)◦s−1.
Hence, ⌊fix(µ)⌋ is the unique algebra morphism we needed. □
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4.2 Constructing the Solution
In Section 4.1 we discussed that the solution to the domain equation is an F -algebra (A, ϕA)
where ϕA is an isomorphism. Accordingly, our strategy to solving domain equations is to
find such an F -algebra (A, ϕA) where ϕA is an isomorphism. This approach differs from the
approach of Birkedal et al. [9] in that Birkedal et al. [9] work directly in the category C
instead of Alg(F ); see Remark 31. Although this aspect of the difference is rather superficial,
it does help simplify the construction in the sense that it breaks the construction into a
few simpler concepts and lemmas which are ultimately nicer to mechanize; see (canonical)
partial solutions, dominating cones, etc. as presented below. Nevertheless, the fact that
finding solutions to domain equations can be reduced to finding (initial) algebras is common
knowledge [44].

Let us assume for the rest of this section that we are given a locally contractive endo-
functor F : C → C over a PSh(Ord)-enriched category C which is complete, and for which
all limits are enriched-pointwise. We start by defining a notion of a partial solution.

▶ Definition 24 (Partial Solution ). Let A ⊆ Ord be a downwards-closed subset of ordinals.
An A-partial solution is an Aop-shaped diagram P in the category of F -algebras such that:
(PS-1) For any α ∈ A, ϕP(α) : F (P(α)) → P(α) is an α-isomorphism.
(PS-2) For any β ⪯ α ∈ A, Pβ⪯α : P(α) → P(β) is a β-isomorphism.

The definition of partial solutions above is local in that the conditions (PS-1) and (PS-2)
only refer to individual objects or individual morphisms. As a result, given an A-partial
solution P, restricting P (as a diagram and hence a functor) to a downwards-closed subset
B ⊆ A, written P|B , is again a B-partial solution.

▶ Definition 25 (Dominating Cone ). Let A ⊆ Ord be a downwards-closed subset of ordinals
and P an A-partial solution. We say that a cone ((D, ϕD), {Sα}α∈A) over P dominates P if
we have:
(DA-1) For any α ∈ A, Sα : D → P(α) is an α-isomorphism.
(DA-2) The map ϕD is an α-isomorphism for any α for which we have {β|β ≺ α} ⊆ A.

Note that the condition (DA-2) above is equivalent to saying that ϕD is a (sup A)-
isomorphism in the event sup A does exist. In particular, the condition (DA-2) implies that
if P is a Ord-partial solution, then a cone dominating it is a solution to the domain equation;
see the proof of Theorem 30.

▶ Lemma 26 ( ). Let A ⊆ Ord be a downwards-closed subset of ordinals and P an A-partial
solution. By Remark 44 (Appendix D) the functor F applied to the limiting cone of P is also
a cone on P. We will write DCone(P) for this cone. The cone DCone(P) dominates P.

Proof. Let us write ((L, ϕL),
{

ΠL
α

}
α∈A

) for the cone that is the limit of P.
First we show that ϕL is an A-isomorphism by showing that it is an α-isomorphism for

any α ∈ A. Observe that by (PS-2) we know that Corollary 22 applies and thus ΠL
α is an

α-isomorphism, and by Lemma 16 so is F (ΠL
α). Furthermore, as ΠL

α is a morphism in the
category of F -algebras, which means that the following diagram commutes for any α ∈ A:

F (L) A

F (P(α)) P(α)

ϕL

F (ΠL
α) ΠL

α

ϕP(α)
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Also, by condition (PS-1), ϕP(α) is an α-isomorphism. Thus, by Remark 40 (Appendix C),
ϕL is an α-isomorphism since the three other sides of the diagram above are α-isomorphisms.

The cone DCone(P) that we wish to show dominates P is the following:

DCone(P) =
(

(F (L), F (ϕL)),
{

ϕP(α) ◦ F (ΠL
α)

}
α∈A

)
We already established (DA-1) when we argued that the diagram above consists of α-
isomorphisms. For (DA-2), let us assume we are given an ordinal α for which we have
{β|β ≺ α} ⊆ A. We just observed that ϕL is an A-isomorphism and thus also a {β|β ≺ α}-
isomorphism. Hence, by Lemma 17 F (ϕL) is an α-isomorphism. □

Next we define what we call canonical partial solutions and show how to patch canonical
partial solutions together in order to construct larger ones. The latter is used in Theorem 30
for constructing partial solutions by well-founded induction on ordinals.

