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We present guarded interaction trees — a structure and a fully formalized framework for representing higher-

order computations with higher-order effects in Coq, inspired by domain theory and the recently proposed

interaction trees. We also present an accompanying separation logic for reasoning about guarded interaction

trees. To demonstrate that guarded interaction trees provide a convenient domain for interpreting higher-order

languages with effects, we define an interpretation of a PCF-like language with effects and show that this

interpretation is sound and computationally adequate; we prove the latter using a logical relation defined

using the separation logic. Guarded interaction trees also allow us to combine different effects and reason

about them modularly. To illustrate this point, we give a modular proof of type soundness of cross-language

interactions for safe interoperability of different higher-order languages with different effects. All results in

the paper are formalized in Coq using the Iris logic over guarded type theory.
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1 INTRODUCTION
Interaction trees [Xia et al. 2019] are a recently proposed formalism for representing and reasoning

about (possibly) non-terminating programs with side effects in Coq (a terminating type theory

without effects). Since its inception, interaction trees have been applied, including but not limited,

to specifying and verifying network servers [Koh et al. 2019; Zhang et al. 2021], semantics of LLVM

[Zakowski et al. 2021], semantics of a language for robotics [Ye et al. 2022], non-interference [Silver

et al. 2023], and verification of concurrent objects with transactional memory [Lesani et al. 2022].

The introduction of interaction trees was motivated by a desire to simplify mechanized formal-

izations of interactive, effectful, non-terminating computations and the developers of the ITrees

library argued that ITrees can represent computations in a way which is more modular than repre-

sentations based on operational semantics and executable (in contrast to earlier representations

based on traces represented as predicates on events). In particular, the idea is that interaction trees

can be used to give denotational semantics to programming languages and thus allow one to abstract

away from syntactic details and reuse meta-language features such as function composition so as
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to obtain more robust mechanizations. And, indeed, the applications mentioned above demonstrate

that interaction trees work well for giving semantics to first-order programming languages with

first-order effects.

The challenge we address in this paper is that interaction trees cannot easily be used as a

model of higher-order programming languages with higher-order effects, which, of course, limits

the applicability of interaction trees. Indeed, the ease of use of interaction trees is enabled, in

part, by two restrictions imposed on the computations represented by the interaction trees: the

computations must be first-order, and the effects that the computation performs must be first-order

as well. With those restrictions, the type of interaction trees forms a monad, which allows one to

compose the represented computations and reason about them modularly. (In principle, one could

represent higher-order computations by means of closures in interaction trees, but that would

defeat the purpose of interaction trees and force one to reason about syntactic representations,

which interaction trees otherwise relieves one from.) To understand the limitations to first-order

programs and first-order effects, we call to mind the definition of interaction trees.

Interaction trees are possibly infinite trees with two types of branching. The first type of branch-

ing represents a “delayed” computation (similar to that of the delay monad), or a computation

performing a silent step. The second type of branching represents a computation that performs an

effect; different results of the effect lead to different branches. Interaction trees are formalized as

coinductive types in Coq, allowing one to leverage existing infrastructure for coinductive programs

and proofs:

CoInductive itree (E : Type −> Type ) (R : Type ) :=

| Ret : R −> itree E R
| Tau : itree E R −> itree E R
| Vis {A : Type } : E A −> (A −> itree E R ) −> itree E R

Now the point is that if we wish to represent higher-order computations, then we cannot simply

add a constructor Fun : (itree E R −> itree E R) −> itree E R, as the resulting recursive type would

have negative occurrences of the recursive variable (the itree E R on the left of the first arrow).

Similarly, if we want to support computations with higher-order effects, i.e., the result of an effect

is an interaction tree itself, we run into the same problems with positivity. For example, in the

following potential signature for a higher-order effect, the parameter test occurs in a negative

position:

Inductive test : Type −> Type :=

| T : nat −> test (itree test unit ) .

Guarded interaction trees: Iris and guarded type theory. Our goal is to address the challenge of

extending interaction trees to allow for higher-order computations and higher-order effects, in

such a way that we retain some of the advantages of interaction trees; in particular we wish to

obtain a representation with which we can work efficiently in Coq. From the discussion above, it

is clear that a way forward is to work in a setting that allows to solve mixed-variance recursive

domain equations. There are several possible choices for such a setting, including classical Scott

domain theory [Scott 1976; Smyth and Plotkin 1982] and guarded type theory [Birkedal et al. 2012,

2010]. We choose to use the latter since this choice allows us to leverage the Iris program logic

framework in Coq and thence obtain an efficient environment in which we can work efficiently

and formally in Coq.

Thus in this paper we introduce guarded interaction trees, which are formally defined in guarded

type theory as a solution to a guarded recursive domain equation, and we show how guarded

interaction trees can be used to represent higher-order computations and higher-order effects.

Moreover, we demonstrate how we can retain some of the benefits of interaction trees, in particular
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modularity with respect to effects and ease of use in Coq. The extension to higher-order computa-

tions and effects does come with a certain price, in that we need to reason about guardedness, but

we believe the use of Iris alleviates this.

Our Coq formalization is available online at

https://github.com/logsem/gitrees/tree/popl24.

(tag popl24 in the Git repository)

Contributions. In this paper we present the following contributions, all formalized as part of our

extensible and adaptable Coq formalization:

(1) We present guarded interaction trees, describe the associated recursion principle, and demon-

strate how to write combinators to program with guarded interaction trees (Section 3).

(2) We describe a way of reifying effects in the guarded interaction trees, and the reduction

semantics (Section 4).

(3) We show how to give a model of a higher-order programming language with general recursion

and effects in guarded interaction trees, and show that the model is sound (Section 5).

(4) We build a separation logic (a program logic) on top of guarded interaction trees, allowing us

to reason about their behavior (Section 6).

(5) We use the separation logic to show that the model that we construct in Section 5 satisfies

computational adequacy (Section 7).

(6) We demonstrate how multiple different effects can be combined in guarded interaction trees,

and how the separation logic is used to reason about the effects locally (Section 8).

(7) Finally, we utilize the results above, and use guarded interaction trees to show type safety

of cross-language interactions for safe interoperability of languages with different effects

(Section 9).

We discuss related work in Section 10. Before we present our results, we briefly go over some

preliminaries about the setting that we are working in.

2 IRIS LOGIC OVER GUARDED TYPE THEORY
In this section we describe the Iris logic, in which we shall define and work with guarded interaction

trees. Our treatment is brief since Iris has been described in many other papers and we are just

using a small extension of the usual presentation; we refer the reader to the literature on Iris [Jung

et al. 2018] and guarded type theory [Birkedal et al. 2012] for more details.

Iris is usually presented as a separation logic over a simple type theory.The model of Iris, however,

models a richer type theory and in this paper we are going make use of that and consider Iris over

a guarded type theory with (1) a modicum of dependent type theory, and (2) the ability to define

guarded recursive types. Both of these features are supported by the existing Coq implementation

of Iris and the associated Iris proof mode [Krebbers et al. 2017b].

Note that since we are working formally in Iris in Coq, there are two logical levels at play: the

statements and proofs at the Coq level (which we refer to as the meta-logic level, or as the meta

level), and the statements and proofs at the level of Iris (which we refer to as the logic level).

We recall the grammar of Iris in Figure 1; the syntax consists of types, terms, and propositions.

Most of the grammar is standard for higher-order intuitionistic logic, with the parts related to

guarded recursion highlighted in blue. As usual in higher-order logic, we have a well-typedness

judgment 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑡 : 𝜏 stating that the term 𝑡 has type 𝜏 , under the assumption that the

variables 𝑥𝑖 have types 𝜏𝑖 . In the grammar for types, I ranges over so-called discrete types, which

are meta-level types embedded into the types of Iris. Note that types include dependent types over

discrete types. While we have not shown it in the grammar, we can also form types as solutions to
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𝜏 ::= iProp | 0 | 1 | B | Nat | 𝜏 + 𝜏 | 𝜏 × 𝜏 | 𝜏 → 𝜏 | ▶𝜏 | 𝐼 | Σi∈I𝜏i | Πi∈I𝜏i | . . .

𝑡 ::= 𝑥 ∈ Var | 𝐹 (𝑡1, . . . , 𝑡𝑛) | abort 𝑡 | () | (𝑡, 𝑡) | 𝜋𝑖 𝑡 | 𝜆𝑥 : 𝜏 . 𝑡 | 𝑡 (𝑡) |
inj𝑖 𝑡 | match 𝑡 with inj

1
𝑥 . 𝑡 | inj

2
𝑥 . 𝑡 end | next(𝑡) | fix𝜏

𝑃 ::= False | True | 𝑡 =𝜏 𝑡 | 𝑃 ∧ 𝑃 | 𝑃 ∨ 𝑃 | 𝑃 → 𝑃 | ∃𝑥 : 𝜏 . 𝑃 | ∀𝑥 : 𝜏 . 𝑃 | ⊲ 𝑃 | 𝜇𝑥 : 𝜏 . 𝑃

Fig. 1. Grammar for the base logic.

guarded recursive domain equations, i.e., type equations where the recursive occurence of the type

being defined is guarded under the ▶ type modality. Such types are defined up to isomorphism; we

will see an example shortly: the type of guarded interaction trees will be such a recursive type and

will be introduced in the following section. A useful semantic intuition for the types of Iris is that

they denote (certain kinds of) time-indexed sets, i.e., families of sets indexed over natural numbers.

At time step 𝑛 > 0, the later type ▶𝜏 consists of the elements of 𝜏 at a later time step, i.e., at 𝑛 − 1.

At time step 𝑛 = 0, the type ▶𝜏 is a singleton set. Intuitively, guarded recursive types exist because

to understand what a guarded recusive type is at time step 𝑛, one only needs to understand what it

is at 𝑛 − 1, since the recursion is guarded.

Elements of ▶𝜏 can be constructed from elements of 𝜏 , using the next constructor, and we can

form fixed points for guarded endo-functions:

Γ ⊢ 𝑡 : 𝜏
Γ ⊢ next(𝑡) : ▶𝜏

Γ ⊢ fix𝜏 : (▶𝜏 → 𝜏) → 𝜏

The ▶ type former is functorial and we write ▶𝑓 : ▶𝜏1 → ▶𝜏2 for its action on terms 𝑓 : 𝜏1 → 𝜏2.

The fixed point satisfies the equation fix𝜏 (𝑓 ) = 𝑓 (next(fix𝜏 (𝑓 ))).
For propositions 𝑃 : iProp we also have the provability judgment Γ | 𝑃 ⊢ 𝑄 stating that 𝑄 is

derivable from 𝑃 in the typing context Γ = 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 . The rules corresponding to the

intuitionistic fragment are standard. Here we present the rules concerning the guarded part of the

logic.

On the level of propositions, we have a(nother) later modality ⊲. This is the later modality

most users of Iris are already familiar with. It is related to the later modality on types in that

⊲(𝑡 =𝜏 𝑡 ′) ⊣⊢ next(𝑡) =▶𝜏 next(𝑡 ′). We recall that ⊲ can be used to define guarded recursive

predicates and and that it supports reasoning via Löb induction:

Γ ⊢ 𝑃 : iProp

Γ ⊢ ⊲ 𝑃 : iProp

Γ, 𝑥 : 𝜏 ⊢ 𝑃 : iProp 𝑥 is guarded in 𝑃

Γ ⊢ 𝜇𝑥 : 𝜏 . 𝑃 : iProp

Γ | ⊲ 𝑃 ⊢ 𝑃
Γ | True ⊢ 𝑃

Iris also includes separation logic connectives; we recall those later, when we need them, in Section 6.

If 𝑃 is a proposition that consists only of intuitionistic logic connectives without ⊲, then we can

interpret it both as a meta-level proposition (i.e. a Coq proposition), and as an Iris proposition. For

such propositions we have the following result, connecting Iris with the meta-level:

Theorem 2.1 (Iris Adeqacy). Let 𝑃 be a proposition containing only intuitionistic connectives.
Then, if True ⊢ 𝑃 is derivable in Iris, then 𝑃 also holds at the meta-level.

3 GUARDED INTERACTION TREES
The type of guarded interaction trees (or GITrees for short) IT𝐸 (𝐴) is defined for a ground type 𝐴

and an effect signature 𝐸, as we explain below. In Figure 2 IT𝐸 (𝐴) is written down as a guarded
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guarded type IT𝐸 (𝐴) = Ret : 𝐴 → IT𝐸

| Fun : ▶(IT𝐸 (𝐴) → IT𝐸 (𝐴)) → IT𝐸 (𝐴)
| Err : Error → IT𝐸 (𝐴)
| Tau : ▶IT𝐸 (𝐴) → IT𝐸 (𝐴)

| Vis :
∏
i∈I

(
Insi (▶IT𝐸 (𝐴)) × (Outsi (▶IT𝐸 (𝐴)) → ▶IT𝐸 (𝐴))

)
→ IT𝐸 (𝐴)

Fig. 2. Guarded datatype of interaction trees.

datatype.
1
The first constructor Ret says that any element 𝑎 of the ground type 𝐴 can be associated

with a “terminated” guarded interaction tree Ret(𝑎). The second constructor Fun says that functions
are also guarded interaction trees, and it is this constructor that allows us to model higher-order

computations. Since the function constructor contains a negative occurrence of IT𝐸 (𝐴) in its

argument, we must put it under a ▶. The third constructor Err represents an error state, or a

stuck computation, which we take from some predefined set Error of errors. We assume that it

contains at least one element RunTime ∈ Error representing a generic run-time error. The fourth

constructor Tau denotes a delayed computation, or a computation that is available “later”. We also

write Tick : IT𝐸 (𝐴) → IT𝐸 (𝐴) for the composition Tau ◦ next. Then the term Tick(𝛼) represents
a guarded interaction tree that takes a silent step to 𝛼 . It satisfies the following rule for equality:

Tick(𝛼) = Tick(𝛽) ⊣⊢ ⊲(𝛼 = 𝛽).
Finally, the last constructor Vis allows us to model effects. The possible effects are given by

the signature 𝐸 = (I, Ins−,Outs−), where I is an indexing set on the meta-level (i.e. a set of

operation names), and Ins and Outs are functors determining the arities of the operations. That

is Insi,Outsi : Type → Type for i ∈ I. The Type argument in Insi and Outsi is instantiated with

IT𝐸 itself, and is used for giving signatures to higher-order effects. With this, the first argument to

Visi is then the input for the operation, and the second parameter is a continuation which, given

an arbitrary output of the operations, produces the remainder of the computation. One way to

visualize this is to think of Visi as a node in the tree, with the annotation Insi and having Outsi
many branches.

