Context-Dependent Effects In
Guarded Interaction Trees

Sergei Stepanenko, Emma Nardino, Dan Frumin, Amin Timany, and Lars Birkedal

Wednesday, May 7th 2025 @ ESOP’25 - Hamilton, Ontario, Canada

Outline

Context-Dependent Effects In
Guarded Interaction Trees

Outline

Motivation

* Denotational semantics and studying language interactions

Interaction Trees

* Denotational semantics for first-order programs with first-order effects

Guarded Interaction Trees

* Extends interaction trees to higher-order programs and effects

Context-Dependent Effects (This Work)

 Extends guarded interaction trees to context-dependent effects, e.g.,
(delimited) continuations, exceptions

Motivation

Studying Programs Formally

» (Goal: study programming languages and their interactions formally
* |In a proof assistant like Rcoqg (formerly Coq)
 We need to define programs’ behavior (semantics)
* Should capture the individual languages and their interaction
 Common choices:
 Operational semantics

e Denotational semantics

Operational Semantics

* Describe the mechanics of program execution
 Advantage

o Simplicity: easy to understand and explain

» Easily scales to sophisticated languages and features
 Disadvantage

* Needs to be defined for each language (or combination/interaction there of)
we formalize

Denotational Semantics

* Assign denotations (mathematical objects) to programs as their semantics

Syntax Math

» Study those mathematical objects
(also sound w.r.t. operational semantics)

Denotational Semantics

* Assign denotations (mathematical objects) to programs as their semantics

Syntax Math

» Study those mathematical objects
(also sound w.r.t. operational semantics)

Syntax of £,
Semany;
Cs: .
~ Iy

Syntax of £,

* Provides a rich common language (math) -
to combine programs and reason about
language interactions

Denotational Semantics

 Main challenge:
 Coming up with a rich enough mathematical universe (domain)

* Ordinary math (Rocq) is not sufficient Syntax of Z,

€1 Semant;.....
=S
* No side effects, e.g., I/0, state
: : ©
o |iterature explores many solutions:

Syntax of £,

e NoO non-termination Math

[[31]]591; [[62]]32

e Scott domain theory, monads, etc.

* [Trees are a recent proposal

Interaction Trees (I Trees)

ITrees

e Main idea: construct a domain for

* Possibly non-terminating programs

. . Interaction Trees
® W It h S I d e e I I eCtS Representing Recursive and Impure Programs in Coq

LI-YAO XIA, University of Pennsylvania, USA
YANNICK ZAKOWSKI, University of Pennsylvania, USA
]] PAUL HE, University of Pennsylvania, USA
o I n t h e R O C r0ve r I n W h I C h CHUNG-KIL HUR, Seoul National University, Republic of Korea
GREGORY MALECHA, BedRock Systems, USA
BENJAMIN C. PIERCE, University of Pennsylvania, USA
STEVE ZDANCEWIC, University of Pennsylvania, USA

. Interaction trees (ITrees) are a general-purpose data structure for representing the behaviors of recursive

® AI I t t t programs that interact with their environments. A coinductive variant of “free monads,” ITrees are built out

p rO g ral I l S I I l u S e rl I I I n a e of uninterpreted events and their continuations. They support compositional construction of interpreters

from event handlers, which give meaning to events by defining their semantics as monadic actions. ITrees are

expressive enough to represent impure and potentially nonterminating, mutually recursive computations, while

admitting a rich equational theory of equivalence up to weak bisimulation. In contrast to other approaches

such as relationally specified operational semantics, ITrees are executable via code extraction, making them

u suitable for debugging, testing, and implementing software artifacts that are amenable to formal verification.

o T h e re a re n O S I d e eﬁe Ct S We have implemented ITrees and their associated theory as a Coq library, mechanizing classic domain- and

category-theoretic results about program semantics, iteration, monadic structures, and equational reasoning.

Although the internals of the library rely heavily on coinductive proofs, the interface hides these details so
that clients can use and reason about ITrees without explicit use of Coq’s coinduction tactics.

