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What is a good gradual language? Siek et al. have previously proposed the refined criteria, a set of formal ideas
that characterize a range of guarantees typically expected from a gradual language. While these go a long way,
they are mostly focused on syntactic and type safety properties and fail to characterize how richer semantic
properties and reasoning principles that hold in the static language, like non-interference or parametricity for
instance, should be upheld in the gradualization.

In this paper, we investigate and argue for a new criterion previously hinted at by Devriese et al.: the
embedding from the static to the gradual language should be fully abstract. Rather than preserving an arbitrarily
chosen interpretation of source language types, this criterion requires that all source language equivalences
are preserved. We demonstrate that the criterion weeds out erroneous gradualizations that nevertheless
satisfy the refined criteria. At the same time, we demonstrate that the criterion is realistic by reporting on
a mechanized proof that the property holds for a standard example: GTLC𝜇 , the natural gradualization of
STLC𝜇 , the simply typed lambda-calculus with equirecursive types. We argue thus that the criterion is useful
for understanding, evaluating, and guiding the design of gradual languages, particularly those which are
intended to preserve source language guarantees in a rich way.
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1 INTRODUCTION

The Aim of Gradual Typing. The aim of gradual typing is to enable a łprogrammer-controlled
migration between dynamic and static typingž [Siek and Taha 2006]. That is, given a static type
system, the goal is to construct a gradual type system in which existing untyped codebases can
be gradually migrated to follow the static typing discipline. To live up to this ambition, a gradual
language should be well designed:

(1) It should directly support existing untyped and typed programs and not break their well-
formedness or well-typedness, or modify their semantics.
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(2) When the programmer adds type annotations to a part of the program, this should only
modify the semantics when necessary: it is okay to throw type errors for wrong programs,
but accurate type annotations should not change a program’s semantics.

(3) Finally, a programmer should not have to migrate an entire large codebase before enjoying
the benefits of the type system. The type system’s benefits (performance, type safety or
others) should already apply locally in the fully typed parts of the code, no matter how
dynamic the surrounding code may be.

If a gradual language provides these guarantees, it offers a viable migration path for large existing
dynamically typed codebases. Programmers can flexibly spread the migration over time or even
economically apply the static typing discipline where it is of most importance, without necessarily
migrating the entire codebase.
As an aside, we briefly mention that the dynamic part of a gradual language need not be fully

untyped. Given, for instance, a STLC-like language with security types as the static language, one
can aim to gradualize only the security aspect of this typing discipline such that the dynamic
language corresponds to the STLC [Garcia and Tanter 2015].

Refined Criteria. To formally capture these goals, Siek et al. [2015] have put forward a set of
refined criteria for a satisfactory gradual language. They formally define when a gradual type is
more precise than another and formalize the above properties for a specific gradual language (the
GTLC, see below). They can be summarized in general as follows:

(1) Superset criteria The gradual language must completely contain the static and dynamic
language under consideration. Static/dynamic terms must be appropriately typed in the grad-
ual language and their operational semantics must coincide with those in the static/dynamic
language.

(2) The Gradual Guarantee Weakening type annotations (e.g. by removing some of the anno-
tations) of a well-typed term preserves its well-typedness and does not change its operational
semantics. Note that starting from a more precise term and weakening its type annotations
is a way of characterizing how correct type annotations can be added to the less precise
resulting term.

(3) Blame theorem The gradual language satisfies a blame theorem [Wadler and Findler 2009],
which implies that fully-annotated pieces of code are never to blame for a cast error.1

While the two former criteria seem to satisfactorily capture the intuitive properties mentioned, the
final criterion does so only partially.

The Refined Criteria are Not Enough. The Blame theorem implies that the gradual language should
preserve some guarantees of the static type system for fully annotated code. However, Garcia and
Tanter [2020] have recently pointed out that it does so only for those concerning type safety. Note
that in this text, we use the words type safety to capture syntactic type safety properties, typically
embodied by progress and preservation theorems in the style of Wright and Felleisen [1994]. For
some type systems this is sufficient, but type systems often provide additional guarantees.

Garcia and Tanter [2020] propose that a well-designed gradual language should not just enforce
type safety, but type soundness. Type soundness refers to a semantic interpretation of typing
judgments Γ ⊨ 𝑡 : 𝜏 , a property which depends on the type system at hand and can to some extent
be chosen by the gradual language designer. For example, they explain how the meaning of STLC
types can be taken to include termination or just type safety. For gradualizations of polymorphic
types, they explain how type soundness can be taken to include parametricity or not, and in fact,

1A blame theorem is typically a lot stronger, but as we are not currently interested about the practical implementation of
error documentation, this is the crux of it as a language criterion.
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Devriese et al. [2017a, 2020] have explained that existing gradual parametric languages only satisfy
a standard form of parametricity that is strictly weaker than the one that Reynolds originally
formulated for System F types [Reynolds 1983]. For gradualizations of security type systems, Garcia
and Tanter [2020] explain how the security property of non-interference can be taken as part of
the meaning of types.

Choosing the Meaning of Types? Essentially, what Garcia and Tanter [2020] propose is that a
gradual language should preserve the meaning of types, but leave that meaning open to interpreta-
tion. Letting gradual language designers select a meaning of types allows them to choose one they
can actually enforce in the gradual language. In the context of gradual parametricity, for example,
most people agree that the gradual language should enforce parametricity, an important reasoning
principle which holds in static languages like System F. However, parametricity can be defined to
mean very different things and it has taken several iterations to find a form of parametricity that
gradual parametric languages can actually guarantee [Ahmed et al. 2011a, 2017, 2011b; Matthews
and Ahmed 2008; Toro et al. 2019]. Because of the existence of a universal type, the parametricity
offered by these calculi (if any) is defined by a type-world logical relation [Devriese et al. 2017a,
2020] that is strictly weaker than traditional Reynolds-style parametricity that one may be accus-
tomed to in System F [Reynolds 1983]. In the case of security types, the reasoning principle of
non-interference [Toro et al. 2018] can also be defined in different ways (e.g. termination-sensitive
or not) and it is not a priori clear which one is right.

As such, Garcia and Tanter’s approach lets gradual language designers select a meaning of types
that they can enforce and thus offers flexibility. However, this raises the question if it is really
enough to enforce only a carefully selected meaning of types, which is strictly weaker than the
meaning of types in the static language. For example, can we really claim to have gradualized
System F if we only enforce part of the reasoning principles that hold in System F? For programmers,
this would mean that embedding existing static programs in the gradual language requires one to
ascertain that their correctness, safety or security only relies on those reasoning principles that are
preserved in the gradual language. It also means that in the static language, only those optimizations
and refactorings should be applied for which the validity follows just from the reasoning principles
that are preserved in the gradual language. Restricting the meaning of types to an enforceable
subset like this may be unavoidable for some static languages, but this paper explores a more
ambitious approach.

Preserving Reasoning More Generally? What if we were building a gradual language that aims
to preserve arbitrary reasoning about static programs? Devriese et al. [2017a, 2020] have recently
proposed a criterion that takes this perspective, at least for reasoning about program equivalences:
the fully abstract embedding (FAE) property. The idea is to consider the embedding function from
the static language into the gradual language as a translation function and consider whether
it satisfies full abstraction, a property proposed by Abadi [1998, 1999] in the context of secure
compilation [Patrignani et al. 2019a]. This criterion implies that the gradual language should
preserve contextual equivalences in the static language. Not a suitably selected set of contextual
equivalences, but simply all of them.

If two static terms always behave the same in the static language (i.e. no surrounding static code
can distinguish the two), then they should always behave the same when embedded in the gradual
language (i.e. gradual code should not distinguish the two either). In short, equivalent terms in the
static language should be equivalent (as fully annotated terms) in the gradual language.
Another way of interpreting this criterion is that contexts in the gradual language should not

have more distinguishing power over static terms than static contexts do and that abstractions
and reasoning principles from the static language should remain valid in the gradual language.
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Practically, it means for example that refactorings and compiler optimizations which are semantics-
preserving in the static language are also sound in the gradual extension.

What is in this Paper? After providing some background in ğ2, we demonstrate the value of the
FAE criterion in ğ3 by showing how it successfully detects unsatisfactory gradualizations. In other
words, we study three gradual languages where the FAE fails.

Next, in ğ4, we show that the FAE is also realistic, by proving the property for a simple but
representative example; the GTLC𝜇 . Taking inspiration from similar proofs in the context of secure
compilation [Devriese et al. 2016, 2017b; New et al. 2016], we prove that the embedding of STLC𝜇
into GTLC𝜇 is fully abstract. This proof has been mechanically verified using Coq and Iris [Jung
et al. 2018], and can be checked out at https://github.com/scaup/fae-gtlc-mu2.

In ğ5, we elaborate on some of the choices made in earlier sections and lay out some interesting
future work. We discuss related work in ğ6 and conclude in ğ7.

Contributions. Our central contribution is the study of FAE as a general formal criterion for
satisfactory gradual languages, supplementing Siek et al.’s refined criteria. It captures the intuition
that a gradual language should preserve the static language’s benefits also when it comes to
reasoning. Specifically, we demonstrate the following

• We explain a number of interesting gradual languages where FAE fails, i.e. where the criterion
adequately identifies unsatisfactory gradualizations.

• We show that the criterion is realistic, by proving it for the GTLC𝜇 , with respect to STLC𝜇 . This
proof is mechanically verified using Coq and builds on Iris machinery like guarded recursion
for convenient reasoning. This proof is only the second3 mechanized full abstraction proof
in the literature (the first using Iris) and (perhaps surprisingly) one of the first mechanized
results about a gradual language.

2 SOME BACKGROUND

Before we continue, let us quickly refresh somematerial from earlier work, specifically the Gradually
Typed Lambda Calculus (GTLC) with recursive types (ğ2.1) and fully abstract translations (ğ2.2).

2.1 Gradualizing STLC𝜇

First, we introduce GTLC𝜇 : the gradualization of the STLC𝜇 . We follow the standard literature in
doing so [Siek et al. 2015], remarking where we slightly deviate.

The Statics. Gradualizing the STLC𝜇 Ð the simply-typed lambda calculus with sum, product, and
(iso-)recursive types Ð we want to obtain a language in which we can freely navigate the landscape
between fully annotated code and fully dynamic code. To this end, we extent the grammar of our
types as follows.

𝜏 ::= 𝐵 | 𝜏 � 𝜏 | 𝜏 × 𝜏 | 𝜏 + 𝜏 | 𝑋 | 𝜇𝑋 . 𝜏 | ?

Aside from some base type4, arrow types, sum types, product types, and recursive types, we now
have the additional unknown type, ? and of course all the types containing it.5

2A VM-image preinstalled with the required libraries and the right version of Coq can be downloaded at https://doi.org/10.
5281/zenodo.4071674
3The first mechanized proof is reported on by Devriese et al. [2017b].
4To keep the formalities in ğ4 from being annoyingly verbose, we assume only one base type here (in the Coq development,
this is the unit type). When giving examples, we will sometimes assume multiple concrete base types likeN orB for instance,
as it is entirely moral to do so.
5We will always consider closed types (i.e. types that do not contain any free variables); in STLC𝜇 , type variables are only

meaningful to the extent that they are bound to define a recursive type.
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? ∼ 𝜏 𝜏 ∼ ? 𝐵 ∼ 𝐵
𝜏1 ∼ 𝜏

′
1 𝜏2 ∼ 𝜏

′
2

𝜏1 � 𝜏2 ∼ 𝜏
′
1 � 𝜏 ′2

𝜏1 ∼ 𝜏
′
1 𝜏2 ∼ 𝜏

′
2

𝜏1 + 𝜏2 ∼ 𝜏
′
1 + 𝜏

′
2

𝜏1 ∼ 𝜏
′
1 𝜏2 ∼ 𝜏

′
2

𝜏1 × 𝜏2 ∼ 𝜏
′
1 × 𝜏

′
2

𝜏 ∼ 𝜏 ′

𝜇𝑋 . 𝜏 ∼ 𝜇𝑋 . 𝜏 ′
𝑋 ∼ 𝑋

Fig. 1. The consistency relation between types.

Semantically, a value of type ? can be of any static type. Accordingly, we can make the type-
annotations in our code as precise or as vague as we desire, navigating toward the static/dynamic
end of the spectrum respectively.

In the presence of potentially imprecisely annotated code, the job of type checking in the gradual
language is twofold. While it should allow for untyped code (possibly failing upon execution), it
should do its best to reject code for which it can statically be deduced that it is up to no good.
Consequently, type-checked code should retain the safety guarantee as much as is statically possible.
For instance, the term (𝜆𝑥 : N × B.¬(𝜋2 𝑥)) 6 should not type-check, as we statically see that

an integer is not of type N × B. Type-checking should only allow the application of a function to
an argument if the advertised input type of the function is consistent with the actual type of the
argument, i.e. if they are conceivably compatible. The type N × B is obviously not consistent with
N, nor, for instance, with ? + ?. It is however consistent with N × B, and more interestingly, with
N × ?, ? × B, ? × ?, and ?.

Formally, we have the following typing rule for application.

Γ ⊢ 𝑒 : 𝜏1 � 𝜏2 Γ ⊢ 𝑒 ′ : 𝜏 ′1 𝜏1 ∼ 𝜏
′
1

Γ ⊢ 𝑒 𝑒 ′ : 𝜏2

Consistency between types, 𝜏 ∼ 𝜏 ′, is defined in fig. 1. Note that we assume that two types are
consistent if they are after possible 𝛼-conversion.

The Dynamics. The dynamics of the gradual language are defined by translating its terms to a
different language, the cast calculus. This calculus contains an explicit cast construct, 𝑒 : 𝜏 ⇒ 𝜏 ′, to
cast an expression, 𝑒 , from one type 𝜏 to another (consistent) type 𝜏 ′. Through the translation of
a well-typed gradual term, the implicit applications of consistency are replaced by explicit casts.
Translating for instance, (𝜆𝑥 : N. 𝑥) ((𝜆𝑥 : ?. 𝑥) True), we obtain the following:

(𝜆𝑥 : N. 𝑥) (((𝜆𝑥 : ?. 𝑥) (True : B ⇒ ?)) : ? ⇒ N)

We summarize the cast calculus in fig. 2. Unsurprisingly, the dynamics of the cast calcu-
lus mostly coincide with STLC𝜇 ; looking at the expressions, we have constants 𝑘 ; variables 𝑥 ;
lambda-abstractions 𝜆𝑥 : 𝜏 . 𝑒 and applications 𝑒 𝑒; pairs (𝑒, 𝑒) and projections 𝜋1,2 𝑒 as construc-
tor/destructors of product types; injections inj1,2 𝑒 and case matches case 𝑒 of (𝑒 | 𝑒) as construc-
tors/destructor of sum types; and fold and unfold as constructor/destructor of recursive types.
The only thing of interest here is the cast construct and the evaluation rules concerning it.

