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Abstract

Software systems are ubiquitous. Failure in safety- and security-critical systems,
e.g., the control system of a passenger plane, can be quite catastrophic. Hence,
it is crucial to ensure that safety- and security-critical software systems are
correct. Types play an important role in helping us achieve this goal. They help
compilers check for (some) programmer’s mistakes. They also form the basis
of a group of proof assistants. A proof assistant is a software that allows for
formalization and mechanization of mathematics, including the theory of types,
theory of programming languages, program verification, etc. In this thesis we
contribute to the study of programming languages and type theory. In the first
part of this thesis we formalize a mathematical theory (closely related to the
theory of types and programming languages) in the proof assistant Coq and
contribute to the type theory of this proof assistant. In the second part of this
thesis we study a number of programming languages through their type systems.
In particular, we develop methods for proving soundness (correctness) of their
type systems and to prove equivalence of programs.

The first part of this thesis begins with the formal specification of category theory,
a mathematical theory closely related to the theory of types and programming
languages, in the proof assistant Coq. Coq is a proof assistant based on the
predicative calculus of inductive constructions (pCIC). In this formalization we
have taken advantage of a feature of Coq known as universe polymorphism to
represent (relative) smallness and largeness of categories using Coq’s universe
hierarchy. The formalization of category theory that is presented in this part
reveals a shortcoming of pCIC: the fact that the cumulativity relation of Coq,
also known as the subtyping relation, needs to be extended to support subtyping
of inductive types. The cumulativity relation for categories (represented using
inductive types) would allow a small category to be also considered a large
category, i.e., the type of small categories would be a subtype of the type of
large categories. The following chapter presents the predicative calculus of
cumulative inductive constructions (pCuIC). pCuIC extends pCIC to solve the
aforementioned shortcoming of pCIC by introducing a novel subtyping relation
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iv ABSTRACT

for inductive types. The cumulativity relation introduced for inductive types
also has interesting consequences for types that do not involve the mathematical
concept of smallness and largeness. For instance, it unifies (judgementally
equates) the type list A of lists (whose elements are terms of type A) at all
universe levels. This novel subtyping relation has been integrated into the proof
assistant Coq as of the official release of Coq 8.7.

In the second part of this thesis we develop logical relation models, as
operationally-based semantic approaches for proving type soundness and
establishing equivalence of programs, for a number of programming languages.
We develop logical relations models for Fµ,ref ,conc, a concurrent ML-like
programming language, and use them to prove type soundness and equivalence
of programs. We use the latter to establish the equivalence of concurrent counter
and stack modules. One of the main results of this thesis is developing a logical
relations model which allows us to establish proper encapsulation of state in the
programming language STLang. STLang is a programming language featuring a
Haskell-style ST monad which is used to encapsulate state. This problem was
open for almost two decades. We solve this problem by showing that certain
program equivalences hold in the presence of the ST monad that would not hold
if the state was not properly encapsulated. Finally, we develop logical relations
for an extension of Fµ,ref ,conc with continuations, a feature that makes reasoning
about programs quite intricate. We develop a reasoning principle for our system
which allows us to treat parts of the program that do not involve continuations
in a disrupting manner (but can nevertheless interact with other parts which
do) as though there are no continuations in the programming language. We use
this novel reasoning principle together with our logical relations model to prove
that an implementation of a web server that uses continuations (in the style of
Racket web servers) is equivalent to one which does not use continuations.

It is well known that developing and working with logical relations models for
advanced type systems such as those studied in the second part of this thesis
is very intricate. In this thesis we mitigate this issue by working in the Iris
program logic. Iris is a state-of-the-art program logic based on separation logic
for verification of higher-order concurrent imperative programs. Working in Iris
allows us to develop our logical relations models at a higher level of abstraction
and thus avoid the usual intricacies associated with developing and working
with such models. Furthermore, we take advantage of the formalization of Iris
on top of the Coq proof assistant to mechanize all of the results in this part of
the thesis on top of Coq.



Beknopte samenvatting

Softwaresystemen zijn overal. Storingen in veiligheidskritische systemen zoals
het controlesysteem van een vliegtuig, kunnen katastrofaal zijn. Daarom is
het heel belangrijk om veiligheidskritische systemen te verifiëren. Types spelen
een grote rol in dit verband. In compilers helpen ze met het checken van
(sommige) fouten van de programmeur. Aan de andere kant vormen types
de basis van een klasse van bewijsassistenten. Een bewijsassistent is een
programma waarmee we wiskundige theorieën en stellingen, waaronder ook de
theorie van programmeertalen, formeel kunnen definëren en bewijzen. In dit
proefschrift dragen we bij aan de studie van de theorie van programmeertalen
en de theorie van types. In het eerste deel van dit proefschrift formaliseren
we een wiskundige theorie (die nauw verwant is aan de theorie van types en
programmeertalen) in de bewijsassistent Coq. Bovendien leveren we bijdragen
aan de typetheorie van Coq. In het tweede deel van dit proefschrift bestuderen we
een aantal programmeertalen aan de hand van hun typesysteem. In het bijzonder
ontwikkelen we methoden om soundness (correctheid) van typesystemen en
gelijkwaardigheid van programma’s te bewijzen.

Het eerste deel van dit proefschrift begint met formalisatie van categorietheorie,
een wiskundige theorie die nauw verwant is aan de theorie van types en
programmeertalen, in de bewijsassistent Coq. Coq is een bewijsassistent die
gebaseerd is op de Predicative Calculus of Inductive Constructions (pCIC).
In deze formalisering maken we gebruik van een van de kenmerken van Coq,
genaamd universumpolymorfisme, om (relatieve) kleinheid en grootheid van
categorieën te bepalen aan de hand van de universumhiërarchie. De formalisering
van de theorie van categorieën van het eerste hoofdstuk onthult een gebrek van
pCIC: het feit dat er geen cumulativiteitsrelatie (m.a.w. een subtyperelatie)
geldt tussen inductieve types. De cumulativiteitsrelatie tussen categorieën
(gedefinieerd als inductieve types) zou toelaten kleine categorieën te beschouwen
als grote categorieën, d.w.z., het type van kleine categorieën zou een subtype zijn
van dat van grote categorieën. Het tweede hoofdstuk breidt pCIC uit met een
cumulativiteitsrelatie tussen inductieve types. De nieuwe cumulativiteitsrelatie
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is niet enkel interessant voor het wiskundige begrip van kleinheid en grootheid.
Bijvoorbeeld, deze cumulativiteitsrelatie beschouwt alle instanties van het type
list A in verschillende universa als zijnde (oordeelgewijs) gelijk aan elkaar. Deze
nieuwe cumulativiteitsrelatie is nu geïntegreerd in Coq vanaf de officiële uitgave
van Coq 8.7.

In het tweede deel van dit proefschrift ontwikkelen we modellen gebouwd
met de techniek genaamd logische relaties, als operationeel gebaseerde
semantische werkwijze voor typesysteemcorrectheid en voor het bewijzen
van gelijkwaardigheid van programma’s, voor een aantal programmeertalen.
We ontwikkelen logischerelatiemodellen voor Fµ,ref ,conc, een meerdradige
(concurrent) programmeertaal die lijkt op ML. We maken gebruik van deze
logischerelatiemodellen, om typesysteemcorrectheid te bewijzen voor Fµ,ref ,conc,
en ook om gelijkwaardigheid van programma’s te bewijzen. We gebruiken
het laatste model om te bewijzen dat twee meerdradige implementaties van
datastructuren gelijkwaardig zijn. Een van de belangrijkste resultaten van
dit proefschrift is de ontwikkeling van een logischerelatiemodel waarmee we
de behoorlijke inkapseling van toestand (geheugen) kunnen tonen voor de
programmeertaal STLang. STLang is een programmeertaal met een ST-
monade, zoals in Haskell, die voor inkapseling van de toestand gebruikt kan
worden. We tonen behoorlijke inkapseling van toestand door te bewijzen dat
specifieke programma’s gelijkwaardig zijn die niet gelijkwaardig zouden zijn als
de toestand niet goed ingekapseld was. Dit probleem was een onopgelost
probleem gedurende ongeveer twee decennia. Ten laatste ontwikkelen we
logischerelatiemodellen voor een uitbreiding van Fµ,ref ,conc met continuaties,
een mechanisme van sommige programmeertalen waarmee we de uitvoering
van programma’s kunnen opschorten en op een later moment hervatten. Het
is welbekend dat continuaties redeneren over programma’s ingewikkeld maken.
We ontwikkelen een redeneerprincipe waarmee we het onverstorend gebruik van
continaties kunnen negeren. Dus kunnen we redeneren over een programma dat
geen verstorend gebruik maakt van continuaties net alsof er geen continuaties
zijn in de programmeertaal. We gebruiken ons nieuwe redeneerprincipe samen
met ons logischerelatiemodel om te bewijzen dat een implementatie van een web
server waarin continuaties worden gebruikt (zoals in web servers geschreven
in Racket) gelijkwaardig is aan een implementatie die geen gebruik maakt van
continuaties.

Het is welbekend dat het ontwikkelen en gebruik maken van logischerelatie-
modellen voor geavanceerde typesystemen zoals die die we bestuderen in de
tweede deel van dit proefschrift, ingewikkeld is. We lossen dit probleem op in
dit proefschrift door met Iris te werken. Iris is een grensverleggende nieuwe
programmalogica gebaseerd op scheidingslogica (separation logic) die gericht
is op het verifëren van meerdradige imperatieve programma’s van hogere orde.
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Door met Iris te werken kunnen we een directe behandeling van ingewikkelde
aspecten van ons model vermijden. Daarenboven hebben we gebruik gemaakt
van de implementatie van Iris in Coq om alle ontwikkelde theorieën van dit deel
van het proefschrift in Coq te formaliseren.
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Chapter 1

Introduction

Computer systems have been quite prolific in the past couple of decades; a trend
that is undoubtedly going to accelerate even further. We rely on software systems
and online services for virtually everything: banking, stock marketing, control
systems of vehicles and planes, self-driving cars, TV sets, microwave ovens, etc.
Failure in some of these technologies, e.g., the control system of a passenger
plane, would be catastrophic and incur hefty human and financial costs. Hence,
it is of utmost importance to ensure that safety- and security-critical software
systems are correct.

One of the most important concepts that help us produce and verify correct
software is the concept of a type system. Types play a crucial role in both
computer science and mathematics. In computer science types enable compilers
to check programs for (some) programmer’s mistakes. In mathematics they
form the basis of a group of proof assistants including Coq, Agda, etc. Proof
assistants are programs that assist a mathematician by checking correctness of
mathematical proofs including proofs of correctness of programs.

In this thesis we contribute to the study of programming languages and type
theory. In the first part we formalize category theory, a mathematical theory
closely related to the theory of types and programming languages, in the proof
assistant Coq. Furthermore, we extend the underlying logic (type theory) of Coq
to facilitate formalization and application of mathematical theories like category
theory. In the second part, we study a number of properties of programs and
programming languages through their types. This includes showing correctness
of type systems (type soundness), showing how a more efficient implementation

1
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of concurrent data structures refines less efficient versions1 and establishing
correct encapsulation of state by a Haskell-style ST monad. The ST monad
allows a limited use of memory (state) while keeping programs pure. That is,
programs behave as though they are not using memory, i.e., the use of state is
encapsulated.

In the sequel we will give a brief explanation of types and how they are
used for both formalization of mathematics (in proof assistants) and software
development. This is followed by an overview of the contributions presented in
the thesis.

1.1 Types

Types and type systems are very important notions in both computer science and
mathematics. Statically typed programming languages use types to ensure that
user-written programs are meaningful. An example of a meaningless program
is a program that attempts to subtract a string of characters from a number,
e.g., 10− “ABC”. Common sense dictates that such a statement is meaningless
essentially because 10 is a number and “ABC” is a string of characters and
the operation of subtraction is expected to be applied to two numbers. In the
jargon of programming languages and type systems we say that 10 : Z (read
as: 10 has type Z) and “ABC” : String while (−) : Z → Z → Z. The last
statement simply states that the subtraction operation (−) takes two integers
and produces an integer. This information allows the compiler processing the
program to reach the conclusion that the program 10− “ABC” is meaningless
and the result of a programmer’s error.

Broadly and intuitively speaking, types describe what their members are. A
program of type Z is an integer numeral, or rather it is a program that computes
an integer numeral. Elements of the type Z→ Z are functions that given an
integer produce (after some computation) another integer. In general, types
can be far more expressive. In the most extreme case, i.e., in a proof assistant
like Coq, users can define their own types and one can define a type such
that members of the type are mathematical proofs of a certain mathematical
theorem.

Types for programming Every programming language features a number of
basic types like Z (integers), B (Boolean), 1 (the unit type with a single

1Program e refines program e′ if e can be used instead of e′ as part of a bigger program
without changing the overall behavior.
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inhabitant () : 1), String (strings), etc. Apart from these virtually all
programming languages feature what we call simple types (as in simply-typed
λ-calculus). That is, for any two types τ and τ ′ we have the type of their
Cartesian product, τ × τ ′, the type of their sum (also known as a tagged union),
τ + τ ′, and the function type, τ → τ ′.

Most advanced programming languages also feature types like recursive types,
µX. τ , references ref(τ) and polymorphic types ∀X. τ . Recursive types are
used to define recursive concepts, e.g., algebraic lists (encoded as listτ ,
µX. 1 + (τ ×X)) where a list is either empty (uniquely defined as the unit type)
or consists of a head (an element of τ) and a tail which is also again a list.
The elements of the reference type ref(τ) are memory locations that always
(guaranteed by the type system) store values of type τ . Polymorphic types, à
la System F, are used to give types to polymorphic (generic) programs that
can work with any types. For instance, the type of the identity function in
System F is written as ∀X.X → X. The programming languages that we study
in the second part of this thesis feature all these types. Each chapter defines
precisely the programming language that it studies and gives (excerpts of the
important parts of) the syntax, operational semantics and typing rules of this
programming language.

Types for mathematics The idea of using a type system as a logic goes
back to Curry (1934) and Howard (1980) and is widely known as the Curry-
Howard correspondence. This idea can be summarized as “propositions as
types, proofs as programs”. Curry (1934) and Howard (1980) noticed that there
is a correspondence between types of the simply-typed λ-calculus and logical
formulas of the intuitionistic propositional logic and between programs of a type
and proofs of the proposition represented by that type. The following table
shows the correspondence between the logical connectives of the intuitionistic
propositional logic and types of the simply-typed λ-calculus.

Logical connective Type
∧ ×
∨ +
⇒ →
> 1
⊥ 0

Intuitively, a proof of P ∧Q is a pair of proofs of P and Q. A proof of P ∨Q is
either a proof of P or a proof of Q. A proof of P ⇒ Q is function that given
a proof of P returns a proof of Q. The proposition > has a unique proof and
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thus corresponds to the unit type. The absurd proposition ⊥ has no proof and
corresponds to the absurd type 0 which also has no inhabitant.

The idea of the Curry-Howard correspondence is generalized by Howard (1980)
and de Bruijn (1970). This generalized version which is sometimes referred to as
the Curry-Howard-de-Bruijn correspondence extends the idea of “propositions
as types, proofs as programs” to predicate logic by extending simple types to
dependent types. In dependent type theory types are also terms and themselves
have types (usually called sorts or universes). This allows types to mention
terms as in a type Le n m which depends on two natural numbers n and m and
is only inhabited (is provable) if n ≤ m. The calculus of constructions (CoC)
(Coquand and Huet, 1988) and its extensions which are the basis of the proof
assistant Coq are such dependent type theories.

In order to avoid paradoxes like Girard’s paradox2, arising from a type being
term of itself, dependent type theories usually have a countable hierarchy of
sorts.3 In Coq this hierarchy is Type0 : Type1 : Type2 : · · · . Coq’s type theory is
cumulative dependent type theory which means, if we have that A : Typei, then
A : Typej whenever i ≤ j. In addition to the hierarchy of universes Typei Coq
also features a sort Prop of propositions. This is to separate programs (whose
types are in some sort Typei) from logical propositions (including properties of
those program).4

Inductive types are important tools in formalizing mathematics in type theory.
Inductive types allow us to define constructions that are inductive in nature
which are ubiquitous in mathematics, e.g., (Peano’s axiomatization of) natural
numbers. For instance the type Le above corresponding to the ≤ relation on
natural numbers can be defined as follows using the syntax of the Coq proof
assistant.
Inductive Le (n : nat) : nat → Prop :=
| Le_n : Le n n
| Le_S : ∀ m, Le n m → Le n (S m).

This definition defines for each n : nat a family of predicates Le n : nat → Prop
which is constructed as follows: (1) the proposition Le n n has a proof (Le_n n)
and (2) if the proposition Le n m is inhabited then so is Le n (S m) by Le_S n m.

2Similar to Russel’s paradox in set theory.
3The alternative is to have a finite hierarchy where the top sort is not itself a term of any

type.
4Coq also features a universe Set which is just a shorthand for Type0 as far as concerns

this thesis.
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1.2 Type theory and formalization of mathematics

Chapter 3 presents the formalization of a mathematical theory called category
theory in the proof assistant Coq. This development encompasses most concepts
and features of basic category theory, i.e., not including higher category theory
or enriched categories. As such it should be useful as a basic mathematical
library that can be used as a basis for other category-theoretical developments,
e.g., formalizing categorical semantics of type theories. The other contribution of
this development is the novel representation of smallness and largeness through
type-theoretic universes which we will discuss below briefly.

A category is a collection of objects together with a collection of morphisms
(also known as arrows) from A to B for any pair of objects A and B that need
to satisfy certain axioms. The concept of a category is very general and hence
many mathematical structures form categories. As a result, category theory
can be used to give unifying and general definitions for common mathematical
constructions. For instance the general concept of Cartesian product of two
objects, the sum (tagged union) of two objects, the concept of a function
space, etc. The archetypal example of a category is the category of sets where
objects are sets and morphisms are functions between them. This category,
usually written as Set, plays an important and central role in category theory.
Categories are very closely related to type systems and logics (Jacobs, 1999;
Lambek and Scott, 1988).

Categories are so general that they form a category themselves. The category
of small categories has as objects small categories.5 Note the qualifier small in
the last sentence. Crucially, the category of small categories is itself large and
is hence not an object of itself as it would be contradictory otherwise. In the
formalization of category theory that is presented in Chapter 3 we use Coq’s
universes to formalize the concept of (relative) largeness and smallness. That is,
we use a feature of Coq called universe polymorphism (introduced in Coq 8.5) to
formally define categories. Universe polymorphism allows us to define a concept
at all universes at once. That way, the category of categories is also defined at
all universe levels and includes only categories as objects that are themselves at
a strictly smaller universe level.6 In Chapter 3 we argue that using universe
levels to represent smallness and largeness works quite well in practice and only
suffers from one caveat: categories are not cumulative. That is, a small category
is not also a large category as is expected. This, as we shall argue in more

5The morphisms of this category are called functors but they are not relevant to the
present discussion.

6This way of using type-theoretic universes to represent smallness and largeness is similar
to the usual way of defining smallness and largeness in set theory using the closely related
concept of Grothendieck universes. This is explained in more details in Chapter 3.



6 INTRODUCTION

details in Chapter 3, has undesirable theoretical and practical consequences.
The problem boils down to the fact that the cumulativity (subtyping) relation
that is defined for sorts and dependent function types in the predicative calculus
of inductive constructions (pCIC), the underlying type theory of Coq, is not
extended to inductive types through which we define categories.

Chapter 3 is published in the proceedings of the first conference on formal
structures for computation and deduction (FSCD’16) (Timany and Jacobs,
2016a). FSCD is a continuation (as of 2016) of the international conference on
rewriting techniques and applications (RTA) which is ranked A by the Conference
ranking portal of CORE.

Chapter 4 introduces the predicative calculus of cumulative inductive
constructions (pCuIC) which extends the cumulativity relation in pCIC to
inductive types. This new system forms the underlying type system of the
proof assistant Coq as of the official release of version 8.7. The type system
pCuIC adds a rule to pCIC that determines when an inductive type is a
subtype of another inductive type. In the Coq proof assistant this allows us to
determine for each universe-polymorphic inductive type I when I instantiated
with some universe arguments is a subtype of another instance of I instantiated
with some other universe arguments. For the case of categories the subtyping
relation determined in pCuIC corresponds precisely to smallness and largeness
of categories. The usefulness of the cumulativity for inductive types introduced
in pCuIC is not limited to mathematical constructions like categories that
involve smallness and largeness. Chapter 4 presents examples of subtyping
of other inductive types like the universe-polymorphic definition of lists. We
furthermore discuss how the new cumulativity relation extends Coq’s template
polymorphism feature which allows two instances of a non-universe-polymorphic
inductive type in two different universes to be unified under certain conditions.
Finally, in Chapter 4 we prove consistency of pCuIC as a logic by constructing
a set-theoretic model of pCuIC in the Zermelo-Fraenkel set theory with the
axiom of choice (ZFC) together with an extra axiom regarding existence of
certain strongly inaccessible cardinals which are used to model type-theoretic
universes in set theory. This model is based on and inspired by the model of
Lee and Werner (2011) for pCIC.

Preliminary results of the constructions presented in Chapter 4 were published
in the proceedings of the 12th international colloquium on theoretical aspects of
computing (ICTAC’15) (Timany and Jacobs, 2015). ICTAC is ranked B by the
Conference ranking portal of CORE.

This chapter is accepted for publication in the third conference on formal
structures for computation and deduction (FSCD’18) (Timany and Sozeau,
2018). FSCD is a continuation (as of 2016) of the international conference on
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rewriting techniques and applications (RTA) which is ranked A by the Conference
ranking portal of CORE.

1.3 Logical relations: a semantic approach to the
study of programming languages through their
types

The most important theorem that one proves about a type system of a
programming language is type soundness, also known as type safety. This
theorem states that types do fulfil their ultimate purpose, i.e., well-typed
programs have well-defined behavior. In other words, the type soundness
theorem states that well-typed programs are safe, i.e., never crash, which is
usually summarized into the slogan “well-typed programs cannot go wrong”
(Milner, 1978). This problem has been studied using denotational semantics
(Milner, 1978) and syntactic approaches (Harper, 1994; Wright and Felleisen,
1994). The advantage of approaches based on denotational semantics over
syntactic approaches is that the former are modular (separate parts can be
proven safe separately) and take into account data abstraction. Syntactic
approaches on the other hand can only be applied to whole programs that
are well-typed and hence cannot be used to reason about programs where a
part is not syntactically well-typed but can be proven to be safe otherwise.
Furthermore, syntactic approaches only guarantee that the program does not
crash and not that it will respect abstraction barriers between different parts of
the program. For a further detailed discussion of the comparison of these two
techniques see the Introduction section of Chapter 5.

In this thesis we take a third approach to this problem known as operationally
based logical relations (Pitts, 1996). In this semantics approach we define
for each type τ in the type system (by recursion on the structure of types) a
predicate JτK such that for any program e, JτK(e) implies that e is a safe program,
Safe(e), that behaves (based on the operational semantics) like a program of
type τ . Note that behaving as a program of a type that involves abstract
data types requires the program to respect these abstractions. In addition,
since the logical relations model is defined semantically it is also modular. For
instance, if e is a program that behaves as a function of type τ → τ ′ and e′ is
a program that behaves as a program of type τ then the program e e′ must
behave as a program of type τ ′. We prove the type soundness theorem using
logical relations models by showing that all well-typed programs do fall in the
predicate corresponding to their types and hence are safe.
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Another important problem in program verification in particular and in the
study of programming languages in general is proving equivalence of programs.
Two programs are considered equivalent if replacing one by the other in any
context, i.e., as part of any program, would not change the overall behavior of
the program. This notion, called contextual equivalence, is the standard notion
of equivalence of programs. This notion is important for showing the correctness
of refactorings and optimizations. For instance, when in a big software project
we replace an implementation of the queue abstract data structure with another
more efficient implementation the overall behavior of the program should not
change. This can be proven by showing that the two implementations are
contextually equivalent.

Operationally based logical relations can also be used to develop methods to
prove contextual equivalence of programs. In this case, instead of defining a
predicate for each type we define a binary relation for each type. That is, JτK is
a binary relation and for any pair of programs e and e′ being in the relation
JτK(e, e′) implies e and e′ are programs of type τ and that e contextually refines
e′. Contextual refinement is the one sided version of contextual equivalence,
i.e., e refines e′ if replacing e′ by e cannot be detected by any context. Such a
logical relations model can be used to prove contextual equivalence of programs
by showing that each program refines the other.

It is well-known (Ahmed, 2004) that constructing and using logical relations
models for programming languages with advanced types, e.g., dynamically
allocated higher-order references, recursive types, polymorphism, etc., is difficult.
Constructing these logical relations models requires using techniques known as
step-indexing and recursive Kripke worlds. Furthermore, using these models is
complicated by the fact that we need to take into account intricate details of
the model, e.g., step-indices (the number of steps of execution of the program).
In solving this problem we follow the idea of Plotkin and Abadi (1993) and
Dreyer, Ahmed, and Birkedal (2009) and define our logical relations models in
a logic that comes equipped with reasoning principles to reason about intricate
details of the model at a high level of abstraction. The logic that we use for this
purpose is the Iris program logic, a state-of-the-art program logic for verification
of higher-order concurrent imperative programs. The logic of Iris is expressive
enough that we can directly define our logical relations models in it without
having to worry about intricate details of the model. Furthermore, working in
Iris allows us to take advantage of its formalization and dedicated proof mode
(Krebbers, Timany, and Birkedal, 2017) in the proof assistant Coq to formalize
our logical relations models and their application in Coq. In particular, all the
results presented in Chapters 5, 6 and 7 are formalized in the proof assistant
Coq using Iris as a library.