To showcase the utility of our theory, we prove the termination-sensitive correctness of a compiler from a

. . . simple imperative source language to an assembly-like target whose meanings are given in an I'Tree-based

® H denotational semantics. Unlike previous results using operational techniques, our bisimulation proof follows

aS S I n C e b e e n u S e d fO r S eV e ra I a p p | I C at I O n S straightforwardly by structural induction and elementary rewriting via an equational theory of combinators

for control-flow graphs.

The original ITrees paper (POPL20)

ITrees

A monad defined as a co-inductive type in Rocg

CoInductive itree (E : Type —> Type) (R : Type) :=
| Ret : R —> itree E R
| Tau : 1tree E R —> 1tree E R

| Vis {A : Type } : EA —> (A —> itree E R) —> itree E R

kThe continuation

* Constructors embed different kinds of computations:
» Ret: the final value of the computation

» Tau: delay (Tau c produces the same result as c delayed by a single step)

» Vis: an effect with input type E A and output type A

10

ITrees are First-Order

* |Trees can embed first-order
Imperative programs

e Xia et al. showed this for imp

* Proved correctness of a compiler
from imp to assembly

| Trees do not support languages
with higher-order (first class)
functions, e.g., OCaml, Haskell

« How do we translate A’s?

(* Imp Syntax --------------ocmmm e %)
Inductive expr : Set := (* omitted x*)
Inductive imp : Set :=

Assign (x : var) (e : expr)

Seq (a b : imp)

If (1 : expr) (t e : 1imp)

While (t : expr) (b : 1imp)

Skip.
(* Imp Events ---------cmmmmm %)
Variant ImpState : Type — Type :=
| GetVar (x : var) : ImpState value
| SetVar (x : var) (v : value) : ImpState unit.

11

Taken verbatim from the ITrees paper (Xia et al. 2020)

ITrees are First-Order

* Q: How do we give a direct translation of A’s?

» In higher-order languages A’s are values, but do not fit in Ret

* |deally, we add a new constructor to embed functions into the type itree:

CoInductive itree (E : Type —> Type) (R : Type) :=

| Ret : R —> itree E R

| Tau : 1tree E R —> 1tree E R

| Vis {A : Type } : EA —> (A —> itree ER) —> itree E R

12

ITrees are First-Order

* Q: How do we give a direct translation of A’s?

» In higher-order languages A’s are values, but do not fit in Ret

* |deally, we add a new constructor to embed functions into the type itree:

CoInductive itree (E : Type —> Type) (R : Type) :=
| Ret : R —> itree E R
| Fun : (1tree E R —> 1tree E R) -> 1itree E R

| Tau : 1tree4E R —> 1tree E R
| Vis {A : Type } : EA —> (A —> itree E R) —> itree E R
Negative occurence
* Not possible: the constructor Fun is not strictly positive (required by Rocq)

* Guarded Interaction Trees (GlTrees) solve this problem

12

Guarded Interaction Trees (GlTrees)

GlTrees

 Main idea: Use guarded type theory
» Lifts the strict positivity requirement
* Uses Iris’s guarded type theory
 Gave a program logic over GlTrees
* Using Iris’s step-indexed program logic

o Studied language interactions

Check for
updates

Modular Denotational Semantics for Effects with Guarded
Interaction Trees

DAN FRUMIN, University of Groningen, The Netherlands
AMIN TIMANY, Aarhus University, Denmark
LARS BIRKEDAL, Aarhus University, Denmark

We present guarded interaction trees — a structure and a fully formalized framework for representing higher-
order computations with higher-order effects in Coq, inspired by domain theory and the recently proposed
interaction trees. We also present an accompanying separation logic for reasoning about guarded interaction
trees. To demonstrate that guarded interaction trees provide a convenient domain for interpreting higher-order
languages with effects, we define an interpretation of a PCF-like language with effects and show that this
interpretation is sound and computationally adequate; we prove the latter using a logical relation defined
using the separation logic. Guarded interaction trees also allow us to combine different effects and reason
about them modularly. To illustrate this point, we give a modular proof of type soundness of cross-language
interactions for safe interoperability of different higher-order languages with different effects. All results in
the paper are formalized in Coq using the Iris logic over guarded type theory.