We define a collection of ground types,𝐺 , through which we define the dynamics of the casts (to
be explained later). Aside from 𝐵 and ? � ?, we also include ? + ? and ? × ?, following Siek [2019].
Lastly, we also add 𝜇𝑋 .? whose values are exactly those that we can unfold at least one time.

Casting a value from a ground type to the unknown forms a value 𝑣 : 𝐺 ⇒ ?, corresponding to
the idea that such a cast will always go through, as we are merely losing type information. The
same is true for casting a value from one function type to another, 𝑣 : 𝜏1 � 𝜏2 ⇒ 𝜏 ′1 � 𝜏2, as such a
cast is suspended (Factor-App).
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𝐺 ::= 𝐵 | ? → ? | ? + ? | ? × ? | 𝜇𝑋 . ?

𝑒 ::= 𝑘 | 𝑥 | 𝜆𝑥 : 𝜏 . 𝑒 | 𝑒 𝑒 | (𝑒, 𝑒) | 𝜋1 𝑒 | 𝜋2 𝑒 | inj1 𝑒 | inj2 𝑒 | case 𝑒 of (𝑒 | 𝑒) | fold 𝑒 | unfold 𝑒 |

𝑒 : 𝜏 ⇒ 𝜏 | CastError

𝑣 ::= 𝑘 | 𝜆𝑥 : 𝜏 . 𝑒 | fold 𝑣 | (𝑣, 𝑣) | inj1,2 𝑣 | 𝑣 : 𝐺 ⇒ ? | 𝑣 : 𝜏1 → 𝜏2 ⇒ 𝜏′1 → 𝜏′2

𝐾 ::= [ ·] | 𝐾 𝑒 | 𝑣 𝐾 | 𝜋1 𝐾 | 𝜋2 𝐾 | inj1 𝐾 | inj2 𝐾 | (𝐾, 𝑒) | (𝑣, 𝐾) | case 𝐾 of (𝑒 | 𝑒) | fold 𝐾 | unfold 𝐾 |

𝐾 : 𝜏 ⇒ 𝜏′

S : Type ⇀ Type

S(𝜏1 × 𝜏2) ≜ ? × ?

S(𝜏1 � 𝜏2) ≜ ? � ?

S(𝜏1 + 𝜏2) ≜ ? + ?

S(𝜇. 𝜏) ≜ 𝜇𝑋 . ?

...

𝑣 : 𝐵 ⇒ 𝐵 −→h 𝑣 Base-Id

𝑣 : ? ⇒ ? −→h 𝑣 Unknown-Id

𝑣 : 𝜏 ⇒ ? −→h 𝑣 : 𝜏 ⇒ 𝐺 ⇒ ? if S(𝜏) = 𝐺 ≠ 𝜏 Factor-Up

𝑣 : ? ⇒ 𝜏 −→h 𝑣 : ? ⇒ 𝐺 ⇒ 𝜏 if S(𝜏) = 𝐺 ≠ 𝜏 Factor-Down

𝑣 : 𝐺 ⇒ ? ⇒ 𝐺 −→h 𝑣 Ground-Id

𝑣 : 𝐺1 ⇒ ? ⇒ 𝐺2 −→h CastError if𝐺1 ≠ 𝐺2 Ground-Fail

(𝑣 : 𝜏1 → 𝜏2 ⇒ 𝜏′1 → 𝜏′2) 𝑤 −→h (𝑣 (𝑤 : 𝜏′1 ⇒ 𝜏1)) : 𝜏2 ⇒ 𝜏′2 Factor-App

(inj𝑖 𝑣) : 𝜏1 + 𝜏2 ⇒ 𝜏′1 + 𝜏
′
2 −→h inj𝑖 (𝑣𝑖 : 𝜏𝑖 ⇒ 𝜏′𝑖 ) for 𝑖 = 1, 2 Factor-Sum

(𝑣1, 𝑣2) : 𝜏1 × 𝜏2 ⇒ 𝜏′1 × 𝜏
′
2 −→h (𝑣1 : 𝜏1 ⇒ 𝜏′1, 𝑣2 : 𝜏2 ⇒ 𝜏′2) Factor-Prod

(fold 𝑣) : 𝜇𝑋 . 𝜏 ⇒ 𝜇𝑌 . 𝜏′ −→h fold (𝑣 : 𝜏 [𝑋 ↦→ 𝜇𝑋 . 𝜏 ] ⇒ 𝜏′ [𝑌 ↦→ 𝜇𝑌 . 𝜏′]) Unfold-Rec

𝐾 [𝑒 ] −→ 𝐾 [𝑒′] if 𝑒 −→h 𝑒
′ Congruence

𝐾 [CastError] −→ CastError if 𝐾 ≠ [ ·] Report-CastError

...
Γ ⊢ 𝑒 : 𝜏 𝜏 ∼ 𝜏′

Γ ⊢ (𝑒 : 𝜏 ⇒ 𝜏′) : 𝜏′
Γ ⊢ CastError : 𝜏

Fig. 2. Cast calculus of GTLC𝜇

Then, there are a lot of casts which are just decomposed into other casts. When trying to cast
down a value of the unknown type to a (non-ground) type 𝜏 , we factor out the cast through
the corresponding ground type (Factor-Down). Conversely, we have (Factor-Up). A cast between
function types is reduced Ð upon application of the function to an argument Ð to the contravariant
cast on the argument, and a covariant one on the result (Factor-App). Following Siek [2019], a cast
between sum types is delegated to the appropriate cast of the two components (Factor-Sum), and a
cast between product types is delegated to the appropriate casts on each component (Factor-Prod).
Lastly, a cast of a value between two recursive types recursively goes through its body. Casts
between (iso)-recursive types behave thus similar to casts between product and sum types; they are
all evaluated eagerly. This is in contrast to casts between function types, which are suspended until
application. The latter is unavoidable however; strictly evaluating a cast between two function
types requires checking if the final cast is respected for any well-typed input.
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In the remaining evaluation rules, casts actually fail or succeed. In Base-Id, Unknown-Id and
Ground-Id, a cast trivially goes through. It must fail in Ground-Fail however, as one tries to cast a
value from one ground type to a different one.

In contrast to Siek et al. [2015], we do not implement blame, as we do not need it for our purposes
(see ğ5). Instead, a failing cast Ð following Siek and Taha [2006] Ð evaluates to the stuck term
CastError (Ground-Fail, Report-CastError).

2.2 Fully Abstract Compilation

Generally, fully abstract compilation [Abadi 1998, 1999; Patrignani et al. 2019a] is formally defined
as follows.6

Definition 2.1 (Fully abstract compilation). Given a compiler, say [[_]] : L𝑠 → L𝑡 , and equivalence
relations in the source and target language, say ≃ and ≃, we have fully abstract compilation if the
compiler both preserves and reflects said equivalences. That is, if the following holds.

∀𝑒1, 𝑒2, 𝑒1 ≃ 𝑒2 if and only if [[𝑒1]] ≃ [[𝑒2]]

The equivalence relations at stake here relate terms that behave similarly under any possible
interaction. Take, for instance the well-typed terms · ⊢ 3 + 3 : N and · ⊢ 𝜋2 (True, 6) : N in the STLC.
These two terms are equivalent, as no well-typed surrounding program can ever distinguish the
two. This is formalized as contextual equivalence.

Definition 2.2 (Contextual equivalence in STLC𝜇). Two terms, 𝑒1 and 𝑒2, are contextually equiva-
lent, written 𝑒1 ≃ctx 𝑒2, iff Γ ⊢ 𝑒1 : 𝜏 , Γ ⊢ 𝑒2 : 𝜏 and for every context, 𝐶 : (Γ;𝜏) ⇒ (· ;1), we have
that the following holds.7

𝐶 [𝑒1] ⇓ if and only if 𝐶 [𝑒2] ⇓

A surrounding program is formalized by a context; a programs with a hole. Any context 𝐶
can be plugged in with a term 𝑒 such that the program 𝐶 [𝑒] is obtained. A context 𝐶 has type
(Γ;𝜏) ⇒ (Γ′;𝜏 ′) if when plugged in with a well-typed term Γ ⊢ 𝑒 : 𝜏 , we obtain the well-typed
term Γ

′ ⊢ 𝐶 [𝑒] : 𝜏 ′.
Notice that the definition is stronger than it appears. For example, if 𝑒1 and 𝑒2 are of boolean

type, contextual equivalence between the two implies that if one of them reduces to a boolean
value, the other one must reduce to the same value. This can be shown using the following context
in which Ω1 a diverging term of type 1.

if [_] then unit else Ω1

To formalize contextual equivalence inGTLC𝜇 , we chose an analogous definition by equi-termination.

Definition 2.3 (Contextual equivalence in Gradual Language). Two terms, 𝑒1 and 𝑒2, in GTLC𝜇 are
equivalent, written 𝑒1 ≃ctx 𝑒2, iff Γ ⊢ 𝑒1, 𝑒2 : 𝜏 and for all gradual contexts 𝐶 : (Γ;𝜏) ⇒ (· ;1), we
have 𝐶 [𝑒1] ⇓ iff 𝐶 [𝑒2] ⇓.

Notice that this definition does not distinguish between divergence and runtime errors. In ğ5.1,
we motivate this choice and discuss the alternatives in detail.

6Expressions, types, and relations with respect to static/source languages will be formatted in blue; those related with
target/gradual languages will be formatted in red.
7Here, and throughout the rest of this paper, we denote 𝑒 ⇓ to mean, ∃𝑣. 𝑒 −→∗ 𝑣.
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3 GRADUAL LANGUAGES WITHOUT AN FAE

In this section, we touch upon three gradualizations from the literature that fail the FAE criterion.
Two of these are the result of a straightforward but naive application of the AGT framework [Garcia
et al. 2016]. AGT (Abstracting Gradual Typing) is a general framework that uses abstract inter-
pretation of types to gradualize an arbitrary static language. It requires only a static language, a
syntax for the gradual types, and a Galois connection between sets of static types (ordered by the
subset relation) and gradual types (ordered by the precision relation). This connection defines the
set of static types that represents a gradual type and the most precise gradual type that represents
a given set of static types. Knowledge of AGT is not a prerequisite for this section however.

The AGT framework ensures that any resulting gradual language satisfies Ð by construction Ð
the refined criteria. Unfortunately, the derived dynamics of the gradual language are only designed
to preserve type safety. As a result, the gradualization often fails to preserve the guarantees of the
static typing discipline that go beyond mere type safety [Garcia and Tanter 2020].
So far, problems like these have only been described in terms of the failure of properties that

are specific to the static language at hand. In this section, we demonstrate that they are detected
through failure of the general FAE criterion.

3.1 Gradualising a Parametric Language, Naively

Toro et al. [2019] define their static language SF, which is essentially a representation of System F
that makes it more amenable to applying AGT-recipe. Because of parametricity, we have, for
instance, the following contextual equivalence in this language:

𝜆𝑓 : ∀𝑋 .𝑋 � Z. 𝑓 [Z] 0 ≃ctx 𝜆𝑓 : ∀𝑋 .𝑋 � Z. 𝑓 [Z] 5

Indeed, from parametricity [Reynolds 1983] we know that instantiating a function 𝑓 of type
∀𝑋 .𝑋 � Z with the type Z (or any type for that matter) and applying it to a value, will always
return the same integer. Intuitively, this is because the language does not allow 𝑓 to detect which
type it is being applied to and therefore, it must behave the same for any type.
If the FAE criterion holds for a gradualization of SF, the same equivalence must hold after

embedding:

⌈⌈𝜆𝑓 : ∀𝑋 .𝑋 � Z. 𝑓 [Z] 0⌉⌉
?

≃ctx ⌈⌈𝜆𝑓 : ∀𝑋 .𝑋 � Z. 𝑓 [Z] 5⌉⌉

When Toro et al. [2019] first applied AGT to SF naively, they used a standard representation of
evidence (a concept introduced in AGT with which the dynamics of the gradualization is derived)
as just a pair of gradual types. However, the resulting gradualization broke parametricity and the
above equivalence. In their calculus, they can construct a function of type∀𝑋 .𝑋 � Z that acts as the
successor function when instantiated with Z, thereby demonstrating the lack of parametricity [Toro
et al. 2019, ğ7.1]:

Λ𝑋 . 𝜆𝑥 : 𝑋 . (𝜆𝑦 : ?. (𝜆𝑧 : ?. 𝑧 + 1) 𝑦) 𝑥

This function can be used to discriminate the two terms we saw before:

⌈⌈𝜆𝑓 : ∀𝑋 .𝑋 � Z. 𝑓 [Z] 0⌉⌉ (Λ𝑋 . 𝜆𝑥 : 𝑋 . (𝜆𝑦 : ?. (𝜆𝑧 : ?. 𝑧 + 1) 𝑦) 𝑥) −→∗1

⌈⌈𝜆𝑓 : ∀𝑋 .𝑋 � Z. 𝑓 [Z] 5⌉⌉ (Λ𝑋 . 𝜆𝑥 : 𝑋 . (𝜆𝑦 : ?. (𝜆𝑧 : ?. 𝑧 + 1) 𝑦) 𝑥) −→∗6

In other words, although the FAE criterion is not in any way tied to System F, the criterion accurately
detects the failure of parametricity in this naive gradualization.8

8FAE also fails here because of partiality (divergence/errors) present in the gradual language, but this is orthogonal to the
issue here.
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3.2 Gradualizing a Parametric Language, Non-naively

In the last paragraph, we have examined an obviously naive gradualization of a parametric language.
However, even less naive gradual languages are not without problems. Devriese et al. [2017a, 2020]
have pointed out that even gradual polymorphic languages that come with a proof of parametricity
[Ahmed et al. 2017; New et al. 2019; Toro et al. 2019] break certain equivalences that hold in
System F.
The problem is demonstrated using the type Univ:

Univ = ∃𝑌 .∀𝑋 . (𝑋 � 𝑌 ) × (𝑌 � 𝑋 )

In a sense, this type expresses the existence of a universal type: a single type 𝑌 which every other
type 𝑋 can be embedded into and extracted from. Interestingly, Devriese et al. [2020] demonstrate
that standard Reynolds parametricity implies degeneracy of this type: instantiating 𝑋 with an
arbitrary type, embedding a value of 𝑋 into 𝑌 and then extracting it again, must necessarily diverge.