▶ Definition 27 (Canonical Partial Solutions ). Let A ⊆ Ord be a downwards-closed subset
of ordinals and P an A-partial solution. We say P is a canonical partial solution if it is
constructed at all stages via the construction in Lemma 26. That is, if for any α ∈ A we have(

P(α), {Pβ⪯α}β⪯α

)
= DCone

(
P|{β|β≺α}

)
are equal cones of the diagram P|{β|β≺α}.

▶ Lemma 28 ( ). Let P and Q be two canonical A-partial solutions. We have P = Q (as
diagrams, i.e., functors).

On paper, the Lemma 28 above is proven through a simple argument by transfinite induction.
However, as we will discuss in Section 5, it is far from obvious to mechanize.

▶ Lemma 29 ( ). Let {Pα}α∈A be a collection of canonical partial solutions indexed by
some downwards-closed subset of ordinals A such that Pα is a canonical {β|β ⪯ α}-partial
solution. We can construct a canonical A-partial solution Q by patching the partial solutions
{Pα}α∈A together. That is, we take Q(α) := Pα(α) and take Qβ⪯α := Pα

β⪯α.

Note that the proof, and even the well-formedness of the statement of Lemma 29
above depends on Lemma 28. In particular, note that Qβ⪯α must be a morphism from
Q(α) to Q(β), or equivalently from Pα(α) to Pβ(β), whereas the morphism Pα

β⪯α is a
morphism from Pα(α) to Pα(β). Thus, one would need to prove Pα(β) = Pβ(β) for
it to even make sense to take Qβ⪯α := Pα

β⪯α. This is the case because by Lemma 28
Pα|{γ|γ⪯β} = Pβ . However, in type theory, in our Rocq mechanization, one needs to work
up to the equality Pα(β) = Pβ(β) (transport along this equality) when defining Q, which
also includes establishing its functoriality, that it is a partial solution, and its canonicity. We
will discuss these subtleties in Section 5.

▶ Theorem 30 ( ). The locally contractive functor F has a solution.

Proof. We first construct a canonical Ord-partial solution P. By Lemma 29 it suffices to
construct canonical {β|β ⪯ α}-partial solutions for all α ∈ Ord. We do so by well-founded
induction on α. Thus, let us assume that we have canonical {γ|γ ⪯ β}-partial solutions for
all β ≺ α. We use Lemma 29 to construct a canonical {β|β ⪯ α}-partial solution as required.
The solution is the F -algebra of DCone(P). We only need to show that the map ϕDCone(P) is
an isomorphism. By Lemma 15 it suffices to show that ϕDCone(P) is an α-isomorphism for all
α ∈ Ord. However, by Lemma 26 DCone(P) dominates P. Hence, by the property (DA-2)
of dominating cones we only need to show that {β|β ≺ α} ⊆ Ord, which holds trivially. □
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▶ Remark 31. In addition to the difference of working with the category of F -algebras as
opposed to working directly in C, our approach to solving domain equations differs from
that presented by Birkedal et al. [9] in how we treat zero and limit ordinals. Working with
sheaves, Birkedal et al. [9] at zero and limit ordinals simply take the limit of the construction
at stages below. By contrast, we apply F to the obtained cone of the limit at every single
stage of the construction and not just at successor ordinals. Another way to look at this
difference is if we look at the sequence of objects constructed in these two approaches (in our
case the carrier objects of the algebras we compute). Up to isomorphism, what we compute
is the sequence X below while what Birkedal et al. [9] compute is the sequence Y :

X0 := F (1); X1 := F (F (1)); X2 := F (F (F (1))); · · · Xω := F ( lim
α≺ω

Xα); Xω+ := F (Xω); · · ·

Y0 := 1; Y1 := F (1); Y2 := F (F (1)); · · · Yω := lim
α≺ω

Yα; Yω+ := F (Yω); · · ·

4.3 Mixed-Variance Domain Equations
In addition to covariant functors of the form C → C, we in general need to [9] solve domain
equations for mixed-variance functors of the form Cop × C → C.

▶ Example 32 ( ). As a simple minimal example we have used our development to solve
the domain equation for the following mixed-variance functor which is a simplified version of
the functor used by Frumin et al. [17]:

F (X, Y ) := ∆(N) + ▶(Y X) + ▶Y

where ∆(A) is the constant presheaf mapping all ordinals to the set A.

The following lemma shows that mixed-variance locally contractive functors F : Cop × C → C
like the one in Example 32 have unique solutions.

▶ Lemma 33 ( ). Let C be a PSh(Ord)-enriched category and F : Cop × C → C be a locally
contractive functor (if C is enriched, so is Cop and also their product). Furthermore, assume
that C is complete and co-complete with enriched-pointwise limits and co-limits. The functor
F has a unique solution.