CCS Concepts: « Theory of computation — Program semantics; Logic and verification; « Software and
its engineering — Software libraries and repositories.

Additional Key Words and Phrases: Coq, Iris, denotational semantics, logical relations

ACM Reference Format:

Dan Frumin, Amin Timany, and Lars Birkedal. 2024. Modular Denotational Semantics for Effects with Guarded
Interaction Trees. Proc. ACM Program. Lang. 8, POPL, Article 12 (January 2024), 30 pages. https://doi.org/10.
1145/3632854

1 INTRODUCTION

Interaction trees [Xia et al. 2019] are a recently proposed formalism for representing and reasoning
about (possibly) non-terminating programs with side effects in Coq (a terminating type theory
without effects). Since its inception, interaction trees have been applied, including but not limited,

The original GlTrees paper (POPL’23)

o Safety of embedding linear types into an affine language

14

G ITreeS (Def i n iti O n) Note: very heavy use of syntactic sugar;

Rocq does not directly support guarded types!

Guarded Type gitree (E : Effect) (R : Type) :=

| Ret : R —> gitree E R

| Fun : p(gitree E R —> gitree E R) —> gitree E R

| Err : gitree E R

| Tau : pgitree E R —> gitree E R

| Vis (i : E) :
(Ins i (pgitree E R)) * (Outs i (pgitree E R)) —> pgitree E R) —>
gitree E R

* In the above the gitree arguments only appear guarded (i.e., under a p)
* Fun: embeds function values
* Err: Indicates error, e.q., if a non-function value is applied to another value

* |nput and output types can now also include |Trees (enables higher-order effects)

15

GlTrees

Embedding 4_: STLC with higher-order store

ref"

* A couple of examples:

— X
Syntactic (STLC) A [Ax. e]]p = Fun(next(}tv. [[e]]p[XI—)V]))

v/Meta-level (Rocq) A

[[!f]]p = Vis Load (7, Ax. x)

\The continuation
e Where

* p maps free variables to gitree E R

e next: A —-pA

16

GlTrees

The Program Logic

e A program logic (weakest precondition calculus)

Binds the result
A GiTree W " { ¥ P (a GITree value)
W U.

The postcondition

 Where GlTree values (ranged over by v, i, ...): a GlTree of the form Ret or Fun

* |Intuitive reading:
e The GlTree ax does not result in an Err, and

 The result, a GlTree value, i.e., a Ret or Fun, satisfies P

17

GlTrees

The Program Logic — Effect Reification

* To define what GlTrees “result In” we need to reify effects

* \We pick a state for each effect
.
» For the heap of 4 . we use finite partial maps Loc — GITV

* An effect reifier maps a pair of input and state to an output and a state:

(Ins i (gitree E R) x State) —> option (Outs i (gitree E R) *x State)

Effect’s input_ /\ \ \ \

The state before the effect Effect’s output The state after the effect

* Note the option: If the reifier returns None, e.g., loading from an
unallocated location, effect reification results in an Err

18

GlTrees

The Program Logic

* Provides basic reasoning principles for GlTree operations, including effects

 Which, based on thelir reification allow us to derive, e.g., wp-Load below:

Separation logic’s poinm

the location £ stores value Asd. D(p)

_— WP-lLoad
WP [[!f]]p {lv. D)}

19

GlTrees

The Program Logic

* Provides basic reasoning principles for GlTree operations, including effects

 Which, based on thelir reification allow us to derive, e.g., wp-Load below:

Separation logic’s poinm

the location £ stores value Asd. D(p)

_— WP-lLoad
WP [[!f]]p {lv. D)}

* Q: Modular reasoning? Ideally, from we-Load Should be able to easily derivable:

WP [lell, {v.37.v=Ret?) AWP €1, (1. ®(p)} |

WP-Load-Compound
WP [[!e]]p {v. D)}

19

GlTrees

The Program Logic — Modular Reasoning

WP [el, {v.3¢.v=Ret(?) AWP [1£1,, (. ©G) }

WP-Load-Compound f i 'M (I)(,l/l) WP-Load
WP [lell, {v. @)} ’ WP [IZ], {v. ®())
* The wp-Hom rule, crucial for modular reasoning
Semantic criterion (Hom C GITree — GlTree); see Frumin et al. 2023
feHom WPa {v.WPfw) {u.®Ww))}}
- WP-HOom