This property can be used to show contextual equivalence of the following two terms [Devriese
et al. 2020]:

𝑒1 = 𝜆𝑥 : Univ. unpack 𝑥 as 𝑌, 𝑥 ′ in

let 𝑥 ′′ : (1 → 𝑌 ) × (𝑌 → 1) = 𝑥 ′ [1] in (𝜋2 𝑥
′′) ((𝜋1 𝑥

′′) unit)

𝑒2 = 𝜆𝑥 : Univ. Ω1 (where Ω1 a diverging term of type 1)

Of course, gradual parametric languages contain the gradual type ? and indeed, the equivalence
of ⌈⌈𝑒1⌉⌉ and ⌈⌈𝑒2⌉⌉ no longer holds because of this. It is not that hard to construct a context that
uses ? to construct a non-degenerate value of type ⌈⌈Univ⌉⌉ and use it to break the equivalence
above:

[·] (pack ?,Λ𝑋 . ⟨𝜆𝑥 : 𝑋 . 𝑥 : 𝑋 ⇒ ?, 𝜆𝑥 : ?. 𝑥 : ? ⇒ 𝑋 ⟩ as Univ)

What this means is that the parametricity offered by gradual parametric calculi is a weaker form
of parametricity than the one that holds in System F. Because of this difference, not all equivalences
that hold in System F are preserved in these languages. The FAE criterion picks up this difference
in the kind of parametricity that is offered by the language. The fact that not all of System F’s
equivalences continue to hold in a gradual parametric calculus may be important for users to be
aware of. As such, we think one should be careful to claim that these calculi are gradualizations of
System F, but instead regard them as gradualizations of a variant of System F with a universal type.

3.3 Gradualizing an Information-flow Language with References

Toro et al. [2018] set out to gradualize the security aspect in the typing discipline of a non-trivial
information-flow language with references. They first define their static language SSLref , a statically-
typed language with references in which types and terms are indexed by a secrecy label in a lattice.
A value of type 𝜏ℓ corresponds to a value of type 𝜏 that is indexed by a particular secrecy level ℓ .
The static typing discipline then ensures that in a well-typed program, computations of some value
at a certain secrecy level are never influenced by data coming from a higher secrecy level. In other
words, confidential data at a level ℓ can never leak Ð directly or indirectly Ð to a level ℓ ′ ≼ ℓ . This
general property is referred to as łnon-interferencež.
We have (given 𝐿 ≼ 𝐻 ) the following contextual equivalence in this language.

𝜆𝐻 𝑓 : B𝐻
𝐻
→ B𝐿 . 𝜆

𝐻𝑏 : B𝐻 . (𝑓 𝑏) ≃ctx 𝜆
𝐻 𝑓 : B𝐻

𝐻
→ B𝐿 . 𝜆

𝐻𝑏 : B𝐻 . (𝑓 ¬𝑏)

Indeed, by non-interference, a function of type B𝐻
𝐻
→ B𝐿 cannot actually depend upon its argument.

Therefore, we can safely negate its argument for instance.
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𝑒1
?

≃ctx 𝑒2

C
[
𝑒1
]
⇓

?
⇒ C

[
𝑒2
]
⇓

(1)

(2)

(3) Superset criterionSuperset criterion

⌈⌈C⌉⌉
[
⌈⌈𝑒1⌉⌉

]
⇓ ⇒ ⌈⌈C⌉⌉

[
⌈⌈𝑒2⌉⌉

]
⇓

⌈⌈𝑒1⌉⌉ ≃ctx ⌈⌈𝑒2⌉⌉

Fig. 3. Reflection of equivalences: overview proof. Structure of diagram taken from Devriese et al. [2016].

Like before, in ğ3.1, naively applying AGT (with evidence represented by pairs of labels) gives us
a language in which this is not the case anymore. Toro et al. [2018] show that this language cannot
hope to satisfy non-interference by giving the following example:

true? :: B𝐻 :: B? :: B𝐿 −→∗ true𝐿

From this counterexample, it is again not hard to construct a gradual context 𝐶 demonstrating that
the aforementioned equivalence is not preserved:

𝐶 ≜ [·] 𝑔 𝑡 where

𝑔 ≜ 𝜆𝐻𝑏 : B𝐻 . 𝑏 :: B? :: B𝐿

𝑡 ≜ true? :: B𝐻

Indeed, we now have the following:

⌈⌈𝜆𝐻 𝑓 : B𝐻
𝐻
→ B𝐿 . 𝜆

𝐻𝑏 : B𝐻 . (𝑓 𝑏)⌉⌉ 𝑔 𝑡 −→
∗ true𝐿

⌈⌈𝜆𝐻 𝑓 : B𝐻
𝐻
→ B𝐿 . 𝜆

𝐻𝑏 : B𝐻 . (𝑓 ¬𝑏)⌉⌉ 𝑔 𝑡 −→
∗ false𝐿

4 FAE FOR THE GTLC𝜇

Now thatwe have demonstrated that the FAE criterion can successfully detect gradual languages that
are unsatisfactory in the sense that they do not preserve static equivalences in the gradualization,
the question remains whether the criterion is not too ambitious. Can we really hope for gradual
languages that preserve arbitrary static equivalences? In this section, we show that an FAE may
not be too much to hope for, by proving the property in at least one simple but representative
setting. We report on our computer-verified proof9 that it is indeed satisfied by the GTLC𝜇 for
source language STLC𝜇 , laid out in ğ2.1.

In ğ4.1, we present a high-level overview of the proof, introducing the concept of a backtranslation
and its role in the proof. We present our backtranslation in ğ4.2, and we prove its validity in ğ4.3.

4.1 High-Level Overview

Proving Reflection of Contextual Equivalences. Proving the reflection of contextual equivalences
is the less interesting part of this proof, as it directly follows from the superset criterion. Below, we
provide a quick proof.

9It can be checked out at https://github.com/scaup/fae-gtlc-mu.
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𝑒1 ≃ctx 𝑒2

⟨⟨C⟩⟩[𝑒1] ⇓ ⇒ ⟨⟨C⟩⟩[𝑒2] ⇓

(1)

(2)

(3) Theorem 4.1Theorem 4.1

C
[
⌈⌈𝑒1⌉⌉

]
⇓

?
⇒ C

[
⌈⌈𝑒2⌉⌉

]
⇓

⌈⌈𝑒1⌉⌉
?

≃ctx ⌈⌈𝑒2⌉⌉

Fig. 4. Preservation of equivalences: overview proof. Structure of diagram taken from Devriese et al. [2016].

Given two arbitrary static terms, say 𝑒1 and 𝑒2, whose embeddings are equivalent in the gradual
language, we need to prove that they are equivalent in the static language. Thus given an arbitrary
static context, say C, we need to prove that C

[
𝑒1
]
⇓ implies C

[
𝑒2
]
⇓ (the reverse direction is

symmetric). As depicted in fig. 3, this follows directly from the superset criterion (1,3) and the given
contextual equivalence in the gradual language, instantiated with ⌈⌈C⌉⌉ (2).

In ğ4.3, we briefly mention how the same can be proven without appeal to the superset criterion.

Proving Preservation of Contextual Equivalences. Intuitively, we need to prove somehow that
gradual contexts do not possess more distinguishing power over fully annotated terms than static
contexts do. One way to do this is to emulate the behavior of a gradual context by that of a static
context. Formally, we would have an emulation function (following the literature on fully abstract
compilation proofs [Patrignani et al. 2019a], we also refer to this function as a łbacktranslationž),
⟨⟨_⟩⟩ : C ↦→ ⟨⟨C⟩⟩, which maps gradual contexts to their appropriate emulations in the static
language. With this in mind, we have the following proof sketch.
Given two equivalent static terms, say 𝑒1 ≃ctx 𝑒2, we need to prove that ⌈⌈𝑒1⌉⌉ and ⌈⌈𝑒2⌉⌉ are

equivalent in the gradual language. That is, given an arbitrary gradual context, say C, we need to
prove that C

[
⌈⌈𝑒1⌉⌉

]
⇓ implies C

[
⌈⌈𝑒2⌉⌉

]
⇓ (the reverse direction is again symmetric). As depicted

in fig. 4, this follows if we can construct a valid emulation function (1,3), together with the given
contextual equivalence in the static language, instantiated with ⟨⟨C⟩⟩ (2).

What it means for our emulation function to be valid, is easily extracted from the requirements
of the proof; we have the following specification.

Theorem 4.1 (Specification for the backtranslation). Given arbitrary well-typed static term,

Γ ⊢ 𝑒 : 𝜏 , and arbitrary target context, 𝐶 : (⌈⌈Γ⌉⌉; ⌈⌈𝜏⌉⌉) ⇒ (· ;1), we must have that

⟨⟨𝐶⟩⟩ : (Γ; 𝜏) ⇒ (· ;1) and ⟨⟨𝐶⟩⟩[𝑒] ⇓ iff 𝐶
[
⌈⌈𝑒⌉⌉

]
⇓.

Exactly defining our backtranslation and proving that it satisfies theorem 4.1 will be the subject
of ğ4.2 and ğ4.3 respectively.

4.2 Backtranslation

As seen in ğ2.1, the dynamics of GTLC𝜇 are defined by a translation to the cast calculus, in which
non-trivial consistencies are interspersed with explicit casts. We define our backtranslation directly
on this cast calculus; this turns out to be much easier, despite the fact that the cast calculus allows
for much more contexts. Throughout this section, we define the backtranslation only on terms, but
it naturally extends to contexts.
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⟨⟨𝑘⟩⟩ ≜ 𝑘

⟨⟨𝑥⟩⟩ ≜ 𝑥

⟨⟨𝜆𝑥 : 𝜏 . 𝑒⟩⟩ ≜ 𝜆𝑥 : ⟨⟨𝜏⟩⟩. ⟨⟨𝑒⟩⟩

⟨⟨𝑒1 𝑒2⟩⟩ ≜ ⟨⟨𝑒1⟩⟩ ⟨⟨𝑒2⟩⟩

⟨⟨𝜋1 𝑒⟩⟩ ≜ 𝜋1 ⟨⟨𝑒⟩⟩

⟨⟨𝜋2 𝑒⟩⟩ ≜ 𝜋2 ⟨⟨𝑒⟩⟩

⟨⟨(𝑒1, 𝑒2)⟩⟩ ≜ (⟨⟨𝑒1⟩⟩, ⟨⟨𝑒2⟩⟩)

⟨⟨inj1 𝑒⟩⟩ ≜ inj1 ⟨⟨𝑒⟩⟩

⟨⟨inj2 𝑒⟩⟩ ≜ inj2 ⟨⟨𝑒⟩⟩

⟨⟨case 𝑒 of (𝑒1 | 𝑒2)⟩⟩ ≜ case ⟨⟨𝑒⟩⟩ of (⟨⟨𝑒1⟩⟩ | ⟨⟨𝑒2⟩⟩)

⟨⟨fold 𝑒⟩⟩ ≜ fold ⟨⟨𝑒⟩⟩

⟨⟨unfold 𝑒⟩⟩ ≜ unfold ⟨⟨𝑒⟩⟩

Fig. 5. The uninteresting parts of the backtranslation on expressions.

⟨⟨𝐵⟩⟩ ≜ 𝐵

⟨⟨𝜏1 → 𝜏2⟩⟩ ≜ ⟨⟨𝜏1⟩⟩ → ⟨⟨𝜏2⟩⟩

⟨⟨𝜏1 + 𝜏2⟩⟩ ≜ ⟨⟨𝜏1⟩⟩ + ⟨⟨𝜏2⟩⟩

⟨⟨𝜏1 × 𝜏2⟩⟩ ≜ ⟨⟨𝜏1⟩⟩ × ⟨⟨𝜏2⟩⟩

⟨⟨𝑋 ⟩⟩ ≜ 𝑋

⟨⟨𝜇𝑋 . 𝜏⟩⟩ ≜ 𝜇𝑋 . ⟨⟨𝜏⟩⟩

Fig. 6. The uninteresting parts of the backtranslation on types.

The Easy Part. Structurally, the cast calculus is just the static language extended with the cast
construct. Much of the backtranslation is therefore quite uninteresting, as can be seen in fig. 5.

Naturally, these parts of the backtranslating preserve well-typedness; a fully annotated term (i.e.
a term with no casts) of type 𝜏 is backtranslated to a term of type ⟨⟨𝜏⟩⟩, where the uninteresting
parts of the backtranslation on types can be seen in fig. 6. We quickly note also that embedding
terms from the static language into the gradual one and backtranslating them forms a retraction
pair; we have that ⟨⟨⌈⌈_⌉⌉⟩⟩ is the identity function.

The Universe. Of course, things get more interesting when we look at non-static gradual expres-
sions. To begin with, we require a static type that can accommodate expressions of, for instance, the
unknown type for which Ð semantically Ð expressions can have any static type. Taking inspiration
from Devriese et al. [2016]; New et al. [2016], we will backtranslate expressions of the unknown
type to expressions of the following static type.

⟨⟨?⟩⟩ ≜ 𝜇𝑋 . (𝐵 + (𝑋 � 𝑋 ) + (𝑋 + 𝑋 ) + (𝑋 × 𝑋 ) + 𝑋 ) (1)

This type is often referred to as a universal type of the STLC𝜇 , as we can embed every static type in
it. Throughout this section, we denote it by U . The above completes the backtranslation on types
given in fig. 6.