In Chapter 5 we construct unary and binary logical relations models for
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Fµ,ref ,conc, a concurrent ML-like programming language featuring recursive
types, dynamically allocated higher-order references, polymorphism and
concurrency. We use the unary logical relations model to prove type safety of
this language and use the binary logical relations model to prove equivalence of
programs. In particular, we prove contextual refinement for a pair of concurrent
counter implementations and a pair of concurrent stack implementations. In
both of these cases we show that the more efficient version using fine-grained
concurrency refines the version that uses a lock to protect the data structure.
Fine-grained concurrent data structures do not use locks. They perform
computations locally and only update the data structure atomically with the
result of the computation. Hence, they do not block other threads from accessing
the data structure while they are performing computations locally.

The results presented in Chapter 5 have been announced as part of a publication
in the proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL’17) (Krebbers, Timany, and Birkedal, 2017).
POPL is ranked A* by the Conference ranking portal of CORE.

Chapter 6 studies monadic encapsulation of state in STLang, a programming
language featuring a Haskell-style ST monad. The ingenious idea of the ST
monad introduced by Launchbury and Peyton Jones (1994) is simple yet elegant.
It divides the memory (state) into phantom regions and uses types to annotate
which region of memory an effectful command is using. The monadic type
ST τ ρ is the type of an effectful computation that when run produces a result
of type τ and only uses the region of memory associated with ρ. The command
runST {e} evaluates the effectful program e if it can be run in any region, i.e.,
if e has type ∀X. ST τ X. Since the effectful program being run can work in
any region it can in particular work in an empty region of memory. Therefore,
intuitively, the execution of effectful programs cannot be affected by the state
when they start working. They can only use the part of memory that they
allocate and initialize themselves. Hence, the memory is properly encapsulated
and thus programs of STLang behave as though they are pure, i.e., as though
they do not use memory at all. The problem that we address in Chapter 6 is
how to formally prove that the ST monad does indeed properly encapsulate
state. In that chapter we construct a logical relations model that allows to
prove equivalence of certain programs that would not hold if the state was not
properly encapsulated. Proving the equivalences that we prove in Chapter 6
was an open problem for about two decades.

Chapter 6 and its appendix are published in the proceedings of the 45th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL’18)
(Timany, Stefanesco, Krogh-Jespersen, and Birkedal, 2018). POPL is ranked
A* by the Conference ranking portal of CORE.
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In Chapter 7 we work with a programming language Fµ,ref
conc,cc which is an

extension of Fµ,ref ,conc with continuations. Continuations allow programs to
be suspended. Suspended programs (called continuations) can be resumed
at a later point in time. In this chapter we develop logical relations models
for Fµ,ref

conc,cc to prove type soundness and to establish equivalence of programs.
Continuations make reasoning about programs more intricate as we cannot
consider programs in isolation anymore and need to consider the context under
which programs are running as the context could be captured in a continuation.
In this chapter we introduce so-called context-local reasoning principles which
allow us to ignore innocuous usages of continuations. That is, we can reason
about parts of programs that do not use continuations in a disruptive manner as
though there are no continuations in the programming language. We use these
context-local reasoning principles together with our binary logical relations
model to prove that a web server that uses continuations to store client’s state
is equivalent to a traditional implementation that stores the state directly.

Remark Chapters of this thesis correspond to publications, already published
or under submission. The bodies of these chapters are thus copied verbatim
from these papers and are simply adjusted to adhere to the format of the
present thesis. In particular, in the second part each chapter studies a different
programming language which is precisely defined in that chapter. Since all
chapters in the second part use Iris each of them gives an explanation of the
parts of the Iris program logic that are used in that chapter.



Chapter 2

Preliminaries

In this chapter we give a cursory overview of the preliminaries necessary for
reading this thesis.

2.1 Formal systems

The formal systems that we use in this thesis are the Coq proof assistant and
the program logic Iris. The program logic Iris is used in the second part of
the thesis. Each chapter in that part gives a short introduction to the parts of
Iris that are used in that chapter. In this section we will give a brief general
overview of the proof assistant Coq. For further details bout the Coq proof
assistant and the Iris program logic, more developed examples and tutorials
please refer to the following list of suggested reading:

For Coq

• Tutorials:

1. Pierce, Amorim, Casinghino, Gaboardi, Greenberg, Hriţcu, Sjöberg,
and Yorgey (2017)

2. Huet, Kahn, and Paulin-Mohring (2018)
3. Nahas (2012)
4. Jacobs (2013)

11
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• Coq reference manual: The Coq development team (2018)

• Books:

1. Bertot and Castéran (2013)
2. Chlipala (2013)

• Official website: https://coq.inria.fr

For Iris

• Scientific papers published in Conferences and journals:

1. Jung, Swasey, Sieczkowski, Svendsen, Turon, Birkedal, and Dreyer
(2015)

2. Jung, Krebbers, Birkedal, and Dreyer (2016)
3. Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal (2017)
4. Jung, Krebbers, Jourdan, Bizjak, Birkedal, and Dreyer (2018)

• Iris lecture notes: Birkedal and Bizjak (2017)

• Official website: http://iris-project.org

2.1.1 Coq

The system Coq in its most essential form consists of sorts (universes), dependent
function types and inductive types.1 All other constructs in Coq are (or can at
least be thought of) as syntactic sugar defined in terms of these basic building
blocks. The proof assistant Coq also includes many features that facilitate
development of programs and proofs that we do not discuss here, e.g., type
inference, type classes, canonical structures, the program system (the Russell
language), etc.

Universes Universes (sorts) in Coq consist of Prop and the universe hierarchy
Type0, Type1, · · · . The sort Set is just a name for Type0.2

1In this thesis we ignore coinductive types in Coq.
2Notice that Coq can be run with the option -impredicative-set which makes the sort

Set impredicative. With this option the sort Set is no longer merely Type0. However, this is
beyond the scope of this thesis.

https://coq.inria.fr
http://iris-project.org
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Dependent functions In our formalism of Coq in Chapter 4 we write λx : A.M
for a (dependent) function. Dependent functions are sometimes referred to as
dependent products. This term has type ΠX : A.B if the body of the function,
M , has type B given that x has type A. In Coq’s notation we write fun x : A ⇒ M
for the aforementioned dependent function and write forall x : A, B for the
corresponding type. We call these functions dependent because the variable x
can appear freely in B making the codomain type of the function depend on the
value that the function is applied to. In particular, if f has type forall x : A, B
and t has type A then the application f t will have type B[t/x].

As a simple yet instructive example of a dependent type and a dependent
function consider the definition of the identity function id and its type Id.
Definition Id := forall x : Type, x → x.
Definition id : Id := fun T z ⇒ z.

Note that the A → B is syntactic sugar for non-dependent function type. That
is, A → B is a syntactic sugar for forall x : A, B for some x that does not
appear freely in B. In the Coq code above we have written Type as the type
of x and not explicitly a specific universe in the hierarchy, e.g., Type@{i}.
Coq can automatically infer the universe levels of definitions and these are
treated differently depending on which constructions are universe-polymorphic
or universe-monomorphic. For a detailed discussion about treatment of universes
see Chapter 4.

Inductive types, pattern matching and recursive functions The quintessen-
tial example of inductive types is that of Peano natural numbers. In Coq this
type can be defined as follows:3

Inductive nat : Set :=
| O : nat
| S : nat → nat.

Here, O is zero and S is the successor function, intuitively, mapping n to n+ 1.

The basic principle for working with inductive types is destructing them using
the match construct. For instance, we can define the function is_zero to check
whether a natural number is zero or not:
Definition is_zero (n : nat) : Bool :=
match n with
| O ⇒ true
| S _ ⇒ false
end.

3This is how the standard library of Coq defines Peano natural numbers.
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In Coq one can define functions by recursion on a term of an inductive type.4

Fixpoint add (n m : nat) : nat :=
match n with
| O ⇒ m
| S k ⇒ S (add k m)
end.

Intuitively, if the first argument of add is zero then the result is the second
argument. On the other hand, if the first argument is the successor of k then
the result is the successor of the result of add k m. Notice that when a recursive
call happens (the successor case) the first argument strictly decreases. This is
crucial for ensuring consistency of Coq.

Coq supports dependent pattern matching. That is, the type of the result of
the pattern matching on terms of inductive types can depend on the term being
destructed. For details about the syntax and semantics of dependent pattern
matching please consult the further reading materials given above.

Theorems and proofs Coq is a proof assistant and as such it has facilities
to support interactive proofs. In Coq a theorem (respectively a lemma) starts
with the keyword Theorem (respectively Lemma). This keyword is followed by the
name of the theorem and the type of the theorem which represents the theorem
that is to be proved (refer to Curry-Howard correspondence in Chapter 1).

The following piece of Coq code first loads the library of natural numbers
from the standard library of Coq. Afterwards, it states a theorem expressing
commutativity of the addition operation on natural numbers. The proof script
below given between keywords Proof. and Qed. (see tactics and their use for
proving theorems in the reading material for Coq given above) is a very simple
and elaborated proof of this theorem type checked with Coq 8.7. The so-called
bullets − and + are simply put to structure the proof by focusing on different
cases in the proof (different cases of inductions here) and are optional parts of
the proof script.
Require Import Coq.Init.Nat.

Theorem add_comm : forall n m : nat, add n m = add m n.
Proof.
induction n; simpl in ∗.
− induction m; simpl in ∗.
+ trivial.
+ rewrite ← IHm; trivial.

4This is how addition is defined in the standard library of Coq.



PROGRAMMING LANGUAGES STUDIED IN THE SECOND PART 15

− induction m; simpl.
+ rewrite IHn; trivial.
+ rewrite ← IHm, IHn. simpl.
rewrite IHn; trivial.

Qed.

2.2 Programming languages studied in the second
part

In the second part of this thesis we study programs and programming languages
through their types. The programming languages studied in that part feature
certain advanced features, e.g., dynamically allocated higher-order references,
recursive types, etc. Most of these features are standard and are present
in modern programming languages, e.g., OCaml. Here, we briefly explain
these features insofar as to give examples of and explain the intuition for
these features. Each chapter will introduce (the relevant parts of) the precise
notation, syntax and semantics of the programming language that is studied
in that chapter. Below, we will use the more-straightforward-to-read syntax
of OCaml programming language for examples unless we need to explicitly
mention the specific syntax of the programming languages that we study.

Higher-order code The programming languages that we study in the second
part of this thesis are all higher-order programming languages. In a higher-order
programming language, functions are first class values and can be passed as
values to other functions. Functions that take as arguments other functions
are called higher-order functions. The best example of such function is the
map_to_string function that given a list of integers and a function from integers
to strings produces a list of strings by applying the given function to all the
elements of the given list.
let rec map_to_string l f =
match l with
| [] -> []
| h :: t -> (f h) :: ( map_to_string t f)

Higher-order state Here, by state we mean the heap of the programming
language. A programming language featuring higher-order references is a
programming language where the state (heap) is higher-order. That is, alongside
(first order) data, e.g., strings, integers, etc., one can also store (higher-order)
functions in the heap. The idea here is to have references that store functions.
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Different parts of the program can then read these references and use the stored
function while other parts can change the stored function, effectively changing
the behavior of the program dynamically.

The quintessential example of higher-order reference is how they can be used
to implement recursive functions without any explicit use of recursion. In the
following program the function recursive_fun takes a function as an argument
and turns that function into a recursive function. The function in question must
itself take a function (which is it will when it wants to make a recursive call).
This program creates a reference for the recursive call which is initially the
identity function. Subsequently, we update the reference storing the recursive
call to the function that calls f with the stored recursive call. This example in
the literature is known as the Landin’s knot due to Landin (1964).
let recursive_fun (f : (int -> int) -> (int -> int )) =

let recursive_call =
ref (fun (x : int) -> x)

in
let rec_fun x =

f ! recursive_call x
in
recursive_call := rec_fun ; rec_fun

The higher-order function recursive_fun can be used to encode the factorial
function as follows:
let fact =

let fact_rec rc n =
if n = 0 then 1 else n * rc (n -1)

in
recursive_fun fact_rec

Impredicative polymorphism All programming languages studied in the
second part of this thesis feature impredicative polymorphism, also known
as parametric polymorphism. This feature allows us to write programs that
are polymorphic in their types. That is, we can give types to programs that
work with any value of any type. The quintessential example of polymorphic
function is the polymorphic definition of the identity function.
let id : ’a -> ’a = fun x => x

Notice that the ’ in ’a is to indicate that the type ’a is the type variable of the
polymorphic definition.

We call this form of polymorphism impredicative because the type variable of
the polymorphic definition can be instantiated with any type, including the
polymorphic type itself. That is, the expression id id has the type ’a -> ’a.
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There is a well-known problem with the combination of references and
impredicative polymorphism. We cannot consider arbitrary expressions of the
program polymorphic. If we were to do so then the expression ref (fun x -> x)
could be typed (’a -> ’a) ref. That is, according to this type, this expression
results in a reference that for any type t has (t -> t) ref. For an argument
of why allowing such typings violates type safety see Wright (1995) where the
aforementioned example is taken from. The solution that Wright (1995) offers is
called value restriction where only values, and not arbitrary expressions, can be
considered polymorphic. The ML family programming languages use (variants
of) the value restriction.

In order for us to ensure type-safety of the programming languages that we
consider in the second part of this thesis we use a so-called type-level lambda
which we write as Λ . The net effect on the operational semantics of the
programming language is that the expression Λ e is a value and cannot be
evaluated further unless it is specialized at a specific type using the syntax
(Λ e) _. Our typing rules only allow expressions of the form Λ e to be
considered polymorphic. Such expressions by our definition are values. Hence, by
construction our programming languages satisfy the value restriction conditions.

Recursive types Recursive types are used to represent recursive algebraic data
structures such as lists. We write recursive types as µX. τ . The type of lists
with elements of type τ , listτ , is written as follows:

listτ , µX. 1 + (τ ×X)

The idea here is that recursive types are defined as fixpoints such that
µX. τ ' τ [µX. τ/X] where ' is isomorphism. We have two language constructs
for realization of this isomorphism in our programming languages, fold and
unfold . This can be evidently seen in the typing rules associated with these
two constructs:

T-fold
Ξ | Γ ` e : τ [µX. τ/X]
Ξ | Γ ` fold e : µX. τ

T-unfold
Ξ | Γ ` e : µX. τ

Ξ | Γ ` unfold e : τ [µX. τ/X]

See Chapter 5 for an explanation of these typing rules. In order to enable
computation with values of recursive types the semantics of the programming
language specifies that unfolding a folded value is that value itself, i.e.,
unfold (fold v) reduces to v.

The value nil, the empty list, the cons function, and the head function, taking
the head of a list, can be written as follows in our programming languages:

nil , fold (inj1 ())
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cons , λx. λy. fold (inj2 (x, y))

head , λx. match (unfoldx) with inj1 y ⇒ inj1 () | inj2 y ⇒ inj2 (π1 y) end

These programs have the following types for any type τ :

nil : listτ

cons : τ → listτ → listτ

head : listτ → 1 + τ

Fine-grained concurrency We say a concurrent algorithm is coarse-grained if
it uses a lock to protect the whole data structure. A fine-grained concurrent
algorithm on the other hand does not use any locks. These algorithms, read the
state of the data structure that they manipulate and perform the manipulation
on their local copy of the data stored in that data structure. Afterwards,
these algorithms, check that the data structure still stores the data that they
had originally read. If so, they will update the data structure with their
local manipulated version of the data. Crucially, this checking and updating
happens atomically through the compare and set (CAS) instruction. Figure 5.5
in Chapter 5 shows both fine-grained and coarse-grained implementations of a
concurrent counter module side-by-side.
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Chapter 3

Category Theory in Coq

This chapter is published in the proceedings of the first conference
on formal structures for computation and deduction (FSCD’16)
(Timany and Jacobs, 2016a).
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We report on our experience implementing category theory in Coq 8.5. Our
work formalizes most of basic category theory, including concepts not covered
by existing formalizations, in a library that is fit to be used as a general-purpose
category-theoretical foundation.

Our development particularly takes advantage of two features new to Coq
8.5: primitive projections for records and universe polymorphism. Primitive
projections allow for well-behaved dualities while universe polymorphism
provides a relative notion of largeness and smallness. The latter is one of
the main contributions of this paper. It pushes the limits of the new universe
polymorphism and constraint inference algorithm of Coq 8.5.

In this paper we present in detail smallness and largeness in categories and
the foundation they are built on top of. We furthermore explain how we have
used the universe polymorphism of Coq 8.5 to represent smallness and largeness
arguments by simply ignoring them and entrusting them to the universe inference
algorithm of Coq 8.5. We also briefly discuss our experience throughout this
implementation, discuss concepts formalized in this development and give a
comparison with a few other developments of similar extent.

3.1 Introduction

A category (Awodey, 2010; Mac Lane, 1978) consists of a collection of objects
and for each pair of objects A and B a collection of morphisms (aka arrows
or homomorphisms) from A to B. Moreover, for each object A we have a
distinguished morphism idA : A→ A. Morphisms are composable, i.e., given
two morphisms f : A → B and g : B → C, we can compose them to form:
g ◦ f : A→ C. Composition must satisfy the following additional conditions:
∀f : A→ B. f ◦ idA = f = idB ◦ f and ∀f, g, h. (h ◦ g) ◦ f = h ◦ (g ◦ f).

The notion of a category can be seen as a generalization of sets. In fact sets
as objects together with functions as morphisms form the important category
Set. On the other hand, it can be seen as a generalization of the mathematical
concept of a preorder. In this regard, a category can be thought of as a preorder
where objects form the elements of the preorder and morphisms from A to
B can be thought of as “witnesses” of the fact that A � B. Thus, identity
morphisms are witnesses of reflexivity whereas composition of morphisms forms
witnesses for transitivity and the additional axioms simply spell out coherence
conditions for witnesses. Put concisely, categories are preorders where the
quality and nature of the relation holding between two elements is important.
In this light, categories are to preorders what intuitionistic logic is to classical
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logic. A combination of these two interpretations of categories can provide an
essential and useful intuition for understanding most, if not all, of the theory.

This generality and abstractness is what led some mathematicians to call this
mathematical theory “general abstract nonsense” in its early days. However
category theory, starting from this simple yet vastly abstract and general
definition, encompasses most mathematical concepts and has found applications
not only in mathematics but also in other disciplines, e.g, computer science.

In computer science it has been used extensively, especially in the study of
semantics of programming languages (Mitchell, 1996), in particular constructing
the first (non-trivial) model of the untyped lambda calculus by Dana Scott
(Salibra, 2012), type systems (Jacobs, 1999), and program verification (Biering,
Birkedal, and Torp-Smith, 2007; Birkedal, Mogelberg, Schwinghammer, and
Stovring, 2011; Birkedal, Støvring, and Thamsborg, 2010).

Given the applications of category theory and its fundamentality on the one
hand and the arising trend of formalizing mathematics in proof assistants on
the other, it is natural to have category theory formalized in one; in particular,
a formalization that is practically useful as a category-theoretical foundation for
other works. This paper is a report of our experience developing such a library.
There already exist a relatively large number of formalizations of category theory
in proof assistants (Ahrens, Kapulkin, and Shulman, 2015; Gross, Chlipala,
and Spivak, 2014a; Huet and Saïbi, 2000; Megacz, 2011; Peebles, Deikun,
Norell, Doel, Vezzosi, Jahandarie, and Cook, 2016). However, most of these
implementations are not general purpose and rather focus on parts of the
theory which are relevant to the specific application of the authors. See the
bibliography of Gross, Chlipala, and Spivak (2014b) for an extensive list of such
developments.

Features of Coq 8.5 used: η for records and universe polymorphism This
development makes use of two features new to Coq 8.5. Namely, primitive
projection for records (i.e., the η rule for records) and universe polymorphism.

Following Gross, Chlipala, and Spivak (2014a), we use primitive projections
for records which allow for well behaved-dualities in category theory. The dual
(aka opposite) of a category C is a category Cop which has the same objects as
C where the collection of morphisms from A to B is swapped with that from
B to A. Drawing intuition from the similarity of categories and preorders, the
opposite of a category (seen as a preorder) is simply a category where the order
of objects is reversed. Use of duality arguments in proofs and definitions in
category theory are plentiful, e.g., sums and products, limits and co-limits, etc.
One particular property of duality is that it is involutive. That is, for any
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category C, (Cop)op = C. The primitive projection for records simply states
that two instances of a record type are definitionally equal if and only if their
projections are. In terms of categories, two categories are definitionally equal
if and only if their object collections are, morphism collections are and so
forth. This means that we get that the equality (Cop)op = C is definitional.
Similar results hold for the duality and composition of functors, for natural
transformations, etc. That is we get definitional equalities such as (Fop)op = F ,
(N op)op = N and (F ◦ G)op = Fop ◦ Gop where F and G are functors and N is
a natural transformation.

To achieve well behaved dualities, in addition to primitive projections one needs
to slightly adjust the definition of a category itself. More precisely, the definition
of the category must carry a symmetric form of associativity of composition.
The reason being the fact that for the dual category we can simply swap the
proof of associativity with its symmetric form and thus after taking the opposite
twice get back the proof we started with.

In this development we have used universe polymorphism, a feature new to Coq
8.5, to represent relative smallness/largeness. In short, universe polymorphism
allows for a definition to be polymorphic in its universe variables. This allows us,
for instance, to construct the category of (relatively small) categories directly.
That is, the category constructed is at a universe level (again polymorphic)
while its objects are categories at a lower universe level. We will elaborate
the use of universe polymorphism to represent relative largeness and smallness
below in Section 3.2.

Contributions

The main contributions of this development are its extent of coverage of basic
concepts in category theory and its use of the universe polymorphism of Coq 8.5
and its universe inference algorithm to represent relative smallness/largeness.
The latter, as explained below, allows us to represent smallness and largeness
using universe levels by simply forgetting about them and letting Coq’s universe
inference algorithm take care of smallness and largeness requirements as
necessary.

The structure of the rest of this paper

The rest of this paper is organized as follows. Section 3.2 gives an explanation of
smallness and largeness in category theory based on the foundation used. This is
followed by a detailed explanation of our use of the new universe polymorphism
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and universe constraint inference algorithm of Coq 8.5 to represent relative
smallness/largeness of categories. There, we also give a short comparison of the
way other developments represent (relatively) large concepts.

In Section 3.3, we give a high-level explanation of the concepts formalized and
some notable features in this work. We furthermore provide a comparison of
our work with a number of other works of similar extent. We also briefly discuss
the axioms that we have used throughout this development.

Section 3.4 describes the work that we have done or plan to do which is based
on the current work as category-theoretical foundation. Finally, in Section 3.5
we conclude with a short summary of the paper.

Development source code The repository of our development can be found
in GitHub (Timany, 2016a).

3.2 Universes, Smallness and Largeness

A category is usually called small if its objects and morphisms form sets and
large otherwise. It is called locally small if the morphisms between any two
objects form a set but objects fail to. For instance, the category Set of sets
and functions is a locally small category as the collection of all sets does not
form a set while for any two sets, there is a set of functions between them.
These distinctions are important when working with categories. For instance,
a category is said to be complete if it has the limit of all small diagrams
(F : C → D is a small diagram if C is a small category). For instance, Set is
complete but does not have the cartesian product of all large families of sets.

These terminology and considerations are due to the fact that the original
foundations of category theory by Eilenberg and Mac Lane were laid on top of
NBG (von Neumann-Bernays-Gödel) set theory. In NBG, in addition to sets,
the notion of a class (a collection of sets which itself is not necessarily a set) is
also formalized. For any property ϕ, there is a class Cϕ of all sets that have
property ϕ. If the collection of sets satisfying ϕ forms a set then Cϕ is just
that set. Otherwise, Cϕ is said to be a proper class. In this formalism, one
can formalize large categories but cannot use them. For instance, the functor
category SetSet is not defined as its objects are already proper classes and there
is no class of proper classes in NBG.

The other foundation that is probably the most popular among mathematicians
is that of ZF with Grothendieck’s axiom of universe. Roughly speaking, a
Grothendieck universe V is a set that satisfies ZF axioms, e.g., if A ∈ V and
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B ∈ V then {A,B} ∈ V (axiom of pairing), if A ∈ V then 2A ∈ V (axiom of
power set), etc. We also have if A ∈ B and B ∈ V then A ∈ V . Grothendieck’s
axiom says that for any set x there is a Grothendieck universe V such that
x ∈ V . This also implies that for any Grothendieck universe V , there is a
Grothendieck universe V ′ such that V ∈ V ′.

Working on top of this foundation, one can talk about V -small categories and
use all the set-theoretic power of ZF. The notion of completeness for a V -small
category can be defined as having all V -small limits. The category of all V -small
sets will be a V ′-small category where V ∈ V ′. It is also a V -locally-small
category as its set of morphisms are V -small but its set of objects fail to be.
For more details on foundations for category theory see chapter 12 of McLarty
(1996).

The type hierarchy of Coq (also known as universes), as explained below, bears a
striking resemblance to Grothendieck universes just explained. In the rest of this
section we discuss how Coq’s new universe polymorphism feature allows us to
use Coq universes instead of Grothendieck universes in a completely transparent
way. That is, we never mention any universes in the whole of the development
and Coq’s universe inference algorithm (part of the universe polymorphism
feature) infers them for us.