WP f(a) {v. O@)]
» For any evaluation context K of 4 ¢, [[K] € Hom

 \We can derive WP-Load-Compound from wp-Load and wp-Hom as! - is an
evaluation context

20

Context-Dependent Effects

Control Effects

* Control effects’ evaluation depends on and/or manipulates (part of) the
valuation context, e.q., call/cc, shift-reset, exceptions

 Operational semantics call/cc:

K[call/cc(x. e)] = Kl[e[cont K/x]]
K[throw v (cont K')] —» K'|v]

« Q: Can we embed control effects in GlTrees?

22

Can We Embed Control Effects in GlTrees?

* The type of GlTrees is rich enough to support control effects
e However, GlTree reifiers are not suitable for control effects because

e Reifiers do not have access to the continuations

(Ins i (gitree E R) x State) —> option (Outs i (gitree E R) x State)

23

Can We Embed Control Effects in GlTrees?

* The type of GlTrees is rich enough to support control effects
e However, GlTree reifiers are not suitable for control effects because

e Reifiers do not have access to the continuations

(Ins i (gitree E R) x State) —> option (Outs i (gitree E R) x State)
o Solution: give the reifier access to the continuation of the effect

(Ins i (gitree E R) x State) —> (Outs i (gitree E R) —> gitree E R) —> option (gitree E R *x State)

xThe continuation

* This changes the program logic. It breaks wp-Hom!

23

Context-Dependent Reifiers Break WP-Hom

» The we-Hom rule is no longer valid (the result of a could depend on f)

fe Hom Wr-e . WP f(v) {u—bftr
- — WP-Hom

P T(a) (v.)}
* Inspired by previous work, we introduce context-local WP’s (clwp)

 Intuitively: clwp of a holds if wp holds and a has no context-dependent effect

fe Hom CLWPa {v.CLWP f(v) {u. ®(u)}} .
CLWP f(a) {v. ®(v)}

LWP-Hom

- No clwp inference rule for context-dependent effects, e.g., [call/cc(x. e)]

24

Denotational Semantics for Control Effects

<], = p(z)

call/cc (x. e)], = Callec(A(f : BIT — »IT). E[e] s Fun(next(ry. Tau(f (next(x)))))])
throw e; to ez]], = get val(E[ei],, Ax. get _fun(E[ez],, Af. Throw(z, f)))
[cont K], = Fun(next(Ax. Tau(K[K], (»e) next(z))))

[throw K to e], = Ax.get val(K[K], =, A\y.get fun(E[e],, Af. Throw(y, f)))
[throw v to K], = Axz.get val(V[v],, A\y.get fun(K[K], =, A\f. Throw(y, f)))

* We give denotational semantics for

* alanguage with call/cc

~ A < o d

* d |ang Uage W|th Sh ift'reset An excerpt of the denotational semantics for call/cc

E[D e, = Reset(P(E[e],))
E[S x. e]], = Shift(P o (Ak. E[e] 5 s Fun(next(Ay. Tau(x(nexty))))))
Ele; @ es], = get val(E[ez],, Ax. get fun(E[e1],, A\y. Appcont(next(x),y)))
Show both soundness and adequacy wrt Vicont K1 — Fun(next(\e. Tek(PKIK], 2)))
' I K[K[O @ v]], = Az. K[K],(E[z @ v],
operatlonal semantics See th.e exact statements MI[[m[k]]p _ ﬂap(Ak.PEIjﬂ,jﬂpgmk)
in the paper! Slle, K, mk)oul, = (PE[K[E]],), M[mk],)
S[(K, v, mk)_..], = (P(E[K[v]],), M[mk],)
S;<m V) meontlp = (P(V[v],), M[mk],)
Soundness : X, = 2, = [[X] = [%,]] ol cnl, = PCSLEL) D
. % —
Adequacy y [[8]] = [[I”l]] —> e—>"n An excerpt of the denotational semantics for shift-reset

25

See the exact statements

in the paper!