For convenience, we will use a variant-like syntax with labels (even though technically, we only
have binary sum types):

⟨(𝐵 : 𝐵); (�: (U � U )); (+ : (U + U )); (× : (U × U )); (𝜇 : U )⟩

This syntax allows us to use constructors inj𝐵 , inj
�
, inj× , and inj𝜇 , as well as the following

generalized case match.

case 𝑒 of (𝜆𝑥 : 𝐵. 𝑒1) | (𝜆𝑥 : U + U . 𝑒2) | (𝜆𝑥 : U × U . 𝑒3) | (𝜆𝑥 : U � U . 𝑒4) | (𝜆𝑥 : U . 𝑒5)
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inject𝐵 ≜ 𝜆𝑢 : 𝐵. fold (inj𝐵 𝑢) : 𝐵 � U

inject?+? ≜ 𝜆𝑢 : U + U . fold (inj+ 𝑢) : U + U � U

inject?×? ≜ 𝜆𝑢 : U × U . fold (inj× 𝑢) : U × U � U

inject?�? ≜ 𝜆𝑢 : U � U . fold (inj
�
𝑢) : (U � U ) � U

inject𝜇𝑋 .? ≜ 𝜆𝑢 : 𝜇𝑋 .U . fold (inj𝜇 (unfold 𝑢)) : 𝜇𝑋 .U � U

extract𝐵 ≜ 𝜆𝑢 : U . case (unfold 𝑢) of (𝜆𝑥 : 𝐵. 𝑥) | (𝜆𝑥 : _. Ω𝐵) : U � 𝐵

extract?+? ≜ 𝜆𝑢 : U . case (unfold 𝑢) of (𝜆𝑥 : U + U . 𝑥) | (𝜆𝑥 : _. ΩU +U ) : U � (U + U )

extract?×? ≜ 𝜆𝑢 : U . case (unfold 𝑢) of (𝜆𝑥 : U × U . 𝑥) | (𝜆𝑥 : _. ΩU ×U ) : U � (U × U )

extract?�? ≜ 𝜆𝑢 : U . case (unfold 𝑢) of (𝜆𝑥 : U � U . 𝑥) | (𝜆𝑥 : _. ΩU �U ) : U � (U � U )

extract𝜇𝑋 .? ≜ 𝜆𝑢 : U . case (unfold 𝑢) of (𝜆𝑥 : U . fold 𝑥) | (𝜆𝑥 : _. Ω𝜇𝑋 .U ) : U � 𝜇𝑋 .U

Fig. 7. Defining the injection and extraction functions for every ground type

Moreover, we shall further abbreviate this if in all but one of the branches we have the same
function body (that is independent of the input argument). The expression below for instance, shall
be abbreviated to case 𝑒 of (𝜆𝑥 : U + U . 𝑒 ′′) | (𝜆_ : _. 𝑒 ′).

case 𝑒 of (𝜆_ : 𝐵. 𝑒 ′) | (𝜆𝑥 : U + U . 𝑒 ′′) | (𝜆_ : U × U . 𝑒 ′) | (𝜆_ : U � U . 𝑒 ′) | (𝜆_ : U . 𝑒 ′)

Backtranslating Casts to Functions. The only non-static construct in our gradual language is
the cast construct. To complete the backtranslation on terms from fig. 5, it remains to define the
backtranslation of that construct. We will backtranslate a cast of a term 𝑒 from 𝜏 to 𝜏 ′ to the
application of a function, F 𝜏⇒𝜏 ′ , to be defined later:

⟨⟨𝑒 : 𝜏 ⇒ 𝜏 ′⟩⟩ ≜ F 𝜏⇒𝜏′ ⟨⟨𝑒⟩⟩ (2)

To ensure well-typedness of our backtranslation, this function F 𝜏⇒𝜏′ must be of type ⟨⟨𝜏⟩⟩ � ⟨⟨𝜏 ′⟩⟩.

Some Simple Examples. Let us look at some simple examples.
Consider some value of base type, 𝑣 : 𝐵. Given ⟨⟨𝑣⟩⟩ : 𝐵, we backtranslate 𝑣 : 𝐵 ⇒ ? by injecting

⟨⟨𝑣⟩⟩ into the universe:

⟨⟨𝑣 : 𝐵 ⇒ ?⟩⟩ = (𝜆𝑢 : 𝐵. fold (inj𝐵 𝑢)) ⟨⟨𝑣⟩⟩

Note that the application of this function always succeeds; it will always terminate to a value of
type U , reflecting the fact that 𝑣 : 𝐵 ⇒ ? is a value of type ?.
Conversely though, casting down a value of the unknown type, say 𝑣 : ?, to base type 𝐵 should

only go through if the unknown value was łof the right formž, i.e. 𝑣 = (𝑏 : 𝐵 ⇒ ?). Accordingly,
we backtranslate 𝑣 : ? ⇒ 𝐵 as follows:

⟨⟨𝑣 : ? ⇒ 𝐵⟩⟩ = (𝜆𝑢 : U . case (unfold 𝑢) of (𝜆𝑥 : 𝐵. 𝑥) | (𝜆𝑥 : _. Ω𝐵)) ⟨⟨𝑣⟩⟩

If 𝑣 was of the form 𝑏 : 𝐵 ⇒ ?, i.e. the evaluation of ⟨⟨𝑣⟩⟩ of the form fold (inj𝐵 𝑏), then the
application will evaluate to 𝑏. If not, it will evaluate to a diverging term Ω𝐵 of type 𝐵, implemented
using recursive types.
In general, we have for any ground type 𝐺 a function inject𝐺 : ⟨⟨𝐺⟩⟩ � U and a function

extract𝐺 : U � ⟨⟨𝐺⟩⟩, defined in fig. 7. They all follow Ð more or less Ð the same pattern. For the
case of the ground type 𝜇𝑋 . ?, we do have a small caveat as we have to put an extra unfold /fold
into place.
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𝐵⇝ 𝐵 ?⇝ ? ?⇝ 𝐺 𝐺 ⇝ ?

𝜏 ⇝ 𝐺 S(𝜏) = 𝐺 ≠ 𝜏 𝐺 ⇝ ?

𝜏 ⇝ ?

?⇝ 𝐺 S(𝜏) = 𝐺 ≠ 𝜏 𝐺 ⇝ 𝜏

?⇝ 𝜏

𝜏′1 ⇝ 𝜏1 𝜏2 ⇝ 𝜏′2

𝜏1 � 𝜏2 ⇝ 𝜏′1 � 𝜏′2

𝜏1 ⇝ 𝜏′1 𝜏2 ⇝ 𝜏′2

𝜏1 × 𝜏2 ⇝ 𝜏′1 × 𝜏
′
2

𝜏1 ⇝ 𝜏′1 𝜏2 ⇝ 𝜏′2

𝜏1 + 𝜏2 ⇝ 𝜏′1 + 𝜏
′
2

𝜏 [𝑋 ↦→ 𝜇𝑋 . 𝜏 ] ⇝ 𝜏′ [𝑌 ↦→ 𝜇𝑌 . 𝜏′]

𝜇𝑋 . 𝜏 ⇝ 𝜇𝑌 . 𝜏′

Fig. 8. Decomposition of casts in terms of each other.

We remark that the extract and inject functions satisfy the specification that arises from the
evaluation rule Ground-Id, as composing extract𝐺 with inject𝐺 will behave as the identity function.
Composing extract𝐺1 with inject𝐺2 where 𝐺1 ≠ 𝐺2, will behave as 𝜆𝑥 : ⟨⟨𝐺2⟩⟩.Ω ⟨⟨𝐺1 ⟩⟩ , in accor-

dance to the Ground-Fail evaluation rule. Indeed, we are backtranslating a cast error to a diverging
term.

⟨⟨CastError : 𝜏⟩⟩ ≜ Ω ⟨⟨𝜏 ⟩⟩

Casts that Decompose. Towards a general definition of the backtranslation for the casts, we want
to mimic the cast calculus as faithful as possible, as doing so will make it easier to prove that it
satisfies theorem 4.1. More precisely, we want our backtranslation to reflect the manner in which
casts are decomposed in terms of each other. We summarize this structure (the decompositions of
casts) in a binary relation on types, depicted in fig. 8; derivations of this relation reflect the way in
which casts are decomposed in terms of each other.

As a first step, we now start defining the backtranslation by induction on this relation, after
which we will tweak the relation slightly to accommodate the backtranslation of casts between
recursive types.

The atomic casts are backtranslated easily enough. We backtranslate𝐺 ⇒ ? to inject𝐺 and ? ⇒ 𝐺

to extract𝐺 from the previous section, reflecting both Ground-Id and Ground-Fail. The casts 𝐵 ⇒ 𝐵

and ? ⇒ ? are trivially backtranslated to 𝜆𝑥 : 𝐵. 𝑥 and 𝜆𝑥 : U . 𝑥 respectively, mirroring Base-Id

and Unknown-Id.
We will consider the compositional casts now. Given 𝑓1 : ⟨⟨𝜏1⟩⟩�⟨⟨𝜏 ′1⟩⟩, 𝑓2 : ⟨⟨𝜏2⟩⟩�⟨⟨𝜏 ′2⟩⟩, back-

translations for 𝜏1 ⇒ 𝜏 ′1, 𝜏2 ⇒ 𝜏 ′2 respectively, we can backtranslate 𝜏1 + 𝜏2 ⇒ 𝜏 ′1 + 𝜏
′
2, mirroring

Factor-Sum:

𝜆𝑠 : ⟨⟨𝜏1⟩⟩ + ⟨⟨𝜏2⟩⟩. case 𝑠 of 𝜆𝑥1 : ⟨⟨𝜏1⟩⟩. inj1 (𝑓1 𝑥1) | 𝜆𝑥2 : ⟨⟨𝜏2⟩⟩. inj2 (𝑓2 𝑥2)

Similarly, given 𝑓1 : ⟨⟨𝜏1⟩⟩�⟨⟨𝜏 ′1⟩⟩, 𝑓2 : ⟨⟨𝜏2⟩⟩�⟨⟨𝜏 ′2⟩⟩, backtranslations for 𝜏1 ⇒ 𝜏 ′1, 𝜏2 ⇒ 𝜏 ′2 respec-
tively, we backtranslate 𝜏1 × 𝜏2 ⇒ 𝜏 ′1 × 𝜏

′
2, mirroring Factor-Prod.

𝜆𝑝 : ⟨⟨𝜏1⟩⟩ × ⟨⟨𝜏2⟩⟩. (𝑓1 (𝜋1 𝑝), 𝑓2 (𝜋2 𝑝))

Given 𝑓1 : ⟨⟨𝜏 ′1⟩⟩�⟨⟨𝜏1⟩⟩ and 𝑓2 : ⟨⟨𝜏2⟩⟩�⟨⟨𝜏 ′2⟩⟩, backtranslations for 𝜏
′
1 ⇒ 𝜏1 and 𝜏2 ⇒ 𝜏 ′2 respec-

tively, we mirror the backtranslation of 𝜏1 � 𝜏2 ⇒ 𝜏 ′1 � 𝜏 ′2 according to Factor-App.

𝜆𝑓 : ⟨⟨𝜏1⟩⟩ � ⟨⟨𝜏2⟩⟩. 𝜆𝑥 : ⟨⟨𝜏 ′1⟩⟩. 𝑓2 (𝑓 (𝑓1 𝑥))

This reflects the suspended nature of the cast as 𝑓1 will only be applied on the argument when it is
actually supplied, after which 𝑓2 is applied on the result (after applying 𝑓 ).

Unfortunately, the relation as is does not allow for a valid definition of the backtranslation; dele-
gating a cast between two recursive types, say 𝜇𝑋 . 𝜏 ⇒ 𝜇𝑌 . 𝜏 ′ to 𝜏 [𝑋 ↦→ 𝜇𝑋 . 𝜏] ⇒ 𝜏 ′.[𝑌 ↦→ 𝜇𝑌 . 𝜏 ′],
would clearly make the definition cyclic. Naively backtranslating, for instance, the cast 𝜇𝑋 . ? × 𝑋 ⇒
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Atomic-Base
𝐹 ⊢𝑠 𝐵 ❀ 𝐵

Atomic-Unknown
𝐹 ⊢𝑠 ? ❀ ?

Atomic-Unknown-G
𝐹 ⊢𝑠 ? ❀ 𝐺

Atomic-G-Unknown
𝐹 ⊢𝑠 𝐺 ❀ ?

FactorUp-G
𝐹 ⊢𝑠 𝜏 ❀ 𝐺 S(𝜏) = 𝐺 ≠ 𝜏 𝐹 ⊢𝑠 𝐺 ❀ ?

𝐹 ⊢𝑠 𝜏 ❀ ?

FactorDown-G
𝐹 ⊢𝑠 ? ❀ 𝐺 S(𝜏) = 𝐺 ≠ 𝜏 𝐹 ⊢𝑠 𝐺 ❀ 𝜏

𝐹 ⊢𝑠 ? ❀ 𝜏

ThroughArrow
𝐹 ⊢𝑠 𝜏

′
1 ❀ 𝜏1 𝐹 ⊢𝑠 𝜏2 ❀ 𝜏′2

𝐹 ⊢𝑠 𝜏1 � 𝜏2 ❀ 𝜏′1 � 𝜏′2

ThroughSum
𝐹 ⊢𝑠 𝜏1 ❀ 𝜏′1 𝐹 ⊢𝑠 𝜏2 ❀ 𝜏′2

𝐹 ⊢𝑠 𝜏1 + 𝜏2 ❀ 𝜏′1 + 𝜏
′
2

ThroughProd
𝐹 ⊢𝑠 𝜏1 ❀ 𝜏′1 𝐹 ⊢𝑠 𝜏2 ❀ 𝜏′2

𝐹 ⊢𝑠 𝜏1 × 𝜏2 ❀ 𝜏′1 × 𝜏
′
2

ExposeRecursiveCall
(𝜇𝑋 . 𝜏 ❀ 𝜇𝑌 . 𝜏′) ∉ Im(𝐹 ) 𝐹 (𝑓 )undefined 𝐹 [ (𝑓 ↦→ 𝜇𝑋 . 𝜏 ❀ 𝜇𝑌 . 𝜏′) ] ⊢𝑠 𝜏 [𝑋 ↦→ 𝜇𝑋 . 𝜏 ] ❀ 𝜏′ [𝑌 ↦→ 𝜇𝑌 . 𝜏′]

𝐹 ⊢𝑠 𝜇𝑋 . 𝜏 ❀ 𝜇𝑌 . 𝜏′

Atomic-UseRecursion
𝐹 (𝑓 ) = 𝜇𝑋 . 𝜏 ❀ 𝜇𝑌 . 𝜏′

𝐹 ⊢𝑠 𝜇𝑋 . 𝜏 ❀ 𝜇𝑌 . 𝜏′

Fig. 9. Alternative consistency relation for definition of the backtranslation.