We refer to guarded interaction trees Ret(𝑎) and Fun(𝑓 ) as GITree values, and write IT𝑣
𝐸 (𝐴) ⊆

IT𝐸 (𝐴) for the set of values. When quantifying over an indexing set, we implicitly coerce 𝐸 to I,
i.e. we write i ∈ 𝐸 to mean i ∈ 𝐸.I. Similarly we write Ins for 𝐸.Ins and Outs for 𝐸.Outs when the

signature 𝐸 is clear from the context. When the signature 𝐸 is obvious or unimportant we simply

write IT(𝐴) for IT𝐸 (𝐴) and IT𝑣 (𝐴) for IT𝑣
𝐸 (𝐴).

Let us demonstrate the syntax of guarded interaction trees with some running examples of

effects.

Example 3.1 (Input/output on a tape). Suppose we want to model two effectful operations, for

reading a number from STDIN and for writing an output on STDOUT. We will model them as

1
Formally, the datatype is given by a solution to a recursive equation, which we examine in Section 3.1. But it is convenient

to think of IT𝐸 (𝐴) as a recursive datatype in which every recursive occurrence is behind a ▶.
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12:6 Dan Frumin, Amin Timany, and Lars Birkedal

guarded interaction trees IT𝐸𝑖𝑜 (1 + Nat), where 1 = {()} is the unit type and
𝐸𝑖𝑜 ≜ {input, output}

Insinput (𝑋 ) ≜ 1 Outsinput (𝑋 ) ≜ Nat

Insoutput (𝑋 ) ≜ Nat Outsouput (𝑋 ) ≜ 1

We write Input and Output(𝑛) for the GITrees
Input ≜ Visinput ((), 𝜆𝑛. next(Ret(inr(𝑛)))) Output(𝑛) ≜ Visoutput (𝑛, 𝜆𝑥 . next(Ret(inl(()))))

Here we use inl(()) : 1 + Nat as a “dummy” value, since we do not care about the return value of

Output.

The operations Input and Output above are represented as GITrees IT𝐸𝑖𝑜 (1+Nat). However, the
exact ground type is not important, as long as it contains the unit 1 and the natural numbers Nat.
As such, we assume that we can write down operations like Input and Output as GITrees IT𝐸𝑖𝑜 (𝐴)
where 𝐴 ≃ 1 + Nat + 𝐵 for some type 𝐵. We return again to this point in Section 8, but for now

we assume that we always pick a ground type 𝐴 that is “large enough” to represent all the ground

values that we need.

Example 3.2 (Higher-order store). We can model higher-order store with the following signature.

𝐸𝑠𝑡𝑜𝑟𝑒 ≜ {alloc, read, write, dealloc}
Insalloc (𝑋 ) ≜ 𝑋 Outsalloc (𝑋 ) ≜ Loc

Insread (𝑋 ) ≜ Loc Outsread (𝑋 ) ≜ 𝑋
Inswrite (𝑋 ) ≜ Loc × 𝑋 Outswrite (𝑋 ) ≜ 1

Insdealloc (𝑋 ) ≜ Loc Outsdealloc (𝑋 ) ≜ 1

where Loc is a countable type of locations/pointers. We write Alloc, Read,Write, and Dealloc for
the following GITrees:

Alloc(𝛼 : IT(𝐴), 𝑘 : Loc → IT(𝐴)) ≜ Visalloc (next(𝛼), next ◦ 𝑘)
Read(ℓ : Loc) ≜ Visread (ℓ, 𝜆𝑥 . 𝑥)

Write(ℓ : Loc, 𝛼 : IT(𝐴)) ≜ Viswrite ((ℓ, next(𝛼)), 𝜆𝑥 . next(Ret(inj(()))))
Dealloc(ℓ : Loc) ≜ Visdealloc (ℓ, 𝜆𝑥 . next(Ret(inj(()))))

Here we assume that the ground type 𝐴 is isomorphic to 1 + 𝐵 for some 𝐵, with the injection

inj : 1 → 𝐴.

3.1 Recursion Principle for Guarded Interaction Trees
In order to write programs that eliminate GITrees, i.e. programs of type IT𝐸 (𝐴) → 𝑃 , we need to

come up with a suitable recursion principle. Recursion principles for inductive datatypes usually

follow from the initiality principles of the defined datatypes. However, the type of GITrees is not

purely inductive, as it has mixed-variance recursive occurrences, and the corresponding recursion

principle should reflect that. To understand the necessary recursion principle we need to understand

first how the GITrees are defined. The definition at the beginning of this section presents GITrees

as a guarded datatype, but how should such a datatype be constructed? In the type theory, the type

IT𝐸 (𝐴) is given as the solution to the following guarded equation:

IT𝐸 (𝐴) ≃ 𝐴 + ▶[IT𝐸 (𝐴) → IT𝐸 (𝐴)] + Error + ▶IT𝐸 (𝐴) +
Σi∈𝐸

(
Insi (▶IT𝐸 (𝐴)) × (Outsi (▶IT𝐸 (𝐴)) → ▶IT𝐸 (𝐴))

) (1)
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The isomorphism is witnessed by the pair of functions (unfold, fold), and the constructors we

presented at the beginning of the section are compositions of injections and fold. Since Equation (1)

contains recursive occurrences with mixed variance, we cannot use the usual recursion principle for

inductive data type. Instead, we employ a mixed initial-algebra/final-coalgebra principle, following

[Freyd 1991; Pitts 1996]. To understand it better, we first write out the bi-functor, where the fixed

point corresponds to the type of GITrees:
2

𝐹 (𝑋,𝑌 ) ≃ 𝐴 + ▶[𝑋 → 𝑌 ] + Error + ▶𝑌 + Σi∈𝐸
(
Insi (▶𝑌 ) × (Outsi (▶𝑋 ) → ▶𝑌 )

)
Here the bi-functor 𝐹 (−,−) is contravariant in the first argument and covariant in the second one.

The bi-algebra corresponding to the type of GITrees is given by the (fold, unfold) pair:

𝐹 (IT, IT)
fold
// IT

unfoldoo

where we write IT as a shorthand for IT𝐸 (𝐴). The recursion principle that we are looking for then

states that this bi-algebra is both initial and terminal. That is, for any other bi-algebra (𝑃, 𝑓 , 𝑔) we
have unique maps ℎ and 𝑘 such that the following diagram commutes:

𝐹 (𝑃, 𝑃)

𝑓

��

𝐹 (𝑘,ℎ) //
𝐹 (IT, IT)

fold
��

𝐹 (ℎ,𝑘 )
oo

𝑃

𝑔

OO

ℎ // IT
𝑘

oo

unfold

OO

That is, in order to construct a function 𝑘 : IT → 𝑃 , one has to provide the “unfolding” 𝑃 → 𝐹 (𝑃, 𝑃),
as well as functions 𝐴 → 𝑃 , Error → 𝑃 , ▶𝑃 → 𝑃 , ▶(𝑃 → 𝑃) → 𝑃 , and

∏
i∈𝐸 Insi (▶𝑃) →

(Outsi (▶𝑃) → ▶𝑃) → 𝑃 . This alone would allow us to iterate over GITrees. However, we would
run intro trouble if we wish to write a primitive-recursive style function. For example, we might

wish to write a destructor function 𝑘 such that 𝑘 (𝛼) returns 𝛼 if 𝛼 itself is a function Fun(𝑓 ), and
Err(RunTime) otherwise. We cannot do so with the scheme outlined above, since in the recursive

call we don’t have access to the original argument, only to the result of applying recursion to

the argument. This is similar to how the iteration scheme 𝐵 → (𝐵 → 𝐵) → N → 𝐵 for natural

numbers does not allow us to (easily) write the predecessor function 𝑝 : N→ N satisfying 𝑝 (0) = 0

and 𝑝 (𝑛 + 1) = 𝑛 if we pick 𝐵 = N.

Recursion from iteration on inductive types. Let us then look at how to solve the issue of defining

primitive recursive functions on inductive types using initiality. Suppose the function 𝑝 : N→ 𝐵

that we want to construct is defined by equations 𝑝 (0) = 𝑝1 and 𝑝 (𝑛 + 1) = 𝑝2 (𝑛, 𝑝 (𝑛)). Then we

can obtain this function 𝑝 using the following trick: instead of eliminating N into 𝐵 using initiality,

we eliminate it into N × 𝐵, in such a way that the induced map N→ N × 𝐵 is the identity on the

first component. More concretely, suppose we have maps 𝑝1 : 1 → 𝐵 and 𝑝2 : N × 𝐵 → 𝐵, forming

together the equations for primitive recursion. Then we construct an N-algebra over N × 𝐵 as

1 + (N × 𝐵)
[ ⟨0,𝑝1 ⟩,⟨𝑆,𝑝2 ⟩ ] // N × 𝐵

where 𝑆 : N→ N is the successor function. The initiality of N will then induce the unique map

𝑝 : N → N × 𝐵, which, when composed with projection N × 𝐵 → 𝐵, determines the recursive

function given by the clauses 𝑝1 and 𝑝2.

2
For a detailed category-theoretic treatment, see [Birkedal et al. 2010].
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Recursion/corecursion from mixed-variance types. Dually, for coinductive datatypes we can obtain

a form of primitive coinduction from coiteration by using coproducts. In our case we have a

datatype with mixed variance, and we use coproducts for the negative occurrences and products

for the positive ones. That is, in order to eliminate IT into a type 𝑃 we will assume an unfolding

𝑃 → 𝐹 (𝑃, 𝑃), and a folding 𝐹 (IT + 𝑃, IT × 𝑃) → 𝑃 . More concretely:

Definition 3.3 (Recursion/corecursion principle). In order to define a pair of maps 𝑃
ℎ // IT
𝑘

oo ,

one has to define maps

• ℎ𝑢 : 𝑃 → 𝐴 + ▶[𝑃 → 𝑃] + Error + ▶𝑃 + Σi∈𝐸
(
Insi (▶𝑃) × (Outsi (▶𝑃) → ▶𝑃)

)
;

• 𝑘Ret : 𝐴 → 𝑃 ;

• 𝑘Fun : ▶
(
(IT + 𝑃) → (IT × 𝑃)

)
→ 𝑃 ;

• 𝑘Err : Error → 𝑃 ;

• 𝑘Tau : ▶(IT × 𝑃) → 𝑃 ;

• 𝑘Vis :
∏

i:𝐸 Insi (▶(IT × 𝑃)) → (Outsi (▶(IT + 𝑃)) → ▶(IT × 𝑃)) → 𝑃 .

The resulting maps (ℎ, 𝑘) will then satisfy the following computational rules:

• 𝑘 (Ret(𝑎)) = 𝑘Ret (𝑎);
• 𝑘 (Fun(𝑓 )) = 𝑘Fun (▶𝑠 (𝑓 )) where 𝑠 (𝑓 ) = ⟨id, 𝑘⟩ ◦ 𝑓 ◦ [id, ℎ];
• 𝑘 (Err(𝑒)) = 𝑘Err (𝑒);
• 𝑘 (Tau(𝑡)) = 𝑘Tau

(
▶⟨id, 𝑘⟩(𝑡)

)
;

• 𝑘 (Visi (𝑥, 𝑘)) = 𝑘Vis (i, Insi (▶⟨id, 𝑘⟩)(𝑥), ▶⟨id, 𝑘⟩ ◦ 𝑘 ◦ Outsi (▶[id, ℎ]));
• plus equations for ℎ.

(Recall that we write ▶𝑠 : ▶𝐴 → ▶𝐵 for a function 𝑠 : 𝐴 → 𝐵.)

This recursion/corecursion principle is constructed using guarded recursion, and can be used

to define a large variety of combinators. For example, we can write a generalization of the afore-

mentioned function 𝑘 that returns its argument, if the argument is a function, and returns an error

otherwise.

Using the recursion principle we can define a function get_fun(𝛼 : IT, 𝑓 : ▶(IT → IT) → IT)
satisfying the computational rules

• get_fun(Ret(𝑎), 𝑓 ) = Err(RunTime);
• get_fun(Fun(𝑔), 𝑓 ) = 𝑓 (𝑔);
• get_fun(Err(𝑒), 𝑓 ) = Err(𝑒);
• get_fun(Tau(𝑡), 𝑓 ) = Tau(▶get_fun(𝑡, 𝑓 )) and get_fun(Tick(𝛼), 𝑓 ) = Tick(get_fun(𝛼), 𝑓 );
• get_fun(Vis𝑖 (𝑥, 𝑘), 𝑓 ) = Vis𝑖 (𝑥, ▶get_fun(−, 𝑓 ) ◦ 𝑘).

In the next section we will see how to use get_fun to define an application function 𝛼 • 𝛽 for

applying a GITree function 𝛼 to a GITree argument 𝛽 .

In the rest of the paper we will define other operations on GITrees using just the computational

rules, with the understanding that we can write down the explicit recursor for any such set of

equations. Interested readers are referred to the Coq formalization for the details.