Proof. Define the functor F̃ (A, B) := (F (B, A), F (A, B)) from Cop × C to Cop × C. The
functor F̃ is also locally contractive and hence, by Theorem 30, has a solution, say (X, Y ) for
which F̃ (X, Y ) ≃ (X, Y ). In that case, by symmetry of F̃ , we have F̃ (Y, X) ≃ (Y, X). Thus,
by Theorem 23, (X, Y ) ≃ (Y, X) which implies that X ≃ Y , and hence, F (X, X) ≃ X. □

5 Rocq Mechanization

All results that have been marked by a symbol throughout the paper and the appendices
are mechanized [46] in the Rocq Prover. For this mechanization we have used the step-
indexing interface of Spies et al. [45] which abstracts a step-indexing structure that Spies et
al. [45] instantiate twice: once with natural numbers in Rocq (for step-indexing over ω), and
once with ordinal numbers. Spies et al. [45] use the mechanization of ordinal numbers by
Kirst et al. [31]. We use the following axioms in our mechanization: axiom of choice (and
its consequence excluded middle), propositional extensionality (and its consequences proof
irrelevance and uniqueness of identity proofs (UIP)), and functional extensionality. The first
two of these axioms are already assumed by Kirst et al. [31] to construct a model of set
theory in Rocq. The inclusion of functional extensionality, on the other hand, is necessary
for formalization of category theory, at least the way we have; we will discuss this below.
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The Notion of Equality of Homorphisms in Type Theory There are many efforts mecha-
nizing category theory in type-theory-based proof assistants [24, 40, 25, 52, 21, 49, 50, 2, 36].
Hu and Carette [24] give an extensive survey comparing existing type-theory-based cate-
gory theory mechanizations across multiple different axes. One important design point in
mechanizing category theory in type theory is representing equality of morphisms. Roughly
speaking, this design decision divides mechanizations into two camps: those using setoids,
also known as Bishop sets [12], for representing morphisms [24, 40, 25, 52] and those using
equality [21, 49, 50, 2, 36] (including those working in HoTT [50] settings where equality
plays a key role).

There are multiple advantages to using setoids as pointed out by Hu and Carette [24].
Hu and Carette [24] work in Agda and state “Our principal theoretical contribution is to
show that setoid-based proof-relevant category theory works just as well as various other
‘flavours’ of category theory by supporting a large number of definitions and theorems.” One
of the main advantages of using setoids is avoiding axioms such as functional extensionality
(for proving equality of functors, natural transformations, etc.) and classical axioms (for
constructing quotient types, e.g., for co-limits in Set or presheaf categories) — of course,
works based in HoTT admit these as theorems. Indeed, our development also started with
implementing the necessary basic concepts in category theory using setoids. However, we
discovered an issue that fundamentally precludes the use of setoids for morphisms in our
mechanization. This problem arises in the proof of Lemma 28. For this lemma, we need to
show that two F -algebras are equal which are constructed based on the limits of two diagrams
that are equal (by our transfinite induction hypothesis). However, the natural notion of
equality of functors in setoid settings is to ask that the morphism maps of functors map
setoid-equal morphisms into setoid-equal morphisms. Consequently, the best one can prove is
that equal functors in this sense produce isomorphic limits. Thus, instead of Lemma 28, one
could prove that canonical partial solutions are naturally isomorphic. However, as remarked
after Lemma 29 in Section 4.2, this is not even sufficient for the statement of Lemma 29
to be well-formed. This is why we chose to change our mechanization to use the equality
notion from Rocq’s standard library instead of setoid equality. It appears that existing
mechanizations of category theory that formalize collections of morphisms as setoids have
never attempted formalizing a construction such as ours that involves defining a functor on
ordinals by transfinite induction where the construction at each stage involves taking the
limit of the construction up to below that stage.

Working With All Ordinals in The Universe As we discussed in the Introduction, we work
with the category of presheaves over all ordinals in the universe, i.e., the set Ord which is
not closed under suprema. Thus, many of our definitions are parameterized by a downwards-
closed subset of ordinals. The collection of downwards-closed subsets of ordinals, ordered by
the subset relation, can be thought of as the ideal completion of Ord. In particular, the total
set Ord is the maximal element of this order which represents the supremum of the entire
set Ord. This means that the key lemma of our formalization, Lemma 29, is applicable to
both proper downwards-closed subsets of ordinals (which represent ordinals that do happen
to be in Ord) as well as the aforementioned supremum of the entire set Ord (which itself is
not in Ord). This is why we can apply Lemma 29 twice in the proof of Theorem 30, once for
constructing {β|β ⪯ α}-partial solutions for all α ∈ Ord by transfinite induction on α, and
once to put all those together to construct a Ord-partial solution. This is key in significantly
reducing the size of the mechanization as otherwise a mechanization working with all ordinals
in the universe would have to prove two different versions of Lemma 29 for the two different
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use cases in Theorem 30; once for individual ordinals, and once for all ordinals. Spies et al.
[45] also work with the collection of ordinals in the universe; as mentioned above we took
their notion of step-indexing and ordinals verbatim in our mechanization. And, they indeed
duplicate Lemma 29 as we just explained. This requires them to repeat multiple definitions
and lemmas for these two versions of our single Lemma 29.

