
Sergei Stepanenko, Emma Nardino, Dan Frumin, Amin Timany, and Lars Birkedal

Wednesday, May 7th 2025 @ ESOP’25 – Hamilton, Ontario, Canada

Context-Dependent Effects in
Guarded Interaction Trees

1

Interaction Trees

Guarded Interaction Trees

Context-Dependent Effects

Outline

Context-Dependent Effects in
Guarded Interaction Trees

2

(This Work)

Interaction Trees

Guarded Interaction Trees

Context-Dependent Effects

Outline

• Denotational semantics for first-order programs with first-order effects

• Extends interaction trees to higher-order programs and effects

• Extends guarded interaction trees to context-dependent effects, e.g., 
(delimited) continuations, exceptions

Motivation

Guarded Interaction Trees

Interaction Trees

Context-Dependent Effects

2

• Denotational semantics and studying language interactions

Motivation

3

Denotational Semantics & Language Interaction

Studying Programs Formally

• Goal: study programming languages and their interactions formally

• In a proof assistant like Rcoq (formerly Coq)

• We need to define programs’ behavior (semantics)

• Should capture the individual languages and their interaction

• Common choices:

• Operational semantics

• Denotational semantics

4

Operational Semantics

• Describe the mechanics of program execution

• Advantage

• Simplicity: easy to understand and explain

• Easily scales to sophisticated languages and features

• Disadvantage

• Needs to be defined for each language (or combination/interaction there of)
we formalize

5

Denotational Semantics

• Assign denotations (mathematical objects) to programs as their semantics

• Study those mathematical objects 
(also sound w.r.t. operational semantics) 
 

6

Math

[[e]]

Syntax

e Semantics: [[⋅]]

Denotational Semantics

• Assign denotations (mathematical objects) to programs as their semantics

• Study those mathematical objects 
(also sound w.r.t. operational semantics) 
 

• Provides a rich common language (math) 
to combine programs and reason about 
language interactions

6

Math

[[e]]

Syntax

e Semantics: [[⋅]]

Math

[[e1]]ℒ1
; [[e2]]ℒ2

Syntax of ℒ1

e1

Syntax of ℒ2

e2

Semantics: [[⋅]]ℒ1

Semantics: [[⋅]]ℒ2

Denotational Semantics

• Main challenge:

• Coming up with a rich enough mathematical universe (domain)

• Ordinary math (Rocq) is not sufficient

• No non-termination

• No side effects, e.g., I/O, state

• Literature explores many solutions:

• Scott domain theory, monads, etc.

• ITrees are a recent proposal
7

Math

[[e1]]ℒ1
; [[e2]]ℒ2

Syntax of ℒ1

e1

Syntax of ℒ2

e2

Semantics: [[⋅]]ℒ1

Semantics: [[⋅]]ℒ2

Interaction Trees (ITrees)

8

Denotational Semantics for First-Order Languages

ITrees

• Main idea: construct a domain for

• Possibly non-terminating programs

• With side effects

• In the Rocq prover in which

• All programs must terminate

• There are no side effects

• Has since been used for several applications

9

51

Interaction Trees
Representing Recursive and Impure Programs in Coq

LI-YAO XIA, University of Pennsylvania, USA

YANNICK ZAKOWSKI, University of Pennsylvania, USA

PAUL HE, University of Pennsylvania, USA

CHUNG-KIL HUR, Seoul National University, Republic of Korea
GREGORY MALECHA, BedRock Systems, USA

BENJAMIN C. PIERCE, University of Pennsylvania, USA

STEVE ZDANCEWIC, University of Pennsylvania, USA

Interaction trees (ITrees) are a general-purpose data structure for representing the behaviors of recursive
programs that interact with their environments. A coinductive variant of “free monads,” ITrees are built out
of uninterpreted events and their continuations. They support compositional construction of interpreters
from event handlers, which give meaning to events by de!ning their semantics as monadic actions. ITrees are
expressive enough to represent impure and potentially nonterminating, mutually recursive computations, while
admitting a rich equational theory of equivalence up to weak bisimulation. In contrast to other approaches
such as relationally speci!ed operational semantics, ITrees are executable via code extraction, making them
suitable for debugging, testing, and implementing software artifacts that are amenable to formal veri!cation.

We have implemented ITrees and their associated theory as a Coq library, mechanizing classic domain- and
category-theoretic results about program semantics, iteration, monadic structures, and equational reasoning.
Although the internals of the library rely heavily on coinductive proofs, the interface hides these details so
that clients can use and reason about ITrees without explicit use of Coq’s coinduction tactics.

To showcase the utility of our theory, we prove the termination-sensitive correctness of a compiler from a
simple imperative source language to an assembly-like target whose meanings are given in an ITree-based
denotational semantics. Unlike previous results using operational techniques, our bisimulation proof follows
straightforwardly by structural induction and elementary rewriting via an equational theory of combinators
for control-"ow graphs.

CCS Concepts: • Software and its engineering # Software libraries and repositories; • Theory of
computation # Logic and veri!cation; Equational logic and rewriting; Denotational semantics.