3.2 Programming with GITrees
Using the recursion principle we can define operations on GITrees that correspond to common

programming constructs. For example, with get_fun we can write a function App𝑙 (𝛼, 𝛽), which
applies 𝛼 to 𝛽 if 𝛼 is a function, and returns Err(RunTime) otherwise.

App𝑙 (𝛼, 𝛽) = get_fun(𝛼, 𝜆𝑔. Tau(▶𝑔(𝛽))).
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This operation gives us “call-by-name” application, in the sense that it satisfies

App𝑙 (Fun(next(𝑔)), 𝛽) = Tick(𝑔(𝛽))
for 𝑔 : IT𝐸 (𝐴) → IT𝐸 (𝐴) for any argument 𝛽 . In particular, it invokes the underlying function 𝑔

even if the argument 𝛽 is a Tick or an effect, without evaluating the argument first. In order to

define a “call-by-value” application, we compose App𝑙 with the following operation.

The function get_val(𝛼, 𝑓 ) recurses into its argument, looking under Ticks and Vis’s, until it
reaches either a function or a ground type (i.e. a value from IT𝑣

𝐸 (𝐴)), after which it applies the

function 𝑓 : IT𝐸 (𝐴) → IT𝐸 (𝐴) to it:

get_val(Ret(𝑎), 𝑓 ) = 𝑓 (Ret(𝑎)) get_val(Fun(𝑔), 𝑓 ) = 𝑓 (Fun(𝑔))
get_val(Err(𝑒), 𝑓 ) = Err(𝑒) get_val(Tick(𝛼), 𝑓 ) = Tick(get_val(𝛼, 𝑓 ))

get_val(Vis𝑖 (𝑥, 𝑘), 𝑓 ) = Vis𝑖 (𝑥, ▶get_val(−, 𝑓 ) ◦ 𝑘)
As syntactic sugar, we write Let𝑥 = 𝛼 in 𝛽 (𝑥) for get_val(𝛼, 𝜆𝑥 . 𝛽 (𝑥)).

Now we can define the “call-by-value” application 𝛼 • 𝛽 as get_val
(
𝛽, 𝜆𝛽𝑣 .App𝑙 (𝛼, 𝛽𝑣)

)
. This

strict application then satisfies the following computational rules

𝛼 • Tick(𝛽) = Tick(𝛼 • 𝛽) 𝛼 • Vis𝑖 (𝑥, 𝑘) = Vis𝑖 (𝑥, 𝜆𝑦. next(𝛼) (▶•) 𝑘 𝑦)
Tick(𝛼) • 𝛽𝑣 = Tick(𝛼 • 𝛽𝑣) Vis𝑖 (𝑥, 𝑘) • 𝛽𝑣 = Vis𝑖 (𝑥, 𝜆𝑦. 𝑘 𝑦 (▶•) next(𝛽𝑣))

Fun(next(𝑔)) • 𝛽𝑣 = Tick(𝑔(𝛽𝑣)) 𝛼 • 𝛽 = Err(RunTime) in other cases

Where − (▶•) − is the lifting of − • − to ▶IT𝐸 (𝐴) → ▶IT𝐸 (𝐴) → ▶IT𝐸 (𝐴), and 𝛽𝑣 ∈ IT𝑣
𝐸 (𝐴) is

either Ret(𝑎) or Fun(𝑔). The application function − • − not only simulates strict application, but it

also fixes a right-to-left evaluation order of effects and computation steps.

One can see that there are common properties for the computational rules between get_fun(−, 𝑓 ),
App𝑙 (−, 𝛽), 𝛼 • −, and − • 𝛽𝑣 (where 𝛽𝑣 ∈ IT𝑣

𝐸 (𝐴)): they all preserve ticks, effects, and errors.

Functions that have these preservation properties are called homomorphisms of GITrees and will

play an important role in later sections.

Definition 3.4. A function 𝑓 : IT𝐸 (𝐴) → IT𝐸 (𝐴) is a homomorphism, written as 𝑓 ∈ Hom, if it

satisfies the following equations:

• 𝑓 (Err(𝑒)) = Err(𝑒);
• 𝑓 (Tick(𝛼)) = Tick(𝑓 (𝛼));
• 𝑓 (Vis𝑖 (𝑥, 𝑘)) = Vis𝑖 (𝑥, ▶𝑓 ◦ 𝑘)

As expected from the name, the identity function is a homomorphism and composition of two

homomorphisms is a homomorphism. This notion of homomorphism is inspired by the one in

[Hoshino 2012]. It follows from the definition, that in order to define a homomorphism it suffices

to define its action on GITree values.

Programming with GITrees and natural numbers. In the remainder of this paper we work with a

lot of examples involving programming with natural numbers (as an illustrative ground type). It is

then useful to assume in the remainder of this paper that the ground type 𝐴 in any type IT𝐸 (𝐴)
of GITrees is “large enough” to contain natural numbers, and the unit type. That is, we assume

that 𝐴 ≃ 1 + Nat + . . . , and we simply write Ret(𝑛) for Ret(inj(𝑛)) and Ret(()) for Ret(inj′ (()))
(for appropriate injections inj : Nat → 𝐴 and inj′ : 1 → 𝐴). We will also abbreviate IT𝐸 (𝐴) as IT
or IT𝐸 when 𝐴 is generic as above or is clear from the context.

In Figure 3 we summarize the operations on GITrees that we define using recursion and other

functions. The computational rules described in Figure 3 are only for the base cases; the other

computational rules follow from the fact that those operations are homomorphisms. Concretely, we
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𝑛 ∈ Nat

get_nat(Ret(𝑛), 𝑓 ) = 𝑓 (𝑛)
𝑏 ∉ Nat

get_nat(Ret(𝑏), 𝑓 ) = Err(RunTime)

get_nat(Fun(𝑔), 𝑓 ) = Err(RunTime) get_fun(Ret(𝑎), 𝑓 ) = Err(RunTime) get_fun(Fun(𝑔), 𝑓 ) = 𝑓 (𝑔)

If (Ret(0), 𝛼1, 𝛼2) = 𝛼1
𝑛 > 0

If (Ret(𝑛), 𝛼1, 𝛼2) = 𝛼2
If (Fun(𝑓 ), 𝛼1, 𝛼2) = Err(RunTime)

𝑏 ∉ Nat

If (Ret(𝑏), 𝛼1, 𝛼2) = Err(RunTime)
𝑛1, 𝑛2 ∈ Nat

NatOp𝑓 (Ret(𝑛1),Ret(𝑛2)) = Ret(𝑓 (𝑛1, 𝑛2))

𝛼𝑣 or 𝛽𝑣 are not Ret(𝑛)
NatOp𝑓 (𝛼𝑣, 𝛽𝑣) = Err(RunTime)

𝛽𝑣 ; 𝛼 = 𝛼 While𝛼 do 𝛽 = If
(
𝛼, (𝛽 ; Tick(While𝛼 do 𝛽)),Ret(())

)
Fig. 3. Programming operations on GITrees.

have the following operations. The get_nat function extracts a natural number from a GITree and

applies the function 𝑓 : Nat → IT to it. It is a homomorphism in the first argument. If it encounters

a function Fun(𝑔) or a different ground value Ret(𝑏), then it returns an error. The If operations test
whether the first argument is zero, and picks the appropriate branch. The function If (−, 𝛼1, 𝛼2) is a
homomorphism. Similarly, if the first argument is not a natural number then If returns an error.

The NatOp𝑓 operation applies the binary function 𝑓 to its integer arguments, returning an error on

all the other values. The maps NatOp𝑓 (𝛼,−) and NatOp𝑓 (−, 𝛽𝑣) are homomorphisms for 𝛽𝑣 ∈ IT𝑣
.

The 𝛼 ; 𝛽 is a sequencing operation: it puts all the effects and ticks in 𝛼 before the effects and ticks

in 𝛽 . This is witnessed by the fact that (−) ; 𝛼 is a homomorphism. The While𝛼 do 𝛽 represents

a while loop with the conditional 𝛼 and the body 𝛽 ; it is defined using guarded recursion, and is

equal to its one-step unfolding using the If construct.
Let us look at some example programs that we can write using the operations we have defined.

Example 3.5 (Factorial). In the first example, we have a factorial function that we implement

using the store operations (Example 3.2).

fact(𝑛) ≜ Alloc (Ret(1), 𝜆a𝑐𝑐.Alloc(Ret(𝑛), 𝜆ℓ . factBody(a𝑐𝑐, ℓ) ; Read(a𝑐𝑐)))
factBody(a𝑐𝑐, ℓ) ≜ While Read(ℓ) do

Let 𝑖 = Read(ℓ) in
Let 𝑟 = NatOp× (𝑖,Read(a𝑐𝑐)) in
Let 𝑖 = NatOp− (𝑖,Ret(1)) in
Write(a𝑐𝑐, 𝑟 ) ; Write(ℓ, 𝑖)

The program factBody computes the factorial of the number stored in the location ℓ using an

intermediate location a𝑐𝑐 for the accumulated result. The complete program fact then allocates the

needed references and runs factBody before reading off the result from the location a𝑐𝑐 .

Example 3.6 (Encoding of pairs). Our definition of GITrees does not include arbitrary algebraic

datatypes, like pairs or sums. We can, however, encode them using a Church-style encoding. We

write (𝛼, 𝛽) : IT for the guarded interaction tree

Let𝑦 = 𝛽 in Let𝑥 = 𝛼 in Fun(next(𝜆𝑓 . 𝑓 • 𝑥 • 𝑦)) .
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Note that (𝛼𝑣, 𝛽𝑣) is a GITree value whenever 𝛼𝑣 and 𝛽𝑣 are. Furthermore, (𝛼,−) and (−, 𝛽𝑣) are
homomorphisms. We then define the projection functions as

𝜋1 (𝛼) = 𝛼 • Fun(next(𝜆𝑎. Fun(next(𝜆𝑏. 𝑎)))) 𝜋2 (𝛼) = 𝛼 • Fun(next(𝜆𝑎. Fun(next(𝜆𝑏. 𝑏)))).

The projection functions then satisfy the following computational rules:

𝜋1 (𝛼𝑣, 𝛽𝑣) = Tick3 (𝛼𝑣) 𝜋2 (𝛼𝑣, 𝛽𝑣) = Tick3 (𝛽𝑣).

We can use similar style encodings to represent other algebraic datatypes as guarded interaction

trees.

4 REIFICATION OF EFFECTS AND REDUCTIONS OF GITREES
GITrees allow us to conveniently write down and combine various effects. But in order to reason

about the effects we also need a way of giving them meaning. In this section we establish a way of

reifying effects of GITrees and use reification to define reductions of GITrees, which explain how

computations represented by GITrees reduce.

In order to interpret stateful effects we assume that we have a type State, and each effect is

interpreted using the state monad with a function:

𝑟 :
∏
i∈𝐸

Insi (▶IT𝐸) × State → option(Outsi (▶IT𝐸) × State).

We call a tuple (𝐸, State, 𝑟 ) a reifier for the effects 𝐸. Assuming we have such a reifier, we write a

function reify : IT × State → IT × State that satisfies

𝑟𝑖 (𝑥, 𝜎) = Some(𝑦, 𝜎 ′) 𝑘 𝑦 = next(𝛽)
reify(Vis𝑖 (𝑥, 𝑘), 𝜎) = (Tick(𝛽), 𝜎 ′)

𝑟𝑖 (𝑥, 𝜎) = None

reify(Vis𝑖 (𝑥, 𝑘), 𝜎) = (Err(RunTime), 𝜎)

Example 4.1 (Reification for the input/output operations Example 3.1). We take the state State to
be a pair of two lists of natural numbers, corresponding to input and output tapes. The reifier is

defined as

𝑟input ((), (𝑛®𝑛, ®𝑚)) = Some(𝑛, (®𝑛, ®𝑚)) 𝑟input ((), (𝜖, ®𝑚)) = None

𝑟output (𝑥, (®𝑛, ®𝑚)) = Some((), (®𝑛, 𝑥 ®𝑚))

Example 4.2 (Reification for the higher-order store operations Example 3.2). For higher-order store

we take State to be the type of finite partial maps Loc
fin−⇀ ▶IT. The reifier function is defined in the

expected way:

𝑟alloc (𝛼, 𝜎) = Some(ℓ, 𝜎 [ℓ ↦→ 𝛼]) where ℓ is the smallest location not present in 𝜎

𝑟read (ℓ, 𝜎) =
{
Some(𝛼, 𝜎) if 𝜎 (ℓ) = 𝛼
None otherwise

𝑟write ((ℓ, 𝛽), 𝜎) =
{
Some((), 𝜎 [ℓ ↦→ 𝛽]) if 𝜎 (ℓ) is defined
None otherwise

𝑟dealloc (ℓ, 𝜎) =
{
Some((), 𝜎 \ {ℓ}) if 𝜎 (ℓ) is defined
None otherwise
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From reification to reductions. Using the reification function we can formulate the reduction

relation on interaction trees. The internal reduction relation⇝: (IT×State) → (IT×State) → iProp:

(𝛼, 𝜎) ⇝ (𝛽, 𝜎 ′) ≜
(
𝛼 = Tick(𝛽) ∧ 𝜎 = 𝜎 ′

)
∨
(
∃𝑖 𝑥 𝑘. 𝛼 = Vis𝑖 (𝑥, 𝑘) ∧ reify(𝛼, 𝜎) = (Tick(𝛽), 𝜎 ′)

)
Intuitively, a reduction of GITrees corresponds to either stripping away one computational step, or

to reifying an effect. We consider an (annotated) transitive closure of the reduction relation:

(𝛼, 𝜎) ⇝0 (𝛽, 𝜎 ′) ≜ 𝛼 = 𝛽 ∧ 𝜎 = 𝜎 ′

(𝛼, 𝜎) ⇝𝑛+1 (𝛽, 𝜎 ′) ≜ ∃𝛼0, 𝜎0. (𝛼, 𝜎) ⇝ (𝛼0, 𝜎0) ∧ (𝛼0, 𝜎0) ⇝𝑛 (𝛽, 𝜎 ′)

We write⇝∗
for the reflexive transitive closure of the reduction relation.