Well-Behaved Subset Types in Rocq Working with downwards-closed subsets of ordinals,
we need to formalize them in our Rocq mechanization. In our mechanization, we define
downwards-closed subsets of ordinals as subset types which we represent as a record that
packages an ordinal together with a proof that said ordinal is in the downwards-closed subset.
We first define downwards-closed predicates over ordinals, downset_pred, as a record type
consisting of a predicate together with a proof that this predicate is downwards-closed (ignore
the decidability part for now, we will get back to it):

Polymorphic Record downset_pred (SI : indexT ) := MkDownSetPred {
dsp_pred :> SI → Prop;
dsp_pred_dec : ∀ α, Decision ( dsp_pred α);
dsp_pred_downwards : ∀ α β, α ⪯ β → dsp_pred β → dsp_pred α; }.

Here, indexT is the generalized type exposed by the step-indexing interface of Spies et al.
[45]; the type of all ordinals in the universe being an instance of this structure. Based on
the downwards-closed predicates defined above, we would like to define downwards-closed
subsets essentially as a record type that packages together an ordinal, together with a proof
that it belongs to the provided downwards-closed predicate. However, a naïve encoding as
such a record type leads to a problem: given a downwards-closed predicate over ordinals,
two elements of such a type with the same ordinals but different proofs would not be
definitionally equal — of course, they are propositionally equal as we assume proof irrelevance.
This problem is especially noticeable when we look at two downwards-closed subsets where
one is included in the other. We define the inclusion relation between two downwards-closed
predicates dsp and dsp’ as one would expect: ∀ α, dsp α → dsp’ α. This allows us to define
a simple function that lifts ordinals from the smaller downwards-closed subset to the larger
one. We use this function in our Rocq mechanization to define the restriction operation in
Section 4.2 on presheaves over downwards-closed subsets of ordinals.

We solve the issue discussed above by defining the record type downset as follows:

#[ projections ( primitive = yes)]
Record downset {SI} (dsp : downset_pred SI) := MkDS {

ds_idx :> SI;
ds_in_dsp : squashed (dsp ds_idx ); }.

where the type squashed is exactly as defined in Gilbert et al. [20]:

Inductive squashed (P : Prop) : SProp := squash : P → squashed P.

The idea here is that since squashed is in the universe SProp of definitionally proof-irrelevant
propositions, and the fact that type downset is defined as a record with primitive projections
(and hence it is subject to the η conversion law for records), two terms of the type downset
dsp are definitionally equal as soon as their underlying ordinal, the projection ds_idx, are
definitionally equal. Now, the problem is that when working with elements of downset dsp, we
need to have a proof that the underlying ordinal is indeed in dsp, i.e., we need something of
type dsp ds_idx, whereas we are only given a proof of squashed (dsp ds_idx). Importantly,
the type squashed above cannot be eliminated to produce a term of a type that is outside
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the universe SProp — in technical terms, this is because the first argument of the constructor
squash (the argument with type P) is non-forced, and is also not in SProp [20]. Nevertheless,
inspired by the constant map from identity proofs to identity proofs in the proof of Hedberg’s
theorem [23], we prove the following lemma which allows us to recover a proof of dsp ds_idx
from an element of squashed (dsp ds_idx):4

Lemma unsquash {P : Prop} ‘{! Decision P} (s : squashed P) : P.

The lemma above is the reason why we included a proof of decidability of the subset predicate
in the definition of downset_pred above.

6 Related Works

Domain Theory We have already discussed works on domain theory that are most closely
related to ours in the Introduction, including the most closely related work to ours [9] which
our work is closely based on, and which we have compared our work to throughout the paper.