Additional Key Words and Phrases: Coq, monads, coinduction, compiler correctness

ACM Reference Format:
Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve
Zdancewic. 2020. Interaction Trees: Representing Recursive and Impure Programs in Coq. Proc. ACM Program.
Lang. 4, POPL, Article 51 (January 2020), 32 pages. https://doi.org/10.1145/3371119

Authors’ addresses: Li-yao Xia, University of Pennsylvania, Philadelphia, PA, USA; Yannick Zakowski, University of
Pennsylvania, Philadelphia, PA, USA; Paul He, University of Pennsylvania, Philadelphia, PA, USA; Chung-Kil Hur, Seoul
National University, Seoul, Republic of Korea; Gregory Malecha, BedRock Systems, Boston, MA, USA; Benjamin C. Pierce,
University of Pennsylvania, Philadelphia, PA, USA; Steve Zdancewic, University of Pennsylvania, Philadelphia, PA, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/1-ART51
https://doi.org/10.1145/3371119

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 51. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

The original ITrees paper (POPL’20)

ITrees

• A monad defined as a co-inductive type in Rocq

• Constructors embed different kinds of computations:

• Ret: the final value of the computation

• Tau: delay (Tau c produces the same result as c delayed by a single step)

• Vis: an effect with input type E A and output type A
10

CoInductive itree (E : Type −> Type) (R : Type) :=
| Ret : R −> itree E R
| Tau : itree E R −> itree E R
| Vis {A : Type } : E A −> (A −> itree E R) −> itree E R

The continuation

• ITrees can embed first-order
imperative programs

• Xia et al. showed this for imp

• Proved correctness of a compiler
from imp to assembly

• ITrees do not support languages
with higher-order (first class)
functions, e.g., OCaml, Haskell

• How do we translate ’s?λ

Interaction Trees 51:15

(* Imp Syntax --------- *)

Inductive expr : Set := ... (* omitted *)

Inductive imp : Set :=

| Assign (x : var) (e : expr)

| Seq (a b : imp)

| If (i : expr) (t e : imp)

| While (t : expr) (b : imp)

| Skip.

(* Imp Events --------- *)

Variant ImpState : Type → Type :=

| GetVar (x : var) : ImpState value

| SetVar (x : var) (v : value) : ImpState unit.

Context {E : Type → Type} {̀ImpState -< E}.

(* Imp Denotational semantics ----------------- - - - *)

(* ITree representing an expression *)

Fixpoint denote_expr (e:expr) : itree E value :=

match e with
| Var v ⇒ trigger (GetVar v)

| Lit n ⇒ ret n

| Plus a b ⇒ l ! denote_expr a ;;

r ! denote_expr b ;; ret (l + r)

| ...

end.

(* Imp Denotational semantics cont'd --------------------- - - *)

(* ITree representing an Imp statement *)

Fixpoint denote_imp (s : imp) : itree E unit :=

match s with
| Assign x e ⇒ v ! denote_expr e ;; trigger (SetVar x v)

| Seq a b ⇒ denote_imp a ;; denote_imp b

| If i t e ⇒ v ! denote_expr i ;;

if is_true v then denote_imp t else denote_imp e

| While t b ⇒
iter (fun _ ⇒ v ! denote_expr t ;;

if is_true v

then denote_imp b ;; ret (inl tt)

else ret (inr tt))

| Skip ⇒ ret tt

end.

(* Imp state monad semantics ----------------- - - - - - - - - - - - - - - *)

(* Translate ImpState events into mapE events *)

Definition h_imp_state {F: Type → Type} {̀mapE var 0 -< F}

: ImpState ! itree F := ...(* omitted *)

(* Interpret ImpState into (stateT env (itree F)) monad *)

Definition interp_imp {F A} (t : itree (ImpState +' F) A)

: stateT env (itree F) A :=

let t' := interp (bimap h_imp_state id_) t in
interp_map t'.

Fig. 15. Syntax and denotational semantics of Imp. The While case uses iter; GetVar and SetVar events are
interpreted into the monad stateT env (itree E), where env is a finite map from var to value.

and Asm programs manipulate two kinds of state (registers and the heap), the proof involves
building an appropriate simulation relation between Imp states and Asm states.
To streamline, we identify Imp global variables with Asm heap addresses and assume that Imp

and Asm programs manipulate the same kinds of dynamic values. Neither assumption is critical.

5.1 A Denotational Semantics for Imp

The syntax and the semantics for Imp is given in Figure 15. In the absence of while, a denotational se-
mantics could be de!ned, by structural recursion on statements, as a function from an initial environ-
ment to a !nal environment; the denotation function would have type imp → env → (env * unit).
However, it is not possible to give a semantics to while using this naïve denotation because
Gallina’s function space is total. The usual solution is to revamp the semantics dramatically,
e.g., by moving to a relational, small-step operational semantics (Section 8.5 discusses other ap-
proaches). With ITrees, the denotation type becomes imp → stateT env (itree F) unit, or, equiv-
alently, imp → env → itree F (env * unit), which allows for nontermination. It is also more
"exible, since the semantics can be de!ned generically with respect to an event type parameter F,
which can later be re!ned if new e#ects are added to the language or if we want to compose ITrees
generated as denotations of Imp programs with ITrees obtained in some other way.

Figure 15 shows how the Imp semantics are structured. We !rst de!ne denote_expr and denote_imp,
which result in trees of type itree E unit. The typeclass constraint ImpState -< E indicates that
E permits ImpState actions, a re!nement of stateE that provides events for reading and writing
individual variables; we would follow the same strategy to add other events such as IO. The
meanings of expressions and most statements are straightforward, except for While. This relies on
the iter combinator (see Section 4) to !rst run the guard expression, then either continue to loop
(by returning inl tt to the iter combinator) or signal that it is time to stop (by returning inr tt).

The second stage of the semantics is interp_imp, which takes ITrees containing ImpState events
and produces a computation in the state monad. It !rst invokes a handler for ImpState, h_imp_state,

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 51. Publication date: January 2020.