Reductions and homomorphisms. Homomorphisms (Definition 3.4) play an important role in the

reduction relation, allowing us to compute the reductions more easily. Specifically, homomorphisms

preserve and reflect reductions:

Lemma 4.3. Let 𝑓 be a homomorphism. Then (𝛼, 𝜎) ⇝ (𝛽, 𝜎 ′) implies (𝑓 (𝛼), 𝜎) ⇝ (𝑓 (𝛽), 𝜎 ′).

Lemma 4.4. Let 𝑓 be a homomorphism. If (𝑓 (𝛼), 𝜎) ⇝ (𝛽 ′, 𝜎 ′) then either

• 𝛼 is a GITree-value, or;
• there exists 𝛽 such that (𝛼, 𝜎) ⇝ (𝛽, 𝜎 ′) and ⊲(𝑓 (𝛽) = 𝛽 ′).

These two lemmas suggest that homomorphisms play the role of evaluation contexts within

the reduction relation ⇝. For example, if (𝛼 ; 𝛽, 𝜎) ⇝ (𝛿, 𝜎 ′), then either 𝛼 was a value, or

(𝛼, 𝜎) ⇝ (𝛼 ′, 𝜎 ′) and ⊲(𝛼 ′ ; 𝛽 = 𝛿).

Continuation-independent reifiers. The reifiers that we consider here produce an output based on

the input, but do not have direct access to the continuation. The reification function reify just calls

the continuation with the produced output. This continuation-independence is crucial for proving
Lemma 4.4 (and the associated rule wp-hom in separation logic in Section 6). Not all effects are

continuation-independent, for example call/cc cannot be implemented this way. In this paper, just

like in [Xia et al. 2019], we stick to working with continuation-independent effects, as it simplifies

the separation logic and the reasoning principles, and we defer studying continuation-dependent

effects to future work.

5 MODELING A HIGHER-ORDER EFFECTFUL PROGRAMMING LANGUAGE
In this section we show how guarded interaction trees provide a model for a programming language

with recursion, higher-order functions, and effects. Specifically, we study a PCF-like higher-order

programming language with input/output effects, give its interpretation into IT𝑖𝑜 (see Examples 3.1

and 4.1), and show its soundness, i.e., that the interpretation agrees with the operational semantics.

The same approach applies to other classes of effects for which you can write operational semantics.

Syntax and operational semantics. The syntax for the programming language, which we dub

𝜆rec,io, consists of values and expressions:

𝑣 ∈ Val ::= 𝑛 | rec 𝑓 (𝑥) = 𝑒
𝑒 ∈ Expr ::= 𝑥 | 𝑣 | if 𝑒 then 𝑒1 else 𝑒2 | 𝑒1 (𝑒2) | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | input | output(𝑒)

where 𝑛 ranges over the set of natural numbers, and 𝑓 , 𝑥 range over the set Var of variables.
The operational semantics for 𝜆rec,io is given in Figure 4 as a small-step reduction relation on

the configurations Expr × State, where State is a pair of lists as in Example 4.1. The reductions are
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red-beta

((rec 𝑓 (𝑥) = 𝑒) 𝑣, 𝜎) → (𝑒 [𝑣/𝑥] [rec 𝑓 (𝑥) = 𝑒/𝑓 ], 𝜎)

red-natop

𝑛1, 𝑛2 ∈ N ⊕ ∈ {+,−,×, . . . } 𝑛1 ⊕ 𝑛2 = 𝑛
(𝑛1 ⊕ 𝑛2, 𝜎) → (𝑛, 𝜎)

red-if-false

(if 0 then 𝑒1 else 𝑒2, 𝜎) → (𝑒2, 𝜎)

red-if-true

𝑛 ∈ N 𝑛 > 0

(if 𝑛 then 𝑒1 else 𝑒2, 𝜎) → (𝑒1, 𝜎)
red-input

(input, (𝑛′®𝑛, ®𝑚)) → (𝑛′, (®𝑛, ®𝑚))

red-output

(output(𝑚), (®𝑛, ®𝑚)) → (0, (®𝑛,𝑚′ ®𝑚))

red-ectx

(𝑒1, 𝜎1) → (𝑒2, 𝜎2)
(𝐾 [𝑒1], 𝜎1) → (𝐾 [𝑒1], 𝜎2)

Fig. 4. Small-step operational semantics for 𝜆rec,io.

J𝑥K𝜌 = 𝜌 (𝑥) J𝑛K𝜌 = Ret(𝑛) Jif 𝑒 then 𝑒1 else 𝑒2K𝜌 = If (J𝑒K𝜌 , J𝑒1K𝜌 , J𝑒2K𝜌 )

⊕ ∈ {+,−,×, . . . }
J𝑒1 ⊕ 𝑒2K𝜌 = NatOp⊕ (J𝑒1K𝜌 , J𝑒2K𝜌 )

JinputK𝜌 = Input Joutput(𝑒)K𝜌 = get_nat(J𝑒K𝜌 ,Output)

J𝑒1 𝑒2K𝜌 = J𝑒1K𝜌 • J𝑒2K𝜌 Jrec 𝑓 (𝑥) = 𝑒K𝜌 = fixIT (𝜆(𝑡 : ▶IT) . Fun(▶(𝜆𝛼 𝑣. J𝑒K𝜌 [𝑥 ↦→𝑣 ] [ 𝑓 ↦→𝛼 ] ) (𝑡))) .

Fig. 5. Semantic interpretation for 𝜆rec,io.

defined, following [Felleisen and Hieb 1992], using evaluation contexts 𝐾 ∈ Ectx, given as:

𝐾 ∈ Ectx ::= [ • ] | output(𝐾) | if 𝐾 then 𝑒1 else 𝑒2 | 𝑒 𝐾 | 𝐾 𝑣 | 𝑒 ⊕ 𝐾 | 𝐾 ⊕ 𝑣
By 𝐾 [𝑒] we denote the result of replacing the hole [ • ] in the context 𝐾 with the expression 𝑒 . The

evaluation contexts ensure the call-by-value right-to-left evaluation order of 𝜆rec,io, as having a

predefined evaluation order is important in the presence of effects.

Interpretation in guarded interaction trees. We will interpret a closed program 𝑒 as an interaction

tree J𝑒K : ITio (𝐴). The effects io are those of Examples 3.1 and 4.1, and we assume that the ground

type 𝐴 is “large enough” to have natural numbers. For convenience, we drop the ground type and

write simply ITio for ITio (𝐴).
In order to provide a (compositional) denotational semantics we need to provide an interpretation

not only for closed terms, but for open terms as well. Given a set fv(𝑒) = {𝑥1, . . . , 𝑥𝑛} of free

variables of 𝑒 , we define the interpretation J𝑒K𝜌 : ITio, where 𝜌 maps the free variables of 𝑒 to

interaction trees. The interpretation function is defined in Figure 5. The definition follows the

standard notion of semantics for (untyped) 𝜆-calculus, adjusted for effects and explicit recursion.

The interpretation of recursive functions rec 𝑓 (𝑥) = 𝑒 is defined using the guarded fixed pointed

operation fixIT : (▶IT → IT) → IT, and satisfies the following equality:

Jrec 𝑓 (𝑥) = 𝑒K𝜌 = Fun(next(𝜆𝑣. J𝑒K𝜌 [𝑥 ↦→𝑣 ] [ 𝑓 ↦→Jrec 𝑓 (𝑥 )=𝑒K𝜌 ))
We show that the interpretation is sound:

Theorem 5.1 (Soundness). If (𝑒1, 𝜎1) → (𝑒2, 𝜎2), then (J𝑒1K, 𝜎1) ⇝∗ (J𝑒2K, 𝜎2).

We prove Theorem 5.1 by induction on the →-derivation. The most interesting cases are for the

reductions red-beta and red-ectx, which we now sketch. For the former, we need a substitution

lemma, and for the latter we need to extend the interpretation to evaluation contexts.
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wp-val

𝛼 ∈ IT𝑣 Φ(𝛼)
wp 𝛼

{
Φ
} wp-tick

⊲wp 𝛼
{
Φ
}

wp Tick(𝛼)
{
Φ
} wp-hom

𝑓 ∈ Hom wp 𝛼
{
𝛽𝑣 .wp 𝑓 (𝛽𝑣)

{
Φ
}}

wp 𝑓 (𝛼)
{
Φ
}

wp-reify

has_state(𝜎) reify(Vis𝑖 (𝑥, 𝑘), 𝜎) = (Tick(𝛽), 𝜎′) ⊲
(
has_state(𝜎′) −∗ wp 𝛽

{
Φ
})

wp Vis𝑖 (𝑥, 𝑘)
{
Φ
}

wp-upd

|⇛wp 𝛼
{
𝛼𝑣 . |⇛Φ(𝛼𝑣)

}
wp 𝛼

{
Φ
} wp-mono

wp 𝛼
{
Ψ
}

∀𝛼𝑣 .Ψ(𝛼𝑣) −∗ Φ(𝛼𝑣)
wp 𝛼

{
Φ
} wp-lam

wp 𝛽
{
𝛽𝑣 . ⊲wp 𝑓 (𝛽𝑣)

{
Φ
}}

wp Fun(next(𝑓 )) • 𝛽
{
Φ
}

Fig. 6. Selected weakest precondition calculus rules.

Lemma 5.2 (Substitution lemma). For any expression 𝑒 with a free variable 𝑥 we have

J𝑒 [𝑒′/𝑥]K𝜌 = J𝑒K𝜌 [𝑥 ↦→J𝑒′K] .

Proof. By induction on 𝑒 , using Löb induction in the case of recursive functions. □

In order to handle red-ectx we provide the following auxiliary interpretation for evaluation

contexts. Each evaluation context 𝐾 is interpreted as a homomorphism J𝐾K𝜌 : IT → IT, such that

J𝐾 [𝑒]K𝜌 = J𝐾K𝜌 (J𝑒K𝜌 ), which together with Lemma 4.3 implies the soundness of the red-ectx

reduction.

6 SEPARATION LOGIC OVER GITREES
In this section we define a separation logic as a program logic for guarded interaction trees. We

define a proposition wp 𝛼
{
Φ
}
to denote that an interaction tree 𝛼 is safe to reduce, and if 𝛼 reduces

to an interaction tree value 𝛽𝑣 , then 𝛽𝑣 satisfies the postcondition Φ : IT𝑣 → iProp.
In this section we make use of the separation logic connectives of Iris, which we recall here:

𝑃 ::= . . . | 𝑃 ∗ 𝑃 | 𝑃 −∗ 𝑃 | |⇛𝑃 | □𝑃 | 𝑃 | . . .
For brevity, we only briefly recall the intuitive reading of these propositions and refer to [Jung

et al. 2018] for details. The proposition 𝑃 ∗𝑄 says that the propositions 𝑃 and 𝑄 hold over disjoint

resources; the proposition 𝑃 −∗ 𝑄 says that if we were to add any resources which satisfy 𝑃 , then 𝑄

would be satisfied. The proposition |⇛𝑃 says that the current resources can be updated to satisfy 𝑃 .

The proposition □𝑃 states that 𝑃 holds persistently, i.e., without asserting any resources. Crucially,

such propositions can be duplicated: □𝑃 ⊢ □𝑃 ∗ □𝑃 . An example of a persistent proposition is the

invariant proposition 𝑃 , which satisfies 𝑃 ⊢ □𝑃 .

Selected rules for the weakest precondition proposition wp 𝛼
{
Φ
}
are given in Figure 6. The rule

wp-val states that to verify a value it suffices to check that the value satisfies the postcondition.

The rule wp-tick states that in order to verify Tick(𝛼) it suffices to verify 𝛼 , under a later ⊲. The

rule wp-hom states that in order to verify 𝑓 (𝛼) for a homomorphism 𝑓 , it suffices to reduce 𝛼 to a

value 𝛼𝑣 , and then verify 𝑓 (𝛼𝑣).
The rule wp-reify tells us how to deal with effects. The rule uses the proposition has_state(𝜎)

which signifies the exclusive ownership of the current state 𝜎 . The use of separation logic is crucial in

this case, as we do not want to allow duplicating that proposition. The rule then states that in order

to verify an effect, one has to provide the current state 𝜎 ′ and the proof that the interaction tree

with the effect reifies into some Tick(𝛽). Then, the user has to verify that the resulting 𝛽 reduces to

a value satisfying the postcondition, under the assumption that the state has been updated to 𝜎 ′.
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The rule wp-upd states that one can update ghost resources before and after reducing 𝛼 . The rule

wp-mono states that one can always weaken the postcondition in wp 𝛼
{
Φ
}
. Finally, wp-lam is an

example of a derived rule. It combines the computational rule for function application of GITrees,

and rules wp-hom and wp-tick. Let us look at an example derivation using these rules.

Example 6.1. Consider a 𝜆rec,io expression (input+ 1). It is interpreted as the GITree Jinput+ 1K =
NatOp+ (Input,Ret(1)), for which we can prove the following specification:

has_state(𝑛®𝑛, ®𝑚) ⊲(has_state(®𝑛, ®𝑚) −∗ Φ(Ret(𝑛 + 1)))
wp NatOp+ (Input,Ret(1))

{
Φ
}

Proof. Note that NatOp+ (−,Ret(1)) is a homomorphism. We apply wp-hom, reducing our goal

to:

wp Input
{
𝛽𝑣 .wp NatOp+ (𝛽𝑣,Ret(1))

{
Φ
}}
.