𝜇𝑋 .N × 𝑋 , we would obtain the following infinite definition:

𝜆𝑥 : 𝜇𝑋 . (U × 𝑋 ) . fold
( (
𝜆𝑝 : U × 𝜇𝑋 . (U × 𝑋 ) . (extractN (𝜋1 𝑝) , 𝑓 (𝜋2 𝑝))

)
(unfold 𝑥)

)

where 𝑓 ≜ 𝜆𝑥 : 𝜇𝑋 . (U × 𝑋 ). ...

To solve this, we simply implement a fixpoint operator with recursive types that we then use to
expose a recursive call, 𝑖 , that we make use of accordingly:

𝜆𝑦 : 𝜇𝑋 . (U × 𝑋 ).
−→
fix

(
𝜆𝑖 : 𝜇𝑋 . (U × 𝑋 ) � 𝜇𝑌 . (N × 𝑌 ).

(
𝜆𝑥 : 𝜇𝑋 . (U × 𝑋 ). fold ((𝜆𝑝 : U × 𝜇𝑋 . (U × 𝑋 ). (extractN (𝜋1 𝑝), 𝑖 (𝜋2 𝑝))) (unfold 𝑥))

) )
𝑦

The General Definition. To accommodate our last example, we slightly tweak the relation in
fig. 8, obtaining the one depicted in fig. 9. It is by induction on this relation that we establish the
general definition of the backtranslation on casts. In it, every judgment is now accompanied by
a partial function mapping static variables to a pair of gradual types. In the backtranslation, this
partial function will encode the variables in scope that correspond to a recursive call. A variable,
say 𝑓 , for which 𝐹 (𝑓 ) = 𝜇𝑋 . 𝜏 ❀ 𝜇𝑌 . 𝜏 ′, corresponds to a recursive call to a function of type
⟨⟨𝜇𝑋 . 𝜏⟩⟩ � ⟨⟨𝜇𝑌 . 𝜏 ′⟩⟩.
Backtranslating a judgment between two recursive types, say 𝐹 ⊢𝑠 𝜇𝑋 . 𝜏 ❀ 𝜇𝑌 . 𝜏 ′, to a static

function (to be denoted by F 𝐹
𝜇𝑋 .𝜏❀𝜇𝑌 .𝜏 ′

), we follow one of the following two paths.

A) If we łpreviouslyž exposed a recursive call for this already, i.e. we have 𝐹 (𝑓 ) = 𝜇𝑋 . 𝜏 ❀ 𝜇𝑌 . 𝜏 ′,
then the backtranslation is exactly that variable 𝑓 .
B) If we have no exposed call for this, i.e. (𝜇𝑋 . 𝜏 ❀ 𝜇𝑌 . 𝜏 ′) ∉ Im(𝐹 ), then we unfold the

bodies and expose an additional recursive call. That is, we now consider the backtranslation of the
judgment 𝐹 [(𝑓 ↦→ 𝜇𝑋 . 𝜏 ∼ 𝜇𝑌 . 𝜏 ′)] ⊢𝑠 𝜏 [𝑋 ↦→ 𝜇𝑋 . 𝜏] ❀ 𝜏 [𝑌 ↦→ 𝜇𝑌 . 𝜏 ′], where we have extended
𝐹 to 𝐹 [(𝑓 ↦→ 𝜇𝑋 . 𝜏 ∼ 𝜇𝑌 . 𝜏 ′)] for some fresh 𝑓 .
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F
𝐹
𝐵❀𝐵 ≜ 𝜆𝑥 : ⟨⟨𝐵⟩⟩. 𝑥

F
𝐹
?❀? ≜ 𝜆𝑥 : ⟨⟨?⟩⟩. 𝑥

F
𝐹
𝐺❀? ≜ inject𝐺

F
𝐹
?❀𝐺 ≜ extract𝐺

F
𝐹
𝜏❀? ≜ 𝜆𝑥 : ⟨⟨𝜏 ⟩⟩. F 𝐹

𝐺❀? (F 𝐹
𝜏❀𝐺 𝑥) if S(𝜏) = 𝐺 ≠ 𝜏

F
𝐹
?❀𝜏 ≜ 𝜆𝑥 : ⟨⟨?⟩⟩. F 𝐹

𝐺❀𝜏 (F 𝐹
?❀𝐺 𝑥) if S(𝜏) = 𝐺 ≠ 𝜏

F
𝐹
𝜏1�𝜏2❀𝜏′

1
�𝜏′

2
≜ 𝜆𝑓 : ⟨⟨𝜏1 ⟩⟩ � ⟨⟨𝜏2 ⟩⟩. 𝜆𝑥 : ⟨⟨𝜏′1 ⟩⟩. F

𝐹
𝜏2❀𝜏′

2
(𝑓 (F 𝐹

𝜏′
1
❀𝜏1

𝑥))

F
𝐹
𝜏1+𝜏2❀𝜏′

1
+𝜏′

2
≜ 𝜆𝑠 : ⟨⟨𝜏1 ⟩⟩ + ⟨⟨𝜏2 ⟩⟩. case 𝑠 of 𝜆𝑥1 : ⟨⟨𝜏1 ⟩⟩. inj1 (F 𝐹

𝜏1❀𝜏′
1
𝑥1) | 𝜆𝑥2 : ⟨⟨𝜏2 ⟩⟩. inj2 (F 𝐹

𝜏2❀𝜏′
2
𝑥2)

F
𝐹
𝜏1×𝜏2❀𝜏′

1
×𝜏′

2
≜ 𝜆𝑝 : ⟨⟨𝜏1 ⟩⟩ × ⟨⟨𝜏2 ⟩⟩. (F

𝐹
𝜏1❀𝜏′

1
(𝜋1 𝑝), F

𝐹
𝜏2❀𝜏′

2
(𝜋2 𝑝))

F
𝐹
𝜇𝑋 .𝜏❀𝜇𝑌 .𝜏′ ≜





𝑓 𝐹 (𝑓 ) = 𝜇𝑋 . 𝜏 ❀ 𝜇𝑌 . 𝜏′

𝜆𝑥 : 𝜇𝑋 . ⟨⟨𝜏 ⟩⟩.
−→
fix(𝜆𝑓 : 𝜇𝑋 . ⟨⟨𝜏 ⟩⟩ → 𝜇𝑌 . ⟨⟨𝜏′⟩⟩.

𝜆𝑟 : 𝜇𝑋 . ⟨⟨𝜏 ⟩⟩. fold (F
𝐹 [ (𝑓 ↦→𝜇𝑋 .𝜏❀𝜇𝑌 .𝜏′) ]
𝜏 [𝑋 ↦→𝜇𝑋 .𝜏 ]❀𝜏′ [𝑌 ↦→𝜇𝑌 .𝜏′ ]

(unfold 𝑟 ))) 𝑥
(𝜇𝑋 . 𝜏 ❀ 𝜇𝑌 . 𝜏′) ∉ Im(𝐹 )

Fig. 10. Defining the function in the backtranslation of casts

The complete backtranslation by induction on the relation in fig. 9 is now depicted in fig. 10; the
function F 𝜏⇒𝜏 ′ in eq. (2) is now defined as F ∅

𝜏❀𝜏 ′ .

Is this Well-defined? Our backtranslation needs to be defined between any two consistent types.
Therefore, the validity of this definition depends on the assumption that for each two consistent
types, 𝜏 ∼ 𝜏 ′, we can derive ∅ ⊢𝑠 𝜏 ❀ 𝜏 ′. Fortunately, this is indeed the case, as we have formally
proven it in our Coq development. What follows is an intuitive explanation for why this is so.
Given two arbitrary (closed) consistent types, 𝜏 ∼ 𝜏 ′, one can imagine the following procedure

to attempt building up a derivation tree for ∅ ⊢𝑠 𝜏 ❀ 𝜏 ′: If ∅ ⊢𝑠 𝜏 ❀ 𝜏 ′ is a base case, then great,
we are done. Else, we just apply (backward reasoning) the applicable inference-rule (it is easily
checked that there is always a unique rule that is applicable) and instantiate the procedure among
all newly created subbranches.

Of course, this procedure needs to terminate! That is, we need to obtain a finite tree. To guaran-
tee this, something must therefore consistently decrease Ð in a well-founded ordering Ð in the
application of every inference rule.
This does appear the case for most of the constructors in the relation: One of the types in the

pair of an argument (a judgment above the line) seems to Ð eventually Ð always be strictly smaller
(structurally) than one of the types in the pair of the conclusion, while the remaining type in
the pair of the argument is structurally smaller or equal than that of the remaining type in the
conclusion.10

Considering ThroughSum for instance, we have 𝜏1 < 𝜏1 + 𝜏2 and 𝜏 ′1 < 𝜏 ′1 + 𝜏
′
2 for the first

argument and 𝜏2 < 𝜏1 + 𝜏2 and 𝜏 ′2 < 𝜏
′
1 + 𝜏

′
2 for the second. A similar results applies to ThroughProd

and ThroughArrow even though the latter is contravariant in one of its arguments. Composing
FactorDown-(? + ?) (taking 𝜏 to be 𝜏1 + 𝜏2) with ThroughSum, we get ? ≤ ? and 𝜏1 < 𝜏1 + 𝜏2 for
the first argument, and ? ≤ ? and 𝜏2 < 𝜏1 + 𝜏2 for the second. Similar results apply to the composition
of FactorDown-(? × ?) with ThroughProd and the composition between FactorDown-(? � ?)
with ThroughArrow.

10We will write < for structurally smaller than and ≤ for structurally smaller or equal than.
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Unfortunately, the same is not true for ExposeRecursiveCall and possibly FactorUp-(𝜇𝑋 . ?)

and FactorDown-(𝜇𝑋 . ?). In ExposeRecursiveCall for instance, the types in the conclusion are
typically structurally smaller than those in the arguments!
Fortunately, this is not a problem however, as it is guaranteed that ExposeRecursiveCall will

only be applicable a finite amount of times. Indeed, there is only a finite amount of recursive
calls to be exposed before having exerted all possibilities, after which the base-case counterpart
(Atomic-UseRecursion) is bound to be applicable.

In the previous example, 𝜇𝑋 . ? × 𝑋 ∼ 𝜇𝑋 .N × 𝑋 , we apply ExposeRecursiveCall one time,
after which Atomic-UseRecursion becomes applicable. Generally though, some branches will
require multiple applications of ExposeRecursiveCall before Atomic-UseRecursion becomes
applicable. As an example, one can consider a derivation tree for · ⊢𝑠 𝜇𝑋 . 𝑋 + ? + 𝑋 � ? + 𝑋 + 𝑋 ❀

𝜇𝑋 . 𝑋 + 𝑋 + ? � 𝑋 + ? + 𝑋 .
The reader who is interested in the formal side of this argument, is welcome to check out our

Coq code.

4.3 Logical Relations and Correctness of the Backtranslation

Of course, the backtranslation is only as useful as it is correct; in order to complete the proof in
ğ4.1, we need to prove that theorem 4.1 holds. To do so, we set up two logical relations models, as
is often done in fully abstract compilation proofs [Patrignani et al. 2019a].

We define our logical relations in the Iris program logic [Jung et al. 2018]. Iris features an abstract
form of step-indexing, a technique that is usually employed in defining logical relations models for
programming languages featuring recursive types [Appel and McAllester 2001]. Using Iris allows
us to reason about programs at a high level of abstraction, especially for the use of step indexes. In
addition to recursive types, we also use step-indexing for modeling the unknown type in our logical
relations. The use of a program logic for expressing logical relations for programming languages
featuring recursive types goes back to Dreyer et al. [2009].

In ğ4.3.1 we present a short Iris primer. Afterwards, in ğ4.3.2, we specify the properties that our
logical relations should satisfy in order to be able to prove the correctness of our backtranslation
(see theorem 4.1). We define our logical relations models in ğ4.3.3. In ğ4.3.4, we demonstrate how
our logical relations models satisfy the properties presented in ğ4.3.2.
To get the intuition behind the essence of our logical relations, one does not need to possess

any knowledge of Iris. Accordingly, hurried readers who feel comfortable to brush aside the
technicalities may skip ğ4.3.1 and go over ğ4.3.3 by focusing on the logical relations on values in
fig. 11 (ignoring the modalities and reading ∗ as ∧) and trusting that the relations are naturally
extended to (open) expressions as described informally in the other paragraphs of that section.

4.3.1 An Iris Primer. Iris [Jung et al. 2018] is a modal, separation logic geared toward reasoning
about the correctness of programs. While the framework is vast, here, we restrict ourselves to the
small subset necessary to understand our logical relations.
Below, we present the grammar of the relevant parts of iProp, the universe of Iris propositions.

𝑃 ::= 𝑃 ∗ 𝑃 | 𝑃 −∗ 𝑃 | ✷ 𝑃 | ⊲ 𝑃 | 𝑥 | 𝜇𝑥 .𝑃 | 𝑃 | |⇛𝑃 | wp 𝑒 {Φ} | ...

Iris is a separation logic, hence we have separating conjunction, 𝑃 ∗𝑄 (pronounced ł𝑃 star 𝑄ž),
and a magic wand operator, 𝑃 −∗ 𝑄 (pronounced ł𝑃 wand 𝑄ž), analogous respectively to ordinary
conjunction and ordinary implication. In general, Iris propositions are ephemeral; we can only
use them once (similar to linear/affine types). That is, once we use an Iris proposition to prove
something, we lose it; we have łconsumedž it. For instance, if in trying to prove 𝑃 ∗𝑄 ⊢ 𝑅 ∗ 𝑆 we
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use 𝑃 to prove 𝑅, then only 𝑄 remains in the proof effort of 𝑆 . Here, ⊢ is the entailment relation on
Iris propositions.
Besides ephemeral propositions, we have persistent ones; propositions that can be freely du-

plicated. That is, if 𝑃 is persistent, then we have 𝑃 ⊢ 𝑃 ∗ 𝑃 . The ✷-modality, ✷ 𝑃 (pronounced
łpersistently 𝑃ž), asserts that 𝑃 holds persistently. In particular, ✷ 𝑃 is persistent and hence dupli-
cable, and we have ✷ 𝑃 ⊢ 𝑃 . As we will discuss, we use the persistently modality to express and
enforce that our logical relations on values are persistent.