Taken verbatim from the ITrees paper (Xia et al. 2020)

ITrees are First-Order

11

ITrees are First-Order

• Q: How do we give a direct translation of ’s?λ

• In higher-order languages ’s are values, but do not fit in Retλ

• Ideally, we add a new constructor to embed functions into the type itree:

12

CoInductive itree (E : Type −> Type) (R : Type) :=
| Ret : R −> itree E R
| Tau : itree E R −> itree E R
| Vis {A : Type } : E A −> (A −> itree E R) −> itree E R

ITrees are First-Order

• Q: How do we give a direct translation of ’s?λ

• In higher-order languages ’s are values, but do not fit in Retλ

• Ideally, we add a new constructor to embed functions into the type itree:

• Not possible: the constructor Fun is not strictly positive (required by Rocq)

• Guarded Interaction Trees (GITrees) solve this problem
12

CoInductive itree (E : Type −> Type) (R : Type) :=
| Ret : R −> itree E R
| Fun : (itree E R -> itree E R) -> itree E R
| Tau : itree E R −> itree E R
| Vis {A : Type } : E A −> (A −> itree E R) −> itree E R

Negative occurence

Guarded Interaction Trees (GITrees)

13

Denotational Semantics for Higher-Order Languages

GITrees

• Main idea: Use guarded type theory

• Lifts the strict positivity requirement

• Uses Iris’s guarded type theory

• Gave a program logic over GITrees

• Using Iris’s step-indexed program logic

• Studied language interactions

• Safety of embedding linear types into an affine language

14

Modular Denotational Semantics for E!ects with Guarded
Interaction Trees

DAN FRUMIN, University of Groningen, The Netherlands

AMIN TIMANY, Aarhus University, Denmark

LARS BIRKEDAL, Aarhus University, Denmark

We present guarded interaction trees — a structure and a fully formalized framework for representing higher-
order computations with higher-order e!ects in Coq, inspired by domain theory and the recently proposed
interaction trees. We also present an accompanying separation logic for reasoning about guarded interaction
trees. To demonstrate that guarded interaction trees provide a convenient domain for interpreting higher-order
languages with e!ects, we de"ne an interpretation of a PCF-like language with e!ects and show that this
interpretation is sound and computationally adequate; we prove the latter using a logical relation de"ned
using the separation logic. Guarded interaction trees also allow us to combine di!erent e!ects and reason
about them modularly. To illustrate this point, we give a modular proof of type soundness of cross-language
interactions for safe interoperability of di!erent higher-order languages with di!erent e!ects. All results in
the paper are formalized in Coq using the Iris logic over guarded type theory.

CCS Concepts: • Theory of computation→ Program semantics; Logic and veri!cation; • Software and
its engineering→ Software libraries and repositories.

Additional Key Words and Phrases: Coq, Iris, denotational semantics, logical relations

ACM Reference Format:
Dan Frumin, Amin Timany, and Lars Birkedal. 2024. Modular Denotational Semantics for E!ects with Guarded
Interaction Trees. Proc. ACM Program. Lang. 8, POPL, Article 12 (January 2024), 30 pages. https://doi.org/10.
1145/3632854

1 INTRODUCTION

Interaction trees [Xia et al. 2019] are a recently proposed formalism for representing and reasoning
about (possibly) non-terminating programs with side e!ects in Coq (a terminating type theory
without e!ects). Since its inception, interaction trees have been applied, including but not limited,
to specifying and verifying network servers [Koh et al. 2019; Zhang et al. 2021], semantics of LLVM
[Zakowski et al. 2021], semantics of a language for robotics [Ye et al. 2022], non-interference [Silver
et al. 2023], and veri"cation of concurrent objects with transactional memory [Lesani et al. 2022].

The introduction of interaction trees was motivated by a desire to simplify mechanized formal-
izations of interactive, e!ectful, non-terminating computations and the developers of the ITrees
library argued that ITrees can represent computations in a way which is more modular than repre-
sentations based on operational semantics and executable (in contrast to earlier representations
based on traces represented as predicates on events). In particular, the idea is that interaction trees
can be used to give denotational semantics to programming languages and thus allow one to abstract
away from syntactic details and reuse meta-language features such as function composition so as

Authors’ addresses: Dan Frumin, d.frumin@rug.nl, University of Groningen, The Netherlands; Amin Timany, Aarhus
University, Denmark, timany@cs.au.dk; Lars Birkedal, Aarhus University, Denmark, birkedal@cs.au.dk.

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/1-ART12
https://doi.org/10.1145/3632854

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

The original GITrees paper (POPL’23)

GITrees (Definition)

• In the above the gitree arguments only appear guarded (i.e., under a)

• Fun: embeds function values

• Err: Indicates error, e.g., if a non-function value is applied to another value

• Input and output types can now also include ITrees (enables higher-order effects)

▶

15

Guarded Type gitree (E : Effect) (R : Type) :=
| Ret : R −> gitree E R
| Fun : (gitree E R -> gitree E R) -> gitree E R
| Err : gitree E R
| Tau : gitree E R −> gitree E R
| Vis (i : E) :
 (Ins i (gitree E R)) * (Outs i (gitree E R)) −> gitree E R) −>
 gitree E R

▶

▶

▶ ▶ ▶

Note: very heavy use of syntactic sugar;
Rocq does not directly support guarded types!