At this point we can use the assumption has_state(𝑛®𝑛, ®𝑚) and the rule wp-reify. By the reifier of

input/output effects, reify(Input, (𝑛®𝑛, ®𝑚)) = Some(Tick(Ret(𝑛)), (®𝑛, ®𝑚)), and we get the following

goal:

⊲(has_state(®𝑛, ®𝑚) −∗ wp Ret(𝑛)
{
𝛽𝑣 .wp NatOp+ (𝛽𝑣,Ret(1))

{
Φ
}}
).

Recall that we still have the assumption ⊲(has_state(®𝑛, ®𝑚) −∗ Φ(Ret(𝑛 + 1))). By the monotonicity

of ⊲ we can remove the ⊲ modality both from the goal and the assumption. Since Ret(𝑛) is a GITree
value, we can use wp-val and reduce the goal to

wp NatOp+ (Ret(𝑛),Ret(1))
{
Φ
}
.

By calculation, NatOp+ (Ret(𝑛),Ret(1)) = Ret(𝑛 + 1), which is also a GITree value. We can then

apply wp-val again to reduce the goal to Φ(Ret(𝑛 + 1)), which follows from the assumption. □

We define the weakest precondition as a guarded recursive predicate, as is standard in Iris. The

weakest precondition then satisfies the following adequacy and safety theorem, the proof of which

relies on the adequacy of Iris (Theorem 2.1).

Theorem 6.2. Let 𝛼 be an interaction tree and 𝜎 be a state such that

has_state(𝜎) ⊢ wp 𝛼
{
Φ
}

is derivable for some meta-level predicate Φ (containing only intuitionistic logic connectives). Then for
any 𝛽 and 𝜎 ′ such that (𝛼, 𝜎) ⇝∗ (𝛽, 𝜎 ′), one of the following two things hold:

• (adequacy) either 𝛽 ∈ IT𝑣 , and Φ(𝛽) holds in the meta-logic;
• (safety) or there are 𝛽1 and 𝜎1 such that (𝛽, 𝜎 ′) ⇝ (𝛽1, 𝜎1)

In particular, safety implies that 𝛽 ≠ Err(𝑒) for any error 𝑒 ∈ Error.3

Finally, it is worth noting that separation logic/Iris is useful for reasoning about higher-order

GITrees even in the absence of effects, as demonstrated by the following example.

Example 6.3. Using guarded recursion, we can write down a GITree Iter that satisfies the equation:

Iter • 𝑓 • 𝛼 • 𝛽 = If
(
𝛼, 𝑓 • (Iter • 𝑓 • NatOp− (𝛼,Ret(1)) • 𝛽), 𝛽

)
.

That is, Iter • 𝑓 • Ret(𝑛) • 𝛽 computes the iterated application 𝑓 𝑛 • 𝛽 . We can give Iter the
following higher-order specification:

wp 𝛽
{
Ψ
}

□∀𝛽𝑣 .Ψ(𝛽𝑣) −∗ wp 𝑓 • 𝛽𝑣
{
Ψ
}

wp
(
Iter • 𝑓 • Ret(𝑛) • 𝛽

) {
Ψ
}

3
While the weakest precondition that we presented in this section disallow any errors in guarded interaction tree, we will

consider in Section 9.3 that allows some errors, at the user’s discretion.
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The specification says that if 𝛽 initially satisfies Ψ and 𝑓 preserves Ψ , then Iter • 𝑓 • Ret(𝑛) • 𝛽
will also satisfy Ψ. The second premise is the specification of 𝑓 , and it can be used multiple times

in the proof. For that reason the that premise is behind the persistently modality □.
It is also worth noting that while Iter itself does not use state, the function 𝑓 that we supply to it

might as well use all sorts of effects internally, and our implementation and specification of Iter is
oblivious to that.

6.1 Domain-Specific Logic for Higher-Order Store
Now we show how we can use the standard mechanisms in Iris to recover a fairly standard-looking

separation logic for a programming language with references from the weakest precondition

calculus presented above. We use Iris’s notion of higher-order ghost state [Jung et al. 2016, 2018] to

provide the following logical interface for the higher-order store operations:

wp-alloc

heap_ctx ⊲∀ℓ . ℓ ↦→ 𝛼 −∗ wp 𝑘 ℓ
{
Φ
}

wp Alloc(𝛼, 𝑘)
{
Φ
} wp-read

heap_ctx ⊲ ℓ ↦→ 𝛼 ⊲
(
ℓ ↦→ 𝛼 −∗ wp 𝛼

{
Φ
})

wp Read(ℓ)
{
Φ
}

wp-write

heap_ctx ⊲ ℓ ↦→ 𝛼 ⊲
(
ℓ ↦→ 𝛽 −∗ Φ(Ret(()))

)
wpWrite(ℓ, 𝛽)

{
Φ
} wp-dealloc

heap_ctx ⊲ ℓ ↦→ 𝛼 ⊲Φ(Ret(()))
wp Dealloc(ℓ)

{
Φ
}

heap_ctx ⊢ □heap_ctx

Here heap_ctx is a persistent proposition, which is part of the logical interface.

Thus our goal is to provide definitions of heap_ctx and ℓ ↦→ 𝛼 that allow us to derive the rules

above. The main challenge is that the resource has_state(𝜎) provides a singular complete view of

the state, without the ability to split it into local portions corresponding to individual locations.

That has_state is not splittable by itself is not surprising – it is an abstract representation of an

arbitrary state for arbitrary effects, and there is no a priori way of splitting it. However, for our

specific state (a heap Loc
fin−⇀ ▶IT) we know how to do the splitting. What we need to do is to

provide an alternative view of the state, amenable to splitting, and tie it together with the actual

state of the has_state predicate.
Our first step is then to provide a resource algebra for this view of the state. Following the

standard practice of Iris, we use an authoritative resource algebra of the heap. It contains two kinds

of resources: the “full heap” •𝜎 and the “fragmental heap” ◦𝜎 ′. The fragmental heap is guaranteed

to be a subheap of the full one 𝜎 ′ ⊆ 𝜎 . Then we make the following definitions:

heap_ctx ≜ ∃𝜎. has_state(𝜎) ∗ •𝜎 ℓ ↦→ 𝛼 ≜ ◦ [ℓ ↦→ next(𝛼)]

The heap_ctx predicate is an invariant that says that the full view of the heap coincides with

the actual state that we have as part of has_state, and the points-to predicate ℓ ↦→ 𝛼 states that

[ℓ ↦→ next(𝛼)] is in the fragmental view of the heap. Together those predicates imply that the

actual state 𝜎 maps ℓ to next(𝛼), which is precisely what allows us to deduce the rules wp-alloc,

wp-read and wp-write from the rule wp-reify.

As a simple example, we can use the rules for the store operations to verify the factorial program

from Example 3.5. We show the following specification: wp fact(𝑛)
{
𝛽𝑣 . 𝛽𝑣 = Ret(!𝑛)

}
. For this, we

will use the intermediate lemma:

Lemma 6.4. Under the assumptions heap_ctx, a𝑐𝑐 ↦→ Ret(𝑚) and ℓ ↦→ Ret(𝑛), we have

wp factBody(a𝑐𝑐, ℓ)
{
_. a𝑐𝑐 ↦→ Ret(𝑚×!𝑛)

}
.
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𝑥 : 𝜏, Γ ⊢ 𝑥 : 𝜏 Γ ⊢ 𝑛 : Nat
Γ ⊢ 𝑒1 : Nat Γ ⊢ 𝑒2 : Nat ⊕ ∈ {−, +}

Γ ⊢ 𝑒1 ⊕ 𝑒2 : 𝑁

Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒2 : 𝜏1
Γ ⊢ 𝑒1 𝑒2 : 𝜏2

𝑓 : 𝜏1 → 𝜏2, 𝑥 : 𝜏1, Γ ⊢ 𝑒 : 𝜏1 → 𝜏2

Γ ⊢ rec 𝑓 (𝑥) = 𝑒 : 𝜏1 → 𝜏2

Γ ⊢ 𝑒 : Nat Γ ⊢ 𝑒1 : 𝜏 Γ ⊢ 𝑒2 : 𝜏
Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝜏

Γ ⊢ input : Nat
Γ ⊢ 𝑒 : Nat

Γ ⊢ output(𝑒) : Nat

Fig. 7. Typing rules for 𝜆rec,io.

Proposition 6.5. Under the assumption heap_ctx we have

wp fact(𝑛)
{
𝛽𝑣 . 𝛽𝑣 = Ret(!𝑛)

}
.

Proof. We proceed by allocating the locations a𝑐𝑐 and ℓ symbolically using wp-alloc, and then

appeal to Lemma 6.4. □

As one can see, the logic that we recovered for the higher-order store effects is very close to a

normal separation logic one would normally see for a programming language with a heap [Jung et al.

2018]. Our logic, however, is amenable to extensions with other effects and programming language

constructs. Indeed, we explain how to obtain a logic for reasoning about different combined effects

in Section 8. In the next section we show how to apply the separation logic to show computational

adequacy of the model of 𝜆rec,io.

7 COMPUTATIONAL ADEQUACY FOR 𝜆rec,io

In Section 5 we constructed a compositional model of 𝜆rec,io in guarded interaction trees and proved

that it is sound: if a 𝜆rec,io program 𝑒 terminates to a natural number 𝑛, then J𝑒K terminates to

Ret(𝑛). In this section we show the other direction, known as computational adequacy in domain

theory [Plotkin 1977], for the well-typed fragment of 𝜆rec,io; the typing relation (Γ ⊢ 𝑒 : 𝜏) is given
in Figure 7. Computational adequacy is formally stated as the following theorem:

Theorem 7.1 (Adeqacy). If ⊢ 𝑒 : Nat and (J𝑒K, 𝜎) ⇝∗ (Ret(𝑛), 𝜎 ′) then (𝑒, 𝜎) →∗ (𝑛, 𝜎 ′).
Computational adequacy is usually proved using logical relations between the syntax (terms of

𝜆rec,io in our case) and semantics (guarded interaction trees in our case). Here we follow the recent

practice [Krebbers et al. 2017b] of using the separation logic (see Section 6) to define our logical

relations model.

We define a logical relation Γ |= 𝛼 ≾ 𝑒 : 𝜏 , relating a guarded interaction tree 𝛼 and an expression

𝑒 . Here, 𝑒 is an open expression for which we have Γ ⊢ 𝑒 : 𝜏 while 𝛼 is “an open interaction tree”, i.e.,

a function of type (fv(Γ) → IT) → IT. As usual, we first define the relation over closed GITrees

and expressions, and then generalize it to the open case. The logical relation, given in Figure 8, is,

as usual for call-by-value languages, is decomposed into an expression relation EJ𝜏K and a value

relationVJ𝜏K. The expression relation simply states that related expressions should produce related

values. The value relation is defined by induction on the type in the standard way: values of base

types should be equal while functions take related values to related expressions. As values, once

computed, can be used multiple times (cf. the logical relation in Section 9.1) the value relation is

required to be persistent; hence the persistently modality □ in the value relation for functions. In

order to define the relation on open terms we define a relation for typing contextsV∗JΓK which
relates, point-wise, two substitutions respectively of the types fv(Γ) → IT𝑣

and fv(Γ) → Val.
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EJ𝜏K(𝛼, 𝑒) ≜ ∀𝜎. has_state(𝜎) −∗ wp 𝛼
{
𝛽𝑣 . ∃𝑣, 𝜎′ . (𝑒, 𝜎) →∗ (𝑣, 𝜎′) ∗ VJ𝜏K(𝛽𝑣, 𝑣) ∗ has_state(𝜎′)

}
VJNatK(𝛽𝑣, 𝑣) ≜ ∃𝑛 ∈ N. 𝛽𝑣 = Ret(𝑛) ∧ 𝑣 = 𝑛

VJ𝜏1 → 𝜏2K(𝛽𝑣, 𝑣) ≜ ∃𝑓 . 𝛽𝑣 = Fun(𝑓 ) ∧ □
(
∀𝛼𝑤 , 𝑤 .VJ𝜏1K(𝛼𝑤 ,𝑤) −∗ EJ𝜏2K(𝛽𝑣 • 𝛼𝑤 , 𝑣 𝑤)

)
.

V∗JΓK(𝜌1, 𝜌2) ≜ ∀(𝑥 : 𝜏) ∈ Γ.VJ𝜏K(𝜌1 (𝑥), 𝜌2 (𝑥))
Γ |= 𝛼 ≾ 𝑒 : 𝜏 ≜ ∀𝜌1, 𝜌2 .V∗JΓK(𝜌1, 𝜌2) =⇒ EJ𝜏K(𝛼 (𝜌1), 𝑒 [𝜌2])

Fig. 8. Logical relation for 𝜆rec,io.

Lemma 7.2 (Fundamental property). For any Γ ⊢ 𝑒 : 𝜏 , we have Γ |= (𝜆𝜌. J𝑒K𝜌 ) ≾ 𝑒 : 𝜏 .

Computational adequacy follows from the fundamental property together with the following

Lemma which itself is a consequence of the soundness of the weakest precondition calculus

(Theorem 6.2):

Lemma 7.3. Suppose that |= 𝛼 ≾ 𝑒 : Nat. Then for any state 𝜎 ,

• 𝑖 𝑓 (𝛼, 𝜎) ⇝∗ (Ret(𝑛), 𝜎 ′), then (𝑒, 𝜎) →∗ (𝑛, 𝜎 ′);
• if (𝛼, 𝜎) ⇝∗ (𝛽, 𝜎 ′), then 𝛽 ≠ ⊥.