Iris features a notion of abstract step-indexing. Given an Iris proposition 𝑃 , ⊲ 𝑃 (pronounced łlater
𝑃ž) asserts that 𝑃 holds one step later. The abstract step-indexing in Iris allows for the construction
of so-called guarded recursive propositions and predicates. The proposition 𝜇𝑥 .𝑃 is well-defined if
all occurrences of 𝑥 in 𝑃 are guarded, i.e., they appear under the later modality. Intuitively, guarded
recursive definitions are the unique fixpoint characterized by the equation: 𝜇𝑥 .𝑃 ≡ 𝑃 [𝜇𝑥 .𝑃/𝑥].
Iris features invariants and resources to facilitate reasoning about programs. An Iris invariant

𝑃 asserts that 𝑃 holds invariantly, i.e., at all times. The update modality, |⇛ , allows us to update
resources (allocation, modification, and deallocation) and to access invariants. The proposition
|⇛𝑃 states that 𝑃 holds after an appropriate update of the underlying resources and/or accessing

invariants.11 Iris invariants are persistent and can hence be freely duplicated. The following rule
allows us to create invariants:

⊲ 𝑃 ⊢ |⇛ 𝑃 (invariant allocation)

As a program logic, Iris is equipped with a weakest precondition calculus to reason about
programs. The weakest precondition of a program 𝑒 with respect to a postcondition Φ : Val → iProp,
writtenwp 𝑒 {Φ}, holds if whenever 𝑒 reduces to a value 𝑣 , the postcondition Φ holds for 𝑣 , i.e., Φ(𝑣)
holds.12 In some places we write wp 𝑒 {𝑣 . Φ(𝑣)} instead of wp 𝑒 {Φ}. Iris weakest preconditions are
defined in terms of the more low-level Iris-constructs in such a way that they tie the aforementioned
abstract step indexes to the evaluation steps taken by the program.
Crucially, update modalities can be eliminated when proving that weakest preconditions hold:

𝑃 ⊢ wp 𝑒 {Φ}

|⇛𝑃 ⊢ wp 𝑒 {Φ}

𝑃 ⊢ wp 𝑒 {Φ}

𝑃 ⊢ wp 𝑒 {𝑣 . |⇛Φ(𝑣)}
(WP and update)

4.3.2 Specifying the Logical Relation Models. In order to prove theorem 4.1, we shall set up two
logical relations models, Γ ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏 and Γ ⊨ 𝑒 ≽ 𝑒 ′ : 𝜏 , both indexed by gradual types, relating
static terms to gradual terms. We shall carefully construct these relations so as to have them satisfy
lemmas 4.2 to 4.5.

Lemma 4.2. Given an arbitrary well-typed static term 𝑒 for which Γ ⊢ 𝑒 : 𝜏 holds and an arbitrary

context 𝐶 for which 𝐶 : (⌈⌈Γ⌉⌉; ⌈⌈𝜏⌉⌉) ⇒ (· ;1) holds, we have

⊢ · ⊨ ⟨⟨𝐶⟩⟩
[
𝑒
]
≼ 𝐶

[
⌈⌈𝑒⌉⌉

]
: 1

Lemma 4.3 (Adeqacy of ≼-logical relations).

If ⊢ · ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏 , then 𝑒 ⇓ implies 𝑒 ′ ⇓

11In Iris, invariants have names, and the constructs interacting with them (e.g., the to-be-discussed weakest preconditions
and the update modality) are annotated with masks to track how these invariants are accessed. This is because accessing
the same invariant twice in a nested fashion is generally unsound. We elide these details here which are not crucial for
following the arguments presented in this paper; see our Coq development for more details.
12This actually corresponds to the Iris proposition wp

Stuck
𝑒 {Φ}, the stuck version of the weakest precondition that does

not prove safety.
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Lemma 4.4. Given an arbitrary static term 𝑒 for which Γ ⊢ 𝑒 : 𝜏 holds and an arbitrary context 𝐶

for which 𝐶 : (⌈⌈Γ⌉⌉; ⌈⌈𝜏⌉⌉) ⇒ (· ;1) holds, we have

⊢ · ⊨ ⟨⟨𝐶⟩⟩
[
𝑒
]
≽ 𝐶

[
⌈⌈𝑒⌉⌉

]
: 1

Lemma 4.5 (Adeqacy of ≽-logical relations).

If ⊢ · ⊨ 𝑒 ≽ 𝑒 ′ : 𝜏 , then 𝑒 ′ ⇓ implies 𝑒 ⇓

Given lemmas 4.2 to 4.5, theorem 4.1 follows easily. The challenge is of course to define the
logical relation models (ğ4.3.3) and prove that they do indeed satisfy said lemmas(ğ4.3.4).

4.3.3 Defining the Logical Relation Models. We define our logical relations models following the
standard pattern. We first define the logical relations on closed values and expressions. Afterwards,
we canonically extend the relations on closed expressions to the general relations on open terms.

Throughout this section, we focus exclusively on the ≼-relations; the ≽-relations are defined
analogously.

The Logical Relations on Values. We begin by defining the logical relations on closed values,
V≼ [[𝜏]] : Val → Val → iProp, in fig. 11. Such relations are usually defined by induction on the

V≼ ≜ 𝜇Ψ. V≼ (Ψ)

V≼ [[𝐵]] (𝑣, 𝑣
′) ≜ ∃𝑏 : 𝐵. 𝑣 = 𝑏 ∗ 𝑣 ′ = ⌈⌈𝑏⌉⌉

V≼ [[𝜏1 + 𝜏2]] (𝑣, 𝑣
′) ≜

∨

𝑖∈{1,2}

∃𝑣𝑖 , 𝑣
′
𝑖 . 𝑣 = inj𝑖 𝑣𝑖 ∗ 𝑣

′
= inj𝑖 𝑣

′
𝑖 ∗ V≼ [[𝜏𝑖 ]] (𝑣𝑖 , 𝑣

′
𝑖 )

V≼ [[𝜏1 × 𝜏2]] (𝑣, 𝑣
′) ≜ ∃𝑣1, 𝑣2, 𝑣

′
1, 𝑣

′
2 . 𝑣 = (𝑣1, 𝑣2) ∗ 𝑣

′
= (𝑣 ′1, 𝑣

′
2) ∗ V≼ [[𝜏1]] (𝑣1, 𝑣

′
1) ∗ V≼ [[𝜏2]] (𝑣2, 𝑣

′
2)

V≼ [[𝜏1 � 𝜏2]] (𝑣, 𝑣
′) ≜ ✷(∀𝑤,𝑤 ′. V≼ [[𝜏1]] (𝑤,𝑤

′) −∗ L≼ (V≼ [[𝜏2]]) (𝑣 𝑤, 𝑣
′ 𝑤 ′)) (L≼ to be defined later)

V≼ [[𝜇𝑋 . 𝜏]] (𝑣, 𝑣
′) ≜ ✷(∃𝑤,𝑤 ′. 𝑣 = fold𝑤 ∗ 𝑣 ′ = fold𝑤 ′ ∗ ⊲Ψ[[𝜏 [𝑋 ↦→ 𝜇𝑋 . 𝜏]]] (𝑤,𝑤 ′))

V≼ [[?]] (𝑣, 𝑣
′) ≜ ✷(∃𝑤,𝑤 ′. (𝑣 = fold (inj𝐵 𝑤) ∗ 𝑣 ′ = 𝑤 ′ : 𝐵 ⇒ ? ∗ ⊲Ψ[[𝐵]] (𝑤,𝑤 ′))

∨ (𝑣 = fold (inj+ 𝑤) ∗ 𝑣 ′ = 𝑤 ′ : ? + ? ⇒ ? ∗ ⊲Ψ[[? + ?]] (𝑤,𝑤 ′))

∨ (𝑣 = fold (inj× 𝑤) ∗ 𝑣 ′ = 𝑤 ′ : ? × ? ⇒ ? ∗ ⊲Ψ[[? × ?]] (𝑤,𝑤 ′))

∨ (𝑣 = fold (inj
�
𝑤) ∗ 𝑣 ′ = 𝑤 ′ : ? � ? ⇒ ? ∗ ⊲Ψ[[? � ?]] (𝑤,𝑤 ′))

∨ (𝑣 = fold (inj𝜇 𝑤) ∗ 𝑣 ′ = (fold𝑤 ′) : 𝜇𝑋 . ? ⇒ ? ∗ ⊲Ψ[[?]] (𝑤,𝑤 ′)))

Fig. 11. The logical relations on values

structure of the type, i.e., 𝜏 . However, we cannot do this for our type system due to the presence
of recursive types, 𝜇𝑋 .𝜏 , and the unknown type, ?. Instead, we define our relation as a guarded
recursive predicate, V≼ ≜ 𝜇Ψ. V≼ (Ψ). The higher-order predicate V≼ of type (Type → Val →
Val → iProp) → Type → Val → Val → iProp is defined by induction on types. For cases where the
type does not become structurally smaller, i.e., in recursive types and the unknown type, we use
guarded recursion; note that all such occurrences are guarded by a later modality. Readers familiar
with the usual encoding of logical relations in program logics featuring abstract step-indexing may
note that our approach differs slightly from the usual practice, e.g., by Timany et al. [2017b], where
only the value relation for the recursive type is defined using guarded recursive predicates.
Notice also that we use the persistently modality three times to ensure that the relations are

persistent in order for them to be duplicable. This is necessary as values can be used multiple times,
e.g., when passed as a function argument.
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The goal of this relation is twofold, as can be seen from lemma 4.2. It must relate static values
(on the left-hand side) to their embeddings (on the right-hand side), as well as gradual values (on
the right-hand side) to their appropriate static values in backtranslation. The latter is due to having
the backtranslation of the context on the left-hand side. With this in mind, the value relation at the
base type, which intuitively requires that the two values are related if they are łthe samež, can also
be formally expressed as follows (⊣⊢ denotes the logical equivalence relation on Iris propositions):

V≼ [[𝐵]] (𝑣, 𝑣
′) ⊣⊢ ∃𝑏 : 𝐵. 𝑣 = ⟨⟨𝑏⟩⟩ ∗ 𝑣 ′ = 𝑏

Values at a sum type are related if they are constructed using the same injection and the injected
values are related at the appropriate type. Value at a product type, 𝜏1 × 𝜏2, are related if they are
both pairs in which the first components are related at 𝜏1 and the second components at 𝜏2.
Intuitively, two functions, say 𝑣 and 𝑣 ′, are related at 𝜏1 � 𝜏2, if for any arbitrary pair of values

𝑤 and𝑤 ′ related at 𝜏1, we have that the two expressions 𝑣 𝑤 and 𝑣 ′ 𝑤 ′ are related at 𝜏2. We define
the relation on closed expressions by lifting the relation on closed values. Given any relation on
values, the higher-order predicate L≼ of type (Val → Val → iProp) → Expr → Expr → iProp lifts
it to a relation on expressions. We define the predicate L≼ later on.
Values at a recursive type, 𝜇𝑋 .𝜏 , are related if they are both folded and the original (unfolded)

values are, one step later, related at type 𝜏 [𝑋 ↦→ 𝜇𝑋 .𝜏]. Two values, say 𝑣 and 𝑣 ′, are related at the
unknown type if for some ground type 𝐺 (excluding 𝜇𝑋 .? here), we have some𝑤 and𝑤 ′ related
(one step later) at 𝐺 for which 𝑣 is the result of applying inject𝐺 to𝑤 and 𝑣 ′ is equal to𝑤 ′ : 𝐺 ⇒ ?.
They are also related if, for some𝑤 and𝑤 ′ related (one step later) at ?, we have that 𝑣 is the result
of applying inject𝜇𝑋 .? to fold𝑤 and 𝑣 ′ is equal to fold𝑤 ′ : 𝜇𝑋 .? ⇒ ?.

Lifting Value Relations to Expression Relations. Intuitively, what we expect of the expression
relation is that if two closed expressions 𝑒 and 𝑒 ′ are related (in the ≼-relation) at a type 𝜏 , then
it must follow that 𝑒 −→∗ 𝑣 implies 𝑒 ′ −→∗ 𝑣 ′ for some 𝑣 ′ such that V≼ [[𝜏]] (𝑣, 𝑣 ′). We define this
expression relation following the same idea that is usually employed for defining binary logical
relations models in Iris, e.g., in Frumin et al. [2018]; Timany and Birkedal [2019]; Timany et al.
[2017a,b]. That is, we use weakest preconditions for the left-hand side, and a custom-defined ghost
resource and an appropriate invariant to keep track of the execution on right-hand side. Intuitively,
in this approach, a binary logic is emulated as a unary logic for the left-hand side term, while the
right-hand side term is treated as a specification for how the left term should behave.
Given a relation on values, Ψ, we define the lifting of that relation to closed expressions as

follows.

L≼ (Ψ) (𝑒, 𝑒
′) ≜ ∀𝑒𝑖 , 𝐾 . Initially(𝑒𝑖 )∗Currently2 (𝐾 [𝑒 ′]) −∗ wp 𝑒

{
𝑣 . ∃𝑣 ′.Currently2 (𝐾 [𝑣 ′]) ∗ Ψ(𝑣, 𝑣 ′)

}

Here, we have two ghost resources, Currently1 and Currently2, which are defined such that their
expressions are required to always be the same:

Currently1 (𝑒1) ∗ Currently2 (𝑒2) ⊢ 𝑒1 = 𝑒2

Consequently, we can only update the expression if we update both propositions.

Currently1 (𝑒1) ∗ Currently2 (𝑒1) ⊢ |⇛Currently1 (𝑒2) ∗ Currently2 (𝑒2) (Currently update)

We can allocate resources to establish Currently1 (𝑒
′) and Currently2 (𝑒

′):

⊢ |⇛Currently1 (𝑒
′) ∗ Currently2 (𝑒

′) (Currently allocation)

The proposition Initially(𝑒𝑖 ) is an invariant, defined as follows.