GITrees
Embedding : STLC with higher-order storeλref

• A couple of examples: 
 
 
 
 
 

• Where

• maps free variables to gitree E R

•

ρ

𝗇𝖾𝗑𝗍 : A → ▶A
16

[[!ℓ]]ρ = 𝚅𝚒𝚜 𝖫𝗈𝖺𝖽 (ℓ, λx . x)

The continuation

[[λx . e]]ρ = 𝙵𝚞𝚗(𝗇𝖾𝗑𝗍(λv . [[e]]ρ[x↦v]))Syntactic (STLC) λ

Meta-level (Rocq) λ

GITrees
The Program Logic

• A program logic (weakest precondition calculus) 
 
 
 
 

• Where GITree values (ranged over by): a GITree of the form Ret or Fun

• Intuitive reading:

• The GITree does not result in an Err, and

• The result, a GITree value, i.e., a Ret or Fun, satisfies

ν, μ, …

α

P
17

WP α {ν . P}
A GITree Binds the result

(a GITree value)

The postcondition

GITrees
The Program Logic — Effect Reification

• To define what GITrees “result in” we need to reify effects

• We pick a state for each effect

• For the heap of we use finite partial maps

• An effect reifier maps a pair of input and state to an output and a state: 
 
 
 

• Note the option: If the reifier returns None, e.g., loading from an
unallocated location, effect reification results in an Err

λref Loc 𝖿𝗂𝗇⟶ GITV

18

(Ins i (gitree E R) * State) -> option (Outs i (gitree E R) * State)

Effect’s input
The state before the effect The state after the effectEffect’s output

GITrees
The Program Logic

• Provides basic reasoning principles for GITree operations, including effects

• Which, based on their reification allow us to derive, e.g., WP-Load below: 
 
 
 

19

WP [[!ℓ]]ρ {ν . Φ(ν)}
Φ(μ)ℓ ↦ μ

WP-Load

Separation logic’s points-to:
the location stores value ℓ μ

GITrees
The Program Logic

• Provides basic reasoning principles for GITree operations, including effects

• Which, based on their reification allow us to derive, e.g., WP-Load below: 
 
 
 

• Q: Modular reasoning? Ideally, from WP-Load should be able to easily derivable:

19

WP [[!ℓ]]ρ {ν . Φ(ν)}
Φ(μ)ℓ ↦ μ

WP-Load

Separation logic’s points-to:
the location stores value ℓ μ

WP [[!e]]ρ {ν . Φ(ν)}

WP [[e]]ρ {ν . ∃ℓ . ν = Ret(ℓ) ∧ WP [[!ℓ]]ρ {μ . Φ(μ)}}
WP-Load-Compound

GITrees
The Program Logic — Modular Reasoning

• The WP-Hom rule, crucial for modular reasoning 
 
 
 
 

• For any evaluation context of ,

• We can derive WP-Load-Compound from WP-Load and WP-Hom as is an
evaluation context

K λref [[K]] ∈ Hom

! ⋅

20

WP [[!ℓ]]ρ {ν . Φ(ν)}
Φ(μ)ℓ ↦ μ

WP-Load

WP [[!e]]ρ {ν . Φ(ν)}

WP [[e]]ρ {ν . ∃ℓ . ν = Ret(ℓ) ∧ WP [[!ℓ]]ρ {μ . Φ(μ)}}
WP-Load-Compound

WP f(α) {ν . Φ(ν)}
WP α {ν . WP f(ν) {μ . Φ(μ)}}f ∈ Hom

WP-Hom

Semantic criterion (); see Frumin et al. 2023Hom ⊆ GITree → GITree

Context-Dependent Effects

21

Denotational Semantics for Control Effects

Control Effects

• Control effects’ evaluation depends on and/or manipulates (part of) the
valuation context, e.g., call/cc, shift-reset, exceptions

• Operational semantics call/cc: 
 
 
 
 

• Q: Can we embed control effects in GITrees?

22

K[𝖼𝖺𝗅𝗅/𝖼𝖼(x . e)] → K[e[𝖼𝗈𝗇𝗍 K/x]]
K[𝗍𝗁𝗋𝗈𝗐 v (𝖼𝗈𝗇𝗍 K′)] → K′ [v]

Can We Embed Control Effects in GITrees?
• The type of GITrees is rich enough to support control effects

• However, GITree reifiers are not suitable for control effects because

• Reifiers do not have access to the continuations 
 

23

(Ins i (gitree E R) * State) -> option (Outs i (gitree E R) * State)

Can We Embed Control Effects in GITrees?
• The type of GITrees is rich enough to support control effects

• However, GITree reifiers are not suitable for control effects because

• Reifiers do not have access to the continuations 
 

• Solution: give the reifier access to the continuation of the effect 
 
 

• This changes the program logic. It breaks WP-Hom!

23

(Ins i (gitree E R) * State) -> option (Outs i (gitree E R) * State)

(Ins i (gitree E R) * State) -> (Outs i (gitree E R) -> gitree E R) -> option (gitree E R * State)

The continuation

Context-Dependent Reifiers Break WP-Hom
• The WP-Hom rule is no longer valid (the result of could depend on) 

 
 
 

• Inspired by previous work, we introduce context-local WP’s (clwp)

• Intuitively: clwp of holds if wp holds and has no context-dependent effect 
 

• No clwp inference rule for context-dependent effects, e.g.,

α f

α α

[[𝖼𝖺𝗅𝗅/𝖼𝖼(x . e)]]ρ

24

WP f(α) {ν . Φ(ν)}
WP α {ν . WP f(ν) {μ . Φ(μ)}}f ∈ Hom

WP-Hom

CLWP f(α) {ν . Φ(ν)}
CLWP α {ν . CLWP f(ν) {μ . Φ(μ)}}f ∈ Hom

CLWP-Hom

Denotational Semantics for Control Effects

• We give denotational semantics for

• a language with call/cc

• a language with shift-reset 

• Show both soundness and adequacy wrt
operational semantics

25

Context-Dependent E!ects in Guarded Interaction Trees 13

E!x"ω = ω(x)