Soundness : X, —» X, = [=

le]] =

 Adequacy Is proven

[,]]
In]] = e —>*n

Adequacy :
Using bi-orthogonal logical relations (LR)
* A well-known technique
 Expressed in terms of wp’s (not clwp’s)

* Bi-orthogonal LR “bake in” modularity
w.r.t. evaluation contexts

26

Denotational Semantics for Control Effects

[z], = p(x)

call/cc (x. e)], = Callec(A(f : BIT — »IT). E[e] s Fun(next(ry. Tau(f (next(x)))))])
throw e; to ez]], = get val(E[ei],, Ax. get _fun(E[ez],, Af. Throw(z, f)))
[cont K], = Fun(next(Az. Tau(K[K], (»e) next(x))))

[throw K to e], = Ax.get val(K[K], =, A\y.get fun(E[e],, Af. Throw(y, f)))

A~ A< B 083

[throw v to K], = Ax.get val(V[v],, A\y.get fun(K[K], =, A\f. Throw(y, f)))

An excerpt of the denotational semantics for call/cc

A < 8O 8-

[D e], = Reset(P(E[e],))
S X. 6]];0 — Shlft(P O ()\K, E[[e]]p,:c»—)Fun(next()\y.Tau(m(nexty))))))
[e1 @ ea], = get val(E[ez],, Ax.get fun(E[e1],, Ay. Appcont(next(x),y)))

[cont K], = Fun(next(Az. Tick(P(K|[K], x))))

[K[O @], = Az. K[K],(E[z @uv],)

M{[mk], = map(Ak. P o K[k],)mk

S|
(K, v, mk)_
[{

[(€)1e m]]P
(

)
[(©)reelr = (VIv]p, 1))

(DUJCDICD

(e, K, mk)q.lp = (P(E[K]e]],), M[mk],)
el = (PE[K[v]],), M[mkE],)
V) meontlo = (P(V][v],), M[mk],)

(P(E[el,), [1)

mk

An excerpt of the denotational semantics for shift-reset

Language Interaction

» We show semantic type safety for A, ..

» Only allow embedding pure programs of 4 -
» Bi-orthogonal LR for A ;. using wp’s

» Non-bi-orthogonal LR for A, .4 Using clwp’s

embe

» Key point: we can use clwp’s for all of Ay ped

» Derive clwp for embed e from a wp for e:

 The wp comes from the bi-orthogonal LR

27

types Ty>r1,0,a,6,6,y o= N|7/a—0d/B| cont(T,a)
expressions FExpr> e = v|x|erex| el e

| if exthenezelsees | Sx.e|De|er Qes
values Val > v = n|recf(x) =e|cont K
eval. contexts FEctr > K w= 0| K[if Othenejelsees] | K[v O] | K[€]

| Klep O] | K[O®v] | K[O Q] | K[e @]
I'kFpree: T Iz :cont (T,a);0Fe:0;p I'sthHe:Ti0 x:Tel
I''atFe: T« I''akFSx. e:T;6 I'Fpwe De:o I'Fowre @ T

I'ivkei:o/a—71/8;6
I'f:ola—71/B,z:0,ate:T;0 I':BFes:o;y

I'bpwerec f(x) =e:0/a—T1/p8 IN'akeex:T;6

I''BbFei :N;a I'tobFex:m;86 I5obes:T;p

I';oFifejtheneselsees : 75« I' Fpure N
I'iater:N;8 I';BFex:Njo I'sob e :cont (1,a);6 [0k eq:7;0
I''ate ®er:N;o I'iokel Qe :a; 8

Ageim: A language with shift-reset

types Ty>t == N|1|7—0]ref(r)
expressions Fzpr>e = x| ()|e1ea|e1@ex|n|Azx.e
| | ref(e) |le | e1 < e2 | embed e

D tpure € 1 N
I'-embed e : N

A

embed- A language with no control effects
where we embed pure (properly

delimited) expressions from A