Fixed Points in Type Theory When working with inductive and co-inductive types and
proofs in type theory, it is required to follow restrictive syntactic checks (e.g., productivity
and guardedness for co-induction). These overly strong syntactic conditions protect mech-
anizations against inconsistencies, but reject many valid definitions. Motivated alleviate
this situation, Di Gianantonio and Miculan [18] introduce complete ordered families of
equivalences (COFEs) as a unifying theory for mixed-variance recursive definitions that
support construction of fixed points. They define COFEs over an arbitrary well-founded
order and prove a generalized fixed point theorem for contractive endofunctions over these
COFEs. In a subsequent work, Di Gianantonio and Miculan [19] generalize this result to
sheaf categories over topologies with a well-founded basis — this is very close to the setting
of Birkedal et al. [9] upon which we have based our work. The main difference between the
works of Di Gianantonio and Miculan [18, 19] and Birkedal et al. [9], and thereby also our
work, is that the former only constructs fixed points of morphisms (similar to our results in
Section 2.2) whereas the latter also constructs fixed points of functors.

Mechanizations of Solutions to Domain Equations Benton et al. [6] mechanize solution to
domain equations over directed-complete partial orders (DCPOs) in the Rocq Prover based
on the mechanization of DCPOs by Paulin-Mohrig [38]. Huffman [26] constructs a universal
domain into which all bifinite domains can be embedded. Dockins [15] mechanizes solutions
of domain equations over the category of profinite domains [22] in Rocq. All these works are
based on classical domain theory, and as also pointed out by Sieczkowski et al. [43], unlike
our guarded domains, do not appear to be suitable for modeling higher-order program logics
like Iris [29].

The most closely related works to us are Rocq mechanizations of the domain equation
solver of the ModuRes library [43], the domain equation solver of the Iris program logic [28]
which is a nicer reimplementation of the domain equation solver of the ModuRes library, and
the domain equation solver of transfinite Iris [45]. The former two mechanizations work with
the category of COFEs (these are COFEs over ω and not over an arbitrary ordered set like Di
Gianantonio and Miculan [18]), a representation of the category of complete bisected bounded

4 Gilbert et al. [20] use the name unsquash for the eliminator of their squashed type (which they call
squash, and its constructor sq) that only eliminates into other SProp types.
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ultra metric spaces (CBUlt) [11] that is particularly amenable to mechanizations [43]. These
works only support step-indexing up to ω. Transfinite Iris, inspired by Birkedal et al. [9],
extend the definition of OFEs (COFEs without completeness requirement) and COFEs
over ω to those over Ord. However, Transfinite Iris, unlike the ModuRes library and Iris,
only solves domain equations for functors of the form OFEop × OFE → COFE and not
COFEop × COFE → COFE. An example of a functor that is not supported by transfinite
Iris as a result of this limitation is our Example 32.

Mechanizations of Category Theory We mentioned the existing mechanizations of category
theory in Section 5. We refer to Hu and Carette [24] who give an extensive survey comparing
these mechanizations. Regarding our mechanization of category theory, we only mention
that its span is not significant compared to the works cited, compared, and contrasted by
Hu and Carette [24]. We have only mechanized what was necessary for formalizing our main
results: Theorem 23, Theorem 30 and Lemma 33.

7 Future Work

Our main future goal is to build a step-indexed (program) logic similar to the Iris framework
[29] based on our development. We hope to use such a step-indexed logic to study weak
bisimulation of guarded interaction trees, i.e., objects similar to the one shown in Example 32.
This requires transfinite step-indexing because we need to allow either side of the bisimulation
relation to take finitely many silent steps (τ -steps). However, as we discussed in Section 6, the
existing work on transfinite step-indexing does not support equations like that in Example 32.
However, there is a significant amount of nontrivial technical work that needs to be done
before we can put our mechanization to use for constructing a user-friendly step-indexed
(program) logic framework, e.g., providing an interactive proof mode similar to that of the Iris
framework [33, 32]. In principle, the main limiting factor is the complexity of working with
presheaves compared to COFEs in proof assistants; using our solution forces one to always
use categories and categorical constructions. For instance, maps between COFEs are non-
expansive functions (Rocq functions with a side-condition), while maps between presheaves
are natural transformations (families of functions with a naturality side-condition relating
these families). Thus, while presheaves are more amenable to mechanization than sheaves,
there remains a substantial amount of work required to build a user-friendly (program)
logic framework on top of our category theoretic development. This makes developing a
user-friendly system on top of our development very challenging, which we leave as an
important future work.

8 Conclusion

After motivating the need for solving domain equations over the category of presheaves
over ordinals, we presented the theory of solving such domain equations and discussed its
mechanization as well as the challenges we faced mechanizing this theory. As demonstrated
by our Example 32, this domain equation solver can be used to solve domain equations stated
as mixed-variance functors like those that are needed for guarded interaction trees [17] or
program logics [45].
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A The Need for Step-Indexing Over Higher Ordinals

As we discussed in the Introduction, the main issue is that when working with step-indexing
over ω the existential property fails to hold. That is, if we know that |= ∃x : A. ϕ(x) holds,
we do necessarily get that there exists an a ∈ A such that |= ϕ(a) holds. In this appendix, we
first discuss why the existential property fails when step-indexing over ω. We then present a
proof for a general criterion of when the existential property does hold, and based on this
criterion motivate our choice (and that of Spies et al. [45]) to use step-indexing over all
ordinals in a Grothendieck universe.