E!call/cc (x. e)"ω = Callcc(ε(f : ↭IT → ↭IT).E!e"ω[x →↑Fun(next(εy.Tau(f(next(y)))))])

E!throw e1 to e2"ω = get_val(E!e1"ω,εx. get_fun(E!e2"ω,εf.Throw(x, f)))

V!cont K"ω = Fun(next(εx.Tau(K!K"ω (↭•) next(x))))
K!throw K to e"ω = εx. get_val(K!K"ω x,εy. get_fun(E!e"ω,εf.Throw(y, f)))

K!throw v to K"ω = εx. get_val(V!v"ω,εy. get_fun(K!K"ω x,εf.Throw(y, f)))

Fig. 10. Denotational semantics of εcallcc (selected clauses).

Interpretation of ωcallcc. The denotational semantics of ωcallcc is shown in Figure 10
(selected clauses only; see Coq formalization for the complete definition). The
interpretation is split into three parts: E!→" for expressions, V!→" for values,
and K!→" for contexts. For the interpretation of throw e1 to e2, the left-to-right
evaluation order is enforced by the functions get_val and get_fun. They first
evaluate their argument to a GITree value, and then pass it on (c.f. Figure 3).

The context-dependent reifiers for the e!ects callcc and throw are defined
as follows:

rcallcc(f, (),ε) = Some(ε (f ε), ()) rthrow((ϑ, f), (),ε) = Some(f ϑ, ())

To show that the denotational semantics is sound, we need the following
lemma that shows that interpretations of expressions in evaluation contexts are
decomposed into applications of homomorphisms.
Lemma 2. For any context K and an environment ϖ, we have K!K"ω ↑

Hom. For any context K, expression e, and an environment ϖ, E!K[e]"ω =
K!K"ω(E!e"ω).
With these results at hand, we can show soundness of our interpretation:
Lemma 3. Soundness. Suppose e1 ↓↔ e2. Then (E!e1"ω, ()) ↫→ (E!e2"ω, ()),
where () : 1 is the unique element of the unit type, representing the (lack of)
state.

Program logic for ωcallcc. We now specialize the general program logic rule wp-
reify-ctx-dep using the reifiers for callcc and throw to obtain the following
program logic rules:
wp-throw

ε ↑ Hom has_state(ϱ)
ς(has_state(ϱ) →↗ wp f x

{
φ
}
)

wp ε (Throw(next(x), next(f)))
{
φ
}

wp-callcc
ε ↑ Hom has_state(ϱ)

ς(has_state(ϱ) →↗ wp ε (f ε)
{
φ
}
)

wp ε (Callcc(next ↘ f))
{
φ
}

where ε is a homomorphism representing the current evaluation context on the
level of GITrees. The reader may wonder why these rules include the has_state(ϱ)
predicates, since it is just ’threaded around’. The reason is that these rules also
apply when there are other e!ects around and the state is composed of di!erent
substates for di!erent e!ects, cf. the discussion of modularity in Section 2.

An excerpt of the denotational semantics for call/cc

18 S. Stepanenko et al.

wp-shift
has_state(ω)

ε(has_state(ω) →↑ wp ϑ
{
ϖ
}
)

↭P(f(↭ϱ)) = next(ϑ)
wp ϱ(Shift(f))

{
ϖ
}

wp-reset
has_state(ω)

ε(has_state(↭ϱ :: ω) →↑ wp P(e)
{
ϖ
}
)

wp ϱ(Reset(next(e)))
{
ϖ
}

wp-pop
has_state(ω)

ϱ→ = ϱ if ω = ϱ :: ω→ and id otherwise
ε(has_state(tail(ω)) →↑ wp ϱ→(v)

{
ϖ
}
)

wp P(v)
{
ϖ
}

wp-appcont
has_state(ω)

ε(has_state(↭ϱ :: ω) →↑ wp ϑ
{
ϖ
}
)

↭ϱ→(e) = next(ϑ)
wp ϱ(Appcont(e,ϱ→))

{
ϖ
}

Fig. 15. Weakest precondition rules for delimited continuations.

E!D e"ω = Reset(P(E!e"ω))
E!S x. e"ω = Shift(P ↓ (ςϱ.E!e"ω,x ↑↓Fun(next(εy.Tau(ϑ(nexty))))))

E!e1 @ e2"ω = get_val(E!e2"ω,ςx. get_fun(E!e1"ω,ςy.Appcont(next(x), y)))
V!cont K"ω = Fun(next(ςx.Tick(P(K!K"ω x))))

K!K[↫ @ v]"ω = ςx.K!K"ω(E!x @ v"ω)
M!mk"ω = map(ςk.P ↓K!k"ω)mk

S!↔e, K, mk↗eval"ω = (P(E!K[e]"ω),M!mk"ω)
S!↔K, v, mk↗cont"ω = (P(E!K[v]"ω),M!mk"ω)
S!↔mk, v↗mcont"ω = (P(V!v"ω),M!mk"ω)
S!↔e↗term"ω = (P(E!e"ω), [])
S!↔v↗ret"ω = (V!v"ω, [])

Fig. 16. Denotational semantics for a calculus with delimited control (selected clauses).