3.2.1 Coq’s Universes

In higher-order dependent type theories such as that of Coq, types are also terms
and themselves have types. As expected, allowing existence of a type of all types
results in self-referential paradoxes, such as Girard’s paradox (Coquand, 1986).
Thus, to avoid such paradoxes type theories like Coq use a countably infinite
hierarchy of types of types (also known as universes): Type0 : Type1 : Type2 : . . .
The type system of Coq additionally has the cumulativity property, i.e., for any
term T : Type0 we also have T : Typen+1.

The type system of Coq has the property of typical ambiguity. That is, in writing
definitions, we don’t have to specify universe levels and/or constraints on them.
The system automatically infers the constraints necessary for the definitions to
be valid. In case, the definition is such that no (consistent) set of constraints
can be inferred, the system rejects it issuing a “universe inconsistency” error.
It is due to this feature that throughout this development we have not had the
need to specify any universe levels and/or constraints by hand.

To better understand typical ambiguity in Coq, let’s consider the following
definition.
Definition Tp := Type.
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In this case, Coq introduces a new universe variable for the level of the type
Type. That is, internally, the definition looks like1:
Definition Tp : Type@{i+1} := Type@{i}.

Note that in older version of Coq and when universe polymorphism is not
enabled in Coq 8.5 the universe level i above is a global universe level, i.e., it is
fixed. Hence, the following definition is rejected with a universe inconsistency
error.
Definition TpTp : Tp := Tp.

The problem here is that this definition requires(Type@{i} : Type@{i}) which
requires the system to add the constraint i < i which makes the set of constraints
inconsistent. Without universe polymorphism, one way to solve this problem
would be to duplicate the definition of Tp as Tp’ which would be internally
represented as:
Definition Tp’ : Type@{j+1} := Type@{j}.

Now we can define TpTp’:
Definition TpTp’ : Tp’ := Tp.

which Coq accepts and consequently adds the constraint i < j to the global set
of universe constraints. As these constraints are global however, after defining
TpTp’ we can’t define Tp’Tp
Definition Tp’Tp : Tp := Tp’.

This is rejected with a universe inconsistency error as it requires j < i to be
added to the global set of constraints which makes it inconsistent as it already
contains i < j from TpTp’.

3.2.2 Universe Polymorphism

Coq has recently been extended (Sozeau and Tabareau, 2014) to support universe
polymorphism. This feature is now included in the recently released Coq 8.5.
When enabled, universe levels of a definition are bound at the level of that
definition. Also, any universe constraints needed for the definition to be well-
defined are local to that definition. That is the definition of Tp defined above is
represented internally as:
Definition Tp@{i} : Type@{i+1} := Type@{i}. (* Constraints: *)

1Type@{i} is Coq’s syntax for Typei.
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Note that the universe level i here is local to the definition. Hence, Tp can
be instantiated at different universe levels. As a result, the definition of TpTp
above is no longer rejected and is represented internally as:
Definition TpTp@{i j} : Tp@{j} := Tp@{i}. (* Constraints: i < j *)

That is, the two times Tp is mentioned, two different instances of it are considered
at two different universe levels i and j resulting in the constraint i < j for the
definition to be well-defined.

Note the resemblance between universes in Coq and Grothendieck universes,
e.g., cumulativity or axiom of pairing, i.e., if A : Type@{i} and B : Type@{i} then
{x : Type@{i} | x = A ∨ x = B} : Type@{i}, etc.

In the sequel, in some cases, we only show the internal representation of concepts
formalized in Coq.

3.2.3 Smallness and Largeness

In this implementation, we use universe levels as the underlying notion of
smallness/largeness. In other words, we simply ignore smallness and largeness
of constructions and simply allow Coq to infer the necessary conditions for
definitions to be well-defined. We define categories without mentioning universe
levels. They are internally represented as:
Record Category@{i j} :=
{

Obj : Type@{i};
Hom : Obj → Obj → Type@{j};
. . .

} : Type@{max(i+1, j+1)} (* Constraints: *)

The category of (small) categories is internally represented as:
Definition Cat@{i j k l} :=
{|

Obj := Category@{k l};
Hom := fun (C D : Category@{k l}) ⇒ Functor@{k l k l} C D;
. . .

|} : Category@{i j}
(* Constraints: k < i, l < i, k ≤ j, l ≤ j *)

That is, Cat has as objects categories that are small compared to itself.

Having a universe-polymorphic Cat means for any category C there is a version
of Cat that has C as an object. Therefore, for example, to express the fact
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that two categories are isomorphic, we simply use the general definition of
isomorphism in the specific category Cat. This means we can use all facts and
lemmas proven for isomorphisms, for isomorphisms of categories with no further
effort required.

The category of types (representation of Set in Coq) is internally represented
as:
Definition Set@{i j} :=
{|

Obj := Type@{j};
Hom := fun (A B : Type@{j}) ⇒ A → B;
. . .

|} : Category@{i j} (* Constraints: j < i *)

The constraint j < i above is exactly what we expect as Set is locally small.
The reason that Coq’s universe inference algorithm produces this constraint
is that the type of objects of Set is Type@{j} which itself has type Type@{i}.
But, the homomorphisms of this category are functions between two types
whose type is Type@{j}. Thus, the type of homomorphisms themselves is
Type@{j}. For details of typing rules for function types see the manual of Coq
(The Coq development team, 2015).

Complete Small Categories are Mere Preorder Relations! Perhaps the
best showcase of using the new universe polymorphism of Coq to represent
smallness/largeness can be seen in the theorem below which simply implies
that any complete category is a preorder category, i.e., there is at most one
morphism between any two objects.
Theorem Complete_Preorder (C : Category) (CC : Complete C) :

forall x y : Obj C, Hom x y’ ' ((Arrow C) → Hom x y)

where y’ is the limit of the constant functor from the discrete category
Discr(Arrow C) that maps every object to y, (Arrow C) is the type of all
homomorphisms of category C and ' denotes isomorphism. In other words, for
any pair of objects x and y the set of functions from the set of all morphisms in
C to the set of morphisms from x to y is isomorphic to the set of morphisms from
x to some constant object y’. This though, would result in a contradiction as
soon as we have two objects A and B in C for which the collection of morphisms
from A to B has more than one element. Hence, we have effectively shown that
any complete category is a preorder category.

This is indeed absurd as the category Set is complete and there are types in
Coq that have more than one function between them! However, this theorem
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holds for small (in the conventional sense) categories. That is, any small and
complete category is a preorder category2.

As expected, the constraints on the universe levels of this theorem that are
inferred by Coq do indeed confirm this fact. That is, this theorem is in fact
only applicable to a category C for which the level of the type of objects is less
than or equal to the level of the type of arrows. This is in direct conflict with
the constraints inferred for Set as explained above. Hence, Coq will refuse to
apply this theorem to the category Set with a universe inconsistency error.

3.2.4 Limitations Imposed by Using Universe Levels for
Smallness and Largeness

The universe polymorphism of Coq, as explained in Sozeau and Tabareau
(2014), treats inductive types by considering copies of them at different levels.
Furthermore, if a term of a universe polymorphic inductive type is assumed to
be of two instances of that inductive type with two different sets of universe level
variables, additional constraints are imposed so that the corresponding universe
level variables in those two sets are required to be equal. As records are a special
kind of inductive types, the same holds for them. For us, this implies that if
we have C : Category@{i j} and we additionally have that C : Category@{i’ j’},
Coq enforces i = i’ and j = j’. This means, Cat@{i j k l} is in fact not the
category of all smaller categories. Rather it is the category of smaller categories
that are at level k and l and not any lower level.

Apart from the fact that Cat defined this way is not the category of all relatively
small categories, these constraints on universe levels impose practical restrictions
as well. For instance, looking at the fact that Cat@{i j k l} has exponentials
(functor categories), we can see the constraints that j = k = l. Consequently,
only those copies have exponentials for which this constraints holds. Looking
back at Set, we had the constraint that the level of the type of morphisms is
strictly less than that of objects. This means, there is no version of Cat that
both has exponentials and a version of Set in its objects.

Moreover, we can use the Yoneda lemma to show that in any cartesian closed
category, for any objects a, b and c:

(ab)c ' ab×c (3.1)
Yet, this theorem can’t be applied to Cat, even though it holds for Cat.

It is worth noting that although the category Cat@{i j k l} is the category of
all categories Category@{k l} and not lower, for any lower category it contains

2This theorem and its proof are taken from Awodey (2010).
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an “isomorphic copy” of that category. That is any category C : Category@{k’ l’}
such that k′ ≤ k and l′ ≤ l can be “lifted” to Category@{k l}. Such a lifting
function can be simply written as:
Definition Lift (C : Category@{k’ l’}) : Category@{k l} :=

{| Obj := Obj C; Hom := Hom C; . . . |}.

and the appropriate constraints, i.e., k′ ≤ k and l′ ≤ l are inferred by Coq.
However, working with such liftings is in practice cumbersome as in interesting
cases where k′ < k and/or l′ < l, we can’t prove or even specify Lift C = C as
it is ill-typed. This means, any statement regarding C must be proven separately
for Lift C in order for them to be useful for the lifted version.

It is possible to alleviate these problems if we have support for cumulative
inductive types in Coq, as proposed in Timany and Jacobs (2015). In such a
system, any category C : Category@{i j} will also have type Category@{k l} so
long as the constraints i ≤ k and j ≤ l are satisfied.

However, these limitations are not much more than a small inconvenience and
in practice we can work in their presence with very little extra effort. At least
as far as basic category theory goes. Our development is an attestation to that.

3.2.5 Smallness and Largeness in Other Developments

In homotopy type theory (HoTT) (The Univalent Foundations Program, 2013)
a category C has a further constraint that for any two objects A and B the set
of morphisms from A to B must form an hSet (a homotopy type-theoretical
concept). On the other hand, for two categories C and D, the set of functors
from C to D does not necessarily form an hSet. It does however when the set of
objects of D forms an hSet. Therefore, in HoTT settings one can construct the
category of small strict categories, i.e., small categories whose type of objects
forms an hSet, and not the category of all small categories. However, the
category of small strict categories itself is not strict. Hence, contrary to the
category Cat in our development, there is no category (in the HoTT sense, i.e.,
one whose objects form an hSet) that has the category of small strict categories
as one of its objects. In this regard, working in HoTT is similar to working in
NBG rather than ZF with Grothendieck universes.

The situation regarding the category of small strict categories discussed above
is due to the fact that homotopy type-theoretical levels for types (e.g., hSet)
concern a notion of (homotopy theoretical) complexity rather than cardinality.
In fact, in other situations, e.g., in defining limits of functors, where cardinality
is concerned universe levels can be used to express smallness and largeness.
In other words, in HoTT settings, when defining limits, one can simply not
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mention universe levels and let Coq infer that the definition of limit for a functor
F : C → D is well-defined whenever, C is relatively small compared to D. This
also means that the restrictions mentioned above are also present in HoTT
settings when universe levels are used to represent smallness and largeness. For
instance isomorphism 3.1 above can’t be proven in Cat using the Yoneda lemma
even if a, b and c are strict categories.

This is how smallness and largeness works in both Gross, Chlipala, and Spivak
(2014a) and Ahrens, Kapulkin, and Shulman (2015). This is also the case for
our development when ported on top of the HoTT library (HoTT Version
of Coq and Library). As one consequence, contrary to what was explained
above, in migrating to the HoTT library settings we can’t simply consider the
isomorphism of categories as the general notion of isomorphism in the specific
case of Cat.

In Huet and Saïbi (2000), working in Coq 8.4, the authors define a duplicate
definition of categories, Category’, tailored to represent large categories. This
way, they form the Category’ of categories (Category) – much like we used Tp’
above.

Peebles, Deikun, Norell, Doel, Vezzosi, Jahandarie, and Cook (2016) however
use universe levels to represent smallness and largeness. But working in Agda
which provides no typical ambiguity or cumulativity, they have to hand code all
universe levels everywhere; whereas we rely on Coq’s inference of constraints to
do the hard work. Noteworthy is also the fact that their categories have three
universe variables instead of our two. One for the level of the type of objects,
one for the level of the type of morphisms and one for the level of the type of
the setoid equality for their setoids of morphisms.

3.3 Concepts Formalized, Features and Compari-
son

In this development we have formalize most of the basic category theory.
Here, by basic we mean not involving higher (e.g., 2-categories), monoidal or
enriched categories. This spans over the simple yet important and useful basic
concepts like terminal/initial objects, products/sums, equalizers/coequalizers,
pullbacks/pushouts and exponentials on the one hand and adjunctions, Kan
extensions, (co)limits (as (left)right local Kan extensions) and toposes on the
other.

The well-behaved dualities (in the sense discussed above) allow us to simply
define dual notions, just as duals of their counterparts, e.g., initial objects as
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terminal objects of the dual category or the local left Kan extension of F along
G as the local right Kan extension of Fop along Gop.

3.3.1 Concepts Formalized: Generality and Diversity

Throughout this development we have tried to formalize concepts in as general
a way as possible so long as they are comfortably usable. For instance, we define
(co)limits as (left)right local Kan extensions along the unique functor to the
terminal category. By doing so, we can extend facts about them to (co)limits.
As an example, consider (left)right adjoints preserving (co)limits and (co)limit
functors being adjoint to ∆ explained below.

Different versions of adjunction and Kan extensions In this formalization,
we have multiple versions of the definition of adjunctions and Kan extensions. In
particular, we define unit-universal morphism property adjunction, unit-co-unit
adjunction, universal morphism adjunction and hom-functor adjunction. For
these different versions, we provide conversions to and from the unit-universal
morphism property definition which is taken to be the main definition. This
definition is also taken to be the main definition of adjunction in Awodey (2010).
For local Kan extensions, we define them as (initial)terminal (co)cones along a
functor as well as through the hom-functor. Global Kan extensions are simply
defined through adjunctions.

The main reason for this diversity, aside from providing a versatile category
theory library, is the fact that each of these definitions is most suitable for some
specific purpose.

For instance, using the hom-functor definition of adjunctions makes it very
easy to prove that isomorphic functors have the same adjoints: F ' F ′ ⇒ F a
G ⇒ F ′ a G, duality of adjunction: F a G ⇒ Gop a Fop, and uniqueness of
adjoint functors: F a G ⇒ F ′ a G ⇒ F ' F ′. The last case simply follows
from the Yoneda lemma. On the other hand, the unit-universal morphism
property definition of adjunctions together with the definition of Kan extensions
as cones along a functor provide an easy way to convert from local to global
Kan extensions.

Universal morphism adjoints in practice express sufficient conditions for a
functor to have a (left)right adjoint. That is, a functor G : C → D is a right
adjoint (has a left adjoint functor) if the comma category (x ↓ G) has a terminal
object for any x : D. As we will briefly discuss below, (left)right adjoint functors
preserve (co)limits. Freyd’s adjoint functor theorem gives an answer to the
question “when is a functor that preserves all limits a right adjoint (has a left
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adjoint functor)”. Universal morphism adjoints appear in this theorem and
that’s why we have included them in our formalization.

(Left)right adjoints preserve (co)limits Awodey (2010) devotes a whole
section to this fact with the title “RAPL” (Right Adjoints Preserve Limits).
For a better understanding of this fact and perhaps the concept of adjunctions,
let us draw intuition from categorical interpretations of logic. In categorical
interpretations of logic, the existential and universal quantifiers are interpreted
as left and right adjoints to some functor while conjunctions and disjunctions
are defined as products and sums respectively which respectively are in turn
limits and co-limits (see Jacobs (1999) for details). In this particular case,
RAPL and its dual boil down to: ∀x. P (x) ∧ Q(x) ⇔ ∀x. P (x) ∧ ∀x. Q(x)
and ∃x. P (x) ∨ Q(x) ⇔ ∃x. P (x) ∨ ∃x. Q(x). We prove this fact in general
for (left)right local Kan extensions. To this end, the unit-co-unit definition of
adjunctions is the easiest to use to prove the main lemma which along with
hom-functor definition of Kan extensions proves that (left)right adjunctions
preserve (left)right Kan extensions. That is for an adjunction L a R where
R : D → E and L : E → D if in the diagram on the left H is the local right Kan
extension of F along P then in the right diagram R ◦H is the local right Kan
extension of R ◦ F along P :

C D

C′

F

P H

C E

C′

R◦F

P R◦H

The case of (co)limits follows immediately. In Coq we show this by constructing
a local right Kan extension (using the hom-functor definition) of R◦F along P
where the Kan extension functor (HLRKE) is R composed with the Kan extension
functor of F along P:
Definition Right_Adjoint_Preserves_Hom_Local_Right_KanExt
{C C′ : Category} (P : Functor C C′) {D : Category} (F : Functor C D)
(hlrke : Hom_Local_Right_KanExt P F) {E : Category}
{L : Functor E D} {R : Functor D E} (adj : UCU_Adjunct L R)
: Hom_Local_Right_KanExt P (R ◦ F) :=
{|
HLRKE := (R ◦ (HLRKE hlrke));
HLRKE_Iso := . . .

|}.
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(Co)limit functors are adjoint to ∆ In order to show that (co)limits are
adjoint to the diagonal functor (∆) we simply use the fact that local (left)right
Kan extensions assemble together to form (left)right global Kan extensions. As
global Kan extensions are defined as (left)right adjoints to the pre-composition
functor, putting these two facts together, we effortlessly obtain that (co)limits
form functors which are (left)right adjoint to ∆.

Cardinality restrictions We introduce the notion of cardinality restriction in
the category Set. A cardinality restriction is a property over types (objects
of Set) such that if it holds for some type, it must hold for any other type
isomorphic (in Set) to it. That is, if a cardinality restriction holds for a type,
it must hold for any other type with the same cardinality.
Record Card_Restriction : Type :=
{ Card_Rest : Type → Prop;
Card_Rest_Respect : forall (A B : Type),
(A '' B ::> Set) → Card_Rest A → Card_Rest B

}.

The type (A '' B ::> Set) is the type of isomorphisms A ' B in Set. As an
example, the cardinality restriction corresponding to finiteness is defined as
follows.
Definition Finite : Card_Restriction :=
{| Card_Rest :=

fun A ⇒ inhabited {n : nat & (A '' {x : nat | x < n} ::> Set)}; . . .
|}.

The definition above basically says that a type A is finite if there exists some n
such that A is isomorphic to the type {x : nat | x < n} of natural numbers less
than n.

(Co)limits restricted by cardinality We use the notion of cardinality
restrictions above to define (co)limits restricted by cardinality. For a cardinality
restriction P , we say a category C has (co)limits of cardinality P (C is
P -(co)complete) if for all functors F : D → C such that P (ObjD) and
∀AB ∈ ObjD, P (Hom(A,B)), C has the (co)limit of F .
Definition Has_Restr_Limits (C : Category) (P : Card_Restriction) :=
forall {J : Category} (F : Functor J C),
P J → P (Arrow J ) → Limit F .

We state several lemmas about cardinality restricted (co)completeness, e.g., if a
category has all limits of a specific cardinality its dual has all co-limits of that
cardinality.
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Definition Has_Restr_Limits_to_Has_Restr_CoLimits_Op
{C : Category} {P : Card_Restriction}
(HRL : Has_Restr_Limits C P) : Has_Restr_CoLimits (Cop) P := . . .

This also allows us to define a topos, simply as a category that is cartesian closed,
has all finite limits and a subobject classifier where finiteness is represented as
a cardinality restriction.
Class Topos : Type :=
{ Topos_Cat : Category;
Topos_Cat_CCC : CCC Topos_Cat;
Topos_Cat_Fin_Limit : Has_Restr_Limits Topos_Cat Finite;
Topos_Cat_SOC : SubObject_Classifier Topos_Cat

}.

(Co)Limits by (Sums)Products and (Co)Equalizers A discrete category is a
category where the only morphisms are identities. That is, any set can induce
a discrete category by simply considering the category which has as objects
members of that set and the only morphisms are identity morphisms. We define
the discrete category of a type A as a category, Discr(A) with terms of type A
as objects and the collection of morphisms from an object x to an object y are
proofs of equality of x = y.
Definition Discr_Cat (A : Type) : Category :=
{|Obj := A; Hom := fun a b ⇒ a = b; . . . |}.

Similarly, a discrete functor is a functor that is induced from a mapping f from
a type A to objects of a category C:
Definition Discr_Func {C : Category} {A : Type} (f : A → C) :
Functor (Discr_Cat A) C := {| FO := f ; . . . |}.

We define the notion of generalized (sums)products to be that of (co)limits of
functors from a discrete category.
Definition GenProd {A : Type} {C : Category} (f : A → C) :=
Limit (Discr_Func f).

We use these generalized (sums)products to show that any category that has
all generalized (sums)products and (co)equalizers has all (co)limits. We also
prove the special case of cardinality restricted (co)limits. Using the notions
explained above, we show that given a cardinality restriction P if a category
has (co)equalizers as well as all generalized (sums)products that satisfy P , then
that category is P -(co)complete.
Definition Restr_GenProd_Eq_Restr_Limits

{C : Category} (P : Card_Restriction)
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{CHRP : forall (A : Type) (f : A → C), (P A) → (GenProd f)}
{HE : Has_Equalizers C}

: Has_Restr_Limits C P := . . .

Categories of Presheaves To the best of our knowledge, ours is the only
category theory development featuring facts about categories of presheaves such
as their (co)completeness, and being a topos. The category of presheaves on
C, (PSh(C)), is a category whose objects are functors of the form Cop → Set
and whose morphisms are natural transformations. In other words, a presheaf
P : Cop → Set on C is a collection of sets indexed by objects of C such that
for a morphism f : A → B in C, there is a function (a conversion if you will)
P (f) : P (B)→ P (A) in Set. Presheaves being toposes, each come with their
own logic. As an example, Birkedal, Mogelberg, Schwinghammer, and Stovring
(2011) show that the logic of the category of presheaves on ω (the preorder of
natural numbers considered as a category) corresponds to the step-indexing
technique used in the field of programming languages and program verification.
For more details about elementary properties of categories of presheaves see
Awodey (2010). There categories of presheaves are called categories of diagrams.

3.3.2 Comparison

Figures 3.1 and 3.2 give an overall comparison of our development with select
other implementations of category theory of comparable extent. These figures
mention only the most notable features and concepts formalized and do not
contain many notions and lemmas in these developments. Notice also that
the list of concepts and features appearing in these tables is by no means
exhaustive and is not the union of all formalized concepts and features of these
developments. In these figures, our development is the first column.

3.3.3 Axioms

One axiom that is used ubiquitously throughout the development is the
uniqueness of proofs of equality.
forall (A : Type) (x y : A) (p q : x = y), p = q

We in practice enforce this axiom using proof-irrelevance (as p and q are proofs).
To facilitate the use of this axiom, we prove a number of lemmas, e.g.:3

3This is an over-simplification: in practice types of FA F and FA G don’t match and
therefore their equality as stated here is ill-typed. In practice, we adjust the type of FA F
using the equality of object maps.
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Concept / Feature [1] [2] [3] [4] [5]
Automation partial X
Based on HoTT in [6]] X X
Setoid for Morphisms X X
Assumes UIP or equivalent few restricted X

cases
Basic constructions:

Terminal/Initial object X X X X X
Products/Sums X X X X
Equalizers/Coequalizers X X
Pullbacks/Pushouts X X X X
Basic constructions X X

above are (co)limits
exponentials X X X
Subobject classifier X X X

External constructions:
Comma categories X X X X X
Product category X X X X X
Sum category X

Cat. of categories (Cat): X X X X
Cartesian closure X X
Initial/terminal object X X X X

Category of sets (Set): X X X X X
Basic (co)limits X init./term. partial
(Local†)Cartesian closure X CCC
(Co†)Completeness X comp. X
Sub-object classifier (Prop : Type)†

Topos X†

Hom functor X X X X X
Fully-faithful functors X X X X
Essentially (inj)sur-jective X X X X
functors
The Yoneda lemma X X X X X
Monoidal Categories partial X
Enriched Categories partial partial
2-categories X
Pseudo-functors X X
(Co)monads and algebras :

(Co)Monad X X
T -(co)algebras X X X

(T : an endofunctor)
Eilenberg Moore cat. X
Kleisli cat. X

[1]: Timany (2016a); [2]: Gross, Chlipala, and Spivak (2014a); [3]: Huet and Saïbi (2000)
[4]: Ahrens, Kapulkin, and Shulman (2015); [5]: Peebles, Deikun, Norell, Doel, Vezzosi,
Jahandarie, and Cook (2016); [6]: Timany (2016b).
†Uses the axioms: propositional extensionality and constructive indefinite description (choice).
]The version of our development we are migrating to HoTT settings, on top of HoTT library.