8 MODULAR REASONING ABOUT COMBINATIONS OF EFFECTS
Because (guarded) interaction trees define effects abstractly, one of the main advantages is the

ability to combine programs with different effects modularly in the same setting. In this section we

demonstrate how we achieve this for guarded interaction trees.

Given two signatures 𝐸 and 𝐹 , with indexing sets 𝐼 and 𝐽 , we say that 𝐸 is a subsignature of

𝐹 , written as 𝐸 ↣ 𝐹 , if there is a mapping 𝜖 : 𝐼 → 𝐽 such that 𝐸.Ins𝑖 (𝑋 ) ≃ 𝐹 .Ins𝜖 (𝑖 ) (𝑋 ) and
𝐸.Outs𝑖 (𝑋 ) ≃ 𝐹 .Outs𝜖 (𝑖 ) (𝑋 ) for any 𝑖 ∈ 𝐼 and for any type 𝑋 . Here, ≃ stands for isomorphism of

types.

In regular interaction trees, a subsignature 𝐸 ↣ 𝐹 induces an embedding IT𝐸 → IT𝐹 of

interaction trees. However, such an embedding is not possible for guarded interaction trees due to

the mixed-variance definition: a function IT𝐸 → IT𝐸 cannot be converted to a function IT𝐹 → IT𝐹

which takes a guarded interaction tree with a larger set of effects.

To achieve modularity we will instead work with an open-ended collection of effects which is

large enough to embed all the effects that we need. It is only at the “top-level”, e.g., when applying

the adequacy theorem, that we pick a concrete signature of effects. For example, the precise type of

the Alloc function from Example 3.2 is the following type, for any 𝐹 such that 𝐸store ↣ 𝐹 :

Alloc : IT𝐹 × (Loc → IT𝐹 ) → IT𝐹

(In practice, the function Alloc is polymorphic in 𝐹 at the meta-level, i.e., in Coq.) With this, we can

easily combine two programs with different collections of effects, assuming both of the programs

are written in such an open ended manner; we just need to pick 𝐹 to be large enough to embed

the effects of both programs. For example, we can combine the factorial implementation from

Example 3.5 with input/output effects, to write a program that takes a natural number from the

input, computes its factorial, and prints the result to the output:

fact_io ≜ get_nat(get_nat(Input, fact),Output).

The resulting program fact_io has type IT𝐹 for any 𝐹 such that 𝐸store ↣ 𝐹 and 𝐸io ↣ 𝐹 .
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Reifiers for modular effects. Writing down programs with modular combinations of effects is not

enough by itself: we also want to reason about the reification of effects modularly. Suppose we write

a program with effects 𝐸 as an GITree IT𝐹 with 𝐸 ↣ 𝐹 , and suppose that we have a reifier for 𝐸.

Recall that we defined a reifier for the effects 𝐸 to be a tuple (𝐸, State, 𝑟 : ∏i∈𝐸 Insi (▶IT𝐸)×State →
option(Outsi (▶IT𝐸)×State). However, if the state itself includes interaction trees, as in Example 4.2,

we need also to make the state and the reifier parametric in the effects. Therefore, instead of a

fixed type State we consider a family of states State(𝑋 ), and instead a single reifier function 𝑟 we

consider a family of functions

∀𝑋 .
∏
i∈𝐸

Insi (𝑋 ) × State(𝑋 ) → option(Outsi (𝑋 ) × State(𝑋 )) .

In practice, we assume that the global state is the product of states of reifiers for sub-effects,

in which each sub-effect acts only on its own part of the state. Concretely, given a sequence

®𝑅 = (𝐸1, State1, 𝑟1), . . . , (𝐸𝑚, State𝑚, 𝑟𝑚) of reifiers we define the global reifier 𝑅𝐺 = (𝐺, State(−), 𝑟 ):

𝐺.𝐼 ≜
∑︁

1≤𝑖≤𝑚
𝐸𝑖 .𝐼 𝐺 .Ins (𝑖, 𝑗 ) (𝑋 ) ≜ 𝐸𝑖 .Ins 𝑗 (𝑋 ) 𝐺.Outs (𝑖, 𝑗 ) (𝑋 ) ≜ 𝐸𝑖 .Outs 𝑗 (𝑋 )

State(𝑋 ) ≜
∏

1≤𝑖≤𝑚
State𝑖 (𝑋 )

𝑟𝑋,(𝑖, 𝑗 ) (𝑥, (𝜎1, . . . , 𝜎𝑖 , . . . , 𝜎𝑚)) ≜
{
Some(𝑦, (𝜎1, . . . , 𝜎 ′𝑖 , . . . , 𝜎𝑚)) if 𝑟𝑖 (𝑥, 𝜎𝑖 ) = Some(𝑦, 𝜎 ′)
None otherwise

Turning to the separation logic, we specialize the rule wp-reify to the signature𝐺 and the reifier

𝑅𝐺 , and simplify it to

wp-reify-local

has_state𝑖 (𝜎𝑖 ) 𝑟𝑖 (𝑥, 𝜎𝑖 ) = Some(𝑦, 𝜎′𝑖 ) 𝑘 𝑦 = next(𝛽) ⊲
(
has_state𝑖 (𝜎′𝑖 ) −∗ wp 𝛽

{
Φ
})

wp Vis(𝑖, 𝑗 ) (𝑥, 𝑘)
{
Φ
}

where the predicate has_state𝑖 (𝜎) tracks the local component of the global state associated with

the 𝑖th reifier. The predicates are defined to validate the following rule, which allows us to split the

global state into local subcomponents and combine them back together:

has_state( ®𝜎) ⊣⊢ has_state
1
(𝜎1) ∗ · · · ∗ has_state𝑚 (𝜎𝑚).

Then to write down the abstractions for the domain-specific logic in Section 6.1 we change the

heap_ctx definition to link together only the state corresponding to the specific effects:

heap_ctx ≜ ∃𝜎. has_state𝑖 (𝜎) ∗ •𝜎

where the higher-order store reifier is the 𝑖th subreifier of ®𝑅.

Example 8.1. Recall the program fact_io from the beginning of this section.We use Proposition 6.5

to show the following specification:

heap_ctx ∗ has_state𝑗 (𝑘 ®𝑛, ®𝑚) ⊢ wp fact_io
{
_. has_state𝑗 (®𝑛, (!𝑘) ®𝑚)

}
where has_state𝑗 tracks the state of the input/output effects. The specification tells us that if we

run fact_io with the starting state (𝑘 ®𝑛, ®𝑚) for the input/output effects, then we end up with the

state (®𝑛, (!𝑘) ®𝑚) for the input/output effects.
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8.1 Modular reasoning with a generic ground type
As we have mentioned in Section 3.2, we often would like to work with the GITrees IT𝐸 (𝐴) for some

generic ground type 𝐴 that is “large enough” to contain ground values that we need to represent

(e.g. the unit type, natural numbers, the type of locations, etc). That is, we assume that the ground

type 𝐴 is isomorphic to a sum 1 +Nat + Loc + . . . , depending on ground values we need. We tackle

this generic ground type in a similar way we deal with different effect signatures modularly.

Specifically, we write 𝐵 ⇁ 𝐴 if 𝐴 ≃ 𝐵 + 𝐶 for some type 𝐶 . We then have the generic return

constructor Ret : 𝐵 → IT𝐸 (𝐴) for any 𝐵 ⇁ 𝐴. Similarly, we have a generic “destructor” get_ret :
IT𝐸 (𝐴) × (𝐵 → IT𝐸 (𝐴)) → IT𝐸 (𝐴) which allows us to extract a ground value of type 𝐵, as long as

we have 𝐵 ⇁ 𝐴. such that get_ret is a homomorphism in the first argument, which satisfies:

get_ret(Ret(𝑏), 𝑔) =
{
𝑔(𝑏) if 𝑏 ∈ 𝐵,
Err(RunTime) otherwise.

Then, the get_nat function from Section 3.2 is just the specialization of get_ret to the situation

Nat ⇁ 𝐴.

The predicate 𝐵 ⇁ 𝐴 is formalized in Coq as a typeclass, making it easy to use the generic

operations like Ret and get_ret. In the remainder of this paper we will stick to those generalized

operations, and will assume that the ground type 𝐴 contains all the ground values we need.

9 TYPE SAFETY FOR CROSS-LANGUAGE INTEROPERABILITY
One of the advantages of using GITrees for denotational semantics is that it provides a common

setting for interpreting and reasoning about different languages with different effects, and then

combining the results in a modular manner. In this section we demonstrate this point by verifying

type safety of interoperability between two different languages. The interoperability is achieved

by allowing embeddings from one language into another at a particular boundary [Matthews

and Findler 2007]. We take inspiration for this case study from the approach of Patterson et al.

[2022], who consider interoperability of different languages at a level of a common third language,

which both the source languages are compiled down to. The communication between the source

languages is done through glue code at the level of the target language, which converts types from

one language to another. The type safety result then states that well-typed programs in a combined

language can only go wrong due to conversion errors at the boundaries.

Specifically, we first consider an affine programming language 𝜆⊸,ref with linear references and

strong updates, which we interpret in guarded interaction trees using the higher-order store effects

(Example 3.2). We show the type safety of 𝜆⊸,ref by building a logical relations model.

We then consider cross-language interoperability, by allowing embedding of (higher-order)

programs from the non-affine language 𝜆rec,io (Section 5) into 𝜆⊸,ref , thus combining two languages

with different type systems and different effects. Following the approach outlined in Section 8

we reuse the standalone interpretations of 𝜆rec,io and 𝜆⊸,ref to interpret the combined language in

ITstore,io. Finally, we show type safety of this combined language, by building the logical relations

model out of the models for the individual languages.

We stress that our approach here allows us to prove type safety of 𝜆rec,io and 𝜆⊸,ref separately, and
then prove type safety of the combined language by reusing the logical relations for the individual

languages, thus highlighting the modular nature of the GITrees framework.

9.1 An Affine Programming Language
First, we consider an affine programming language 𝜆⊸,ref with references with strong updates,

and show how to interpret it in GITrees in a way that enforces linearity. We then consider the
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𝑏 ∈ B
Ω ⊢ 𝑏 : Bool

𝑛 ∈ N
Ω ⊢ 𝑛 : Nat

Ω ⊢ () : Unit Ω1, 𝑎 : 𝜏,Ω2 ⊢ 𝑎 : 𝜏
𝑎 : 𝜏1,Ω ⊢ 𝑒 : 𝜏2
Ω ⊢ 𝜆𝑎. 𝑒 : 𝜏1⊸𝜏2

Ω1 ⊢ 𝑒1 : 𝜏1⊸𝜏2 Ω2 ⊢ 𝑒2 : 𝜏1
Ω1,Ω2 ⊢ 𝑒1 𝑒2 : 𝜏2

Ω1 ⊢ 𝑒1 : 𝜏1 Ω2 ⊢ 𝑒2 : 𝜏2
Ω1,Ω2 ⊢ (𝑒1,𝑒2) : 𝜏1⊗𝜏2

Ω1 ⊢ 𝑒1 : 𝜏1⊗𝜏2 𝑎1 : 𝜏1, 𝑎2 : 𝜏2,Ω2 ⊢ 𝑒2 : 𝜏
Ω1,Ω2 ⊢ let (𝑎1,𝑎2) = 𝑒1 in 𝑒2 : 𝜏

Ω ⊢ 𝑒 : 𝜏
Ω ⊢ alloc(𝑒) : ref 𝜏

Ω ⊢ 𝑒 : ref 𝜏
Ω ⊢ dealloc(𝑒) : Unit

Ω1 ⊢ 𝑒1 : ref 𝜏1 Ω2 ⊢ 𝑒2 : 𝜏2
Ω1,Ω2 ⊢ replace(𝑒1, 𝑒2) : 𝜏1⊗ ref 𝜏2

Fig. 9. Type system for 𝜆⊸,ref .

combination 𝜆⊸,ref + 𝜆rec,io, which allows us to embed 𝜆rec,io programs, including functions, into

𝜆⊸,ref . The syntax for the affine language 𝜆⊸,ref is as follows:

𝜏 ∈ Type ::= Bool | Nat | Unit | 𝜏1⊗𝜏2 | 𝜏1⊸𝜏2 | ref 𝜏
𝑒 ∈ Expr ::= 𝑛 | 𝑏 | () | 𝑎 | 𝜆𝑎. 𝑒 | 𝑒1 𝑒2 | (𝑒1,𝑒2) | let (𝑎1,𝑎2) = 𝑒1 in 𝑒2

| alloc(𝑒) | dealloc(𝑒1) | replace(𝑒1, 𝑒2)

To differentiate between the terms of 𝜆⊸,ref and the terms of 𝜆rec,io, we use the orange color to refer

to types and programs of 𝜆⊸,ref . The type system for 𝜆⊸,ref is given in Figure 9. Let us explain some

of the details. The language 𝜆⊸,ref contains Booleans, natural numbers, and the unit type. It also

features linear functions 𝜏1⊸𝜏2. Note that in the typing rule for function application, the context

is split between typing of the function and typing of the argument. This ensures that the function

and its argument do not share any variables or resources in common.

The language also features linear pairs 𝜏1⊗𝜏2. In the typing rule for pairs the typing environment

has to be split between the two components. This ensures that we cannot have, e.g., pairs of the

form (𝑥,𝑥).
Finally, the language features references with strong updates, i.e., references that can store values

of different types. The constructors alloc and dealloc are used to allocate and free the references,

respectively. To ensure linearity, we have a single operation that combines reading from a reference

and performing a strong update. The program replace(𝑟, 𝑣) reads the value that is stored in the

reference 𝑟 and updates it to the value 𝑣 . It then returns a linear pair consisting of the old value

and the reference itself, allowing one to reuse the reference later on.