The reifier for shift is similar to that of callcc, except that it removes the
current continuation entirely. The reifier for appcont, in comparison with throw,
does not simply pass control, but also saves the current continuation on the stack.
This corresponds to the fact that whenever a delimited continuation is invoked,
the result is wrapped in a reset; that is done to prevent the continuation from
escaping the delimiter. As part of instantiating GITrees with these e!ects, we
obtain the specialized program logic rules shown in Figure 15. We will use those
rules later for defining a logical relation between the syntax and the semantics
of ωdelim. As mentioned above, we will use Pop to unwind the continuation stack
and restore the continuation after finishing with a reset. This means that we
will need to insert explicit calls to Pop in the interpretation of ωdelim. For these
purposes, we use an abbreviation P(ε), which first evaluates ε to a value, and
then executes the pop operation.

An excerpt of the denotational semantics for shift-reset

Soundness : Σ1 → Σ2 ⟹ [[Σ1]] ≅ [[Σ2]]
Adequacy : [[e]] ≅ [[n]] ⟹ e →* n

See the exact statements
in the paper!

Denotational Semantics for Control Effects

• Adequacy is proven

• Using bi-orthogonal logical relations (LR)

• A well-known technique

• Expressed in terms of wp’s (not clwp’s)

• Bi-orthogonal LR “bake in” modularity
w.r.t. evaluation contexts

26

Soundness : Σ1 → Σ2 ⟹ [[Σ1]] ≅ [[Σ2]]
Adequacy : [[e]] ≅ [[n]] ⟹ e →* n

See the exact statements
in the paper!

Context-Dependent E!ects in Guarded Interaction Trees 13

E!x"ω = ω(x)

E!call/cc (x. e)"ω = Callcc(ε(f : ↭IT → ↭IT).E!e"ω[x →↑Fun(next(εy.Tau(f(next(y)))))])

E!throw e1 to e2"ω = get_val(E!e1"ω,εx. get_fun(E!e2"ω,εf.Throw(x, f)))

V!cont K"ω = Fun(next(εx.Tau(K!K"ω (↭•) next(x))))
K!throw K to e"ω = εx. get_val(K!K"ω x,εy. get_fun(E!e"ω,εf.Throw(y, f)))

K!throw v to K"ω = εx. get_val(V!v"ω,εy. get_fun(K!K"ω x,εf.Throw(y, f)))

Fig. 10. Denotational semantics of εcallcc (selected clauses).

Interpretation of ωcallcc. The denotational semantics of ωcallcc is shown in Figure 10
(selected clauses only; see Coq formalization for the complete definition). The
interpretation is split into three parts: E!→" for expressions, V!→" for values,
and K!→" for contexts. For the interpretation of throw e1 to e2, the left-to-right
evaluation order is enforced by the functions get_val and get_fun. They first
evaluate their argument to a GITree value, and then pass it on (c.f. Figure 3).

The context-dependent reifiers for the e!ects callcc and throw are defined
as follows:

rcallcc(f, (),ε) = Some(ε (f ε), ()) rthrow((ϑ, f), (),ε) = Some(f ϑ, ())

To show that the denotational semantics is sound, we need the following
lemma that shows that interpretations of expressions in evaluation contexts are
decomposed into applications of homomorphisms.
Lemma 2. For any context K and an environment ϖ, we have K!K"ω ↑

Hom. For any context K, expression e, and an environment ϖ, E!K[e]"ω =
K!K"ω(E!e"ω).
With these results at hand, we can show soundness of our interpretation:
Lemma 3. Soundness. Suppose e1 ↓↔ e2. Then (E!e1"ω, ()) ↫→ (E!e2"ω, ()),
where () : 1 is the unique element of the unit type, representing the (lack of)
state.

Program logic for ωcallcc. We now specialize the general program logic rule wp-
reify-ctx-dep using the reifiers for callcc and throw to obtain the following
program logic rules:
wp-throw

ε ↑ Hom has_state(ϱ)
ς(has_state(ϱ) →↗ wp f x

{
φ
}
)

wp ε (Throw(next(x), next(f)))
{
φ
}

wp-callcc
ε ↑ Hom has_state(ϱ)

ς(has_state(ϱ) →↗ wp ε (f ε)
{
φ
}
)

wp ε (Callcc(next ↘ f))
{
φ
}

where ε is a homomorphism representing the current evaluation context on the
level of GITrees. The reader may wonder why these rules include the has_state(ϱ)
predicates, since it is just ’threaded around’. The reason is that these rules also
apply when there are other e!ects around and the state is composed of di!erent
substates for di!erent e!ects, cf. the discussion of modularity in Section 2.

An excerpt of the denotational semantics for call/cc

18 S. Stepanenko et al.

wp-shift
has_state(ω)

ε(has_state(ω) →↑ wp ϑ
{
ϖ
}
)

↭P(f(↭ϱ)) = next(ϑ)
wp ϱ(Shift(f))

{
ϖ
}

wp-reset
has_state(ω)

ε(has_state(↭ϱ :: ω) →↑ wp P(e)
{
ϖ
}
)

wp ϱ(Reset(next(e)))
{
ϖ
}

wp-pop
has_state(ω)

ϱ→ = ϱ if ω = ϱ :: ω→ and id otherwise
ε(has_state(tail(ω)) →↑ wp ϱ→(v)

{
ϖ
}
)

wp P(v)
{
ϖ
}

wp-appcont
has_state(ω)

ε(has_state(↭ϱ :: ω) →↑ wp ϑ
{
ϖ
}
)

↭ϱ→(e) = next(ϑ)
wp ϱ(Appcont(e,ϱ→))

{
ϖ
}

Fig. 15. Weakest precondition rules for delimited continuations.