Figure 3.1: Comparison of features and concepts formalized with a few other
implementations of comparable extent
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Concept / Feature [1] [2] [3] [4] [5]
Adjunction X X X X

Unit-universal morphism adjunction X X
Hom-functor adjunction X X X
Unit-counit adjunction X X X X X
Universal morphism adjunction X X X
Uniqueness up to natural isomorphism X
Naturally isomorphic functors have X
the same left/right adjoints

Adjoint composition laws X X X
Category of adjunctions X
(objects: categories; morphisms: adjunctions)

Partial adjunctions X
Adjoint Functor Theorem X X
Kan extensions X X X

Global definition X X X
Local definition X X

Through hom-functor X
Through cones (along a functor) X X
Through partial adjoints X

Uniqueness X
Preservation by adjoint functors X
Naturally isomorphic functors form X
the same left/right Kan extension

Pointwise kan extensions X X
(preserved by representable functors)

(Co)Limits X X X X X
As (left)right kan extensions X X
As (initial)terminal (co)cones X X X

(Sum)Product-(co)equalizer (co)limits X
(Co)Limit functor X X
(Co)Limits functor adjoint to ∆ X X
(Co)limits restricted by cardinality X
Pointwise (as kan extensions), i.e., X X
preserved by Hom functor

Category of presheaves over C (PShC): X X
Terminal/Initial object X
Products/Sums X
Equalizers/Coequalizers X†

Pullbacks X
Cartesian closure X
Completeness/Co-completeness X†

Sub-object classifier (Sieves) X†

Topos X†

[1]: Timany (2016a); [2]: Gross, Chlipala, and Spivak (2014a); [3]: Huet and Saïbi (2000)
[4]: Ahrens, Kapulkin, and Shulman (2015); [5]: Peebles, Deikun, Norell, Doel, Vezzosi,
Jahandarie, and Cook (2016); [6]: Timany (2016b).
†Uses the axioms: propositional extensionality and constructive indefinite description (choice).

Figure 3.2: Comparison of features and concepts formalized with a few other
implementations of comparable extent (cont.)
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Lemma Functor_eq_simplify (C D : Category) (F G : Functor C D) :
(FO F = FO G) → (FA F = FA G) → F = G

which says two functors are equal if their object and arrow maps are. If so, the
proofs that the arrow maps preserve identity and composition are just assumed
equal using proof-irrelevance (uniqueness of equality proofs).

Using uniqueness of equality proofs in the definition of categories is an essential
necessity. As otherwise, as explained in the HoTT book (The Univalent
Foundations Program, 2013), the category defined is not a category but a
form of higher category. That’s why in any formalization of category theory
this axiom is assumed or enforced in one way or another.

In homotopy type theory (HoTT) settings, assuming uniqueness of proofs of
equality in general is in direct contradiction with the univalence axiom which
sits at the heart of HoTT. Therefore in developments of category theory on top
of HoTT, e.g., Gross, Chlipala, and Spivak (2014a) and Ahrens, Kapulkin, and
Shulman (2015), they include the fact that proofs of equalities of morphisms are
unique as part of the definition of a category. This is precisely the requirement
that collections of morphisms should form hSets discussed above.

In developments using setoids, e.g., Huet and Saïbi (2000) and Peebles, Deikun,
Norell, Doel, Vezzosi, Jahandarie, and Cook (2016), the authors customize the
setoid equalities so that proofs are never considered. For instance, they define
the setoid equality for functors so that two functors are equal whenever their
object and morphism maps are.

We are currently in the process of porting a version of our development on
top of the HoTT library4. There we also stop using this axiom and change
the definition of categories. As expected almost all of the cases where we use
uniqueness of proofs of equality (in a direct or indirect way) are not problematic
in HoTT settings, i.e., they are applied to equality of morphisms. However,
there are a few limited cases were they are not. Some of these cases are no longer
relevant in the HoTT settings and some others are very easily surmountable.
For more details of our ongoing effort of porting this development on top of
the HoTT library see the extended version of this paper (Timany and Jacobs,
2016b).

Apart from the axiom of uniqueness of proofs of equality, we have made
frequent use of the axiom of functional extensionality. However, this axiom is
a consequence of the univalence axiom and is in fact provided in the HoTT
library and frequently used therein.

4The version being ported on top of the HoTT library can be found at GitHub (Timany,
2016b).
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We have in particular taken advantage of two other axioms, propositional
extensionality and axiom of choice (constructive indefinite description in the
library of Coq) which we have used, e.g., to construct co-limits in Set and
presheaf categories. Along with using setoids, using these axioms to represent
quotient types in type theory is standard practice. We plan to use higher
inductive types, as explained in the HoTT book (The Univalent Foundations
Program, 2013), to construct such co-limits in the version ported on top of the
HoTT library.

3.4 Future Work: Building on Categories

We believe that this development is one that provides a foundation for other
works based on category-theoretical foundations. We have plans to make use of
the foundation of category theory that has been laid in this work. In particular,
we plan to make use of this foundation for mechanization of categorical logic
(see Jacobs (1999)) and higher order separation logic (see Biering, Birkedal,
and Torp-Smith (2007)) for the purpose of using them as foundations for
mechanization of program verification. In particular, the theory of presheaves
developed provides a basis for formalization of the internal logic of presheaf
categories with a particular interest in the topos of trees (Birkedal, Mogelberg,
Schwinghammer, and Stovring, 2011).

In this regard, we have already used this development as a foundation to
formalize the theory of Birkedal, Støvring, and Thamsborg (2010) to solve
category theoretical recursive ultra-metric space equations (Timany and Jacobs,
2016c). In Birkedal, Støvring, and Thamsborg (2010), the authors use the
theory of ultra-metric spaces to build unique (up to isomorphism) fixed-points
of particular category-theoretical recursive domain-theoretic equations. More
precisely, they construct fixed-points of a particular class of mixed variance
functors, i.e., functors of the form F : (Cop × C)→ C. Solutions to such mixed-
variance functors can for example be used to construct models for imperative
programming languages. Successful implementation of this theory (Timany
and Jacobs, 2016c) on top of our general foundation of categories, although
arguably not huge, is evidence that this development is fit for being used as a
general-purpose foundation.

In Birkedal, Støvring, and Thamsborg (2010), the authors define the notion
of an M-category to be a category in which the set of morphisms between
any two objects form a non-empty ultra-metric space. In our formalization,
based on a general theory of ultra-metric spaces, we define M-categories as
categories in which the type of morphisms between any two objects forms an
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ultra-metric space, dropping the rather strong non-emptiness requirement. We
instead require some weaker conditions which still allow us to form fixed-points.

An interesting instance of M-categories is the presheaf topos of the preorder
category of natural numbers, i.e., the topos of trees. In our development, just
showing that this category qualifies as an M-category is sufficient to immediately
be able to construct desired fixed-points. This is due to the fact that in the
foundations provided, all necessary conditions for an M-category to allow
formation of solutions, e.g., existence of limits of a particular class of functors
is already established.

3.5 Conclusion

The most important conclusion of this paper is that Coq 8.5 with its new features:
η for records and universe polymorphism, is next to ideal for formalization of
category theory and related parts of mathematics. We believe that Coq 8.5 is
the first version of Coq that makes it possible to lay a truly useful and versatile
general purpose category theoretical foundation as we have demonstrated.

In summary, we surveyed our development of the foundations of category theory.
This development features most of the category-theoretical concepts that are
formalized in most other such developments and some more. We pushed the
limits of the new feature of universe polymorphism and the constraint inference
algorithm of Coq 8.5 by using them to represent relative smallness/largeness.
As discussed, it gives very encouraging results despite the restrictions imposed
by not having cumulative inductive types.

We have successfully used this implementation as the categorical foundation to
build categorical ultra-metric space theoretic fixed-points of recursive domain
equations. This seems an encouraging initial indication that this work is fit to
perform the important role of a general purpose category theoretical foundation
for other developments to build upon.
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Table of symbols (pCuIC)

Γ Typing context
∆ List of declarations
t[u/x] Substitution
t[ #»u/ #»x ] Simultaneous substitution
Γ ` t : A Typing judgement
Πx : A. B Dependent function type
A→ B Non-dependent function type
Prop Universe Prop

Set Universe Set

Typei ith Universe
` level
L Set of levels
U` Algebraic universe at level `
= Equality of mathematical objects, e.g, sets
≡ Syntactic equality of two terms
' Judgemental equality
� Subtyping/Cumulativity relation
WF Wellformedness of typing contexts
Indn {∆I := ∆C} Mutually inductive block
D A mutually inductive block
Q Motive of elimination
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Elim(t; · · · ; · · · ) {· · · } Elimination of inductive types

ξ
#»
Q
D (·, · · · ) Type of case eliminator
Vα Von Neumann cumulative hierarchy at stage α
κ Strongly inaccessible cardinal
JΓ ` tK Interpretation of Γ ` t in the model
Πa ∈ A.B(a) Set of set-theoretic dependent functions
Lam Trace encoding of functions
App Application of trace encoded function
Φ A rule set (for set theoretic inductive definitions)
A
a A rule (for set theoretic inductive definitions)
I(Φ) Fixpoint of a rule set
A↓ A is defined



Chapter 4

Cumulative inductive types in
Coq

This chapter is accepted for publication in the proceedings of the
third conference on formal structures for computation and deduction
(FSCD’18) (Timany and Sozeau, 2018).
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In order to avoid well-known paradoxes associated with self-referential definitions,
higher-order dependent type theories stratify the theory using a countably
infinite hierarchy of universes (also known as sorts), Type0 : Type1 : · · · . Such
type systems are called cumulative if for any type A we have that A : Typei
implies A : Typei+1. The predicative calculus of inductive constructions (pCIC)
which forms the basis of the Coq proof assistant, is one such system.

In this paper we present and establish the soundness of the predicative calculus
of cumulative inductive constructions (pCuIC) which extends the cumulativity
relation to inductive types. We discuss cumulative inductive types as present in
Coq 8.7 and their application to formalization and definitional translations.

4.1 Introduction

In higher-order dependent type theories every type is a term and hence has a
type. As expected, having a type of all types which is a term of its own type,
leads to inconsistencies such as Girard’s paradox (Girard, 1972) and Hurken’s
paradox (Hurkens, 1995). To avoid this, a predicative hierarchy of universes is
usually employed. The predicative Calculus of Inductive Constructions (pCIC)
at the basis of the Coq proof assistant (The Coq Development Team, 2017),
additionaly supports cumulativity: as a Pure Type System with subtyping, it
includes the rule: ΠΓ.Typei ≤ ΠΓ.Typei+1.

Earlier work (Sozeau and Tabareau, 2014) on universe-polymorphism in Coq
allows constructions to be polymorphic in universe levels. The quintessential
universe-polymorphic construction is the polymorphic definition of categories:
Record Categoryi,j :=
{ Obj : Type@{i}; Hom : Obj → Obj → Type@{j}; · · · }.1

However, pCIC does not extend the subtyping relation (induced by cumulativity)
to inductive types. As a result, there is no subtyping relation between distinct
instances of a universe-polymorphic inductive type. That is, for a category C,
having both C : Categoryi,j and C : Categoryi′,j′ is only possible if i = i′ and
j = j′.

In this work, we build upon the preliminary and in-progress work of Timany and
Jacobs (2015) on extending pCIC to pCuIC (predicative Calculus of Cumulative
Inductive Constructions). In pCuIC, subtyping of inductive types no longer
imposes the strong requirement that both instances of the inductive type need to
have the same universe levels. In addition, in pCuIC we consider two inductive

1Records in Coq are syntactic sugar for an inductive type with a single constructor.
Type@{i} is Coq’s syntax for Typei.
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types that are in mutual cumulativity relation to be judgementally equal. This
cumulativity relation is also extended to the constructors of inductive types,
resulting in a very lax criteria for conversion of constructors. In pCuIC, in
order for a term C : Categoryi,j to have the type Categoryi′,j′ , i.e., for the
cumulativity relation Categoryi,j � Categoryi′,j′ to hold, it is only required that
i ≤ i′ and j ≤ j′. This is indeed what a mathematician would expect when
universe levels of the type Category are thought of as representing (relative)
smallness and largeness. For more details on representing relative size reasoning
in category theory using universe levels see Timany and Jacobs (2016a).

Contributions Timany and Jacobs (2015) give an account of then work-in-
progress on extending pCIC with a single cumulativity rule for cumulativity
of inductive types. The authors show the soundness of a rather restricted
subsystem of their system. In this paper, we extend and complete this work,
through the following contributions:

• We extend Timany and Jacobs (2015) to support lowering levels as well
as lifting them. For instance, given universe levels i < j and a type
A : Typei, the old system of Timany and Jacobs (2015) only allowed the
subtyping listi A � listj A. Our generalization of the subtyping relation for
inductive types also allows listj A � listi A and furthermore judgementally
equates them, i.e., listi A ' listj A. Similarly for constuctors, it justifies
nili A ' nilj A, rendering universe annotations computationally irrelevant
in this case.

• This generalization allows universe polymorphism to subsume the
functionality of template polymorphism, a feature of Coq which allows
under certain conditions two instances of a non-universe-polymorphic
inductive type at different universe levels to be unified.

• We prove soundness of cumulativity by giving a model in ZFC which
builds on the one of Lee and Werner (2011). This model naturally
supports cumulativity for inductive types, as most set-theoretic models
will. However, the argument for consistency in Lee and Werner (2011)
assumes strong normalization to model recursive functions, which already
implies consistency. We solve this problem by resorting to eliminators
instead of the fixpoint and case constructs.

• Cumulativity of inductive types as presented in this paper is integrated
in the stable version 8.7 of Coq (The Coq Development Team, 2017).
We discuss remaining issues regarding the replacement of template
polymorphism by universe polymorphism with cumulative inductive types.
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WF-ctx-hyp
Γ ` A : s x 6∈ dom(Γ)

WF(Γ, x : A)

WF-ctx-def
Γ ` t : A x 6∈ dom(Γ)
WF(Γ, (x := t : A))

Prop
WF(Γ)

Γ ` Prop : Typei

Hierarchy
WF(Γ) i < j

Γ ` Typei : Typej

Let
Γ, (x := t : A) ` u : B

Γ ` letx := t : A inu : B[t/x]

App
Γ `M : Πx : A.B Γ ` N : A

Γ `M N : B[N/x]

Var
WF(Γ) x : A ∈ Γ or (x := t : A) ∈ Γ

Γ ` x : A

App-eq
Γ `M 'M ′ : Πx : A.B Γ ` N ' N ′ : A

Γ `M N 'M ′ N ′ : B[N/x]

Prod
Γ ` A : s1 Γ, x : A ` B : s2 Rs(s1, s2, s3)

Γ ` Πx : A.B : s3

Lam
Γ, x : A `M : B Γ ` Πx : A.B : s

Γ ` λx : A.M : Πx : A.B

Prod-eq
Γ ` A ' A′ : s1 Γ, x : A ` B ' B′ : s2 Rs(s1, s2, s3)

Γ ` Πx : A.B ' Πx : A′. B′ : s3

Figure 4.1: An excerpt of the typing rules for the basic constructions

• We highlight two applications of Cumulative Inductive Types: one to the
formalization of the Yoneda lemma, and the other one to the construction
of definitional translations / syntactic models of type theories.

4.2 Predicative calculus of inductive constructions
(pCIC)

In this section we give a short account of the system pCIC, presented with
an equality judgment. Note that this system does not feature universe
polymorphism. We will discuss universe polymorphism in Section 4.3. The full
system pCIC can be found in Appendix A. The sorts of pCIC are as follows:
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Prop, Set = Type0, Type1, Type2, . . . We write the dependent product (function)
type as Πx : A.B. This is the type of functions that given t : A, produce a
result of type B[t/x]. We write lambda abstraction in the Church style, λx : A. t.
The term letx := t : A inu is the Church style let binding. We write function
applications as juxtapositions, e.g., M N . Figure 4.1 shows an excerpt of the
typing rules for these basic constructions.

There are three different judgements in this figure: well formedness of typing
contexts WF(Γ), the typing judgement, Γ ` t : A, i.e., term t has type A under
the typing context Γ, and judgemental equality, Γ ` t ' t′ : A, i.e., terms t and t′
are judgementally equal terms of type A under the typing context Γ. Most of the
basic constructions (wherever it makes sense) come with a rule for judgemental
equality. These rules indicate which parts of the constructions are sub-terms
that can be replaced by some other judgementally equal term. For example, the
rule Prod-eq states that the domain and codomain of (dependent) function
types can be replaced by judgementally equal terms. The relation Rs(s1, s2, s3)
determines the sort of the product type based on the sort of the domain and
codomain. The relation is defined as follows: Rs(Typei, Typej , Typemax{i,j}),
Rs(Prop, Typei, Typei) and Rs(s, Prop, Prop). Note that the impredicativity of
the sort Prop is enforced by this relation.

Inductive types In this paper we consider blocks of mutual inductive types
that live in predicative universes. Inductive types in Prop add extra complexity
to the construction of set theoretic models. On the other hand, inductive types
in Prop can be encoded using their Church encoding. For instance, the type
False and conjunction of two predicates can be defined as follows:
Definition conj (P Q : Prop) := forall (R : Prop), (P → Q → R) → R.
Definition False := forall (P : Prop), P.

We write Indn {∆I := ∆C} for an inductive block where n is the number of
parameters, ∆I is list of inductive types of the block and ∆C is the list of
constructors. The arguments of an inductive type that are not parameters are
known as indices. The following are some of the examples of inductive types
written in this format: natural numbers, lists, vectors and a mutually inductive
encoding of forests respectively.

Ind0{nat : Set := Z : nat, S : nat → nat}

Ind1{list : ΠA : Set. Set := nil : ΠA : Set. list A,

cons : ΠA : Set. A→ list A→ list A}

Ind1{vec : ΠA : Set.nat → Set := vnil : ΠA : Set. vec A Z,
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Ind-WF
In(Γ,∆I ,∆C)

(A ≡ Πp : P.Πm : M.Ad Γ ` A : sd for all (d : A) ∈ ∆I)
(T ≡ Πp : P. T ′

Γ,∆I , p : P ` T ′ : Ad for all (c : T ) ∈ ∆C if c ∈ Constrs(∆C , d))
WF(Γ, Indn {∆I := ∆C})

Assuming D ≡ Indn {∆I := ∆C} ∈ Γ and WF(Γ):

Ind-type
di ∈ dom(∆I)

Γ ` D.di : ∆I(di)

Ind-constr
c ∈ dom(∆C)

Γ ` D.c : ∆C(c)[ #       »∆I .d/
#»

d ]

Ind-Elim
WF(Γ) D ≡ Indn {∆I := ∆C} ∈ Γ

dom(∆I) = {d1, . . . , dl} dom(∆C) = {c1, . . . , cl′}
(Γ ` Qdi : Π #»x : #»

A. (di #»x )→ s′ where
∆I(di) ≡ Π #»x : #»

A. s for all 1 ≤ i ≤ l)
Γ ` t : D.dk #»u #»m len( #»u ) = n

Γ ` fci : ξ
#»
Q
D (ci,∆C(ci)) for all 1 ≤ i ≤ l′

Γ ` Elim(t;D.dk; #»u ;Qd1 , . . . , Qdl)
{
fc1 , . . . , fcl′

}
: Qdk #»u #»m t

Figure 4.2: Typing rules for inductive types and eliminators

vcons : ΠA : Set.Πn : nat. A→ vec A n→ vec A (S n)}

Ind0{FTree : Type0,Forest : Type0 := leaf : FTree,

node : Forest → FTree,Fnil : Forest,Fcons : FTree → Forest → Forest}

Figure 4.2 shows the typing rules for inductive types and their eliminators.
Rule Ind-WF describes when an inductive type is well-formed. Here, Adi is
a sort that is called the arity of the inductive type di. This rule requires
that all inductive types and constructors of the block are well-typed. The
set Constrs(∆C , d) is the set of constructors in ∆C that produce something
of type d. The proposition In(Γ,∆I ,∆C) describes the syntactic constraints
for well-formedness of an inductive block. For precise details see Appendix A.
It requires that all inductive types and all constructors of the block have as
their first arguments the parameters of the block, e.g., A in list above. The
parameters must be fixed for the whole block. In particular, the codomain type
of each constructor must construct an inductive type that is applied to the
parameters of the block, i.e., every constructor of list must construct a term of
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type list A. All inductive types above satisfy these criteria. Both constructors
of the type vec, for instance, start with the argument A : Type0 and also
they both construct a vector vec A n for some natural number n. Moreover,
all arguments of constructors that are vectors take the same parameter A.
This is the essential difference between parameters and indices. In addition,
In(Γ,∆I ,∆C) also requires that all occurrences of inductive types of the block
in any of the constructors of the block are strictly positive.

Remark 4.2.1. Note that the names of inductive types and constructors of an
inductive block in a typing context are not part of the domain of that context.
We never refer to an inductive type or constructor without mentioning the block.
We always write D.x for an inductive type or a constructor x in the block D.
In particular, we require for well-formed contexts that no variable appears in
the domain of the context more than once. This restriction does not apply to
inductive types as we can have multiple inductive types that share the same
name for inductive types and/or constructors. This is a generalization of the
global inductive declarations in the implementation of Coq.

Eliminators In this work, we consider eliminators for inductive types as
opposed to Coq’s structurally recursive definitions, i.e., Fixpoints and match
blocks in Coq. Note, however, that these can be encoded using eliminators as
they are presented here (Paulin-Mohring, 1996) using the accessibility proof of
the subterm relation, definable for any (non-propositional) inductive family.

Rule Ind-Elim in Figure 4.2 describes the typing for eliminators. Inductive
types in a mutual inductive block can appear in one another. Hence, we
define the elimination of inductive types for the entire block. We write
Elim(t;D.dk; #»u ;Qd1 , . . . , Qdl)

{
fc1 , . . . , fcl′

}
for the elimination of t that is of

type of the inductive type D.dk (applied to values for parameters (these must
be precisely #»u ) and indices). The term Qdi is the motive of elimination for the
inductive type D.di. This is basically a function that given the #»a and v such
that v has type D.di #»u #»a produces a type (a term of some sort s′). The idea is
that eliminating the term v should produce a term of type Qdi #»u #»a u. Note
that the elimination Elim(t;D.dk; #»u ;Qd1 , . . . , Qdl)

{
fc1 , . . . , fcl′

}
is a term of

type Qdk #»u
#»

b t where t has type dk #»u
#»

b .

In the elimination above the terms fci are case-eliminators. The case-eliminator
fci is a function that describes the elimination of terms that are constructed
using the constructor ci. The term fci is a function. It takes arguments of
the constructor ci together with the result of elimination of the (mutually)
recursive arguments and produces a term of the appropriate type (according to
the motives). This type is exactly what is formally defined as the type of the
case eliminator for constructor ci, ξ

#»
Q
D (ci,∆C(ci)). The formal definition of the
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Beta
Γ, x : A `M : B Γ, x : A ` B : s Γ ` N : A

Γ ` (λx : A.M) N 'M [N/x] : B[N/x]

Eta
Γ ` t : Πx : A.B

Γ ` t ' λx : A. t x : Πx : A.B

Figure 4.3: An excerpt of judgemental equality rules

types of case-eliminators can be found in Appendix A . A simple example of
eliminator is the induction principle for natural numbers:

λP : nat → Prop. λpz : P Z. λps : Πx : nat. P x→ P (S x).

λn : nat.Elim(n; nat; nil;P ) {pz, ps}

which has the type ΠP : nat → Prop. (P Z)→ (Πx : nat. P x→ P (S x))→
Πn : nat. P n.

Judgemental equality Figure 4.3 depicts an excerpt of the rules for
judgemental equality. The rules Beta and Eta correspond to β and η
equivalence. In this figure, we have elided the rules that specify that judgemental
equality is an equivalence relation. The rules Delta, Zeta and Iota,
respectively corresponding to unfolding definitions, expansion of let-ins and
simplification of eliminators are also elided in Figure 4.3. The rule Iota basically
states that when the term being eliminated is a constructor c applied to certain
values, then the result of elimination is judgementally equal to the corresponding
case-eliminator fc applied to the arguments of the constructor where (mutually)
recursive arguments are appropriately eliminated. See Appendix A for details.
Note that the equivalence of the judgmental equality presentation and the
implementation of definitional equality by conversion (as implemented in Coq)
is a tricky issue and it is still an open problem to formally show equivalence
for a system with cumulativity Siles and Herbelin, 2012, we leave this to future
work.

Conversion/Cumulativity Figure 4.4 shows an excerpt of conversion/cumula-
tivity rules. The core of these rules is the rule Cum. It states that whenever
a term t has type A and the conversion/cumulativity relation A � B holds,
then t also has type B. The rule Eq-Cum says that two judgementally equal
(convertible) types M and M ′ are in conversion/cumulativity relation M �M ′.
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Prop-in-Type
Γ ` Prop � Typei

Cum-Type
i ≤ j

Γ ` Typei � Typej

Cum-Prod
Γ ` A1 ' B1 : s Γ, x : A1 ` A2 � B2

Γ ` Πx : A1. A2 � Πx : B1. B2

Cum
Γ ` t : A Γ ` A � B

Γ ` t : B

Eq-Cum
Γ `M 'M ′ : s

Γ `M �M ′

Figure 4.4: An excerpt of conversion and cumulativity rules of pCIC

The rules Prop-in-Type and Cum-Type specify the order on the hierarchy of
sorts. The rule Cum-Prod states the conditions for conversion/cumulativity
between two (dependent) function types. Note that in this rule, Π-types are not
contravariant w.r.t. their domain. This is also the case in Coq. This condition
is crucial for the construction of our set-theoretic model, since set-theoretic
functions (i.e., functional relations) are not contravariant.