Initially(𝑒𝑖 ) ≜ ∃𝑧.Currently1 (𝑧) ∗ 𝑒𝑖 −→
∗ 𝑧
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The Currently1 resource is therefore always owned by this invariant. Keep in mind though that this
invariant is persistent and needs to be preserved during the entire execution, even when it is not
returned in the postcondition. Moreover, maintaining this invariant poses another restriction on
howwe can update Currently1 and Currently2: As seen in eq. (Currently update), we can only update
these ghost-resources by accessing the invariant (in order to obtain Currently1). Note however
that because of the invariant Initially(𝑒𝑖 ), we can only update Currently1 and Currently2 to an
expression 𝑒 ′ if 𝑒 ′ is such that 𝑒𝑖 −→

∗ 𝑒 ′.
Importantly, we also want to reason modularly about the relatedness of two sub-expressions.

This idea is captured in the following rule:

L≼ (Φ) (𝑒, 𝑒
′) ∀𝑣, 𝑣 ′. Φ(𝑣, 𝑣 ′) =⇒ L≼ (Ψ) (𝐾 [𝑣], 𝐾 ′[𝑣 ′])

L≼ (Ψ) (𝐾 [𝑒], 𝐾 ′[𝑒 ′])

This rule follows straightforwardly from the definition of the expression relation above together
with the bind rule for Iris weakest preconditions:

wp 𝑒 {Φ} ∀𝑣 . Φ(𝑣) =⇒ wp 𝐾 [𝑣] {Ψ}

wp 𝐾 [𝑒] {Ψ}

Having defined L≼ , we have completed the relation on values, and moreover the relation on
closed expressions, E≼ [[𝜏]] : Expr → Expr → iProp, follows easily.

E≼ [[𝜏]] = L≼ (V≼ [[𝜏]])

The Relations on Open Expressions. Following the standard practice, we now extend our logical
relations (to open terms) based on our relations on closed expressions and values. Open terms
are related if they are related as closed terms under any possible substitution of related values at
the appropriate types. To formalize this, we first extend our value relations for gradual types to
relations on vectors of values for a gradual typing contexts, G≼ :

G≼ [[·]] (𝜀, 𝜀) ≜ True

G≼ [[𝑥 : 𝜏, Γ]] ((𝑣 ; ®𝑤), (𝑣 ′; ®𝑤 ′)) ≜ V≼ [[𝜏]] (𝑣, 𝑣
′) ∗ G≼ [[Γ]] ( ®𝑤, ®𝑤

′)
(3)

Here, 𝜀 is the empty vector. We now define our logical relations:

Γ ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏 ≜ ∀®𝑣, ®𝑣 ′.G≼ [[Γ]] (®𝑣, ®𝑣
′) −∗ E≼ [[𝜏]] (𝑒 [®𝑥 ↦→ ®𝑣], 𝑒 ′[®𝑥 ↦→ ®𝑣 ′]) (4)

4.3.4 The Logical Relations Satisfy the Specifications. Here, we give proof sketches for why lem-
mas 4.2 and 4.3 hold; given the analogously-defined ≽-relations, the arguments for lemmas 4.4
and 4.5 are similar.

Proof Sketch for Lemma 4.3. Let 𝑒 and 𝑒 ′ be two closed expressions for which we can derive in
Iris that they are related at type 𝜏 , i.e., the following holds:

⊢ · ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏

We show that 𝑒 ⇓ implies 𝑒 ′ ⇓. By definition · ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏 is equivalent to E≼ [[𝜏]] (𝑒, 𝑒
′), and hence

to the following:

∀𝑒𝑖 , 𝐾 . Initially(𝑒𝑖 ) ∗ Currently2 (𝐾 [𝑒 ′]) −∗ wp 𝑒
{
𝑣 . ∃𝑣 ′.Currently2 (𝐾 [𝑣 ′]) ∗ V≼ [[𝜏]] (𝑣, 𝑣

′)
}

Weuse eq. (Currently allocation) to create the pair of propositions,Currently1 (𝑒
′) andCurrently2 (𝑒

′),
and use the former together with eq. (invariant allocation) to establish Initially(𝑒 ′); note that
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(𝑥, 𝜏) ∈ Γ

Γ ⊨ 𝑥 ≼ 𝑥 : 𝜏

Γ ⊨ 𝑒1 ≼ 𝑒
′
1 : 𝜏1 Γ ⊨ 𝑒2 ≼ 𝑒

′
2 : 𝜏2

Γ ⊨ (𝑒1, 𝑒2) ≼ (𝑒 ′1, 𝑒
′
2) : 𝜏1 × 𝜏2

Γ ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏1 × 𝜏2 𝑖 ∈ {1, 2}

Γ ⊨ 𝜋𝑖 𝑒 ≼ 𝜋𝑖 𝑒
′ : 𝜏𝑖

Γ ⊢ 𝑏 : 𝐵

Γ ⊨ 𝑏 ≼ 𝑏 : 𝐵

Γ ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏𝑖 𝑖 ∈ {1, 2}

Γ ⊨ inj𝑖 𝑒 ≼ inj𝑖 𝑒
′ : 𝜏1 + 𝜏2

Γ ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏1 + 𝜏2 Γ ⊨ 𝑒1 ≼ 𝑒
′
1 : 𝜏1 � 𝜏 Γ ⊨ 𝑒2 ≼ 𝑒

′
2 : 𝜏2 � 𝜏

Γ ⊨ case 𝑒 of (𝑒1 | 𝑒2) ≼ case 𝑒 ′ of (𝑒 ′1 | 𝑒
′
2) : 𝜏

Γ ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏1 � 𝜏2 Γ ⊨ 𝑒1 ≼ 𝑒
′
1 : 𝜏1

Γ ⊨ 𝑒 𝑒1 ≼ 𝑒
′ 𝑒 ′1 : 𝜏2

𝑥 : 𝜏1, Γ ⊨ 𝑒 ≼ 𝑒
′ : 𝜏2

Γ ⊨ 𝜆𝑥 : ⟨⟨𝜏2⟩⟩. 𝑒 ≼ 𝜆𝑥 : 𝜏2. 𝑒
′ : 𝜏1 � 𝜏2

Γ ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏 [𝑋 ↦→ 𝜇𝑋 . 𝜏]

Γ ⊨ fold 𝑒 ≼ fold 𝑒 ′ : 𝜇𝑋 . 𝜏

Γ ⊨ 𝑒 ≼ 𝑒 ′ : 𝜇𝑋 . 𝜏

Γ ⊨ unfold 𝑒 ≼ unfold 𝑒 ′ : 𝜏 [𝑋 ↦→ 𝜇𝑋 . 𝜏]

Fig. 12. Unexciting compatibility lemmas

𝑒 ′ −→∗ 𝑒 ′ holds trivially.13 Now by picking 𝑒𝑖 to be 𝑒 ′ and 𝐾 to be the empty evaluation context, [·],
we obtain the following:

wp 𝑒
{
𝑣 . ∃𝑣 ′.Currently2 (𝑣

′) ∗ V≼ [[𝜏]] (𝑣, 𝑣
′)
}

Using eq. (WP and update) and the invariant Initially(𝑒 ′) we can conclude:

wp 𝑒 {𝑣 . ∃𝑣 ′. 𝑒 ′ −→∗ 𝑣 ′}

At this point, we can apply the adequacy theorem of Iris’s weakest preconditions. It states that for
any meta-level (i.e. outside Iris) postcondition14𝜑 , if wp 𝑒 {𝜑} holds, then 𝜑 (𝑣) holds at the meta
level for any value 𝑣 that 𝑒 reduces to. Here 𝜑 (𝑣) is taken to be ∃𝑣 ′. 𝑒 ′ −→∗ 𝑣 ′.

Proof Sketch for Lemma 4.2. Lemma 4.2 follows from the compatibility lemmas in fig. 12 and the
much more interesting one given below, which plays a central role in our full abstraction argument:

Lemma 4.6 (Compatibility lemma for casts).

Γ ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏𝑖 𝜏𝑖 ∼ 𝜏𝑓

Γ ⊨ (F ∅
𝜏𝑖❀𝜏𝑓

𝑒) ≼ (𝑒 ′ : 𝜏𝑖 ⇒ 𝜏𝑓 ) : 𝜏𝑓

Remember that the backtranslation of casts mirrors the structure of the cast calculus quite
faithfully as we defined it by induction on the relation in fig. 9. Moreover, we prove this lemma by
induction on said relation. To do so though, we generalize it to F 𝐹

𝜏𝑖❀𝜏𝑓
for an arbitrary derivation

𝐹 ⊢𝑠 𝜏𝑖 ❀ 𝜏𝑓 . Of course, F 𝐹
𝜏𝑖❀𝜏𝑓

contains some free variables (dom(𝐹 )), so we will want to

substitute these with (arbitrary) łappropriatež values. We first formalize this notion of łappropriatež
values: a partial function, 𝛼 : Var ⇀ Val, serves as an appropriate substituting function in F 𝐹

𝜏𝑖❀𝜏𝑓

ifH[[𝐹 ]]≼ (𝛼) holds:

H[[𝐹 ]]≼ (𝛼) ≜∗𝑓 ↦→(𝜏1❀𝜏2) ∈𝐹 ✷(∀𝑣, 𝑣 ′.V≼ [[𝜏1]] (𝑣, 𝑣
′) −∗ E≼ [[𝜏2]] (𝛼 (𝑓 ) 𝑣, 𝑣

′ : 𝜏1 ⇒ 𝜏2)) (5)

13Note that here we are using eq. (WP and update) implicitly.
14For our Coq formalization, this means a Coq predicate over values.
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That is, for each 𝐹 (𝑓 ) = (𝜏1 ❀ 𝜏2) we must have 𝛼 (𝑓 ) : ⟨⟨𝜏1⟩⟩�⟨⟨𝜏2⟩⟩ defined such that it serves
as a successful emulation of a cast from 𝜏1 to 𝜏2. Given this definition, we obtain the following
generalization of lemma 4.6, where F 𝐹

𝜏𝑖❀𝜏𝑓
[𝐹 ↦→ 𝛼] denotes the substitution of the free variables

in F 𝐹
𝜏𝑖❀𝜏𝑓

with the values defined by 𝛼 .

Lemma 4.7 (Compatibility lemma for casts ś Generalized).

Γ ⊨ 𝑒 ≼ 𝑒 ′ : 𝜏𝑖 𝐹 ⊢𝑠 𝜏𝑖 ❀ 𝜏𝑓

∀𝛼.H[[𝐹 ]]≼ (𝛼) −∗ Γ ⊨ F
𝐹
𝜏𝑖❀𝜏𝑓

[𝐹 ↦→ 𝛼] 𝑒 ≼ 𝑒 ′ : 𝜏𝑖 ⇒ 𝜏𝑓 : 𝜏𝑓

This lemma states that the backtranslation F 𝐹
𝜏𝑖❀𝜏𝑓

must relate to a cast 𝜏𝑖 ⇒ 𝜏𝑓 after arbitrary
substitution with a function that satisfies H[[𝐹 ]]≼ . This definition resembles the extension of our
relation from closed to open expressions, i.e., eq. (4), in which eq. (3) is analogous to eq. (5). The
proof of this generalized lemma is by induction on the alternative consistency relation (fig. 9). For
more details see our Coq formalization.

As an aside, we briefly remark that the compatibility lemmas in fig. 12 (not including lemma 4.7),
together with the adequacy of logical relations, imply the superset criterion and hence the proof of
reflection sketched in fig. 3.

5 DISCUSSION

5.1 Contextual Equivalence in GTLC𝜇

Equivalence by Equi-termination. In this paper, we have stated the full abstraction of the em-
bedding from STLC𝜇 to GTLC𝜇 with respect to standard notions of contextual equivalence by
equi-termination in both STLC𝜇 and GTLC𝜇 .
As mentioned in ğ2.2, such an equivalence in GTLC𝜇 does not distinguish between divergence

and dynamic type errors. More concretely, for contextually equivalent 𝑒 and 𝑒 ′ (Γ ⊢ 𝑒 ≃ctx 𝑒
′ : 𝜏),

there can still be a gradual context, say𝐶 : (Γ;𝜏) ⇒ (· ;1), for which𝐶 [𝑒] diverges and𝐶 [𝑒 ′] gives
a runtime error. For instance, the two terms, ⌈⌈𝜆𝑓 : B � B.𝜋2 (𝑓 true,Ω)⌉⌉ and ⌈⌈𝜆𝑓 : B � B.Ω⌉⌉,
are still equivalent even though they could be instantiated in a context [·] 𝑓CastError where 𝑓CastError
is defined such that upon application it will always return a cast error.
Equating divergence with runtime errors allows us to get away with a subtle difference in

expressiveness between gradual and static contexts: the former have the ability to cause dynamic
errors while the latter do not. This is appropriate however, if we consider cast errors as a debugging
mechanism of the language, which is not observable in production settings.

Equivalence that Distinguishes Cast Errors and Divergence. We might be interested in this slight
difference in expressiveness; formally, we have the following definition.

Definition 5.1 (Contextual equivalence distinguishing cast errors and divergence). Two terms 𝑒1, 𝑒2
in GTLC𝜇 are equivalent iff Γ ⊢ 𝑒1, 𝑒2 : 𝜏 and for all gradual contexts 𝐶 : (Γ;𝜏) ⇒ (· ;1), we have
both (𝐶 [𝑒1] ⇓ iff 𝐶 [𝑒2] ⇓) and (𝐶 [𝑒1] ⇑ iff 𝐶 [𝑒2] ⇑).

With respect to this definition, full abstraction of the embedding fails as the two terms from the
previous paragraph are not equivalent anymore.
As an interesting future work one could try to address this by designing the gradual language

to prevent static terms from being exposed to CastErrors. Alternatively, one might introduce an
equivalent form of dynamic errors in the static language. This might seem like a way to łdefine
the problem awayž, but this is not the case: it simply makes it clear to source language developers
that they should take the possibility of dynamic errors into account when reasoning about their
code. We have not proven this, but we believe our existing backtranslation can easily be adjusted

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 7. Publication date: January 2021.