E!D e"ω = Reset(P(E!e"ω))
E!S x. e"ω = Shift(P ↓ (ςϱ.E!e"ω,x ↑↓Fun(next(εy.Tau(ϑ(nexty))))))

E!e1 @ e2"ω = get_val(E!e2"ω,ςx. get_fun(E!e1"ω,ςy.Appcont(next(x), y)))
V!cont K"ω = Fun(next(ςx.Tick(P(K!K"ω x))))

K!K[↫ @ v]"ω = ςx.K!K"ω(E!x @ v"ω)
M!mk"ω = map(ςk.P ↓K!k"ω)mk

S!↔e, K, mk↗eval"ω = (P(E!K[e]"ω),M!mk"ω)
S!↔K, v, mk↗cont"ω = (P(E!K[v]"ω),M!mk"ω)
S!↔mk, v↗mcont"ω = (P(V!v"ω),M!mk"ω)
S!↔e↗term"ω = (P(E!e"ω), [])
S!↔v↗ret"ω = (V!v"ω, [])

Fig. 16. Denotational semantics for a calculus with delimited control (selected clauses).

The reifier for shift is similar to that of callcc, except that it removes the
current continuation entirely. The reifier for appcont, in comparison with throw,
does not simply pass control, but also saves the current continuation on the stack.
This corresponds to the fact that whenever a delimited continuation is invoked,
the result is wrapped in a reset; that is done to prevent the continuation from
escaping the delimiter. As part of instantiating GITrees with these e!ects, we
obtain the specialized program logic rules shown in Figure 15. We will use those
rules later for defining a logical relation between the syntax and the semantics
of ωdelim. As mentioned above, we will use Pop to unwind the continuation stack
and restore the continuation after finishing with a reset. This means that we
will need to insert explicit calls to Pop in the interpretation of ωdelim. For these
purposes, we use an abbreviation P(ε), which first evaluates ε to a value, and
then executes the pop operation.

An excerpt of the denotational semantics for shift-reset

Language Interaction
• We show semantic type safety for

• Only allow embedding pure programs of

• Bi-orthogonal LR for using wp’s

• Non-bi-orthogonal LR for using clwp’s

• Key point: we can use clwp’s for all of

• Derive clwp for from a wp for :

• The wp comes from the bi-orthogonal LR

λ𝖾𝗆𝖻𝖾𝖽

λ𝖽𝖾𝗅𝗂𝗆

λ𝖽𝖾𝗅𝗂𝗆

λ𝖾𝗆𝖻𝖾𝖽

λ𝖾𝗆𝖻𝖾𝖽

𝖾𝗆𝖻𝖾𝖽 e e

27

Context-Dependent E!ects in Guarded Interaction Trees 15

ω ;ε → e : ϑ ;ϖ

ω →pure e : ϑ
types Ty ↑ ϑ,ϱ,ε,ϖ, ς, φ ::= N | ϑ/ε↓ϱ/ϖ | cont(ϑ,ε)
expressions Expr ↑ e ::= v | x | e1 e2 | e1 ↔ e2

| if e1 then e2 else e3 | S x. e | D e | e1 @ e2
values Val ↑ v ::= n | rec f(x) = e | cont K
eval. contexts Ectx ↑ K ::= ↭ | K[if ↭ then e1 else e2] | K[v ↭] | K[↭ e]

| K[e↔↭] | K[↭↔ v] | K[↭ @ v] | K[e @ ↭]

ω →pure e : ϑ

ω ;ε → e : ϑ ;ε

ω, x : cont (ϑ,ε);ϱ → e : ϱ;ϖ

ω ;ε → S x. e : ϑ ;ϖ

ω ; ϑ → e : ϑ ;ϱ

ω →pure D e : ϱ

x : ϑ ↗ ω

ω →pure x : ϑ

ω, f : ϱ/ε↓ ϑ/ϖ, x : ϱ;ε → e : ϑ ;ϖ

ω →pure rec f(x) = e : ϱ/ε↓ ϑ/ϖ

ω ; φ → e1 : ϱ/ε↓ ϑ/ϖ; ς
ω ;ϖ → e2 : ϱ; φ

ω ;ε → e1 e2 : ϑ ; ς

ω ;ϖ → e1 : N;ε ω ;ϱ → e2 : ϑ ;ϖ ω ;ϱ → e3 : ϑ ;ϖ

ω ;ϱ → if e1 then e2 else e3 : ϑ ;ε ω →pure n : N

ω ;ε → e1 : N;ϖ ω ;ϖ → e2 : N;ϱ
ω ;ε → e1 ↔ e2 : N;ϱ

ω ;ϱ → e1 : cont (ϑ,ε); ς ω ; ς → e2 : ϑ ;ϖ

ω ;ϱ → e1 @ e2 : ε;ϖ

Fig. 12. Syntax and typing rules of ↼delim.

Computational adequacy now follows easily from the fundamental lemma.

Proof (of Lemma 4). By Lemma 6, we have that → ↑ e : N implies that → ↫
e : N. Now, the statement follows from Theorem 1 and the assumption that
E!e"→,ω1 ↬↑

Ret n,ω2.

4 Modeling Delimited Continuations

In this section we scale our approach to delimited continuations, which is a
challenging example of context-dependent e!ects. We provide a denotational
semantics for a programming language εdelim with shift/reset, and prove its
soundness and adequacy relative to an abstract machine semantics [6]. The
semantics and proofs are more complex than for εcallcc due to the nature of
delimited continuations and associated type system. To the best of our knowledge,
this represents the first formalized sound and adequate direct-style denotational
semantics for delimited continuations.