The meaning of 𝜆⊸,ref is given by the interpretation function J𝑒K𝜌 : IT𝐹 (𝐴), where 𝜌 is the

environment mapping the free variables of 𝑒 to GITrees, and where 𝐹 is a signature which contains

the higher-order store effects (Example 3.2). We assume that the ground type𝐴 contains, in addition

to natural numbers and the unit type, the type Loc of locations. The semantic interpretation of

𝜆⊸,ref is given in Figure 10. In the interpretation of compound expression we split the environment

𝜌 into the environments 𝜌1 and 𝜌2, for the free variables of 𝑒1 and 𝑒2 respectively.

In order to ensure that the variables from the context Ω are used at most once, we wrap every

variable in a thunk which can be evaluated at most once:

Thunk(𝛼) ≜ Alloc
(
(0), 𝜆ℓ . Fun(next(𝜆_. If (Read(ℓ), Err(𝐿𝑖𝑛),Write(ℓ,Ret(1)) ; 𝛼)))

)
Force(𝛼) ≜ 𝛼 • Ret(0)
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J𝑏K𝜌 ≜

{
Ret(1) if b = true
Ret(0) otherwise

J()K𝜌 ≜ Ret(())

J𝑛K ≜Ret(𝑛) J𝜆𝑎. 𝑒K𝜌 ≜ Fun(next(𝜆𝛼. J𝑒K𝜌 [𝑎 ↦→𝛼 ]))
J𝑎K𝜌 ≜ Force(𝜌 (𝑎)) J𝑒1 𝑒2K𝜌 ≜ Let𝑥 = J𝑒2K𝜌2 in

J𝑒1K𝜌1 • Thunk(𝑥)
Jlet (𝑎1,𝑎2) = 𝑒1 in 𝑒2K𝜌 ≜ Let𝑥 = J𝑒1K𝜌1 in

Let𝑦 = Thunk(𝜋1 (𝑥)) in
Let 𝑧 = Thunk(𝜋2 (𝑥)) in
J𝑒2K𝜌2 [𝑎1 ↦→𝑦,𝑎2 ↦→𝑧 ]

J(𝑒1,𝑒2)K𝜌 ≜ (J𝑒1K𝜌2 , J𝑒2K𝜌2 )

Jalloc(𝑒)K𝜌 ≜ Let𝑥 = J𝑒K𝜌 in Alloc(𝑥,Ret) Jdealloc(𝑒)K𝜌 ≜ get_ret(J𝑒K𝜌 ,Dealloc)
Jreplace(𝑒1, 𝑒2)K𝜌 ≜ Let𝑦 = J𝑒2K𝜌2 in get_ret(J𝑒1K𝜌1 , 𝜆ℓ . Let𝑥 = Read(ℓ) in

Write(ℓ,𝑦) ; (𝑥,Ret(𝑛)))

Fig. 10. Interpretation of 𝜆⊸,ref .

VJUnitK(𝛽𝑣) ≜ 𝛽𝑣 = Ret(()) VJNatK(𝛽𝑣) ≜ ∃𝑛 ∈ N. 𝛽𝑣 = Ret(𝑛)
VJ𝜏1⊸𝜏2K(𝛽𝑣) ≜ ∀𝛼𝑤 .VJ𝜏1K(𝛼𝑤) −∗ EJ𝜏2K(𝛽𝑣 • 𝛼𝑤) VJBoolK(𝛽𝑣) ≜ 𝛽𝑣 = Ret(0) ∨ 𝛽𝑣 = Ret(1)
VJref 𝜏K(𝛽𝑣) ≜ ∃ℓ ∈ Loc, 𝛼𝑣 .

(
𝛽𝑣 = Ret(ℓ))

)
∗

ℓ ↦→ 𝛼𝑣 ∗ VJ𝜏K(𝛼𝑣)
VJ𝜏1⊗𝜏2K(𝛽𝑣) ≜ ∃𝛾𝑣, 𝛿𝑣 . 𝛽𝑣 = (𝛾𝑣, 𝛿𝑣) ∗

VJ𝜏1K(𝛾𝑣) ∗ VJ𝜏2K(𝛿𝑣)
EJ𝜏K(𝛼) ≜ heap_ctx −∗ wp 𝛼

{
𝛽𝑣 .VJ𝜏K(𝛽𝑣)

}
protected(Φ) (𝛽𝑣) ≜ wp Force(𝛽𝑣)

{
Φ
}

V∗JΩK(𝜌) ≜ ∀(𝑎 : 𝜏) ∈ Ω. protected(VJ𝜏K) (𝜌 (𝑎)) Ω |= 𝛼 : 𝜏 ≜ ∀𝜌.V∗JΩK(𝜌) =⇒ EJ𝜏K(𝛼 (𝜌))

Fig. 11. Logical relation for 𝜆⊸,ref .

When we called a thunked GITree for the second time, it will return the error Err(𝐿𝑖𝑛), signifying
that we broke the linearity condition. Here we assume that we have a separate error state 𝐿𝑖𝑛 ∈
Error, because we want to treat linearity condition errors separate from type errors or memory

safety errors. As such, in the interpretation of a function application we put the argument in a

Thunk, and whenever we use the argument (or any affine variable) we then have to Force it.
We can show that if we have a well-typed program, then it does not have any run-time errors,

and that all the thunks are evaluated at most once:

Proposition 9.1. Suppose that ⊢ 𝑒 : 𝜏 , and suppose that (𝜎, J𝑒K) ⇝∗ (𝜎 ′, 𝛽). Then 𝛽 ≠ Err(𝑒𝑟𝑟 ).

To prove Proposition 9.1 we use a logical relation, given in Figure 11, defined similarly to the

logical relation from Section 7. The interpretationVJ−K of the base types cover the appropriate
subsets of natural numbers. Reference types are interpreted using the “pointsto” ℓ ↦→ 𝛼𝑣 proposition,

and affine pairs are interpreted component-wise. The main differences to note here are: (1) variables

in 𝜆⊸,ref are interpreted as thunks, and thus we adjust the interpretation V∗JΩK to account for

that; (2) values in 𝜆⊸,ref can be used at most once; hence the value interpretation is not persistent,

i.e., there is no persistently modality □ in the interpretation of function types.

Lemma 9.2 (Fundamental property). For any expression 𝑒 , if Ω ⊢ 𝑒 : 𝜏 , then Ω |= 𝜆𝜌. J𝛼K𝜌 : 𝜏 .
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We prove the fundamental property by induction on the typing derivation. More specifically,

for each typing rule we prove an associated compatibility lemma, by replacing expressions with

interaction trees and the derivability ⊢ with validity |=. For example, the compatibility lemma for

dealloc looks as follows:

Lemma 9.3. Suppose that Ω |= 𝛼 : ref 𝜏 . Then Ω |= 𝜆𝜌. get_ret(𝛼 (𝜌),Dealloc) : Unit.

Proving all the compatibility lemmas is relatively straightforward using the separation logic

rules. Having separate compatibility lemmas will be useful for us in the next section.

By combining the fundamental property with the safety theorem for the weakest precondition

calculus (Theorem 6.2) we obtain a proof of Proposition 9.1.

Safety for 𝜆rec,io. Similar to the logical relation for safety for 𝜆⊸,ref , we define a logical relation

for 𝜆rec,io. It is simply an unary version of the logical relation from Section 7. For example, the

expression relation is defined as

EJ𝜏 ′K(𝛼) ≜ ∀𝜎 ′ . has_state𝑖 (𝜎 ′) −∗ wp 𝛼
{
𝛽𝑣 . ∃𝜎 ′1.VJ𝜏 ′K(𝛽𝑣) ∗ has_state𝑖 (𝜎 ′1)

}
where has_state𝑖 tracks the state for the input/output effects. We omit the other details here and

direct an interested reader to the Coq formalization. We only note that just like for 𝜆⊸,ref , we split

the proof of the fundamental property into compatibility lemmas, which we will use in the next

section.

9.2 Interoperability Between Languages
Following the approach of [Patterson et al. 2022], we allow the interaction between the languages

𝜆rec,io and 𝜆⊸,ref , using the guarded interaction trees as the “common ground”, combining the effects

of the two languages. At the syntactic language level, this is done by allowing one to embed the

expressions of 𝜆rec,io into the 𝜆⊸,ref programs. The embedding is given by the following typing

rule:
4

typed-conv

⊢ 𝑒 : 𝜏 ′ 𝜏 ′ ∼ 𝜏
Ω ⊢ L𝑒M𝜏 ′∼𝜏 : 𝜏

The crucial ingredient for the interaction is a type conversion relation 𝜏 ′ ∼ 𝜏 stating that the 𝜆rec,io
type 𝜏 ′ is convertible to the 𝜆⊸,ref type 𝜏 .

We have the following type conversions:

Nat ∼ Nat Nat ∼ Unit Nat ∼ Bool
𝜏 ′
1
∼ 𝜏1 𝜏 ′

2
∼ 𝜏2

(Nat → 𝜏 ′
1
) → 𝜏 ′

2
∼ 𝜏1⊸𝜏2

The first three type conversions say that we can freely convert between integers, Booleans, and

the unit type (since all of them have similar internal representation). The last conversion is more

interesting. It says that we can convert between affine functions and non-affine functions. The

affine argument 𝜏1 is represented as a thunk (Nat → 𝜏 ′
1
), which we will protect at runtime to

ensure that it is not invoked more than once. The type Nat is used in lieu of the unit type which is

absent from 𝜆rec,io.

4
For simplicity, we only consider one-way embeddings from 𝜆rec,io to 𝜆⊸,ref , and we only consider embeddings of closed

terms. This simplifies the type system, but does not lead to loss of expressivity, since we allow type conversions of functions.
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Glue code for conversion functions. In order to (1) convert between different types, and (2) ensure

the linearity of 𝜆⊸,ref programs that might cross the boundary to 𝜆rec,io, we need to interpret

embedded terms with additional glue code. For every type conversion 𝜏 ′ ∼ 𝜏 we generate recursively
a pair of conversion functions 𝐶𝜏 ′,𝜏 and 𝐶𝜏,𝜏 ′ which convert the representations from 𝜏 ′ to 𝜏 and
vice versa. The glue code for converting between the base types ensures that the underlying natural

number representation stays within the range. For example, for Nat ∼ B we have:

𝐶Nat,Bool (𝛼) ≜ If (𝛼,Ret(1),Ret(0)) 𝐶Bool,Nat (𝛼) ≜ 𝛼

The glue code for converting functions is a bit more involved:
5

𝐶 (Nat→𝜏 ′
1
)→𝜏 ′

2
,𝜏1⊸𝜏2 (𝛼) ≜ Let𝑝 = 𝛼 in

Fun(next(𝜆𝑥. Let𝑦 = 𝐶𝜏1,𝜏
′
1

(Force(𝑥)) in𝐶𝜏 ′
2
,𝜏2 (𝑝 • Thunk(𝑦))))

𝐶𝜏1⊸𝜏2,(Nat→𝜏 ′
1
)→𝜏 ′

2

(𝛼) ≜ Let𝑝 = 𝛼 in Let𝑝′ = Thunk(𝑝) in
Fun(next(𝜆𝑥 . Let 𝑓 = Force(𝑝) in Let𝑦 = 𝐶𝜏 ′

1
,𝜏1 (Force(𝑥)) in𝐶𝜏 ′

2
,𝜏2 (𝑓 • Thunk(𝑦))))

When we convert a function, we need to recursively convert the argument and the result; in

addition the argument to the function needs to be protected with a Thunk. Furthermore, when

affine functions are converted to non-affine ones, we need to protect the function itself with a

Thunk, to ensure that the function is not invoked multiple times. Calling an affine function multiple

times might be unsound, e.g., calling the following function twice will attempt to deallocate an

already deallocated reference:

(𝜆ℓ. 𝜆_. (𝜆_. 7) dealloc(ℓ)) (alloc(42)) : Unit⊸Nat.

Partial safety for the combined language. We interpret the combined language with embeddings

using the glue code. The embedding from 𝜆rec,io to 𝜆⊸,ref is interpreted as follows:

JL𝑒M𝜏 ′∼𝜏K𝜌 = 𝐶𝜏 ′,𝜏 (IOJ𝑒K),

where IOJ−K is the interpretation function for 𝜆rec,io expressions from Section 5. The interpretation

for all the operations, except for the embedding, remains unchanged.

Using the modular approach we described in Section 8, we interpret the extended language

𝜆rec,io + 𝜆⊸,ref into the guarded interaction trees ITstore,io with the signature that combines the

input/output effects and the store effects. This ensures that the interpretation of the languages end

up in the same domain, where they can interact. By combining the reifiers for the effects of the

individual languages we also get the reduction relation ((𝜎1, 𝜎 ′1), 𝛼) ⇝ ((𝜎2, 𝜎 ′2), 𝛽), where 𝜎1 and
𝜎2 are stores, and 𝜎

′
1
and 𝜎 ′

2
are input/output tapes.

Of course, in the combined language with conversions, our programs can actually violate the

linearity condition, since it is no longer enforced by the type system. However, we can prove that

linearity violations at the boundary are the only errors that we will possibly get. Thus we will to

prove the following safety theorem:

Theorem 9.4. Suppose that ⊢ 𝑒 : 𝜏 with the embedding rule, and suppose that ((𝜎1, 𝜎 ′1), J𝑒K) ⇝∗

((𝜎2, 𝜎 ′2), 𝛽). Then either 𝛽 is not an error, or 𝛽 = Err(𝐿𝑖𝑛).