7:24 Koen Jacobs, Amin Timany, and Dominique Devriese

to prove full abstraction with respect to Definition 5.1 by backtranslating dynamic errors to the
equivalent error in the static language.

Equivalence Accounting for Blame. Going further, one can wonder how blame would effect contex-
tual equivalence and full abstraction of the embedding. However, defining contextual equivalence
that is aware of blame seems quite challenging. When translating a pair of similarly-behaving
terms to the cast calculus, we would somehow need to smartly assign blame-labels to both these
terms so as to recover equivalence for non-trivial cases.
Whether or not a meaningful definition of blame-aware equivalence exists, how it would look

like, and how it would affect full abstraction are all challenging questions that we leave as future
work.

5.2 Partiality in the Source Language

It is also worth observing that our proof crucially relies on the existence of recursive types in the
source language. The definition of the universal type U , the backtranslation between recursive
types, and the backtranslation of cast errors to diverging Ω terms rely on this. But why have we
not worked with a total simply typed lambda calculus STLC, and does GTLC also satisfy the FAE
criterion with respect to this?
To answer the latter question first, consider that contextual equivalence is strictly stronger in

the total STLC than in STLC𝜇 . For example, the term 𝜆𝑓 : B → B. 𝜋2 (𝑓 𝑡𝑟𝑢𝑒, 43) is contextually
equivalent to 𝜆𝑓 : B → B. 43, essentially because invoking 𝑓 and ignoring its result is equivalent
to not invoking it if we are sure that 𝑓 will terminate. In GTLC, we can apply both functions to a
function that diverges or fails upon application, breaking the two terms’ contextual equivalence.15

Hence, the GTLC (as a gradualization of the total STLC) does not satisfy the FAE criterion.
Is this a counterargument to the FAE criterion? No! It merely highlights an important property of

the GTLC, namely that it enforces a specific semantics of static STLC types and that this semantics
is not the one from STLC but the one from a version of STLC which has some source of partiality

(like the recursive types in STLC𝜇 ). More concretely, the GTLC does not make any effort to enforce
termination, which is part of the semantics of function types in STLC. Because of this, GTLC can
only be considered as a gradualization of a partial variant of STLC (like STLC𝜇 ), not of the total
STLC.

In other words, the failure of GTLCwith respect to STLC should not be considered as a weakness
of the FAE criterion or a clever choice of example by us. Instead, this failure of the criterion
accurately demonstrates that GTLC does not enforce the semantics of types from STLC (but does so
for the semantics of types in e.g. STLC𝜇 ). This immediately suggests another interesting question
that we will not go into further: can we gradualize the STLC? In other words, is it possible to
construct a gradual language that enforces the interpretation of types from STLC, i.e., the totality
of functions?

5.3 Recursive Types vs. Term Recursion?

So it is clear that GTLC should be considered the gradualization of a partial STLC. But still, that
does not make it clear why we have used STLC𝜇 . łWhy bother with recursive types,ž the reader
may wonder, łif adding recursion to STLCwith just a fix operator will do the trick?ž In other words,
we may ask ourselves whether or not GTLCfix, the natural gradualization of STLCfix (a version of
the STLC without recursive types but with a builtin term-level fixpoint operator fix) satisfies the
FAE criterion. If it does, it is immediately clear that it will need a separate argument. As we have

15Consider, for instance, the gradual term 𝑒 = 𝜆𝑥 : B. (𝜆𝑦 : B. 𝑦) ( (𝜆𝑦 : ?. 𝑦) ( (𝜆𝑦 : N. 𝑦) ( (𝜆𝑦 : ?. 𝑦) 𝑥))) . The term
⌈⌈(𝜆𝑓 : B → B. 43) ⌉⌉ 𝑒 evaluates to 43, while ⌈⌈(𝜆𝑓 : B → B. 𝜋2 (𝑓 true, 43)) ⌉⌉ 𝑒 fails.
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pointed out above, our proof of FAE does crucially rely on recursive types for constructing the
universal type U , so it clearly does not extend to STLCfix.
Even so, we do believe that the embedding from STLCfix into GTLCfix is fully abstract. We are

aware of ongoing work to prove a fully abstract embedding from STLCfix into STLC𝜇,fix using the
approximate backtranslation technique by Devriese et al. [2016, 2017b]. Because full abstraction is
preserved upon composition, this result could then be composed with ours to prove that the FAE
criterion holds between GTLC𝜇,fix and STLCfix. Moreover, as the operational semantics of GTLCfix

is trivially contained in GTLC𝜇,fix, every context in GTLCfix can be seen as a context in GTLC𝜇,fix;
we can conclude therefore that the embedding from STLCfix into GTLCfix preserves contextual
equivalences.

In other words, we believe we should be able to recover the result about STLCfix by composing the
current result with a separately interesting one from other work, whose proof requires a different
proof technique (approximate backtranslation [Devriese et al. 2016]). By making the current result
only cover STLC𝜇 , we have been able to separate concerns and obtain separately interesting but
composable results.

5.4 Robust Relational Hyperproperty Preservation for GTLC𝜇

It is interesting to note that in our FAE-proof for GTLC𝜇 , our backtranslation on contexts is actually
a bit overspecified; for any gradual context, we define a backtranslation that correctly emulates it,
independent of the term that is plugged into it. Therefore, we have proven something stronger than
is absolutely necessary. In principle, it would be enough to construct a backtranslation of a context
such that it only works for two given terms under consideration in fig. 4. This is what happens, for
instance, in backtranslations that are based on trace semantics, e.g. Patrignani et al. [2015].

In fact, the existence of an arbitrary backtranslation is actually documented as a proposed stronger
formal criterion in the field of secure compilation. It is the strongest robust-property-preservation
property from a broad range introduced by Abate et al. [2019]: Robust Relational Hyperproperty
Preservation. Abate et al. [2019] give an alternative łproperty-freež characterization which (in this
setting) exactly corresponds to theorem 4.1.

Interestingly, this suggests that GTLC does not just preserve equivalences from STLC𝜇 , but also
unary (safety) and k-ary properties. Unfortunately, the framework of Abate et al. [2019] can only
be applied to languages with traces modeling the interaction of a program with the outside world.
In this context, such traces would either be artificial or trivial so we stick to the current binary
setting. However, we plan to extend the FAE criterion to include preservation of unary and k-ary
properties in follow-up work.

5.5 Other Gradual Languages

We believe our proposal raises interesting questions about existing gradual languages. We have
already talked a bit about gradual parametricity and gradual security types, but what about other
gradualizations? Many other gradual languages enforce static type systems with properties that go
beyond type safety, for example ownership types [Sergey and Clarke 2012], effect systems [Baña-
dos Schwerter et al. 2014], session types [Igarashi et al. 2019] etc.

It would be interesting to investigate in more detail whether these gradualizations enforce source
language type-based reasoning and if so, to what extent. Do they satisfy the FAE criterion with
respect to their source language? If they do not, are there possibilities to enforce more of the source
types semantics, and if so, how? In some cases, the dynamic language also offers useful abstractions,
and it might also be interesting to consider preservation of the dynamic language’s properties, i.e.
fully abstract embedding for the dynamic language.
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5.6 The Pursuit of FAE

When gradualizing a static language, we should strive to preserve its reasoning principles as much
as possible. To this end, adherence to the FAE criterion provides a fixed, unambiguous, and general
goal. As discussed, FAE implies that two terms in the static language are equivalent in the static
language if, and only if they are equivalent in the gradual language. This means that all static-based
reasoning principles involving contextual equivalences would remain sound when applied to the
fully static parts in a dynamic codebase, regardless of what the surrounding untyped code may
do. In other words, not only would static refactorings remain valid when performed in a dynamic
codebase, the static abstractions (expressed as contextual equivalences) would remain valid in the
presence of dynamic code (e.g., the untyped code cannot peer through abstract data types).

Another way to look at FAE is to see what the implications are of FAE failing. In such a situation,
we have none of the aforementioned advantages, e.g. refactoring the code to use an alternative
implementation of an abstract data type is not necessarily safe. Moreover, if FAE fails for a particular
gradualization, then some static equivalences must necessarily be broken in the presence of untyped
code! Therefore, failure of FAE should be carefully investigated. Such an investigation can have
one of the following two outcomes. It might actually suggest a better design that satisfies FAE. For
gradualizing the total STLC for instance, we have pointed out such a possibility in ğ5.2. Alternatively,
the investigation might also make clear however that enforcing FAE is not really feasible at a
reasonable cost. In this case, pointing this out makes it (formally) clear that some reasoning is lost
in the gradualization process; an important message for programmers. One can furthermore try
to contextualize this failure, as we will illustrate below for GTLC as a gradualization of the total
STLC.16

Investigating Failure of FAE for GTLC w.r.t. the Total STLC. We can investigate which weaker
properties (regarding the preservation of reasoning principles) are still satisfied. For instance, we
might restrict ourselves to a meaningful subset of equivalences and prove that at the least, they are
still preserved upon embedding. In the case of GTLC as a gradualization of total STLC, we might,
for instance, consider only those equivalences that also hold in STLC𝜇 and prove that at least they
are preserved upon embedding.
Alternatively, we might shift towards a different static language, one whose equivalences are

preserved more naturally upon embedding. We have shifted from GTLC as a gradualization of total
STLC to GTLC𝜇 as a gradualization of STLC𝜇 . As remarked upon in ğ5.3, other partial variants like
STLCfix are also possible. We might also theorize that adding a non-recoverable error term to the
total STLC (thereby making it partial) will also give us a gradualization (à la GTLC) that satisfies
FAE.
Lastly, we might wonder what can or cannot happen to the static equivalences that are broken

upon embedding. More concretely, we may wonder whether given any two equivalent static terms,
we could still prove that their embeddings satisfy some other, much weaker (but not meaningless)
relation. For instance, given two equivalent static terms in the STLC, we can hypothesize that the
pair of embeddings in the GTLC still satisfies the relation R defined below.

R (Γ,𝜏) (𝑒, 𝑒
′) iff �𝐶 : (Γ;𝜏) ⇒ (· ;B). (𝐶 [𝑒] −→∗ true) ∧ (𝐶 [𝑒 ′] −→∗ false)

To be clear, we do not think of this constraint as one whose adherence constitutes a desirable
language; rather, we think of it as a bare minimum.

16Remember that in ğ5.2, we showed that the GTLC with respect to the total STLC does not satisfy FAE.
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6 RELATED WORK

The FAE criterion has already been put forward by Devriese et al. [2017a], although the authors
only demonstrate that it does not hold for gradual parametric calculi, as discussed in Section 3.2.
It is not feasible to provide a comprehensive overview of gradual typing here, so we will focus

on research about correctness properties for gradual languages. However, it is worth discussing the
two lineages of gradual typing that Greenberg [2019] identifies: the dynamic-first approach (which
starts from an untyped language and adds a type system to it) versus the static-first approach
(which starts from a static type system and makes it safely interoperable with untyped code). It is
fair to say that our approach aligns more naturally with the latter approach, as we are motivated
by preservation of reasoning principles in a pre-existing static type system. Nevertheless, this does
not mean that FAE is incompatible with the dynamic-first approach. For example, dynamic idioms
like occurrence typing [Tobin-Hochstadt and Felleisen 2008] are not necessarily contradictory with
FAE; as long as the language under consideration offers useful abstractions, a gradual language can
be expected to enforce them.

Correctness Properties for Gradual Type Systems. We have already discussed the refined criteria
of Siek et al. [2015] for gradual typing in the introduction and we will not repeat this here. The
proposal of Garcia and Tanter [2020], stating that gradual languages should not just preserve type
safety but type soundness, has also been discussed there.
New et al. [2019] have proposed graduality, a semantic interpretation of the gradual guaran-

tee [Siek et al. 2015]. While adherence to graduality could enforce new constraints on the gradual
language, it is clear that in general, it does not imply FAE. Indeed, in the gradual language PolyGv

[New et al. 2019], the type ⌈⌈∃𝑌 .∀𝑋 . (𝑋 � 𝑌 ) × (𝑌 � 𝑋 )⌉⌉ is non-degenerately inhabited (their
parametricity uses a type-world logical relation that is weaker than the traditional one originally
used by Reynolds [1983]), hence the argument in ğ3.2 remains applicable.

Greenman et al. [2019] have proposed a Complete Monitoring property for gradual type systems.
They define when a value is owned by a component and then require that the gradual language
checks contracts whenever a value crosses a component boundary. The property is intended to
aid in debugging dynamic type errors by requiring correct blame assignment and to highlight
the benefits of more precise but more costly strategies for tracking blame. As such, the property
captures a different requirement than ours and as such, should be considered largely orthogonal.

Fully Abstract Compilation and Backtranslations. The criterion of fully abstract compilation is a
well-known concept in the field of secure compilation. In that setting, fully abstract compilation
captures the requirement that a secure compiler should enforce source language abstractions. The
concept itself and the many examples in the literature have been surveyed by Patrignani et al.
[2019b]. Most closely related to our work are the results by Devriese et al. [2016] and New et al.
[2016], who also use a universal type in the construction of a backtranslation.
In addition to compiler security, fully abstract compilers (translations) have also been used to

study the expressiveness of program calculi [Parrow 2008]. In a certain sense, our criterion requires
that the gradual language is equally expressive than the static language.

Logical Relations in Iris. The program logic Iris [Jung et al. 2018] which we have used to prove
the correctness of our backtranslation, is a versatile program logic used for different applications.
Several projects have used Iris for modeling logical relations which inspired the construction of
ours [Frumin et al. 2018; Timany and Birkedal 2019; Timany et al. 2017a,b].
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7 CONCLUSION

In the introduction, we argued that the refined criteria of Siek et al. [2015] are not a sufficient
condition for a good gradual language. This has been argued before by Garcia and Tanter [2020]
and it is by now not a very controversial statement in the gradual typing community. Rather than
requiring the preservation of a source-language-specific and designer-selected meaning of types,
this paper explores a generic and ambitious alternative, previously suggested by Devriese et al.
[2017a]: the fully abstract embedding (FAE) of the static language into the gradual one. This paper
offers a first exploration; we have shown that the criterion is both useful (identifies problems in
unsatisfactory gradualizations) and realistic (attainable and provable for real gradualizations). We
believe that future gradual language designers should think about the criterion to evaluate the
consequences of their design choices.
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