A.1 Failure of the Existential Property

Recall that in step-indexing over ω the set of truth values is the Heyting algebra of the
downwards-closed subsets of ω. In this setting, the interpretation of ϕ, JϕK, is a function from
A into this Heyting algebra, and we have J∃x : A. ϕ(x)K =

⋃
x∈A JϕK (x). Thus, |= ∃x : A. ϕ(x)

is equivalent to saying that
⋃

x∈A JϕK (x) = ω, i.e., that the interpretation of ∃x : A. ϕ(x) is
the truth value ⊤, which in our Heyting algebra is the entire set ω. Now, take A := N and
ϕ(n) := ▷n⊥. Readers not familiar with step-indexed logics can ignore the exact definition
of ϕ. (These readers are kindly referred to Jung et al. [29] for a detailed explanation of
the syntax and semantics of the step-indexed logic Iris). What is important for us is that
J▷n⊥K = {k|k < n}. Based on this interpretation one can easily see that

⋃
n∈N J▷n⊥K = ω

but there is no n ∈ N such that J▷n⊥K = ω.
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A.2 A General Criterion for the Existential Property to Hold

Here, we present a general criterion of when the universal property holds. This section is
based on a blog post by the second author [48].

▶ Theorem 34 ( ). If the step-indexing is a regular ordinal and the cardinality of the set
quantified over is strictly smaller than that of the step-indexing ordinal, then the existential
property holds.

▶ Remark 35. The Rocq mechanization of Theorem 34 does not use ordinals or a step-indexed
logic. It follows very closely the ideas in the blog post [48]. It first defines an analogue of
regularity for an arbitrary Rocq type A with a relation R ⊆ A × A on it. Then, it shows
that ∀a : A. ∃b : B. P (a, b) implies ∃b : B. ∀a : A. P (a, b) whenever the type A is regular, the
cardinality of B is strictly smaller than that of A, and furthermore P is downwards-closed
with respect to R, i.e., if ∀a, a′ ∈ A, b ∈ B. R(a, a′) ∧ P (a′, b) =⇒ P (a, b).

Below, we first give the definition of regular ordinals (which can be found in most standard
textbooks on set theory [27]) and then give the proof of Theorem 34.

▶ Definition 36. We say an ordinal γ is regular, if the supremum of any sequence of ordinals
strictly smaller than γ, indexed by an ordinal strictly smaller than γ, is also strictly smaller
than γ. In other words, for any sequence of ordinals {βα}α⪯δ indexed by an ordinal δ, if we
have both that δ ≺ γ, and that ∀α ⪯ δ. βα ≺ γ, then

⋃
α⪯δ βα ≺ γ.

Proof of Theorem 34. Let us assume that we are working with a logic step-indexed over a
regular ordinal γ — thus, the set of truth values is the Heyting algebra of downwards-closed
subsets of γ. Furthermore, let us assume we are given a set A whose cardinality is strictly
smaller than that of γ. (More specifically, let us assume that A = {aα|α ⪯ δ} for some δ ≺ γ.)
Finally, assume we are given a predicate ϕ over A such that J∃x : A. ϕ(x)K =

⋃
x∈A JϕK (x) = γ.

We show, using proof by contradiction, that there exists an element a ∈ A such that
JϕK (a) = γ.

Assume, to the contrary that there is no element a ∈ A such that JϕK (a) = γ. In
other words, for any a ∈ A there is an ordinal β ≺ γ such that β ̸∈ JϕK (a). Now, since
A = {aα|α ⪯ δ}, this forms a sequence of ordinals {βα}α⪯δ such that ∀α ⪯ δ. βα ≺ γ and that
∀α ⪯ δ. βα ̸∈ JϕK (aα). Thus, by regularity of γ, we have that

⋃
α⪯δ βα ≺ γ, and by the fact

that for any a the set JϕK (a) is downwards-closed, we have that ∀α ⪯ δ.
⋃

α⪯δ βα ̸∈ JϕK (aα).
Hence, it must be the case that

⋃
α⪯δ βα ̸∈

⋃
α⪯δ JϕK (aα) =

⋃
x∈A JϕK (x) = J∃x : A. ϕ(x)K,

which is a contradiction. □

We remark that the set of all ordinals in the universe acts basically as a regular ordinal —
indeed, this must be understood as step-indexing over the supremum of that set which is
regular. In other words, we have by definition that for any function A → Ord where A is
a set/type in the universe, the supremum of the image of the function is again an ordinal
in Ord. Thus, when step-indexing over all ordinals in the universe, by Theorem 34, we get
that the existential property holds for quantification over any set in the universe.