4.3 Universes in Coq and pCIC

In the system that we have presented in this section, and for most of this paper,
universe levels, e.g., i in Typei, are explicitly specified. However, Coq enjoys
a feature known as typical ambiguity. That is, users need not write universe
levels explicitly; these are inferred by Coq. The idea here is that it suffices that
there are universe levels, that can be placed in the appropriate places in the
code, so that the code makes sense and respects consistent universe constraints.
From a derivation with a consistent set of universe constraints one can always
derive a pCIC derivation, using a valuation of the floating universe variables
into the U0 . . .Un universes. This is exactly what is guaranteed using global
universes and a global set of constraints on universe variables. In this sense the
system pCIC as briefly discussed above forms a basis for Coq.

Universe polymorphism (Sozeau and Tabareau, 2014) extends Coq so that
constructions can be made universe-polymorphic, i.e., parameterized by some
universe variables, following Harper and Pollack’s seminal work (Harper and
Pollack, 1991). That is, each universe-polymorphic definition will carry a context
of universes together with a local set of constraints. The idea here is that any
instantiation of a universe-polymorphic construction with universe levels that
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satisfy the local constraints is an acceptable one. In the implementation of
conversion, universe levels only play a role when comparing two sorts or two
polymorphic constants, inductives or constructors. In the kernel of Coq, only
checking of the constraints is involved, they are hence global to a whole term
type-checking process. The system is justified by a translation to pCIC as well,
making “virtual” copies of every instance of universe-polymorphic constants
and inductive types.

In this section we discuss these two features and how they treat inductive
definitions. For the rest of this paper we will consider the systems pCIC and its
extension pCuIC without either typical ambiguity or universe polymorphism.
When describing the system pCuIC we will consider how changes to the base
theory allows a different treatment of universe-polymorphic inductive types
compared to pCIC.

Typical ambiguity, global algebraic universes and template polymorphism
The user can only specify Prop, Set or Type. This is done by considering a
collection of global algebraic universes (as opposed to local ones in universe-
polymorphic constructions as we will see). These universes are generated from
the carrier set {Set} ∪ {U`, |` ∈ L} for some countably infinite set of labels
L (a.k.a. levels) with the operations max and successor (+1) (constructing
algebraic universes).2 Each use of the sort Type is replaced with some TypeU`
for some fresh universe level `. A global consistent set of constraints on the
universe levels is kept at all times. When Coq type checks a construction, it
may add some constraints to this set. If adding a constraint would render the
constraints inconsistent then the definition at hand is rejected with a universe
inconsistency error. Let us consider the example of lists in Coq3.
Inductive list (A : Type@{U`}) : Type@{U`} :=
| nil : list A | cons : A → list A → list A.
(∗ constraint added : U` > Set ∗)

When Coq processes the inductive definition of lists above, one constraint about
U` is added to the set of constraints, enforcing Set < `, as ` is global. The
following set of constraints are added with the following definitions:
Definition nat_list := list nat.
(∗ constraint added : U` ≥ Set, already implied ∗)

Definition Set_list := list Set.
(∗ constraint added : U` > Set, already implied ∗)
2In Coq, the sort Prop is treated in a special way. In particular, Prop is never unified with

a universe TypeU` for any algebraic universe U`.
3Here we show algebraic universes for the sake of clarity. These neither need to be written

by the user nor are visible unless explicitly asked for. From now on, we will freely mention
universe levels and constraints for presentation purposes but they can all be omitted.



UNIVERSES IN COQ AND PCIC 55

Definition Type_list := list Type.
(∗ constraint added : U` > U`′ for
some fresh U`′ for the occurrence of Type ∗)

Template Polymorphism Template polymorphism is a simple form of universe
polymorphism for non-universe-polymorphic inductive types. It only applies
to inductive types whose sort contain levels that appear only in one of their
parameters and nowhere else in that inductive type. A prime example is the
definition of list above. The sort of the inductive type appears only in the
type of the only parameter. In case template polymorphism applies, different
instantiations of the inductive types with different arguments for parameters
can have different types. For instance, the terms above have different types:
Check (list nat). (∗ list nat : Set ∗)
Check (list Set). (∗ list Set : Type@{Set+1} ∗)

Here Type@{U} is Coq syntax for TypeU. This feature is very important
for reusability of the basic constructions such as lists. Crucially, template
polymorphism considers two instances of a template-polymorphic inductive
type convertible, whenever they are applied to arguments that are convertible,
regardless of the universe in which these arguments are considered. That is, the
following Coq code type checks.
Universe i j. Constraint i < j.
Definition list_eq : list (nat : Type@{i}) = list (nat : Type@{j}) :=
eq_refl.

Universe polymorphism in pCIC and inductive types The system pCIC has
been extended with universe polymorphism (Sozeau and Tabareau, 2014). This
allows for definitions to be parameterized by universe levels. The essential
idea here is that instead of declaring global universes for every occurrence of
Type in constructions, we use local universe levels (always ≥ Set, which we
omit in local constraints). That is, each universe-polymorphic construction
carries with itself a context of universe variables for universes that appear in
the type and body of the construction together with a set of local universe
constraints. These constraints may also mention global universe variables. This
could happen in cases where the universe-polymorphic construction mentions
universe-monomorphic constructions.

This feature allows us to define universe-polymorphic inductive types. The
prime example of this is the polymorphic definition of categories:
Record Category@{i j} :=
{ Obj : Type@{i}; Hom : Obj → Obj → Type@{j}; . . . }.
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(∗ local constraints: ∅ ∗)

This also allows us to define the category of (relatively small) categories as
follows:4

Definition Cat@{i j k l} : Category@{i j} :=
{ Obj : Category@{k l}; . . . }.
(∗ local constr.: {k < i, l < i, k ≤ j, l ≤ j} ∗)

See Timany and Jacobs (2016a) for more details on using universe levels and
constraints of Coq to represent (relative) smallness and largeness in category
theory.

Note that the construction above, of the category of (relatively small) categories,
could not be done in a similar way with a universe-monomorphic definition of
category. This is because, the constraint k < i would be translated to U < U
for some algebraic universe U that is taken to stand for the type of objects of
categories. This would immediately make the global set of universe constraints
inconsistent and thus the definition of category of categories would be rejected
with a universe inconsistency error. Also notice that the universe-monomorphic
version of the type Category is not template-polymorphic as the universe levels
in the sort appear in the constructor of the type, and not only in its parameters
and type.

Universe polymorphism treats inductive types at different universe levels as
different types with no relation between them. This means that, in order to
have a subtyping/cumulativity relation between two inductive types it requires
the two instances to be at the exact same level. That is, for the subtyping
relation Category@{i j} � Category@{i’ j’} to hold it is required that i = i’ and
j = j’. This means, among other things, that the category of categories defined
above is not the category of all categories that are at most as large as k and l
but those categories that are exactly at the level k and l.

This is not only about small and large objects like categories. Let A : Type@{i}
be a type, obviously, A : Type@{j}, for any j > i. However, for the universe-
polymorphic definition of lists, uplist, the types uplist@{i} (A : Type@{i}) and
uplist@{j} (A : Type@{j}) are neither judgementally equal nor does the expected
subtyping relation hold. In other words, the following Coq code will be accepted
by Coq, i.e., the reflexivity tactic will fail.3

Polymorphic Inductive uplist@{k} (A : Type@{k}) : Type@{k} :=
| upnil : uplist A | upcons : A → uplist A → uplist A.

4There can be some other local constraints that we have omitted given rise to by mixing
of universe-polymorphic and universe-monomorphic constructions, e.g., if the definition of
categories or Cat uses some universe-monomorphic definitions from the standrad library of
Coq.
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Universe i j. Constraint i < j.
Lemma uplist_eq :
uplist@{i} (nat : Type@{i}) = uplist@{j} (nat : Type@{j}).
Fail reflexivity.

Abort.

As we discussed and demonstrated earlier, a similar equality with universe-
monomorphic definition of lists does indeed hold. Note that the manually added
constraint, Constraint i < j, is crucial here as otherwise the reflexivity tactic
would succeed and Coq would silently equate universe levels i and j.

4.4 The predicative calculus of cumulative induc-
tive constructions (pCuIC)

The system pCuIC extends the system pCIC by adding support for cumulativity
between inductive types. This allows for different instances of a polymorphic
inductive definition to be treated as subtypes of some other instances of the
same inductive type under certain conditions.

The intuitive definition The intuitive idea for subtyping of inductive types is
that an inductive type I is a subtype of another inductive type I ′ if they have the
same shape, i.e., the same number of parameters, indices and constructors and
corresponding constructors take the same number of arguments. Furthermore,
it should be the case that every corresponding index (note that these do not
include parameters) and every corresponding argument of every corresponding
constructor have the expected subtyping relation (the one from I is a subtype
of the one from I ′, i.e., covariance) and also that corresponding constructors
have the same end result type. One crucial point here is that we only compare
inductive types if they are fully applied, i.e., there are values applied for every
parameter and index. This is because the cumulativity relation is only defined
for types and not general arities.

Put more succinctly, given a term of type I applied to parameters and indices, it
can be destructed and then reconstructed using the corresponding constructor of
I ′, i.e., terms of type I can be lifted to terms of type I ′ using identity coercions.
Note that we do not consider parameters of the inductive types in question. This
is because parameters of inductive types are basically forming different families
of inductive types. For instance, the type list A and list B are two different
families of inductive types. Not considering parameters allows our cumulativity
relation for universe-polymorphic inductive types to mimic the behavior of
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template-polymorphic inductive types where the type of lists of a certain type
are considered judgementally equal regardless of which universe level the type
in question is considered to be in. Consider the following examples:

Example: categories The type Category is defined as a record. A record is an
inductive type with a single constructor. In this case, there are no parameters
or indices. The single constructors are constructing the same end result, i.e.,
Category. As a result, in order to have the expected subtyping relation between
Category@{i j} � Category@{i’ j’}, i ≤ i’ and j ≤ j’, we need to have that
these constraints suffice to show that every argument of the constructor of
Category@{i j} is a subtype of the corresponding argument of the constructor of
Category@{i’ j’}. Note that it is only the first two arguments of the constructors
that differ between these two types. The rest of the arguments, e.g., composition
of morphisms, associativity of composition, etc., are identical in both types.
Hence, we only need to have the subtyping relations 5 Typei � Typei′ and
Obj → Obj → Typej � Obj → Obj → Typej′ to hold and they do hold.

Example: lists The type of lists has a single parameter and no index, also
notice that the universe level i in list@{i} does not appear in any of the two
constructors. Hence, the subtyping relation list@{i} A � list@{j} A holds for
any type A regardless of the relation between i and j.

Figure 4.5 shows the typing rules for cumulativity of inductive types. The
rule C-Ind describes the condition for subtyping of inductive types D.d #»a
and D′.d #»a . This subtyping relation holds if the two types are fully applied,
that is, the applications are terms of some sort s and s′ respectively. It is
also required that the inductive blocks D and D′ are related under the �†
relation. The rule Ind-leq is rather lengthy but it essentially states what we
explained above intuitively. It says that the relation D �† D′ holds if the
two blocks are defining inductive types with the same names and constructors
with the same names. It also requires that for every corresponding inductive
type in these blocks, the corresponding indices, are in the expected subtyping
relation; similarly for corresponding arguments of corresponding constructors.
Furthermore, corresponding constructors need to construct judgementally equal
results.

Judgemental equality of inductive types Figure 4.6 shows the typing rules
for judgemental equality of inductive types and their constructors. The rule

5For the sake of clarity we have omitted the context under which these cumulativity
relations need to hold.
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Ind-leq
D ≡ Indn {∆I := ∆C} ∈ Γ D′ ≡ Indn {∆′I := ∆′C} ∈ Γ

dom(∆I) = dom(∆′I) dom(∆C) = dom(∆′C)[
∆I(d) ≡ #»p : #»

P .Π #»z : #»

V . s ∆′I(d) ≡ #»p :
# »

P ′.Π #»z :
# »

V ′. s′

Γ, #»p : #»

P ` #»

V �
# »

V ′(
∆C(c) ≡ Π #»p : #»

P .Π #»x : #»

U. d #»u ∆′C(c) ≡ Π #»p :
# »

P ′.Π #»x :
# »

U ′. d
#»

u′

Γ, #»p : #»

P ` #»

U �
# »

U ′ Γ, #»p : #»

P , #»x : #»

U ` #»u '
#»

u′ :
# »

P ′,
# »

V ′

for c ∈ Constrs(∆C , d)
)

for d ∈ dom(∆I)
]

Γ ` D �† D′

C-Ind
D ≡ Indn {∆I := ∆C} D′ ≡ Indn {∆′I := ∆′C} Γ ` D �† D′

Γ ` D.d #»a : s Γ ` D′.d #»a : s′

Γ ` D.d #»a � D′.d #»a

Figure 4.5: Cumulativity for inductive types

Ind-Eq
Γ ` D.d #»a � D′.d #»a Γ ` D′.d #»a � D.d #»a

Γ ` D.d #»a : s Γ ` D′.d #»a : s
Γ ` D.d #»a ' D′.d #»a : s

Constr-Eq-L
Γ ` D′.d #»a � D.d #»a Γ ` D.c #»m : D.d #»a Γ ` D′.c #»m : D′.d #»a

Γ ` D.c #»m ' D′.c #»m : D.d #»a

Constr-Eq-R
Γ ` D.d #»a � D′.d #»a Γ ` D.c #»m : D.d #»a Γ ` D′.c #»m : D′.d #»a

Γ ` D.c #»m ' D′.c #»m : D′.d #»a

Figure 4.6: Judgemental equality for inductive types
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Ind-Eq states that two inductive types are considered to be judgementally equal
if they are in mutual cumulativity relations.

This, and the judgemental equality for constructors explained below, allow
universe polymorphism to mimic the behavior of template polymorphism for
monomorphic inductive types. For instance, as we saw types list@{i} A is a
subtype of list@{j} A for any type A regardless of i and j. Hence, using the rule
Ind-Eq it follows that the two types list@{i} A and list@{j} A are judgementally
equal. However, the conditions of judgemental equality of universe-polymorphic
inductive types is much more general compared to the conditions for template
polymorphism to apply. Template polymorphism simply does not apply as soon
as the universe in the sort is mentioned in any of the constructors.

According to the rule Ind-Eq, in order to get that the two types Category@{i j}
and Category@{i’ j’} are judgementally equal it is required that i = i’ and
j = j’ as expected.

Judgemental equality of constructors The rules Constr-Eq-L and Constr-
Eq-R specify judgemental equality of constructors of inductive types in
cumulativity relation. Let D.d #»a and D′.d #»a be two inductive types in the
cumulativity relation D.d #»a � D′.d #»a . Furthermore, let c be a constructor
of the inductive blocks D and D′ and #»m be terms such that D.c #»m has type
D.d #»a and D′.c #»m has type D′.d #»a . In this case, the rules Constr-Eq-L and
Constr-Eq-R specify that D.c #»m and D′.c #»m are judgementally equal at the
highest of the two types D.d #»a and D′.d #»a .

This is another behavior of template polymorphism that the rules Constr-Eq-L
and Constr-Eq-R allow us to mimic. For instance, consider the monomorphic
and template-polymorphic inductive type of lists defined above. Template
polymorphism of list implies that, e.g., the empty list (the constructor nil) for
the type of lists of a type A are judgementally equal regardless of the sort that
A is in. That is, we have nil (A : Type@{i}) ' nil (A : Type@{j}) regardless of
i and j. Using the rules Constr-Eq-L and Constr-Eq-R we can achieve a
similar result for the universe-polymorphic and inductive type of lists uplist
defined above. These rules imply that upnil@{i} A ' upnil@{j} A for any type
A regardless of i and j.

4.5 Consistency

We establish the consistency of pCuIC by constructing a set theoretic model
for the theory inspired by the model constructed by Lee and Werner (2011).
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JΓ ` PropKγ , {∅, {∅}} JΓ ` TypeiKγ , Vκi

JΓ ` t uKγ , App(JΓ ` tKγ , JΓ ` uKγ)

JΓ ` Πx : A.BKγ ,
{

Lam(f)
∣∣f : Πa ∈ JΓ ` AKγ . JΓ, x : A ` BKγ,a

}
JΓ ` λx : A. tKγ , Lam

({
(a, JΓ, x : A ` tKγ,a)

∣∣a ∈ JΓ ` AKγ
})

Figure 4.7: Excerpts of the model

We use our model to show (using relative consistency) that there are types that
are not inhabited in the system. In fact, the model of Lee and Werner (2011)
does support cumulativity of inductive types. However, it is not suitable for
showing consistency as it relies on the normalization of the body of fixpoints
(structural recursion in Coq) for interpreting them. Furthermore, we work in
ZFC set theory and use the axiom of choice only to show that the interpretation
of inductive types constructed through fixpoints does indeed belong to the
interpretation of the sort of the inductive type. Lee and Werner (2011) work in
ZF (with suitable cardinals, similarly to what we have assumed below) but we
were not able to find a proof of this aspect of correctness of their interpretation
of inductive types. See Appendix B for details of why and how we use the
axiom of choice.

The model Here, we briefly present the most important parts of the model
(see Appendix B for details of the construction). We construct our set theoretic
model in ZFC set theory together with the axiom that there is a strictly
increasing sequence of uncountable strongly inaccessible cardinals: κ0, κ1, . . .
with κ0 > ω. Universe Typei is interpreted as set theoretic (von Neumann)
universes Vκi Drake, 1974. It is well-known Drake, 1974 that the von Neumann
universe Vκ is a model of ZFC for any uncountable strong inaccessible cardinal
κ. We interpret the sort Prop as the set {∅, {∅}}. Figure 4.7 shows excerpts
of our model of pCuIC. Interpretation of inductive types and eliminators
are discussed below. We write A↓ for well-definedness of the object A. We
write Πa ∈ A.B(a) for dependent set theoretic functions: Πa ∈ A.B(a) ,{
f ∈

(⋃
a∈AB(a)

)A∣∣∣∀a ∈ A. f(a) ∈ B(a)
}
. Here Lam and App are respectively

functions that trace-encode a set-theoretic function and evaluate a trace encoded
functions. Trace encoding is a standard technique Aczel, 1999 for set-theoretic
representation of functions in a type theory with a proof-irrelevant universe
(Prop in our case) which is a sub-type of another non-proof-irrelevant universe
(Prop � Typei in our case).
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Modeling inductive types and eliminators The basic idea of the interpretation
of inductive types, constructors and eliminators is straightforward. However,
the general presentation of the construction is lengthy and involves arguments
regarding the general shape of inductive types. In particular, the strict positivity
condition plays a crucial role. Here, we present the general idea and give some
examples. Further details are available in Appendix B . Following Lee and
Werner (2011), who follow Dybjer (1991) and Aczel (1999), we use inductive
definitions (in set theory) constructed through rule sets to model inductive
types. Here, we give a very short account of rule sets for inductive definitions.
For further details refer to Aczel (1977). A rule set is a set of rules. A pair
(A, a) is a rule based on a set U where A ⊆ U is the set of premises and a ∈ U
is the conclusion. We write A

a for a rule (A, a). The fixpoint I(Φ) of a rule set
Φ is the smallest set X such that for any rule A

a if A ⊆ X then a ∈ X. Every
rule set has a fixpoint (Aczel, 1977).

The idea here is to construct a rule set for the whole inductive block. For
each collection of arguments that can possibly be applied to a constructor
we add a rule to the rule set. The premises of the rule requires that all
(mutually) recursive arguments are in the fixpoint. We define the interpretation
of individual inductive types based on this fixpoint. Let D ≡ Ind0{nat : Set :=
Z : nat, S : nat → nat} be the inductive block for inductive definition of natural
numbers. The rule set for this inductive block is as follows:

ΦD ,
{

∅
〈0; nil; nil; 〈0; nil〉〉

}
∪
{
{〈0; nil; nil; a〉}
〈0; nil; nil; 〈1; a〉〉

∣∣∣∣a ∈ Vκ0

}
The rule corresponding to Z has no premise as Z takes no recursive argument.
This rule concludes that the term 〈0; nil〉, i.e., zeroth constructor applied to
nil arguments is a term of zeroth type with nil as both parameters and indices.
The rules corresponding to S state that 〈1; a〉 is an element of the zeroth
type if a is. Based on this fixpoint we define the semantics of natural numbers,
J· ` D.natKnil , {〈k; #»a 〉|〈0; nil; nil; 〈k; #»a 〉〉 ∈ I(ΦD)}, zero, J· ` D.ZKnil , 〈0; nil〉
and successor, J· ` D.SKnil , Lam ({(a, 〈1; a〉)|a ∈ J· ` D.natKnil}).

Interpreting eliminators We use rule sets to also define the interpretation
of eliminators. For each constructor applied to a sequence of arguments we
add a rule to the rule set. This rule states that the result of elimination is
exactly the result of applying the corresponding case eliminator where the
result of elimination of (mutually) recursive arguments are taken as arbitrary
sets. The premise requires that each set, that is taken as elimination of a
(mutually) recursive argument, is mapped correctly in the fixpoint. We define
the interpretation of elimination of a term t of an inductive type as the set a
if JtK = 〈k; #»m〉 and a is the unique set such that the pair (〈k; #»u , #»m〉 , a) is in
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the fixpoint of the elimination, where #»u is the interpretation of the values for
parameters. Assume we have sets r, rz and rs such that r, rz, rs ∈ JΓK where
Γ = Q : nat → Typei, qz : Q Z, qs : Πx : nat. Q x→ Q (S x). The rule set for
the elimination of natural numbers is as follows:

ΦELB ,

{
∅

(〈0; nil〉 , rz)

}
∪

{
{(a, b)}

(〈1; a〉 , #     »App(rs, a, b))

∣∣∣∣∣ a ∈ JΓ ` D.natKr,rz,rs ,

b ∈ Vκi

}

We define the interpretation of elimination of the term n as a if JΓ ` nKr,rz,rs =
〈k, #»m〉 and a is the unique set such that the pair (〈k; #»m〉 , a) ∈ I(ΦELB). Notice,
that here we have no parameters and thus we have not added the interpretation
of values for parameters in the tuple 〈k; #»m〉.

Soundness theorem and consistency

Theorem 4.5.1 (Soundness of the model). 1. If WF(Γ) then JΓK↓

2. If Γ ` t : A then JΓK↓ and for any γ ∈ JΓK we have JΓ ` tKγ↓, JΓ ` AKγ↓
and JΓ ` tKγ ∈ JΓ ` AKγ

3. If Γ ` t ' t′ : A then JΓ ` tKγ ↓, JΓ ` t′Kγ ↓, JΓ ` AKγ ↓ and JΓ ` tKγ =
JΓ ` t′Kγ ∈ JΓ ` AKγ

4. If Γ ` A � B then JΓ ` AKγ↓, JΓ ` BKγ↓ and JΓ ` AKγ ⊆ JΓ ` BKγ

Proof. By mutual induction on the typing derivations. For C-Ind we need to
show that the interpretation of one inductive type is a subset of the interpretation
of the other one. This follows from the fact that the arguments of constructors
of the two types have the required subset relation (by induction hypothesis).
The cases Ind-Eq, Constr-Eq-L and Constr-Eq-R are trivial.

Corollary 4.5.2 (Consistency of pCuIC). Let s be a sort, then, there does
not exist any term t such that · ` t : Πx : s. x.

Proof. If there were such a term t, by Theorem 4.5.1 we would have J· ` tKnil ∈
J· ` Πx : s. xKnil. However, J· ` Πx : s. xKnil = ∅.

4.6 Coq implementation

We implemented the extension to pCIC, that are presented in this paper, in the
Coq system, which is now available as of the stable 8.7 version of the system
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The Coq Development Team (2017), documented6 and even experimented with
already in the UniMath library.7

From the user point of view, this adds a new optional flag on universe-
polymorphic inductive types that computes the cumulativity relation for two
arbitrary fresh instances of the inductive type that can be printed afterwards
using the Print command. Cumulativity and conversion for the fully applied
inductive type and its constructors is therefore modified to use the cumulativity
constraints instead of forcing equalities everywhere as was done before, during
unification, typechecking and conversion. As cumulativity is always potentially
more relaxed than conversion, users can set this option in existing developments
and maintain compatibility. Of course actually making use of the new feature
is not backward-compatible.

Impact on the Coq codebase The impact of this extension is relatively
small as it involves mainly an extension of the data-structures representing
the universes associated with polymorphic inductive types in the Coq kernel,
and their use during the conversion test of Coq, which was already generic in
the tests used for comparing polymorphic inductives and constructors. Note
that we have not needed to adapt the two efficient reduction strategies of Coq,
vm_compute and native_compute, as universes are irrelevant for reduction.
A good chunk of changes involved cleanups of the kernel API for registering
inductive declarations.

Performance When no inductive type is declared cumulative, the extension
has no impact, as we tested on a large set of user contributions including the
Mathematical Components and the Coq HoTT library (the common stress-tests
for universes). When activated globally, we hit one case in the test-suite of Coq
taken from the HoTT library where the computation of the subtyping relation
for a given inductive blows up, due to conversion unfolding definitions to infer
the subtyping constraints. In this case we know that the relation would be
trivial (cumulativity collapses to equality), hence we were motivated to make
the Cumulative flag optional. The performance is otherwise not affected, as far
as we know.

6https://coq.inria.fr/refman/addendum/universe-polymorphism.html
7See the discussion on GitHub: https://github.com/UniMath/UniMath/issues/648

https://coq.inria.fr/refman/addendum/universe-polymorphism.html
https://github.com/UniMath/UniMath/issues/648
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4.7 Applications

In this section we briefly discuss two motivating applications that are made
possible thanks to the new cumulativity feature for inductive types that we
have presented here.