4.1 Syntax and Operational Semantics of ωdelim

The syntax and the type system of εdelim is given in Figure 12. It is similar to
εcallcc, but instead of call/cc (↓. ↓) there are operators D e (delimit the current
evaluation context, also known as reset) and S x. e (grab the current delimited
continuation, and bind it to x in e, also known as shift).

: A language with shift-resetλ𝖽𝖾𝗅𝗂𝗆 Context-Dependent E!ects in Guarded Interaction Trees 21

types Ty → ω ::= N | 1 | ω ↑ε | ref(ω)
expressions Expr → e ::= x | () | e1 e2 | e1 ↓ e2 | n | ϑx. e

| ϖ | ref(e) | ! e | e1 ↔ e2 | embed e

↗ ↘pure e : N
ϱ ↘ embed e : N

Fig. 18. Syntax and the new typing rule of the ϑembed.

Proof (of Theorem 3). Note that the empty (meta)continuation is related to its
denotation: K(P, P)(id,↭) and M(P)([], []) hold for any relation P .

With this, we instantiate →;N |= e : N;N (that we get from Lemma 7) with
the empty continuation/metacontinuation, and get the observational refinement
between e and E!e". ↑↓

This completes our treatment of denotational semantics of ωdelim. The next
section examines interoperability of delimited continuations and other e!ects.

5 Modeling Interoperability Between Languages

A key advantage of using (G)Itrees for semantics is that they can provide a
common framework for multi-language interaction. This section presents a case
study on the interaction between the languages ωembed (with higher-order store
e!ects) and ωdelim (with delimited continuations). Specifically, we allow embedding
closed ωdelim programs into ωembed, and equip ωembed with a type system that
guarantees safe interoperability.

The embedding we provide is restrictive, preventing programs with delimited
continuations from accessing outer-language continuations. We leave developing
a more permissive type system for future work. At the end of the section we give
an example of how to verify a more involved interaction of e!ects, albeit without
the type system.

In this section we reuse the semantics of ωdelim from the previous section
and higher-order store e!ects from Section 2. For ωdelim, we reuse the semantics
from the previous section and higher-order store reifiers from [13] In this section,
we use magenta to explicitly highlight programs written in ωdelim, and for the
interpretation functions of the denotational model of ωdelim.

Language ωembed. ωembed is a ω-calculus with base types N and 1, references types
ref(ε) and function types ε ↔ϑ, with syntax given in Figure 18. Additionally, it
includes a construct embed e for embedding ωdelim programs. The typing rules
are all standard, except for the new typing rule for the embedding.

The idea behind the rule is that we can embed an expression from ωdelim if it
is a “pure” expression that can evaluate to a natural number. The use of pure
typing judgment for the embedded program ensures that it does not to alter
the answer type. This means that we can treat an embedded expression as a
“complete” program, that does not require outer continuation delimiters, even
though it may rely on delimited continuations internally. Those restrictions are

Context-Dependent E!ects in Guarded Interaction Trees 21

types Ty → ω ::= N | 1 | ω ↑ε | ref(ω)
expressions Expr → e ::= x | () | e1 e2 | e1 ↓ e2 | n | ϑx. e

| ϖ | ref(e) | ! e | e1 ↔ e2 | embed e

↗ ↘pure e : N
ϱ ↘ embed e : N

Fig. 18. Syntax and the new typing rule of the ϑembed.

Proof (of Theorem 3). Note that the empty (meta)continuation is related to its
denotation: K(P, P)(id,↭) and M(P)([], []) hold for any relation P .

With this, we instantiate →;N |= e : N;N (that we get from Lemma 7) with
the empty continuation/metacontinuation, and get the observational refinement
between e and E!e". ↑↓

This completes our treatment of denotational semantics of ωdelim. The next
section examines interoperability of delimited continuations and other e!ects.

5 Modeling Interoperability Between Languages

A key advantage of using (G)Itrees for semantics is that they can provide a
common framework for multi-language interaction. This section presents a case
study on the interaction between the languages ωembed (with higher-order store
e!ects) and ωdelim (with delimited continuations). Specifically, we allow embedding
closed ωdelim programs into ωembed, and equip ωembed with a type system that
guarantees safe interoperability.

The embedding we provide is restrictive, preventing programs with delimited
continuations from accessing outer-language continuations. We leave developing
a more permissive type system for future work. At the end of the section we give
an example of how to verify a more involved interaction of e!ects, albeit without
the type system.

In this section we reuse the semantics of ωdelim from the previous section
and higher-order store e!ects from Section 2. For ωdelim, we reuse the semantics
from the previous section and higher-order store reifiers from [13] In this section,
we use magenta to explicitly highlight programs written in ωdelim, and for the
interpretation functions of the denotational model of ωdelim.

Language ωembed. ωembed is a ω-calculus with base types N and 1, references types
ref(ε) and function types ε ↔ϑ, with syntax given in Figure 18. Additionally, it
includes a construct embed e for embedding ωdelim programs. The typing rules
are all standard, except for the new typing rule for the embedding.

The idea behind the rule is that we can embed an expression from ωdelim if it
is a “pure” expression that can evaluate to a natural number. The use of pure
typing judgment for the embedded program ensures that it does not to alter
the answer type. This means that we can treat an embedded expression as a
“complete” program, that does not require outer continuation delimiters, even
though it may rely on delimited continuations internally. Those restrictions are

: A language with no control effects
where we embed pure (properly

delimited) expressions from

λ𝖾𝗆𝖻𝖾𝖽

λ𝖽𝖾𝗅𝗂𝗆