B Later is Locally Contractive, Earlier is not Even Enriched

▶ Theorem 37 (Later is Enriched and Locally Contractive ). The functor ▶ : PSh(Ord) →
PSh(Ord) is an enriched and locally contractive functor.
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▶ Remark 38 (Earlier is not Enriched). The category PSh(Ord) is enriched over itself. Hence,
we can ask whether the functor ◀ : PSh(Ord) → PSh(Ord) is an enriched functor? The
answer is negative. Here we give an intuitive explanation as to why this is not the case. We
will formally prove this negative answer in Lemma 39.

To understand why earlier is not enriched note that we need to produce a natural
transformation for the internal action of the earlier functor. That is, a natural transformation
GF → ◀G◀F . By adjunction of exponentiation it is the same as requiring a natural
transformation GF × ◀F → ◀G. Let us look at an arbitrary component of this natural
transformation at stage α. That is, a function (morphism in Set) (Yα × F → G) × F (α+) →
G(α+). Such a map, given a natural transformation η : Yα × F → G and an element
x ∈ F (α+) must produce a an element of G(α+). The only possibility here is to use
ηα+ : Yα(α+) × F (α+) → G(α+). However, set Yα(α+) = {∗|α+ ⪯ α} is empty.

As a simple corollary of uniqueness of solutions for locally contractive functors we prove
that the functor earlier cannot be an enriched functor.

▶ Lemma 39. The functor ◀ : PSh(Ord) → PSh(Ord) is not an enriched functor for the
self-enrichment of the category PSh(Ord).

Proof. Assume that ◀ is an enriched functor. In that case, by Lemma 12 the functor ◀ ◦▶
would be a locally contractive functor as ▶ is by Lemma 37. However, the functor ◀ ◦▶
is naturally isomorphic to idPSh(Ord). Recall that the co-unit of the adjunction ◀ ⊣ ▶ is a
natural isomorphism. Hence, any presheaf is a solution for the locally contractive functor
◀ ◦▶, i.e., for any presheaf F we have ◀(▶F ) ≃ F . Consequently, by Lemma 23 all
presheaves over ordinals must be isomorphic which is a contradiction. □

An alternative proof could be given through violating Lemma 16. Consider the unique
morphism f : ▶ 0 → 1 (0 and 1 being the initial and terminal presheaf respectively). This
morphism is a 0-isomorphism while ◀ f : 0 → 1 (note that ◀▶ 0 = 0 and ◀ 1 = 1) is not a
0-isomorphism.

C Omitted Properties of Ordinal-Partial Isomorphisms

▶ Remark 40 ( ). Ordinal-partial isomorphisms satisfy many properties that ordinary
isomorphisms do. In particular, we remark the properties listed below which are all easy to
show:
(PIso-1) Identity morphisms idA are α-isomorphisms for any α.
(PIso-2) For any α-isomorphism f : A → B and any g, h ∈ EhomC

B, C (α):

EcompC
A, B, C (α)(⌈f⌉ (α)(∗), g) = EcompC

A, B, C (α)(⌈f⌉ (α)(∗), h) =⇒ g = h

(PIso-3) For any α-isomorphism f : A → B and any g, h ∈ EhomC
C, A (α):

EcompC
C, A, B (α)(g, ⌈f⌉ (α)(∗)) = EcompC

C, A, B (α)(h, ⌈f⌉ (α)(∗)) =⇒ g = h

(PIso-4) For any α-isomorphism f : A → B where x ∈ EhomC
B, A (α) is f ’s partial inverse and

any g, h ∈ EhomC
A, C (α):

EcompC
B, A, C (α)(x, g) = EcompC

B, A, C (α)(x, h) =⇒ g = h
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(PIso-5) For any α-isomorphism f : A → B where x ∈ EhomC
B, A (α) is f ’s partial inverse and

any g, h ∈ EhomC
C, B (α)

EcompC
C, B, A (α)(g, x) = EcompC

C, B, A (α)(h, x) =⇒ g = h

(PIso-6) If f : A → B and g : B → C are both α-isomorphisms then so is g ◦ f .
(PIso-7) For any f : A → B and g : B → C, if g ◦ f is an α-isomorphism, then f is an

α-isomorphism if and only if g is an α-isomorphism.