Yoneda embedding Each category C : Category@{i j} is equipped with a hom-
functor, Hom_func : C × Cop → Type_Cat@{j}. Here Type_Cat is the category of
types and functions, which plays the role of the Set category. It is expected that
one could define the Yoneda embedding Y(C) as Curry Hom_func where Curry is
the exponential transpose of the cartesian closed structure of the category of
categories Cat. However, the cartesian closed version of Cat@{i’ j’ k’ l’} has
the constraints k′ = l′ = j′ and Type_Cat@{j} : Category@{k j} with the side
constraint j < k. This means that Type_Cat is not an object of any cartesian
closed version of Cat making it impossible to use Curry on Hom_func. See Timany
and Jacobs (2016a) for a detailed discussion of this issue.

Cumulativity of inductive types solves this issue. In pCuIC, Type_Cat is
indeed an object of a cartesian closed version of Cat at some higher universe
level allowing us to directly use exponential transpose to define the Yoneda
embedding.

Syntactical models of type theories In Boulier, Pédrot, and Tabareau (2017),
Boulier et al. advocate the study of syntactical models of type theory, that is
models defined by definitional translations from a source type theory to a target
type theory. A definitional translation of dependent type theory must preserve
its conversion relation, which is known as “computational soundness” in proof
theory in general. In pCIC and pCuIC, it must preserve the cumulativity
relation.

A most basic example of syntactical model is the “cross-bool” model, which
interprets every type as the type itself crossed with booleans, i.e., using a
polymorphic pair type:

[Typei] = (Typei ×j,Set B, true) where i < j JAK = [A].1

Likewise, every term is interpreted as the term itself plus a boolean. This model
can be used to show that type extensionality, hence univalence, is independent
from CCω (op. cit.). However, this model does not scale to Coq’s type theory
as the cumulativity rule is not validated through the translation. Indeed to
validate cumulativity one must have, assuming i ≤ k ∧ i < j ∧ k < l:

JTypeiK ≤ JTypekK , (Typei ×j,Set B, true).1 ≤ (Typek ×l,Set B, true).1
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This judgement holds only if j = l and i = k in pCIC, and is relaxed to only
i = k in pCuIC. The latter constraint is forced due to the appearance of the
types as parameters of the pair type. We can go one step further and define a
specialized inductive type:
Inductive TyInterp@{i j | i < j} : Type@{j} := { T : Type@{i}; b : bool }.
The subtyping constraints on TyInterp will only require that i ≤ k, as assumed!
Note also that template polymorphism would not help here as the type is not a
parameter anymore.

4.8 Future and related work

Moving from template polymorphism to universe polymorphism One
motivation for this extension is the ability to explain away the so-called
“template-polymorphic” inductive types of Coq in terms of cumulative
universe-polymorphic inductive types, to put the system on clean and
solid theoretical ground and finally switch the standard library of Coq to
full universe polymorphism. Making the universe-monomorphic code using
template-polymorphic inductives in the standard library interact with universe-
polymorphic code is prone to introduce universe inconsistencies, the two
systems working in quite different ways. Hence we have tried to set universe
polymorphism on everywhere.

Our experiments are encouraging but not without issues. We are able to
make the basic inductive types of the standard library cumulative universe-
polymorphic, and all constants polymorphic (except in a few files devoted to
the formalization of paradoxes). We found that the relaxed rule on constructors
was necessary in some cases, this is a case where practice met theory: our model
construction justified the required relaxation for these examples.

However, we hit an orthogonal problem with the definitions of modules and
module types, used to formalize the number and finite map and set libraries
for example, where definitions drastically change meaning when interpreted
in universe-polymorphic mode. Indeed when a module parameter A : Type is
declared in monomorphic mode, one gets a floating universe, i.e., it is elaborated
to A : Type` for some global universe `. In univ. poly. mode it is elaborated
to A@{`} : Type` instead, which can only be instantiated by Prop and types
in Set, at the bottom of the hierarchy. The only way to fix this is to add user
annotations in the files to switch between monomorphic and polymorphic mode,
which is work-in-progress.
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Strong normalization We believe that our extension to pCIC maintains strong
normalization and that the model constructed by Barras (2012) could be easily
extended to support our added rules.

Related Work We are not aware of any other system providing cumulativity
on inductive types, neither Matita nor Lean, the closest cousins of Coq,
implement cumulativity. They prefer the algebraic presentation of universes
that is also used in Agda and where explicit lifting functions must be defined
between different instances of polymorphic inductive types. In McBride (2015),
McBride presents a proposal for internalizing “shifting” of universe-polymorphic
constructions to higher universe levels akin to an explicit version of cumulativity
that was further studied by Rouhling (2014), but parameterized inductive types
are not considered there.

4.9 Conclusion

We have presented a sound extension of the predicative calculus of inductive
constructions with cumulative inductive types, which allows to equip cumulative
universe-polymorphic inductive types with definitional equalities and reasoning
principles that are closer to the “informal” mathematical practice. Our system is
implemented in the Coq proof assistant and is justified by a model construction
in ZFC set theory. We hope to make this feature more useful and applicable once
we resolve the remaining, orthogonal issue with the module system, allowing
users of the standard library of Coq to profit from it as well.
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Programming languages studied

n Natural number
} A general binary operation
τ A type
Γ A typing context (mapping variables to their types)
Ξ A type-level context (a list of type variables)
Ξ | Γeτ ` : Typing judgement
X A type variable
() The unit value
1 The unit type
N Type of natural number
B Type of Booleans
EqType(τ) A type that CAS can be performed on
∀X. τ A polymorphic type
e _ Specialization of polymorphic term e

µX. τ A recursive type
ref(τ) A reference type
cont(τ) A continuation type
` A memory location
rec f(x)() = e A recursive function f with body e
fold Folding of recursive types

69
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unfold Unfolding of recursive types
call/cc Call with current continuation
throw Continue from a captured continuation
CAS Atomic compare and set operation
== Comparison of references (STLang)
e[v/x] Substitution
e[ #»v / #»x ] Simultaneous substitution
σ, h State of the programming language, i.e., heap
] Disjoint union
→h Head step
→K Head step under a specific evaluation context

K (Fµ,ref
conc,cc)

→tp Thread pool step
 Effectful reduction step (STLang)
→ Reduction step (STLang)
→d Deterministic reduction step (STLang)
 d Deterministic effecful reduction step (STLang)
K Evaluation context
K Effectful evaluation context
[],− The empty evaluation context
e ↓, e ⇓ e terminates
C A well-typed context
C : (Ξ | Γ; τ) (Ξ′ | Γ′; τ ′) Typing of contexts
Ξ | Γ � e ≤ctx e

′ : τ Contextual refinement
Ξ | Γ � e ≈ctx e

′ : τ Contextual equivalence

Iris

fin−⇀ Partial function with finite support
E A mask
P,Q An Iris proposition
Φ,Ψ An Iris predicate
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Expr Type of expressions
Val Type of values
Ectx Type of evaluation contexts
> The true proposition;

full mask (no invariant open)
> The false proposition;

empty mask (all invariants open)
∗ Separating conjunction
−∗ The wand connective
⇒ Logical implication
. The later modality
µr.P Guarded fixpoint

� The persistence modality

P
N An invariant with name N

|V, |VE , |V
E E The update modality

≡−∗ Shorthand for −∗ |V
wp e {Φ} A weakest precondition proposition
{P } e {Φ} A Hoare triple
` 7→ v, ` 7→i v A maps-to proposition (memory location ` in the heap

has value v)
` 7→s v A Specification side maps-to proposition (memory

location ` in the heap of the specification side has
value v)

P ` Q Iris entailment
P a` Q Logical equivalence of Iris propositions
persistent(P ) P is persistent
persistent(Φ) Φ is persistent, i.e., ∀x. persistent(Φ(x))

Logical relations

∆ Interpretation of type variables (maps free type
variables to their interpretation)

JΞ ` τK∆ The value relation (unary or binary)
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JΞ ` τKE∆ The expression relation (unary or binary)
JΞ ` ΓKG∆ The typing contexts relation
Ξ | Γ � e : τ The unary logical relation
Ξ | Γ � e ≤log e

′ : τ The binary logical relation, also referred to as logical
refinement

KJΞ ` τK∆(K,K ′) The evaluation context relation
O(e, e′) Observational refinement
j Z⇒ K[e], j Z⇒ e Thread j is about to execute e (under the evaluation

context K)

Iris propositions for stack refinement (Section 5.7)

AllCells(f) All stack cells are described by finite partial function
f

` 7→stk v Stack cell ` stores value v
LRelΦ(`, v) The fine-grained stack (linked list) starting in ` is

related to the coarse-grained stack (algebraic list) v
and stored values are related by Φ

Iris propositions for the logical relation for monadic
encapsulation of state (Chapter 6)

E JΞ ` τK∆ The expression relation
|�{n}≡. The future modality
ICγ e {|v. P |} If-Convergent (IC) predicate
heapγ(h)∗ The heap named γ has contents h
` 7→γ v The location ` has value v in the heap named γ
(h, e) ⇓γΦ Expression e starting in a heap h reduces (determin-

istically) to a value satisfying Φ and a heap that is
named by γ

Iris propositions for the logical relation for continuations
(Chapter 7)

clwp e
{
Φ
}

A context-local weakest precondition
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74 TYPE SOUNDNESS AND CONTEXTUAL REFINEMENT VIA LOGICAL RELATIONS IN
HIGHER-ORDER CONCURRENT SEPARATION LOGIC

It is well-known that it is challenging to construct semantic models for reasoning
about type soundness and contextual refinement for programming languages
with sophisticated type systems with polymorphic types, recursive types, and
reference types. In this paper we present new semantic models based on
logical relations for showing such properties. We present two logical relations
for a programming language Fµ,ref ,conc featuring impredicative polymorphism,
recursive types, dynamically allocated higher-order references and fine-grained
concurrency. The first unary logical relation can be used to establish type
safety of Fµ,ref ,conc and the second binary logical relation is useful for proving
contextual refinements of programs. We define our logical relations in Iris, a
state-of-the-art impredicative higher-order concurrent separation logic. The
benefits of formalizing logical relations on top of Iris are two-fold: (1) it makes
is simpler to define and reason about the logical relations; and (2) we can use
the implementation of Iris in the Coq proof assistant to formalize our logical
relations in the Coq proof assistant. We illlustrate the usefulness of our approach
by proving, using the binary logical relation, that a fine-grained concurrent stack
module refines a coarse-grained one. All of our results have been mechanized in
the Coq proof assistant. Our development is the first formalization of logical
relations for such a rich programming language in a proof assistant.

5.1 Introduction

Type soundness, introduced by Milner (1978), is one of the fundamental
properties of a type system for a programming language. Type soundness
expresses that well-typed programs are guaranteed to have well-defined behavior.
Estalishing that a given type system guarantees type soundness is not a trivial
problem. Initially, this problem was studied using denotational semantics
(Damas, 1984; Milner, 1978) for the programming language in question. It
turned out to be difficult to scale this methodology to more complex type systems
and programming languages with features such as polymorphism and higher-
order references, probably because denotational semantics was not sufficiently
developed for such programming languages. This led to the development of
so-called syntactic approaches to type soundness (Wright and Felleisen, 1994),
which are based on the small-step operational semantics of the programming
language. Harper (1994) formulated the approach in terms of progress and
preservation lemmas, where progress expresses that a well-typed program is
either a value or it can be evaluated further, and preservation expresses that a
well-typed program remains well-typed when executed. This syntactic approach
to type soundness scales very well to programming languages with sophisticated
features and type systems. However, the resulting type soundness theorem is not
as strong as we would really like: The syntactic type soundness theorem ignores



INTRODUCTION 75

data abstraction aspects of the programming language – one can establish
progress and preservation even if the language includes features that break
data abstraction. Moreover, since it does not give a semantic characterization
of type soundness it is not sufficiently modular: it only guarantees safety for
syntactically well-typed programs. This severely limits the applicability of
the approach since almost all realistic programming languages include some
facility for mixing syntactially well-typed programs with syntactically ill-typed
programs (which one then needs to guarantee are safe by other means than
syntactic well typing).

In this paper we present a semantic approach to type soundness using logical
relations based on the operational semantics of the programming language,
sometimes known as operationally-based logical relations (Pitts, 1996). An
advantage of using the logical relations approach is that it is both modular (since
it gives a semantic characterization of type soundness) and also accounts for
data abstraction. However, developing operationally-based logical relations for
programming languages with advanced features such as higher-order references
is non-trivial because of the so-called type-world circularity problem (Ahmed,
2004), which led to the development of so-called step-indexed Kripke logical
relations with recursively defined worlds, see, e.g., Ahmed (2004), Birkedal,
Støvring, and Thamsborg (2009), and Dreyer, Neis, and Birkedal (2010). Step-
indexed Kripke logical relations are intricate and quite difficult to use for
reasoning about examples. Here, instead, we take an alternative approach and
use the Iris program logic to reason about these intricate parts of the model
at a high level of abstraction. Iris is a state-of-the-art program logic based on
separation logic designed for reasoning about concurrent higher-order imperative
programs. The Iris program logic comes equipped with logical connectives and
features that are sufficient for a direct definition of our logical relations. This
allows us to define our logical relations at a higher level of abstraction and
avoid step-indices and Kripke world details. We also use Iris when reasoning
about logical relatedness of examples and thus avoid low-level reasoning about
step-indices, etc.

Specifically, we present a unary logical relation for Fµ,ref ,conc in Iris. Fµ,ref ,conc
is a call-by-value programming language featuring impredicative polymorphism
(à la System F), recursive types, dynamically allocated higher-order references,
and fine-grained concurrency. Fine-grained concurrent programs do not use
locks for synchronization but rather use fine-grained concurrency primitives such
as the atomic compare-and-set, CAS, operation which is a primitive of Fµ,ref ,conc.
We use the logical relation to show type soundness for syntactically well-typed
programs and also demonstrate that the logical relation can be used to show
semantic type soundness for a program that is not syntactically well-typed,
thus making it possible to combine this program with syntactically well-typed
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programs in a safe manner.

Our logical relation for type soundness is a unary logical relation. We also define
binary logical relations for Fµ,ref ,conc in Iris and, moreover, we demonstrate
that our binary logical relation is useful for showing challenging contextual
refinements. In particular, we show that a fine grained implementation of
a concurrent stack module refines a coarse grained implementation. The
refinement is proved in Coq using the binary logical relation defined in Iris in
Coq.

Our development is the first formalization of logical relations for such a rich
programming language in a proof assistant.

Contributions In summary, the technical results presented in this paper are
as follows:

• We formalize a unary logical relations model for Fµ,ref ,conc in Iris for
proving type safety.

• We formalize a binary logical relations model for Fµ,ref ,conc in Iris for
proving contextual refinements and equivalences.

• We use our binary logical relations model to prove contextual refinement
for a pair of fine- and coarse-grained concurrent counter modules and a
pair of fine- and coarse-grained concurrent stack modules.

• All results in this paper are mechanized in the Coq proof assistant, using
the mechanization of Iris and the Iris Proof Mode (Krebbers, Timany,
and Birkedal, 2017).

In addition to the technical contributions enumerated above, we also intend
that this text may serve as a first introduction to the methodology of defining
logical relations models in Iris. We believe that such logical relations models
can be a powerful tool to tackle a wide gamut of applications in the theory of
programming languages. In the present text we elucidate the technique for a
fairly standard type system – we hope that understanding the models presented
here should make it easier to understand more sophisticated models, such as
Jung, Jourdan, Krebbers, and Dreyer, 2017; Krogh-Jespersen, Svendsen, and
Birkedal, 2017; Timany, Stefanesco, Krogh-Jespersen, and Birkedal, 2018, and
as-yet-to-appear models.

The technical results presented in this paper have previously been announced
in a conference paper by Krebbers, Timany, and Birkedal (2017). In loc. cit.,
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the results were only mentioned very briefly, as an application of the Iris proof
mode.

Structure of the rest of the paper In Section 5.2 we present the syntax
and semantics of Fµ,ref ,conc. Section 5.3 gives a brief introduction to Iris. In
Section 5.4 we present our unary logical relations model and use it to prove
type soundness of Fµ,ref ,conc. We present our binary logical relation model in
Section 5.5 and show how it can be used to prove contextual refinements. We
exemplify the use of our binary logical relations model in Sections 5.6 and 5.7.
In these sections we sketch proofs of refinements of concurrent counter and stack
modules, respectively. In Section 5.8 we discuss related work and conclude in
Section 5.9.

5.2 The language Fµ,ref ,conc: syntax and semantics

In this section we present the syntax and the semantics of our subject of
study: Fµ,ref ,conc. The programming language Fµ,ref ,conc is a call-by-value
programming language with impredicative polymorphism, recursive types,
dynamically allocated higher-order heap and fine-grained concurrency. The
expressions, values and types of Fµ,ref ,conc are as follows:

e ::= x | () | n | e} e | rec f(x) = e | e e | Λ e | e _ | (e, e) | πi e | true |

false | if e then e else e | inji e | match e with inji x⇒ ei end |

fold e | unfold e | ` | ref(e) | ! e | e← e | CAS(e, e, e) | fork {e}

v ::= () | n | true | false | rec f(x) = e | Λ e | (v, v) | inji v | fold v | `

τ ::= X | 1 | N | B | τ → τ | ∀X. τ | τ × τ | τ + τ | µX. τ | ref(τ)

Here, x ranges over a countably infinite set of variables. The value () is the
only inhabitant of the unit type. Fµ,ref ,conc includes natural numbers in its
expressions and values. The symbol } ranges over binary operations (both
arithmetic and comparison operations) on natural numbers. We omit details of
syntax and semantics of these operations as these are entirely standard. We
write rec f(x) = e for a recursive function with argument x and body e. The
expression Λ e is the type-level lambda abstraction. The language Fµ,ref ,conc also
features product types and sum types with projections and injections written
as πi and inji respectively. As usual terms of the sum type can be eliminated
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using a match statement which we write similarly to that of ML. The fold
and unfold expressions respectively fold and unfold expressions of recursive
types. Expressions and values of Fµ,ref ,conc also include memory locations `.
These can be allocated, read and written to using the ref(e), ! e and e ← e′

expressions. The compare-and-set, CAS, expression is the Fµ,ref ,conc primitive
for fine-grained concurrency. The expression CAS(`, v, w) atomically checks if
the value stored in memory at location ` is equal to v and, if so, sets the value
of ` to w. The expression fork {e} forks a new thread which starts evaluation
of the expression e.

The syntax of Fµ,ref ,conc defined above is in the Curry style: types never appear
in terms. This allows us to define the type system and our logical relations
models over untyped terms. This enables us to reason about codes where
well-typed code is mixed with untyped code (see Section 5.4 for more details).

The types of Fµ,ref ,conc include the basic types: the unit type, 1, the type of
natural numbers, N, and the type of booleans, B. Basic type formers include
function types, τ → τ ′, products, τ × τ ′ and sums τ + τ . Types also include
polymorphic types, ∀X. τ , and recursive types, µX. τ . The type ref(τ) is the
type of memory locations that store values of type τ .

We write Ξ | Γ ` e : τ to express that expression e has type τ under typing
contexts Γ and Ξ. The typing context Γ is a list of the form x1 : τ1, · · · , xn : τn.
It associates free variables (that may appear in e) to their types. The type-level
context Ξ is a list, X1, X2, · · · , of free type variables (that may appear in τ or
Γ). The typing rules of Fµ,ref ,conc are presented in Figure 5.1. Notice that the
typing rule for the CAS operation has a side-condition EqType which ensures
that the CAS operation can only be performed on word-sized data types.

We define the small-step operational semantics of Fµ,ref ,conc in two stages. We
first define a head reduction relation, →h. The (thread-pool) reduction relation
for our programs, →tp, is then defined as individual threads taking head steps
under some evaluation contexts, K, or threads being forked.

(σ, e)→h (σ′, e′)
(σ, #»e1;K[e]; #»e2)→tp (σ′, #»e1;K[e′]; #»e2)

(σ, #»e1;K[fork {e}]; #»e2)→tp (σ, #»e1;K[()]; #»e2; e)

Here, our state, σ : Loc fin−⇀ Val, is the heap which we model as a partial map
with finite support from memory locations to values. The evaluation contexts
of Fµ,ref ,conc are the following:

K ::= [] | K } e | v }K | K e | v K | K _ | (K, e) | (v,K) | πiK |
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T-var
x : τ ∈ Γ

Ξ | Γ ` x : τ

T-rec
Ξ | Γ, x : τ, f : τ → τ ′ ` e : τ → τ ′

Ξ | Γ ` rec f(x) = e : τ → τ ′

T-tlam
Ξ, X | Γ ` e : τ

Ξ | Γ ` Λ e : ∀X. τ

T-app
Ξ | Γ ` e1 : τ → τ ′ Ξ | Γ ` e2 : τ

Ξ | Γ ` e1 e2 : τ ′

T-tapp
Ξ | Γ ` e : ∀X. τ

Ξ | Γ ` e _ : τ [τ ′/X]

T-inj
Ξ | Γ ` e : τi i ∈ {1, 2}

Ξ | Γ ` inji e : τ1 + τ2

T-if
Ξ | Γ ` e : B Ξ | Γ ` ei : τ i ∈ {1, 2}

Ξ | Γ ` if e then e1 else e2 : τ

T-pair
Ξ | Γ ` e1 : τ1 Ξ | Γ ` e2 : τ2

Ξ | Γ ` (e1, e2) : τ1 × τ2

T-proj
Ξ | Γ ` e : τ1 × τ2 i ∈ {1, 2}

Ξ | Γ ` πi e : τi

T-match
Ξ | Γ ` e : τ1 + τ2 Ξ | Γ, x : τi ` ei : τ3 i ∈ {1, 2}

Ξ | Γ ` match e with inji x⇒ ei end : τ3

T-fold
Ξ | Γ ` e : τ [µX. τ/X]
Ξ | Γ ` fold e : µX. τ

T-unfold
Ξ | Γ ` e : µX. τ

Ξ | Γ ` unfold e : τ [µX. τ/X]

T-alloc
Ξ | Γ ` e : τ

Ξ | Γ ` ref(e) : ref(τ)

T-load
Ξ | Γ ` e : ref(τ)

Ξ | Γ ` ! e : τ

T-store
Ξ | Γ ` e1 : ref(τ) Ξ | Γ ` e2 : τ

Ξ | Γ ` e1 ← e2 : 1

T-fork
Ξ | Γ ` e : τ

Ξ | Γ ` fork {e} : 1

T-CAS
Ξ | Γ ` e1 : ref(τ) Ξ | Γ ` e2 : τ Ξ | Γ ` e3 : τ EqType(τ)

Ξ | Γ ` CAS(e1, e2, e3) : B

EqTyp-unit
EqType(1)

EqTyp-nat
EqType(N)

EqTyp-bool
EqType(B)

EqTyp-ref
EqType(ref(τ))

Figure 5.1: The typing rules of Fµ,ref ,conc (some trivial cases omitted)



80 TYPE SOUNDNESS AND CONTEXTUAL REFINEMENT VIA LOGICAL RELATIONS IN
HIGHER-ORDER CONCURRENT SEPARATION LOGIC

(σ, (rec f(x) = e) v)→h (σ, e[f, x/rec f(x) = e, v]) (σ, (Λ e) _)→h (σ, e)

(σ, if true then e1 else e2)→h (σ, e1)

(σ, if false then e1 else e2)→h (σ, e2)

i ∈ {1, 2}
(σ, match inji v with inj1 x⇒ e1 | inj2 x⇒ e2 end)→h (σ, ei[v/x])

(σ, unfold (fold v))→h (σ, v)
` 6∈ dom(σ)

(σ, ref(v))→h (σ ] {(`, v)} , `)

(`, v) ∈ σ
(σ, ! `)→h (σ, v)

i ∈ {1, 2}
(σ, πi (v1, v2))→h (σ, vi)

(σ ] {(`, v)} , `← w)→h (σ ] {(`, w)} , ())

(σ ] {(`, v)} , CAS(`, v, w))→h (σ ] {(`, w)} , true)

v 6= w

(σ ] {(`, v)} , CAS(`, w, u))→h (σ ] {(`, v)} , false)

Figure 5.2: The rules for the head step relation of Fµ,ref ,conc

ifK then e else e | injiK | matchK with inji x⇒ ei end |

foldK | unfoldK | ref(K) | !K | K ← e | v ← K |

CAS(K, e, e) | CAS(v,K, e) | CAS(v, v,K)

The evaluation contexts above define a call-by-value (CBV) evaluation strategy
for Fµ,ref ,conc. The rules for head steps are presented in Figure 5.2. We write ]
for the disjoint union operation on heaps.

Safety We say a program e is safe, written Safe(e), if it does not get stuck.
This is formally defined as follows:

Safe(e) , ∀e′, #»e1,
#»e2, σ. (∅, e)→∗tp (σ, #»e1; e′; #»e2)⇒

e′ ∈ Val ∨ (∃e′′, σ′. (σ, #»e1; e′; #»e2)→tp (σ′, #»e1; e′′; #»e2))∨
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(∃e′′, σ′, e3. (σ, #»e1; e′; #»e2)→tp (σ′, #»e1; e′′; #»e2; e3))

In prose, e is safe if any expression e′, that it or one of its children threads have
reached, e′ is either a value or it can be evaluated further by making a head
step or by forking a thread.