5
The glue code for functions is a bit more complicated than in [Patterson et al. 2022]. Specifically, they do not protect the

converted affine functions. This is fine in their setting, because their affine functions are pure, and invoking them multiple

times does not lead to run-time errors. However, in the presence of references with strong updates this assumption is no

longer true, and not protecting the converted functions will lead to unsound behavior!
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9.3 Logical Relations for the Combined Safety
We will prove Theorem 9.4 by constructing a logical relation similarly to what we did for the

individual languages in Section 9.1. Our goal is to do so modularly, by reusing as much material

from Section 9.1 as possible. In particular, we will reuse all the compatibility lemmas we used to

prove Lemma 9.2, and only prove one (!) new compatibility lemma for typed-conv. Letting EJ𝜏 ′K and
EJ𝜏K be the expression relations for the logical relation for 𝜆rec,io and 𝜆⊸,ref resp., this compatibility

lemma is:

Lemma 9.5. Suppose that EJ𝜏 ′K(𝛼) and 𝜏 ′ ∼ 𝜏 . Then EJ𝜏K(𝐶𝜏 ′,𝜏 (𝛼)). Moreover, for the other
direction, suppose that EJ𝜏K(𝛼) and 𝜏 ′ ∼ 𝜏 . Then EJ𝜏 ′K(𝐶𝜏,𝜏 ′ (𝛼)).

When we presented the separation logic and logical relations earlier, we presented a slightly

simplified version which was sufficient for our purposes. However, in order to prove Lemma 9.5 we

need to make use of features that we have not yet presented. We describe those features now.

Separation logic for weak safety. The first feature is that our notion of weakest precondition is

actually parameterized by a stuckness predicate 𝑠 : Error → iProp, and satisfies the following rule

(in addition to the rules presented in Section 6):

𝑠 (𝑒) ⊢ wp𝑠 Err(𝑒)
{
Φ
}

This means that if the stuckness predicate 𝑠 holds for some error 𝑒 , then the weakest precondition

predicate holds for that error, irrespectively of the postcondition. The earlier presented weakest

precondition, which did not allow for errors, is obtained by using 𝑠 (𝑒) = False. The general weakest
precondition with the stuckness predicate satisfies a version of the adequacy/safety property

(Theorem 6.2), in which the (safety) condition is replaced with the following condition:

• (weak safety) either there are 𝛽1 and 𝜎1 such that (𝛽, 𝜎 ′) ⇝ (𝛽1, 𝜎1), or 𝛽 = Err(𝑒) with 𝑒
satisfying the predicate 𝑠 .

All the logical relations presented earlier are actually parameterized by a predicate 𝑠 and uses

wp𝑠 𝛼
{
Φ
}
in the expression interpretation — to recover the earlier stated theorems for full safety

we simply instantiate the logical relations with 𝑠 = 𝜆𝑒. False.

Freely adjoined Kripke structure. In addition to the stuckness bit, we actually formulate our logical

relations a bit more generally than what we have shown so far. This is because in the logical

relations for individual languages require particular resources that we need to combine when

constructing a logical relation for the combined language.

Indeed, to ensure that our logical relations are sufficiently modular, we parameterize the ex-

pression relation by an arbitrary predicate 𝑃 : 𝐴 → iProp of an arbitrary type 𝐴. We refer to this

predicate 𝑃 as freely adjoined Kripke structure (because, in the underlying model of Iris, it allows

us to make arbitrary transitions between worlds, constrained by the predicate 𝑃 ). The general

definition of the expression relation for all our logical relation is thus:

E𝑃
𝑠 (Φ) (𝛼) ≜ ∀𝑥 : 𝐴. 𝑃 (𝑥) −∗ wp𝑠 𝛼

{
𝛽𝑣 . ∃𝑦 : 𝐴.Φ(𝛽𝑣) ∗ 𝑃 (𝑦)

}
.

The idea is that the 𝑃 parameter describes additional resources (for other effects) and ensures that

ITrees in the expression relation preserve any such additional resources. The idea is akin to the

“baking-in” of the frame rule in models of separation logic for higher-order languages [Birkedal

et al. 2008; Birkedal and Yang 2008].
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The expression relations for individual languages 𝜆rec,io and 𝜆⊸,ref are then both parameterized

by predicates 𝑃 : 𝐴 → iProp and 𝑠 : Error → iProp and defined as

EJ𝜏 ′K(𝛼) ≜ E𝜆 (𝜎 ′,𝑥 ) . has_state𝑖 (𝜎 ′ )∗𝑃 (𝑥 )
𝑠 (VJ𝜏 ′K) (𝛼)

EJ𝜏K(𝛼) ≜ E𝜆𝑥. heap_ctx∗𝑃 (𝑥 )
𝑠 (VJ𝜏K) (𝛼).

For 𝜆rec,io and for 𝜆⊸,ref we prove the compatibility properties for arbitrary 𝑃 and 𝑠 (in the proofs

of the compatibility lemmas, the resources described by 𝑃 are just passed through). We obtain full

safety for the individual languages by instantiating 𝑃 with 𝜆𝑥. True and 𝑠 with 𝜆𝑒. False.
When we prove partial safety for the combined language, we reuse the same logical relations

and the same compatibility lemmas for the individual languages, by instantiating 𝑃 in EJ𝜏 ′K with
𝑃 (𝑥) = heap_ctx, and by instantiating 𝑃 in EJ𝜏Kwith 𝑃 (𝑥) = has_state𝑖 (𝑥), and 𝑠 with 𝜆𝑒. (𝑒 = 𝐿𝑖𝑛)
in both cases. Then, to prove the fundamental property of the combined language we can reuse

the compatibility lemmas for individual languages, and it only remains to prove the compatibility

Lemma 9.5 for the type conversion.

The most interesting case of Lemma 9.5 is the conversion between functions, which involves

showing soundness of the glue code. The interpretation of non-affine functions is persistent,

as it begins with □, since it is expected that you can use non-affine functions multiple times.

The interpretation of affine functions, however, is not persistent — functions can be invoked

only once. Because of that, we cannot directly use the interpretation VJ𝜏1⊸𝜏2K when proving

VJ(Nat → 𝜏 ′
1
) → 𝜏 ′

2
K. Instead, we put the interpretation of the affine function in a persistent

invariant, which states:

(ℓ ↦→ Ret(0) ∗ VJ𝜏1⊸𝜏2K(𝛼𝑣)) ∨ (ℓ ↦→ Ret(1)) .
This describes when the affine function 𝛼𝑣 is protected with the Thunk via a reference ℓ : either

the function has not been invoked yet (ℓ ↦→ Ret(0)) and it satisfies the value interpretation, or the

function has already been invoked (ℓ ↦→ Ret(1)) and forcing its thunk will result in Err(𝐿𝑖𝑛), in
which case we do not invoke the function. (As a side remark, we note that we here crucially rely

on Iris’s powerful notion of invariants — this is another example of why it is advantageous to use

Iris as the basis for our separation logic.)

Having established the compatibility lemma for type conversions, and the compatibility lem-

mas for the operations for each individual language, we prove the fundamental property for the

logical relation for the combined language. In particular, for a closed term ⊢ 𝑒 : 𝜏 we obtain

E𝜆𝑥. heap_ctx∗has_state𝑖 (𝑥 )
𝜆𝑒. 𝑒=𝐿𝑖𝑛

(VJ𝜏K) (J𝑒K). From the adequacy property of the weakest precondition we

can then conclude Theorem 9.4.

In summary, this approach to logical relations, with freely adjoined Kripke structure as a param-

eter, allows us to scale proofs to interoperability between multiple different languages in a modular

way. For each individual language we can prove safety separately (without knowing in advance

with which other languages we are going to interface). Then we can combine logical relations for

individual languages together, by instantiating the freely adjoined Kripke structure with the shared

resources or with resources needed to verify the glue code, and reusing the compatibility lemmas.

10 DISCUSSION AND RELATEDWORK
We have already discussed a lot of related work throughout the paper; in this section we include

some further discussion of related work.

Differences with interaction trees. Whilst our work takes direct inspiration from the interaction

trees approach, there are some crucial differences. One of the main difference comes from the

treatment of effect reification. The original type of interaction trees is a monad, and the effects in
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an interaction tree can be reified “in one go”, for example, with a state monad transformer over

ITrees. In our case, we cannot reify all the effects in a guarded interaction tree, due to higher-order

functions and higher-order effects. For example, a guarded interaction tree can be a function that

contains latent effects, but these effects can only be reified at the point when the function is invoked.

Because regular interaction trees contain only first-order structures, it is possible to traverse them

completely, reifying all the effects.

Another difference worth mentioning, is that regular interaction trees can be extracted and

executed from Coq. Our formalization cannot be directly extracted, as it is built upon a layer

of guarded type theory. One potential approach would be to erase the guarded parts from the

formulation of GITrees and obtain that way a representation of GITrees in a functional language

like OCaml or Haskell, which already supports mixed-variance datatypes. Then, the extraction can

be set up in such a way as to use this representation. We have not researched this direction and

leave it to future work.

Finally, an important difference between our work and that on ITrees, is that the ITrees develop-

ment relies heavily on the weak bisimilarity theory of interaction trees, while we opt for developing

separation logic and refinements instead. There are several things that complicate the study of

bisimilarity for guarded interaction trees. Firstly, the higher-order nature of GITrees suggests that

we need to study a more involved notion of behavioral equivalence, like applicative bisimilarity.

Secondly, we believe that developing a theory of weak bisimilarity in the context of Iris and guarded

type theory is still an open question, complicated by issues with step-indices. For these reasons we

believe that developing weak applicative bisimularity for guarded interaction trees will require

new techniques and we leave it for future work.

Differences with the standard Iris approach to verification. The standard Iris-based approach to

separation logic [Jung et al. 2016, 2015; Krebbers et al. 2017a] is based on operational semantics, and

has been proven to scale well to complicated programming language features. The main difference

with our work, is that we are the first to build an Iris-based separation logic over denotational

semantics, in a way that is tightly integrated with the existing Iris ecosystem. In particular, we rely

on the Iris ecosystem for various data structures, resource algebras, base logic (but not the program

logic), and the Iris Proof Mode. As such, in terms of reasoning about specific concrete programs,

the GITrees-based approach is not that different from what a normal Iris user expects, with the

added advantage of using equational reasoning for many computation steps that usually requires

some form of symbolic execution.

The main advantage of our approach comes into play when we want to consider new models of

programming languages, or reasoning about programs with combinations of effects (as in Section 8),

or reasoning about interoperability (as in Section 9).

Domain theory and guarded type theory. Guarded type theory [Birkedal and Møgelberg 2013;

Bizjak et al. 2016] has been studied as a setting for domain theory before [Birkedal et al. 2012;

Møgelberg and Paviotti 2019; Møgelberg and Vezzosi 2021; Paviotti et al. 2015], but previous works

mostly focused on specific typed models and was not formalized. In contrast, here we work with

guarded interaction trees as a “universal domain”, similar to domain theoretic models of untyped

𝜆-calculus.

The previous work used (dependent) guarded type theory not just for modeling, but also for

reasoning about programs. This required a more complicated type theory and precluded the work

from being formalized in a traditional proof assistant like Coq. By contrast, our reasoning is done

in the logic over a guarded type theory. This is arguably simpler, and allowed us to make use of Iris

and formalize all of our results in Coq.
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Logical relations and language interoperability. Our case study on language interoperability in

Section 9 is inspired by the seminal work of Patterson et al. [2022]. We believe that the approach we

take in our work is more modular. Firstly, our approach here is less syntactic, as we use the domain

theory of guarded interaction trees as the common setting for interpreting different languages with

different effects, and we do not need to come up with a target language for each pair of source

languages for which we wish to set up interoperability. Secondly, the models that we construct

for individual languages are “local”, and that is exactly what allows for true reuse of proofs and

for constructing a common model for the combined language from the individual models. This

opens up the possibility of a model for a single language to be reused for different cross-language

interactions. In contrast, the type safety of individual source languages in [Patterson et al. 2022]

requires to have a model for the combined language in advance. And finally, the treatment of effects

and step-indices is more abstract and high-level in our work, since we construct our models using

separation logic.

(Guarded) Interaction Trees and Algebraic Effects and Handlers. The treatment of effects in in-

teraction trees is reminiscent of effects in programming languages based on algebraic effects and

handlers [Bauer and Pretnar 2015; Plotkin and Pretnar 2013]. Algebraic effects and handlers have

been extensively studied in various contexts, including separation logic [de Vilhena and Pottier

2021], and both higher-order effects [Bach Poulsen and van der Rest 2023; van den Berg et al. 2021;

Wu et al. 2014] and reasoning about combinations of effects [Johann et al. 2010; Yang and Wu

2021] have been investigated. Despite the aesthetic and moral similarities to (guarded) interaction

trees, there are some substantial differences between the two approaches. Under algebraic effects

and handlers, both the representation and reification of effects is done inside the programming

language. As such, a particular theory and implementation of algebraic effects is always tied to a

specific programming language. Whereas in the interaction trees-based approach, the effects are

handled in the ambient type theory, outside the type of the (guarded) interaction trees itself. See

also the discussion in [Xia et al. 2019, Section 8.2].

To our knowledge, the two approaches have not been formally compared. It would be interesting

to consider a denotational model of a programming language with algebraic effects inside guarded

interaction trees, and to see what kind of properties can be proved using such a model.

Additionally, such a comparison might help us understand the exact class of effects that can be

represented with the GITrees-based approach. As it currently stands, our approach to representing

effects is “open-ended”, in the sense that we can consider different classes of effects by varying the

reification procedure. Of course, different classes of effects allow for different reasoning principles.

For example, as we mentioned in the end of Section 4, we consider context-independent effects,

which preclude us from modeling call/cc, but allows us to use the bind rule for the weakest precon-

dition calculus. We leave a formal comparison with algebraic effects and further investigations in

that area to future work.
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