D Some Categorical Definitions and Constructions

Here we present a few basic and well-known category theoretic facts and constructions that
are nevertheless worth presenting here so that we can refer to them in the main text.

D.1 Some Properties of Presheaves Over Ordinals
▶ Lemma 41 ( ). Let F be a presheaf over ordinals and γ ⪯ α be two ordinal numbers.
The set F (α) is the limit of the diagram F |{β|γ⪯β⪯α} being the functor F where the domain
is restricted to the set of ordinals {β|γ ⪯ β ⪯ α}.

D.2 Extending Partial Ordinal-Shaped Diagrams
Here, by a partial ordinal-shaped diagram we mean diagram F : {β|β ≺ α}op → C whose
index category is ordinals strictly below a certain ordinal α. We show that given a
cone (V, {Sγ}γ∈{β|β≺α}) on F , we can extend the diagram into a diagram whose index
is {β|β ⪯ α}op. We write F Ext(V ) for this extended diagram.

F Ext(V )(γ) =
{

V if γ = α

F (γ) otherwise

F
Ext(V )
δ⪯γ =


idV if γ = α and δ = α

Sδ if γ = α and δ ≺ α

Fδ⪯γ otherwise

The fact that (V, {Sγ}γ∈{β|β≺α}) is a cone on F ensures that F Ext(V ) is a functor and hence
a {β|β ⪯ α}op-shaped diagram.

D.3 (Co-)Limits in Functor Categories are Pointwise
Consider the category of functors from C to D and natural transformation between them. It
is well known that the category DC is complete whenever D is. Furthermore, in that case
limits are pointwise. We state this fact formally here. Consider a diagram F : J → DC.
Given an object A of C, we define the pointwise diagram F A : J → D as the functor defined
as follows:

F A(J) := F (J)(A)
F A(h) := F (h)(idA) for any morphism h : J → J ′

▶ Theorem 42 (Limits in Functor Categories ). Given a diagram F : J → DC, a functor
L : C → D is the limit of the diagram F if and only if for any object A of C, L(A) is the
limit of the diagram F A.

FSCD 2025
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Similarly, co-limits in functor categories are pointwise — the functor category is co-
complete whenever the co-domain category is.

D.4 On Algebras of Endo-Functors and their Categories
Recall that given an endo-functor T : C → C, a T -algebra is a pair (A, ϕA) of an object A

of C together with a morphism ϕA : T (A) → A. Furthermore, an algebra morphism from
(A, ϕA) to (B, ϕB) is a morphism h : A → B such that the following diagram commutes:

T (A) A

T (B) B

ϕA

T (h) h

ϕB

(alg-hom)

For any endo-functor T , T -algebras together with T -algebra morphisms form a category
Alg(T ). We write UAlg(T ) : Alg(T ) → C for the forgetful functor of Alg(T ).

▶ Theorem 43 ( ). Let T be an endo-functor on C. The category Alg(T ) is complete
whenever C is.

Proof. Let F : J → Alg(T ) be a diagram of T -algebras. We endow the limit of the C
diagram UAlg(T ) ◦ F with an algebra structure. Let L be the limit of this diagram with
projections ΠL

J : L → F (J). The morphisms ϕF (J) ◦ T (ΠL
J ) : T (L) → F (J) form a cone on

the diagram UAlg(T ) ◦ F . We define ϕL : T (L) → L as the unique morphism into the limit L

from this cone. That is,

ϕL := lim
J∈J

(
ϕF (J) ◦ T (ΠL

J )
)

It remains to show that the projections of the limit ΠL
J : L → F (J) are algebra homomor-

phisms, and that given any cone over F in the category Alg(T ) there is a unique T -algebra
homomorphism from that cone to (L, ϕL). We leave the latter as a simple exercise. As for
the former, we need to show that the following diagram commutes

T (L) A

T (F (J)) F (J)

ϕL

T (ΠL
J ) ΠL

J

ϕF (J)

which simply holds by the definition of ϕL above. □

▶ Remark 44 ( ). For any T -algebra (A, ϕA), (T (A), T (ϕA)) is also a T -algebra. Furthermore,
if h is a T -algebra morphism, so is T (h). Thus, T forms an endo-functor on the category of
T -algebras. Consequently, the image of any commutative diagram in Alg(T ) under T is also
a commutative diagram. Hence, for a diagram F : J → Alg(T ) of T -algebras and a cone(

(A, ϕA), {Sj : A → F (J)}j∈J

)
on diagram F , the cone below is also a cone on diagram F :(

(T (A), T (ϕA)),
{

ϕF (J) ◦ T (SJ) : T (A) → F (J)
}

j∈J

)
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