Contextual refinement and equivalence For a context (a program with a
hole) C we write C : (Ξ | Γ; τ) (Ξ′ | Γ′; τ ′) to express that C is a well-typed
context that takes programs of type τ to programs of type τ ′. More precisely,
Ξ′ | Γ′ ` C[e] : τ ′ holds for any expression e such that Ξ | Γ ` e : τ .

We formally define contextual refinement and contextual equivalence for
programs written in Fµ,ref ,conc as follows:

Definition 5.2.1 (Contextual refinement). We say e contextually refines e′,
written Ξ | Γ � e ≤ctx e

′ : τ , if

Ξ | Γ ` e : τ ∧ Ξ | Γ ` e′ : τ ∧ ∀C : (Ξ | Γ; τ) (· | ·; 1). C[e] ↓ =⇒ C[e′] ↓

where
e ↓ , (∅, e)→∗tp (σ, v; #»e )

Intuitively, when e contextually refines e′ no context can distinguish the situation
where e′ is replaced by e. Since, if there were such a distinguishing context
then it could be extended to a context which would converge when filled with e
and would diverge when filled with e′. This, however, violates the contextual
refinement. Hence, in a contextual refinement e ≤ctx e′ we say the e is the
implementation side and e′ the specification side.

Definition 5.2.2 (Contextual equivalence). We say e and e′ are contextually
equivalent, Ξ | Γ � e ≈ctx e

′ : τ , if

Ξ | Γ � e ≤ctx e
′ : τ ∧ Ξ | Γ � e′ ≤ctx e : τ

5.3 Iris: a brief introduction

Iris (Jung, Krebbers, Birkedal, and Dreyer, 2016; Jung, Swasey, Sieczkowski,
Svendsen, Turon, Birkedal, and Dreyer, 2015; Krebbers, Jung, Bizjak, Jourdan,
Dreyer, and Birkedal, 2017) is a state-of-the-art impredicative higher-order
concurrent separation logic. It is a program logic designed for formal reasoning
about higher-order concurrent imperative programs. Iris is a logical framework
and is thus language agnostic. It can be instantiated to a variety of languages.
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Here we present Iris as instantiated with Fµ,ref ,conc. For a more leisurely paced
read on Iris, see Birkedal and Bizjak (2017). In this section and the rest of this
paper we will not present the details of how Iris represents resources. Rather we
will focus on how Iris can be used as a program logic to facilitate formalization
of logical relations. See Appendix C for details of how resources are represented
in Iris.

In Iris one can quantify over the Iris types κ:

κ ::= 1 | κ× κ | κ+ κ | κ→ κ | Expr | Val | N | B | κ fin−⇀ κ | iProp | . . .

Here, Expr and Val are types of expressions and values of Fµ,ref ,conc, κ
fin−⇀ κ′

is the type of partial functions with finite support and finset(κ) is the type of
finite subsets of κ. The type iProp is the type of Iris propositions. These are
the following:

P ::= > | ⊥ | P ∗ P | P −∗ P | P ∧ P | P ⇒ P | P ∨ P | ∀x : κ. P |

∃x : κ. P | .P | µr. P | �P | P
N | |VE E

P |

wpE e {x. P} | ` 7→ v | {P } e {x. P }E | . . .

Here (>,⊥,∧,∨,⇒,∀,∃) are the conventional connectives of higher-order logic.
The connective ∗ is the separating conjunction. Intuitively, the proposition
P ∗Q holds in case the resources can be separated into two disjoint parts so
that one satisfies P and the other Q. The wand connective, −∗, is to separating
conjunction as is ⇒ to ∧. That is, P −∗ Q holds for those resources such that
when conjoined with a resource satisfying P the result would satisfy Q.

The later modality, ., is used to guard recursively defined predicates. That
is, µr. P is a well-defined guarded-recursive predicate only if all occurrences
of r in P appear under a .. For guarded recursive definitions we have that
µr.P a` P [µr.P/r] where a` is the logical equivalence of Iris propositions. The
. modality is an abstraction of step-indexing (Appel and McAllester, 2001;
Appel, Melliès, Richards, and Vouillon, 2007; Dreyer, Ahmed, and Birkedal,
2011). In terms of step-indexing .P holds if P holds a step later; hence
the name. In Iris this modality is internally used in definitions of weakest
preconditions and to guard impredicative invariants to avoid self-referential
paradoxes (Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal, 2017). In
our logical relations we use the later modality to define the semantics of the
recursive types as guarded-recursive predicates, similarly to (Dreyer, Ahmed,
and Birkedal, 2011). For any proposition P , we have that P ` .P . The later
modality commutes with all of the connectives of higher-order separation logic,
including quantifiers.1 The basic reasoning principle for step-indexes in Iris is

1The only caveat is that . ∃x : κ. P ` ∃x : κ. P only holds if κ is an inhabited type.
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the Löb induction rule:
Löb induction
.P ` P

P

The principle of Löb induction is very similar to the principle of coinduction.
It states that if we can prove P under the assumption that .P holds, then we
can prove P without it.

The persistence modality � forgets all non-duplicable resources. That is, the
proposition �P , pronounced “persistently P”, holds if so does P and that
P only asserts ownership of duplicable resources. We say a proposition P is
persistent, written persistent(P ), in case P a` �P . A persistent proposition P
is duplicable: P a` P ∗P . The persistence modality is monotonic, i.e., if P ` Q
then �P ` �Q. We say a predicate Φ is persistent, written persistent(Φ), if
∀x. persistent(Φ(x)).

In order to express protocols for verification of concurrent programs Iris features
invariants. We write P

N and read “invariantly P” for the proposition that
states that the proposition P is an invariant. The name N is the name of the
invariant and is used to ensure that invariants are not reused in a nested way
which in general is unsound. The proposition P

N merely states the knowledge
that P holds invariantly and does not assert ownership of resources. Hence
invariants are persistent. Invariants can be allocated and opened using fancy
update modality explained below.

The update modality, |VE1 E2 , is used to express manipulation (allocation,
deallocation and update) of resources in Iris.2 The proposition |VE1 E2P holds
for resources that can be updated so that P would hold. For the sake of
simplicity we write |VE instead of |VE E . We write P ≡−∗E1 E2 Q, pronounced P
viewshifts to Q, as a shorthand for P −∗ |VE1 E2Q.

The purpose of masks E1 and E2 is for bookkeeping of invariants. We write
> for the mask where no invariant is open. Rules for allocating and opening
invariants are as follows:

inv-alloc
.P

|VE P
N

inv-open
P
N N ∈ E

|VE E\{N} (.P ∗ (.P ≡−∗E\{N} E >))

The inv-alloc states that an invariant can be established by proving it one step
later. The rule inv-open states that an invariant can be opened if it has not

2This modality is called the fancy update modality in Krebbers, Jung, Bizjak, Jourdan,
Dreyer, and Birkedal, 2017.
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already been. When opened, we get the body of the invariant at a later step and
also that the invariant can be closed by giving up the body but only at a later
step. The later modality is necessary here as otherwise impredicative invariants
can lead to inconsistencies as shown by Krebbers, Jung, Bizjak, Jourdan, Dreyer,
and Birkedal (2017).

We write wpE e {x. P} for the weakest precondition of expression e with respect
to the postcondition P . Here x is a binder for the return value. The
weakest precondition of a program e with respect to a postcondition P , written
wpE e {x. P}, implies two things: (1) the expression e is safe, that is, it may
diverge but it will not get stuck, and (2) whenever e converges to a value v,
then P [v/x] holds. In particular, the weakest precondition of a value is simply
the postcondition (up to updating of resources):

wp-value
wpE v {Φ} a` |VEΦ(v)

Whenever x does not appear freely in P we write wpE e {P} instead of
wpE e {x. P}. When Φ is predicate, we sometimes write wpE e {Φ} instead
of wpE e {x. Φ(x)}. The mask E in wpE e {x. P} is the set of invariant names
that are closed before and need to be closed at the end. In practice, the update
modality is used internally in the definition of weakest preconditions allowing
them to open invariants (for at most the duration of an atomic operation)
and update resources during proofs of weakest preconditions of programs. See
Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal (2017) for the precise
definition of weakest preconditions in Iris. Each thread can rely on all invariants.
This can be seen in the rule wp-fork below:

wp-fork
.wp> e {>}

wpE fork {e} {x. x = ()}

The rule wp-fork states that the weakest precondition of fork {e} with respect
to Φ follows from the weakest precondition of the forked thread with respect to
the trivial postcondition. Note that the mask for the forked thread allows the
forked thread to access all invariants. This rule also shows the thread-locality
of the weakest preconditions. That is, in proving weakest preconditions we need
only to consider the program one thread at a time.

In addition to thread-local reasoning weakest preconditions facilitate context-
local reasoning. This is evident from the rule wp-bind:

wp-bind
wpE e {x. wpE K[x] {Φ}}

wpE K[e] {Φ}
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This rule allows us to focus on a sub-expression while proving weakest
preconditions. This sub-expression is usually the sub-expression that makes a
head-step. The following are the weakest precondition rules for basic expressions
(except for those pertaining to references given further on) that we derive for
Fµ,ref ,conc:

wp-rec
.wpE e[f, x/rec f(x) = e, v] {Φ}

wpE (rec f(x) = e) v {Φ}

wp-Tlam
.wpE e {Φ}

wpE (Λ e) _ {Φ}

wp-if-true
.wpE e1 {Φ}

wpE if true then e1 else e2 {Φ}

wp-if-false
.wpE e2 {Φ}

wpE if true then e1 else e2 {Φ}

wp-proj
.wpE vi {Φ} i ∈ {1, 2}

wpE πi (v1, v2) {Φ}

wp-match
.wpE ei[v/x] {Φ} i ∈ {1, 2}

wpE match inji v with inj1 x⇒ e1 | inj2 x⇒ e2 end {Φ}

wp-fold
.wpE v {Φ}

wpE unfold (fold v) {Φ}

The maps-to proposition, ` 7→ v, is a proposition defined in Iris based on
resources. The intuition is straightforward: ` 7→ v means that in the heap the
location ` is allocated and its value v. Furthermore, it asserts that we exclusively
own this location:

` 7→ v ∗ ` 7→ v′ ` ⊥

For an explanation of how maps-to propositions are defined see Krebbers, Jung,
Bizjak, Jourdan, Dreyer, and Birkedal (2017). The weakest precondition rules
for manipulation of memory are as follows:

wp-alloc
.(∀`. ` 7→ v −∗ wpE ` {Φ})

wpE ref(v) {Φ}

wp-load
. ` 7→ v .(` 7→ v −∗ wpE v {Φ})

wpE ! ` {Φ}

wp-store
. ` 7→ v .(` 7→ w −∗ wpE () {Φ})

wpE `← w {Φ}

wp-cas-suc
. ` 7→ v .(` 7→ w −∗ wpE true {Φ})

wpE CAS(`, v, w) {Φ}
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wp-cas-fail
. ` 7→ v .(` 7→ v −∗ wpE false {Φ}) v 6= w

wpE CAS(`, w, u) {Φ}

Hoare triples in Iris are defined based on weakest preconditions like so:

{P } e {Φ}E , �(P −∗ wpE e {Φ})

Whenever the mask is >, instead of wp> e {Φ} and {P } e {Φ}> we write wp e {Φ}
and {P } e {Φ}, respectively.

5.4 Unary logical relation for type soundness of
Fµ,ref ,conc

In this section we define a unary logical relations model for Fµ,ref ,conc and use it
to prove the type soundness theorem. That is, for each type we define a logical
relation. We show that each well-typed program is in the relation for its type.
Furthermore, we show that programs in the logical relation for a type have
well-defined behavior, i.e., they do not get stuck. The type soundness theorem
is a direct consequence of these two facts.

We define the logical relations in three stages. We first define a relation for
closed values of a type by induction on types. We then use the value relations to
define relations on closed expressions. Intuitively, a closed expression is in the
relation for a type τ if it is a computation that results in a value that is in the
value relation for the type τ . Finally, we define the logical relation for (open)
expressions based on the expression relations and the value relations above.

In Fµ,ref ,conc features polymorphism. Hence, types can have free type variables.
Thus, we index the relations on closed values and expressions with a map, ∆,
which assigns a semantic type (a value relation) to each free type variable. That
is, for each type τ we define the value relation JΞ ` τK∆ : Val→ iProp where
∆ : Ξ→ Val→ iProp. The full definition of the value relations for types is given
in Figure 5.3. We will discuss them in detail below. Before that we discuss how
value relations are extended to expression relation on closed and subsequently
open expressions.

Intuitively, a closed expression is in the expression relation for a type τ if it
computes a result that is in the value relation for the type τ . We define the
expression relation, JΞ ` τKE∆ : Expr→ iProp, using Iris’s weakest preconditions,
as follows:

JΞ ` τKE∆(e) , wp e {JΞ ` τK∆}
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In order to formally define the logical relation for open expressions we first
define a relation, JΞ ` ·KG∆, for typing contexts. Intuitively, a list a values, #»v , is
in the relation for a typing context, Γ, if each value in #»v is in the value relation
for the type corresponding to it in Γ. The formal definition of the typing-context
relation is given below. Here, ε is the empty list of values.

JΞ ` ·KG∆(ε) , >

JΞ ` Γ, x : τKG∆( #»v , w) , JΞ ` ΓKG∆( #»v ) ∗ JΞ ` τK∆(w)

Let Ξ, Γ, e and τ be such that all free variables of e are in the domain of Γ
and all free type variables that appear in Γ or τ are in Ξ. Then, we write
Ξ | Γ � e : τ to express that the expression e is in the logical relation for type τ
under the typing contexts Γ and Ξ. This relation is defined as follows:

Ξ | Γ � e : τ , ∀∆, #»v . JΞ ` ΓKG∆( #»v ) ` JΞ ` τKE∆ (e[ #»v / #»x ])

The value relation for types are given in Figure 5.3. One important aspect
of the type system of Fµ,ref ,conc is that it is intuitionistic, i.e., values, e.g.,
function arguments, can be used multiple times. Thus, it is crucial that the
value relation of all types are persistent and hence duplicable. The persistence
modality and the side-condition persistent(Ψ) in Figure 5.3 are added to ensure
the persistence of value relations.

The value relation for type variables is given by ∆. A value is in the relation
for the unit type if it is (). A values is in the relation for the type of natural
numbers if it is simply a natural number; similarly for booleans. A value is in
the relation for the product type if it is a pair of values each in their respective
types. A value of the sum type τ + τ ′, on the other hand, is either a value in the
relation for τ or one in the relation for τ ′. The value relation for recursive types
is defined using Iris’s guarded recursive predicates. A value is in the relation
for a recursive type if it is of the form foldw such that the value w is, one step
of the computation later, in the relation for the recursive type. Notice, however,
that unfolding a folded value takes a step of computation. A memory location
is in the relation for a reference type, ref(τ), if it invariantly stores a value
that is in the value relation for τ .

A value v in the relation for the function type τ → τ ′ if whenever v is applied
to a value w, in the relation for τ , the resulting expression, v w, is in the
expression relation for τ ′. A value is in the relation for the type ∀X. τ if, when
instantiated, the resulting expression is in the expression relation for τ where
the interpretation for X is taken to be any persistent predicate.

Notice that the rather compact definitions above are the precise definitions
of logical relations given in full detail and precisely what we have in our
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JΞ ` XK∆ , ∆(X)

JΞ ` 1K∆(v) , v = ()

JΞ ` NK∆(v) , ∃n ∈ N. v = n

JΞ ` BK∆(v) , v ∈ {true, false}

JΞ ` τ1 × τ2K∆(v) , ∃v1, v2. v = (v1, v2) ∗ JΞ ` τ1K∆(v1) ∗ JΞ ` τ2K∆(v2)

JΞ ` τ1 + τ2K∆(v) ,
∨

i∈{1,2}

∃w. v = inji w ∗ JΞ ` τiK∆(w)

JΞ ` τ → τ ′K∆(v) , �
(
∀w. JΞ ` τK∆(w) −∗ JΞ ` τ ′KE∆(v w)

)
JΞ ` µX. τK∆(v) , µΨ. ∃w. v = foldw ∧ .JΞ ` τK∆,X 7→Ψ(w)

JΞ ` ∀X. τK∆(v) , �
(
∀Ψ. persistent(Ψ)⇒ JΞ, X ` τKE∆,X 7→Ψ(v _)

)
JΞ ` ref(τ)K∆(v) , ∃`. v = ` ∧ ∃w. ` 7→ w ∗ JΞ ` τK∆(w) N .`

Figure 5.3: The unary value relation for types of Fµ,ref ,conc

mechanization in Coq. These definitions are very similar in size and style to
what one would write for, say, simply typed lambda calculus or System F.
Lemma 5.4.1. Let τ be a type such that all its free type variables appear in
Ξ. Furthermore, let X be a type variable such that X 6∈ Ξ and let ∆ be an
interpretation for type variables in Ξ. It follows that

JΞ ` τK∆(v) a` JΞ, X ` τK∆,X 7→Ψ(v)

for any predicate Ψ and value v.

Proof. By induction on the structure of τ .

Lemma 5.4.2. Let Γ be a typing context such that all free type variables of Γ
appear in Ξ. Furthermore, let X be a type variable such that X 6∈ Ξ and let ∆
be an interpretation for type variables in Ξ. It follows that

JΞ ` ΓKG∆( #»v ) a` JΞ, X ` ΓKG∆,X 7→Ψ( #»v )

for any predicate Ψ and sequence of values #»v .
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Proof. By induction on the length of Γ using Lemma 5.4.1.

Theorem 5.4.3 (Fundamental theorem of unary logical relations). All well-
typed terms are in the logical relation.

If Ξ | Γ ` e : τ then Ξ | Γ � e : τ

Proof. By induction on the typing derivation. All cases follow from the inference
rules of weakest preconditions presented in Section 5.3. Here, we present a few
cases of this proof.

– Case T-alloc: For this case, given ∆ : Ξ → Val → iProp and a list of
values #»v such that JΞ ` ΓKG∆( #»v ), we need to show assuming

wp e[ #»v / #»x ] {JΞ ` τK∆} (5.1)

that the following holds:

wp ref(e[ #»v / #»x ])
{
x.∃`. x = ` ∧ ∃w. ` 7→ w ∗ JΞ ` τK∆(w) N .`

}
We use the rule wp-bind together with the assumption (5.1) above.
Consequently, we need to show that given some arbitrary value v such
that

JΞ ` τK∆(v) (5.2)

we have

wp ref(v)
{
x.∃`. x = ` ∧ ∃w. ` 7→ w ∗ JΞ ` τK∆(w) N .`

}
We proceed by applying the rule wp-alloc which requires us to show:

. ∀`′. `′ 7→ v −∗ wp `′
{
x.∃`. x = ` ∧ ∃w. ` 7→ w ∗ JΞ ` τK∆(w) N .`

}
This follows easily from the rules wp-value and inv-alloc together with
assumption (5.2) above.

– Case T-rec: For this case, given ∆ : Ξ→ Val→ iProp and a list of values
#»v such that JΞ ` ΓKG∆( #»v ), we need to show assuming

∀v, u. JΞ ` τK∆(v) ∗ JΞ ` τ → τ ′K∆(u) −∗

wp (e[ #»v / #»x ])[v, u/x, f ] {JΞ ` τ ′K∆} (5.3)
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that the following holds:

wp rec f(x) = e[ #»v / #»x ]
{
x. �

(
∀w. JΞ ` τK∆(w) −∗ JΞ ` τ ′KE∆(x w)

)}
By the rule wp-value it suffices to show:3

∀w. JΞ ` τK∆(w) −∗ JΞ ` τ ′KE∆((rec f(x) = e[ #»v / #»x ]) w)

Note the operational semantics pertaining to calling a recursive functions.
The expression

(rec f(x) = e[ #»v / #»x ]) w

reduces to the expression

(e[ #»v / #»x ])[w, rec f(x) = e[ #»v / #»x ]/x, f ]

in a single step of computation. Hence, if we know that JΞ ` τ →
τ ′K∆(rec f(x) = e[ #»v / #»x ]) holds we can use the assumption (5.3) above
to finish the proof. However, this is exactly what we have to show but
crucially we only need this after one step of computation, intuitively
because a recursive call can only occur inside the body, after the
current call. Hence, to finish the proof we use the Löb induction rule.
Consequently we get to assume the following Löb induction hypothesis
(IH).

. ∀w. JΞ ` τK∆(w) −∗ JΞ ` τ ′KE∆((rec f(x) = e[ #»v / #»x ]) w) (IH)

We finish the proof using the rule wp-rec which requires us to show the
following for some arbitrary value w for which we have JΞ ` τK∆(w):

.wp (e[ #»v / #»x ])[w, rec f(x) = e[ #»v / #»x ]/x, f ] {JΞ ` τ ′K∆}

This follows easily from our assumptions and the Löb induction hypothesis,
(IH), above.

– Case T-tlam: For this case, given ∆ : Ξ → Val → iProp and a list of
values #»v such that JΞ ` ΓKG∆( #»v ), we need to show assuming

∀Ψ. JΞ, X ` ΓKG∆,X 7→Ψ( #»v ) ` wp e[ #»v / #»x ] {JΞ, X ` τ ′K∆,X 7→Ψ} (5.4)

that the following holds:

wp Λ e[ #»v / #»x ]
{
x. �

(
∀Ψ. persistent(Ψ)⇒ JΞ, X ` τKE∆,X 7→Ψ(v _)

)}
3We can introduce the persistence modality because all assumptions are persistent.
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Since Λ e[ #»v / #»x ] is a value, we use the rule wp-value. Hence, it suffices to
show the following for some arbitrary but fixed Ψ such that persistent(Ψ):

JΞ, X ` τKE∆,X 7→Ψ((Λ e[ #»v / #»x ]) _)

Note that here we can introduce the persistence modality as none of our
assumptions assert any ownership. Unfolding the expression relation in
the above formula reveals that we need to show:

wp (Λ e[ #»v / #»x ]) _ {JΞ, X ` τK∆,X 7→Ψ}

To prove this, we proceed by applying the rule wp-Tlam and as a result
need to show:

.wp e[ #»v / #»x ] {JΞ, X ` τK∆,X 7→Ψ}
Finally, we can finish the proof by appealing to assumption (5.4). We only
need to show JΞ, X ` ΓKG∆,X 7→Ψ( #»v ) while we have JΞ ` ΓKG∆( #»v ). However,
this follows from Lemma 5.4.2.

Lemma 5.4.4 (Adequacy of unary logical relations). Let e be an expression
such that JΞ ` τKE∆(e). Then, e is safe, Safe(e).

Proof. This lemma is a direct consequence of the adequacy theorem for Iris’s
weakest preconditions (Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal,
2017).

Theorem 5.4.5 (Soundness of unary logical relations). All closed well-typed
programs of Fµ,ref ,conc are safe:

If · | · ` e : τ then Safe(e)

Proof. By the fundamental theorem of unary logical relation, Theorem 5.4.3,
we know that

· | · � e : τ
Expanding the definition of unary logical relations we get

∀∆, #»v . J· ` ·KG∆( #»v ) ` J· ` τKE∆ (e[ #»v / #»x ])

We take ∆ = ∅ and #»v = ε which gives us

J· ` ·KG∅ (ε) ` J· ` τKE∆ (e[ε/ε])

which immediately simplifies to J· ` τKE∆(e). By Theorem 5.4.4, we get Safe(e),
as required.
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The logical relations model presented in this section is modular. For instance, a
well-typed function of type τ → τ ′ (which by the fundamental theorem falls in
the logical relation) can be applied to any expression that is the logical relations
for τ and the result is in the logical relation for τ ′. On the other hand, our
logical relations model is defined in terms of untyped expressions. This means
that our logical relations model can be used to prove safety of programs that
mix well-typed code with untyped code as long as we show that the untyped
code is semantically well-typed, i.e., the untyped code is in the logical relations
for the appropriate type. As an example of a program that is not well-typed
but is nonetheless semantically well-typed consider the following:

Λ Λ (λf. λx. λg. λy. let l = ref(true) in fork {l← false} ;

if ! l thenwaitfor l; l← x; inj1 (f l) else l← y; inj2 (g l))

where

waitfor , rec f(x) = if !x then f x else ()

This program does not syntactically have the type

∀X.∀Y. (ref(X)→ X)→ X → (ref(Y )→ Y )→ Y → X + Y

but it semantically does. This program allocates a boolean reference and uses it
to non-deterministically call f or g. In each case it changes the reference that it
has already allocated with the given value of the appropriate type before passing
it to the chosen function. In case the decision is made to call the first function,
i.e., the other thread has not succeeded in the race, it waits for the other thread
to finish. This is to ensure that the other thread writing to the reference l is
not going to destroy the contents of l at some later point. Despite not being
syntactically well-typed one can show that the program above is semantically
of the type given. Hence, this program can be safely linked against any other
(syntactically or semantically) well-typed program with compatible type. See
Appendix D.1 for a sketch of a proof that this program is indeed semantically
well-typed.

5.5 Binary logical relation for contextual refine-
ments

In this section we define a binary logical relations model for Fµ,ref ,conc and
show how to use that for proving contextual refinement of programs. That
is, we define a binary logical relations model such that being in the logical
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relations implies contextual refinement. For this reason we also refer to our
binary logical relation as logical refinement. The main challenge that we address
in this section is how to use Iris, a program logic with no support for relational
reasoning about programs, to construct a binary logical relations model. We
solve this problem by introducing propositions in Iris, defined based on Iris
resources, that allow us to reason about the execution on the specification side
of a logical refinement. We use Iris’s weakest preconditions to reason about the
implementation side of a logical refinement.

The key idea in reasoning about the specification side is to be able to refer to
(the heap and different threads of) the program on the specification side “that is
about to be executed”. The intuitive definition of two expressions being related
is as follows:

An expression e (the implementation side) is related to an expression
e′ (the specification side) if we have:

∀j,K. “thread j is about to execute K[e′]” −∗

wp e {∃v′. “thread j is about to execute K[v′]”}

This relation between e and e′ reads as follows: if thread j is about to execute
e′ under some evaluation context K on the specification side and e reduces to
a value, then, there is a value v′ such that the specification side is about to
execute K[v′]. In other words, whenever e reduces to a value we know that
e′ has also been reduced to v′. The reason for explicit quantification over
the thread j under which the specification side is being executed is to enable
thread-local reasoning. We quantify over the evaluation context K under which
the expression is about to be executed to enable modular reasoning with respect
to evaluation contexts.

To reason about the execution on the specification side we use Iris resources
and invariants. Here we only discuss the resources that are needed for our
binary logical relation at a high level of abstraction, and just specify the axioms
and rules that we require these resources to satisfy. For details of how these
resources are constructed in Iris out of basic building blocks of resources see
Appendix D.2.

We use the following propositions in Iris to track the execution on the
specification side.

j Z⇒ e ` 7→s v SpecConf(ρ)

Here, ρ is a configuration, i.e., a pair of a heap and a thread pool, (σ, #»e ). The
intuition is that SpecConf(ρ) is the configuration that the specification side is
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in. These propositions are, crucially, exclusive:

SpecConf(ρ) ∗ SpecConf(ρ′) ` ⊥ ` 7→s v ∗ ` 7→s v
′ ` ⊥

j Z⇒ e ∗ j Z⇒ e′ ` ⊥

That is, the configuration, which the specification side is in, is uniquely
determined by the proposition SpecConf(ρ). The propositions j Z⇒ e and
` 7→s v simply specify the exclusive ownership of the execution of a thread or
a memory location on the specification side, allowing for modular reasoning
about the specification side. The following rules hold for these resources:

spec-thread
SpecConf(σ, #»e1; e; #»e2) j Z⇒ e′ j = len( #»e1)

e = e′

spec-heap
SpecConf(σ, #»e ) ` 7→s v

σ(`) = v

spec-thread-upd
SpecConf(σ, #»e1; e; #»e2) j Z⇒ e j = len( #»e1)

|VE SpecConf(σ, #»e1; e′; #»e2) ∗ j Z⇒ e′

spec-heap-upd
SpecConf(σ ] {(`, v)} , #»e ) ` 7→s v

|VE SpecConf(σ ] {(`, v
′)} , #»e ) ∗ ` 7→s v

′

spec-thread-alloc
SpecConf(σ, #»e1)

|VE SpecConf(σ, #»e1; e) ∗ len( #»e1) Z⇒ e

spec-heap-alloc
SpecConf(σ, #»e ) ` 6∈ dom(σ)

|VE SpecConf(σ ] {(`, v)} , #»e ) ∗ ` 7→s v

The rules above capture the intuitive nature of the predicates SpecConf(ρ),
j Z⇒ e and ` 7→s v. That is, SpecConf(ρ) tracks evaluation on the specification
side, while j Z⇒ e and ` 7→s v express exclusive ownership of the a thread and a
memory location, respectively.

As we explained above, we need to reason about the state of the execution
on the specification side. For this purpose we will use an invariant which in
turn uses the SpecConf(ρ) proposition to express that the configuration ρ is
reachable from the starting configuration. As we reason modularly, we do not
know the starting point of the execution for the specification side. In particular,
when proving contextual refinements, the starting point of the execution for
the specification depends on the particular well-typed context being considered.
Therefore, in order to express that the specification side is in a configuration
reachable from some starting configuration ρ, we use the invariant SpecCtx(ρ):

SpecCtx(ρ) , ∃ρ′. SpecConf(ρ′) ∧ ρ→∗tp ρ′
N .sc
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The following rules can be derived easily for execution on the specification side
using the rules for invariants together with the rules spec-thread, spec-heap,
spec-thread-upd, spec-heap-upd, spec-thread-alloc and spec-heap-alloc.

spec-rec
N .sc ∈ E SpecCtx(ρ) j Z⇒ K[(rec f(x) = e) v]

|VE j Z⇒ K[e[f, x/rec f(x) = e, v]]

spec-Tlam
N .sc ∈ E SpecCtx(ρ) j Z⇒ [(Λ e) _]

|VE j Z⇒ K[e]

spec-if-true
N .sc ∈ E SpecCtx(ρ) j Z⇒ K[if true then e1 else e2]

|VE j Z⇒ K[e1]

spec-if-false
N .sc ∈ E SpecCtx(ρ) j Z⇒ K[if true then e1 else e2]

|VE j Z⇒ K[e2]

spec-proj
N .sc ∈ E SpecCtx(ρ) j Z⇒ K[πi (v1, v2)] i ∈ {1, 2}

|VE j Z⇒ K[vi]

spec-match
N .sc ∈ E SpecCtx(ρ)

j Z⇒ K[match inji v with inj1 x⇒ e1 | inj2 x⇒ e2 end] i ∈ {1, 2}
|VE j Z⇒ K[ei]

spec-fold
N .sc ∈ E SpecCtx(ρ) j Z⇒ K[unfold (fold v)]

|VE j Z⇒ K[v]

spec-alloc
N .sc ∈ E SpecCtx(ρ) j Z⇒ K[ref(v)]

|VE ∃`. ` 7→s v ∗ j Z⇒ K[`]

spec-load
N .sc ∈ E SpecCtx(ρ) j Z⇒ K[! `] ` 7→s v

|VE ` 7→s v ∗ j Z⇒ K[v]

spec-store
N .sc ∈ E SpecCtx(ρ) ` 7→s v j Z⇒ K[`← w]

|VE ` 7→s w ∗ j Z⇒ K[()]
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spec-cas-suc
N .sc ∈ E SpecCtx(ρ) ` 7→s v j Z⇒ K[CAS(`, v, w)]

|VE ` 7→s w ∗ j Z⇒ K[true]

spec-cas-fail
N .sc ∈ E SpecCtx(ρ) ` 7→s v j Z⇒ K[CAS(`, w, u)] v 6= w

|VE ` 7→a v ∗ j Z⇒ K[false]

spec-fork
N .sc ∈ E SpecCtx(ρ) j Z⇒ K[fork {e}]

|VE ∃j
′. j Z⇒ K[()] ∗ j′ Z⇒ e

The binary logical relations

Similar to the unary logical relations above for Fµ,ref ,conc, we define the binary
logical relations for Fµ,ref ,conc in three stages. We first define (by induction
on τ) a binary relation JΞ ` τK∆ : Val × Val → iProp on closed values. Here,
∆ : Ξ→ Val×Val→ iProp is the binary value relation for the free type variables
in Ξ. Next, we use the binary value relation of a type τ to define the binary
relation for τ on closed expressions, written JΞ ` τKE∆ : Expr× Expr → iProp.
Finally, we use the value and expression relations above on closed terms to
define the binary logical relations on open expressions.

The formal definition of the expression relation is similar to the intuitive
definition that we gave at the beginning of this section. We formalize the phrase
“thread j is about to execute . . . ” using the propositions that we introduced for
reasoning about the execution on the specification side. The binary expression
relation, JΞ ` τKE∆, is defined as follows:

JΞ ` τKE∆(e, e′) , ∀ρ, j,K. SpecCtx(ρ) ∗ j Z⇒ K[e′] −∗

wp e {v. ∃v′. j Z⇒ K[v′] ∗ JΞ ` τK∆(v, v′)}

The expression relation above states that e and e′ are related if the following
holds: for any thread j which is about to execute e′ under some evaluation
context K, it is safe to evaluate e and whenever e reduces to a value v, we
know that e′ has also been evaluated to some value v′ in thread j under the
evaluation context K. Furthermore, we know that v and v′ will be related as
values of the type relating e and e′. Thus, essentially, two expressions e and e′
are related at type τ if, whenever e reduces to a value, so does e′ (no matter



BINARY LOGICAL RELATION FOR CONTEXTUAL REFINEMENTS 97

under which circumstances it is being evaluated), and the resulting values will
be related at type τ .

Similar to what we did for the unary logical relations, in order to define the
logical relation on open expressions, we define relations for typing contexts:

JΞ ` ·KG∆(ε) , >

JΞ ` Γ, x : τKG∆(( #»v , w), (
#»

v′, w′)) , JΞ ` ΓKG∆( #»v ,
#»

v′) ∗ JΞ ` τK∆(w,w′)

We define the binary logical relations for Fµ,ref ,conc, written Ξ | Γ � e ≤log e
′ : τ ,

as follows:

Ξ | Γ � e ≤log e
′ : τ , ∀ #»v ,

#»

v′,∆. JΞ ` ΓKG∆( #»v ,
#»

v′) ` JΞ ` τKE∆(e[ #»v / #»x ], e′[
#»

v′/ #»x ])

where #»x is the domain of Γ.

The binary value relation for types are defined in Figure 5.4. The binary value
relations, similarly to unary value relations, need to be persistent. This is due
to the fact that the intuitionistic type system of Fµ,ref ,conc allows for values to
be used multiple times. This is the reason for the persistence modality and the
side condition persistent(Ψ) in Figure 5.4.

The binary value relations in Figure 5.4 are straightforward extensions of their
unary counter parts. Values of a base types (1, N and B), are related if they are
equal. A pair of values are related at the product type, if both are themselves
pairs of values, which are component-wise in the value interpretation of the
corresponding type. The interpretation of sum types relates a pair of values
if they are both constructed using the same injection with underlying values
related at the corresponding type. A pair of values are related as functions
if applying them to values related at the domain type produces expressions
related at the codomain type. A pair of values v and v′ are in the relation for a
recursive type if v is of the form foldw and v′ is of the form foldw′, such that
the values w and w′ are, one step of the computation later, in the relation for
the recursive type. Notice however that unfolding a folded value takes a step of
computation. A pair of values are related at a polymorphic type if we have that
the specialization of the two polymorphic types are related, regardless of which
(persistent) predicate we take as the value interpretation of the quantified type.
Finally, two locations are related at a reference type, ref(τ), if they invariantly
store values that are related at τ .

Lemma 5.5.1 (Congruence of binary logical relations w.r.t. typing). Our
logical relations is a congruence relation with respect to all typing rules. Being
a congruence relation w.r.t. the rules T-alloc, T-rec and T-tlam amounts to
the following:
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JΞ ` XK∆ , ∆(X)

JΞ ` 1K∆(v, v′) , v = v′ = ()

JΞ ` NK∆(v, v′) , ∃n ∈ N. v = v′ = n

JΞ ` BK∆(v, v′) , v = v′ ∈ {true, false}

JΞ ` τ1 × τ2K∆(v) , ∃v1, v2, v
′
1, v
′
2. v = (v1, v2) ∗ v′ = (v′1, v′2)∗

JΞ ` τ1K∆(v1, v
′
1) ∗ JΞ ` τ2K∆(v2, v

′
2)

JΞ ` τ1 + τ2K∆(v, v′) ,
∨

i∈{1,2}

∃w,w′. v = inji w ∗ v
′ = inji w

′∗

JΞ ` τiK∆(w,w′)

JΞ ` τ → τ ′K∆(v, v′) , �
(
∀w,w′. JΞ ` τK∆(w,w′) −∗ JΞ ` τ ′KE∆(v w, v w′)

)
JΞ ` µX. τK∆(v, v′) ,

µΨ. ∃w,w′. v = foldw ∧ v′ = foldw′∧

.JΞ ` τK∆,X 7→Ψ(w,w′)

JΞ ` ∀X. τK∆(v, v′) , �
(
∀Ψ. persistent(Ψ)⇒ JΞ, X ` τKE∆,X 7→Ψ(v _, v′ _)

)
JΞ ` ref(τ)K∆(v, v′) , ∃`, `′. v = ` ∧ v′ = `′∧

∃w,w′. ` 7→ w ∗ `′ 7→s w
′ ∗ JΞ ` τK∆(w,w′) N .`.`

′

Figure 5.4: The binary value relation for types of Fµ,ref ,conc
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Ξ | Γ � e ≤log e
′ : τ

Ξ | Γ � ref(e) ≤log ref(e′) : ref(τ)

Ξ | Γ, x : τ, f : τ → τ ′ � e ≤log e
′ : τ → τ ′

Ξ | Γ � rec f(x) = e ≤log rec f(x) = e′ : τ → τ ′

Ξ, X | Γ � e ≤log e
′ : τ

Ξ | Γ � Λ e ≤log Λ e′ : ∀X. τ

Proof. We prove each case separately using the rules for weakest preconditions
and evaluation on the specification side. Here we present a few cases of this
proof. These are the cases that we proved in the proof of the fundamental
theorem of unary logical relations, Theorem 5.4.3. The high-level argument for
each case is similar to the corresponding case in the proof of Theorem 5.4.3
with the difference that here we have take into account the execution on the
specification side.

– Case T-alloc: For this case, given ∆ : Ξ → Val × Val → iProp and
two lists of values #»v and

#»

v′ such that JΞ ` ΓKG∆( #»v ,
#»

v′), we need to show
assuming

SpecCtx(ρ) (5.5)

j Z⇒ K[ref(e′[
#»

v′/ #»x ])] (5.6)

∀K ′. j Z⇒ K ′[e′[
#»

v′/ #»x ]] −∗

wp e[ #»v / #»x ] {w. ∃w′. j Z⇒ K ′[w′] ∗ JΞ ` τK∆(w,w′)}
(5.7)

that the following holds:

wp ref(e[ #»v / #»x ]) {w. ∃w′. j Z⇒ K[w′] ∗ JΞ ` ref(τ)K∆(w,w′)}

The assumption (5.5) above is persistent. Furthermore, it is clear exactly
at which steps of the proof this assumption is used. Hence, during the
proofs below we never explicitly mention its uses. We proceed by using
the rule wp-bind, (5.6) and (5.7) (with K ′ being K[ref([])]). As a result
we know:

JΞ ` τK∆(v, v′) (5.8)

j Z⇒ K[ref(v′)] (5.9)
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and have to show:

wp ref(v) {w. ∃w′. j Z⇒ K[w′] ∗ JΞ ` ref(τ)K∆(w,w′)}

Now we use the rule spec-alloc together with (5.9) to get

j Z⇒ K[`′] (5.10)

`′ 7→s v
′ (5.11)

Subsequently, we use the rule wp-alloc which gives us

. ` 7→ v (5.12)

and leaves us to prove

.wp ` {w. ∃w′. j Z⇒ K[w′] ∗ JΞ ` ref(τ)K∆(w,w′)}

This now follows trivially after we allocate the invariant N .`.`′ required
to establish JΞ ` ref(τ)K∆(`, `′).

– Case T-rec: The high-level argument for this case is similar to the proof
of the corresponding case in Theorem 5.4.3. The only additional work
required is to take into account the execution on the specification side.
We only note that the Löb induction hypothesis that is needed to prove
this case (see proof of the case T-rec in Theorem 5.4.3) is as follows:

.∀w,w′. JΞ ` τK∆(w,w′) −∗

JΞ ` τ ′KE∆((rec f(x) = e[ #»v / #»x ]) w, (rec f(x) = e′[
#»

v′/ #»x ]) w′)

– Case T-tlam: The high-level argument for this case is similar to the proof
of the corresponding case in Theorem 5.4.3. We only note that binary
analogues of Lemmas 5.4.1 and 5.4.2 are needed for the proof of this case.

Theorem 5.5.2 (Fundamental theorem of binary logical relations). All well-
typed terms are in the logical relation.

If Ξ | Γ ` e : τ then Ξ | Γ � e ≤log e : τ

Proof. By induction on the typing derivation. Each case, follows from the
corresponding congruence lemma in Lemma 5.5.1.
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Lemma 5.5.3 (Congruency of binary logical relations). Let e and e′ be two
expressions such that Ξ | Γ � e ≤log e

′ : τ and let C : (Ξ | Γ; τ) (Ξ′ | Γ′; τ ′)
be a well-typed context. Then, we have:

Ξ′ | Γ′ � C[e] ≤log C[e′] : τ ′

Proof. By induction on the derivation of C : (Ξ | Γ; τ) (Ξ′ | Γ′; τ ′), in each
case applying the appropriate compatibility lemma and using the fundamental
theorem, Theorem 5.5.2, to show that the well-typed expressions in the context
C are related to themselves.

Lemma 5.5.4 (Adequacy of binary logical relations). Let e and e′ be two
expressions such that J· ` τKEε (e, e′) and assume that we have e ↓. It follows
that e′ ↓.

Proof. We have, by expanding the definition of the expression relation, that

∀ρ, j,K. SpecCtx(ρ) ∗ j Z⇒ K[e′] −∗ wp e {v. ∃v′. j Z⇒ K[v′] ∗ JΞ ` τK∆(v, v′)}

We take j = 1, ρ = (∅, e′) and K = [] and instantiate the above formula to get

SpecCtx(∅, e′) ∗ 1 Z⇒ e′ −∗ wp e {v. ∃v′. 1 Z⇒ v′ ∗ JΞ ` τK∆(v, v′)}

Subsequently, we use Iris resource allocation rule to allocate resources for

SpecConf(∅, e′) ∗ 1 Z⇒ e′

(see Appendix D.2 for more details). Now we can establish the invariant
corresponding to SpecCtx(∅, e′) by proving

∃ρ′. SpecConf(ρ′) ∧ (∅, e′)→∗tp ρ′

We prove this by simply taking ρ′ = (∅, e′). As a result, we get

wp e {v. ∃v′. 1 Z⇒ v′ ∗ JΞ ` τK∆(v, v′)}

Now, since we know, by assumption, that e ↓, we get by the adequacy of
Iris’s weakest preconditions (see Krebbers, Jung, Bizjak, Jourdan, Dreyer, and
Birkedal (2017)) that any pure fact (a fact not depending on step-indices or
resources), that follows from the post condition, holds. Hence, from the post
condition above, we know, in particular, that there exists a value v′ such that
1 Z⇒ v′. Opening the invariant SpecCtx(∅, e′) we get that there is a configuration
ρ′′ such that SpecConf(ρ′′)∧ (∅, e′)→∗tp ρ′′. Now from 1 Z⇒ v′ and SpecConf(ρ′′)
we can conclude, using the rule spec-thread, that there is a heap σ and a
sequence of expressions #»e such that ρ′′ = (σ, v′; #»e ). Consequently we have
(∅, e′)→∗tp (σ, v′; #»e ), which is just the definition of e′ ↓.
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We next prove the soundness of our logical relations which simply states that
logical refinement implies contextual refinement.

Theorem 5.5.5 (Soundness of binary logical relations).

Ξ | Γ � e ≤log e
′ : τ ∧ Ξ | Γ ` e : τ ∧ Ξ | Γ ` e′ : τ ⇒ Ξ | Γ � e ≤ctx e

′ : τ

Proof. Given a well typed context C : (Ξ | Γ; τ) (· | ·; 1) and that

C[e] ↓

we have to prove that C[e′] ↓. By Lemma 5.5.3 we have that · | · � C[e] ≤log
C[e′] : 1. Unfolding the definition of binary logical relation the latter simplifies
to:

J· ` τKEε (C[e], C[e′])
Finally, by Lemma 5.5.4 we have C[e′] ↓, as required.

Theorem 5.5.5 allows us to prove contextual refinement by showing logical
refinement. As our logical relations is formalized on top of the Iris program
logic we have the entire power and support of Iris at our disposal when proving
logical refinements. In the following two sections we exemplify this by proving
contextual refinement of concurrent counters and concurrent stacks.

5.6 Contextual refinement of counters

In this section we establish that a fine-grained implementation of a concurrent
counter refines a coarse-grained implementation:

· | · � CounterFine ≤ctx CounterCoarse : (1→ 1)× (1→ N)

The two counter modules are closed programs each consisting of a pair of
functions. The first function increments the counter and the second reads it.
The source code of these two counters is depicted in Figure 5.5. The code
in this figure is written in an ML style for conciseness and better readability.
The fine-grained counter uses a technique known as optimistic concurrency. It
reads the counter and increments it and then tries to set the counter to the
incremented value if it has not been changed in the meanwhile. If it fails to do
so, it starts over. The coarse-grained counter uses a traditional lock to acquire
exclusive access to the counter during the increment operation. Notice that we
do not need to acquire the lock to read the counter because reading references is
atomic. The lock used by the coarse-grained counter is a spin lock implemented
using the CAS operation (see Appendix D.3 for details).
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1 let CounterFine =
2 let fc = ref 0 in
3 let fincr () =
4 let loop () =
5 let x = !fc in
6 if CAS(fc , x, x+1)
7 then ()
8 else loop ()
9 in

10 loop ()
11 in
12 let fread () = !fc in
13 (fincr , fread)

1 let CounterCoarse =
2 let cc = ref 0 in
3 let lc = new_lock () in
4 let cincr () =
5 acquire lc;
6 cc := !cc + 1;
7 release lc
8 in
9 let cread () = !cc in

10 (cincr , cread)

Figure 5.5: The source code of fine-grained (left) and coarse-grained (right)
concurrent counters

By the soundness of the binary logical relations, Theorem 5.5.5, it suffices
to prove the following corresponding logical refinement in order to prove the
refinement above.

· | · � CounterFine ≤log CounterCoarse : (1→ 1)× (1→ N)

In this section we give sketch the proof of this refinement. The proof consists of
two parts. We first need to show that when the fine-grained counter evaluates
to a value so does the coarse-grained counter. Afterwards, we need to show
that the values on both sides are related. That is, we need to show that the
fine-grained increment and read functions are logically related to their coarse-
grained counterparts. Hence, we start the first part of the proof by symbolically
executing both sides using the rules for weakest preconditions and evaluation
on the specification side. The symbolic execution of allocating the counters and
the lock gives us the following resources:

fc 7→ 0 cc 7→s 0 lc 7→s false j Z⇒ (cincr, cread)

while we have to show

wp (fincr, fread) {v. ∃v′. j Z⇒ v′ ∗ J· ` (1→ 1)× (1→ N)Kε(v, v′)}

Note that we have omitted the specification side invariant, SpecCtx. Further-
more, the lock that we use is implemented using a single boolean value where
false indicates that the lock is free (see Appendix D.3 for details).

At this point, we need to show that the increment and read functions of both
sides are suitably related. That is, we have to show that the two modules
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behave similarly. Hence, there must be a relation between the state of the two
modules that holds at the beginning and is preserved by every operation of the
modules. That is, a relation relating the two counters such that this relation
holds at the beginning, i.e., for the resources (the counters and the lock) above.
Furthermore, this relation should be preserved throughout the execution of the
program including before, during and after each call to increment and read
operations. For this proof we use the following relation, expressed in terms of
an Iris invariant.

∃n. fc 7→ n ∗ cc 7→s n ∗ lc 7→s false
N .Counters (Counter-Invariant)

In prose, this invariant states that the two counters always store the same value
and the lock of the specification side counter is not acquired. Notice that as
far as the behavior of the modules is considered, the lock is never observed as
acquired. This is because the only acquire statement, in the increment function
of the coarse-grained counter, is followed by a release. In proving a refinement
we show that if the implementation side converges, then so does the specification
side. That is, for the specification side we only need to show that there exists
an evaluation that converges to a value.4 Consequently, we have the discretion
to pick the scheduling of the specification side which allows us to ensure that
no thread that would attempt to acquire the lock can be executed during the
time that the lock is already acquired.

The proof of the refinement for the read functions is straightforward. We open
the counter invariant during the atomic read operation of the implementation
side where both counters read their corresponding values. The invariant
guarantees that the values read by both counters are equal.

The refinement proof of the increment operation boils down to showing that

j Z⇒ cincr () −∗ wp loop () {v. ∃v′. j Z⇒ v′ ∗ J· ` 1Kε(v, v′)}

under the assumption that the counter invariant above holds. We proceed by
Löb induction which allows us to assume that recursive calls to loop satisfy the
above weakest preconditions during the proof that the body of the loop satisfies
it. The use of the Löb induction principle for recursive functions here is similar
to that of the proof of compatibility rule for the typing rule T-rec above. The
proof proceeds by reading the fine-grained counter fc by opening the counter
invariant, (Counter-Invariant), using the rules wp-load and inv-open. Notice
that we immediately have to close the invariant after reading fc. Let us assume
that the value of fc that we just read is n. Now we need to show (assuming
that the addition of n + 1 is evaluated to S(n) where S is the successor function

4This form of contextual refinement usually referred to as “may contextual refinement” in
the literature.
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on natural numbers) that the following holds:

wp if CAS(fc, n, S(n)) then () else loop () {v. ∃v′. j Z⇒ v′ ∗ J· ` 1Kε(v, v′)}

under the assumption that j Z⇒ cincr () holds. Using the wp-bind rule we need
to show that

wp CAS(fc, n, S(n))

{
x.

wp if x then () else loop ()
{v. ∃v′. j Z⇒ v′ ∗ J· ` 1Kε(v, v′)}

}
At this point, we can use the rule inv-open to open the counter invariant above.
Which allows us to assume that

fc 7→ m ∗ cc 7→s m ∗ lc 7→s false

holds for some natural number m. Now there are two cases to consider depending
on whether n = m holds or not. If n = m then no other thread has incremented the
counter between, reading and incrementing the counter, and the CAS operation.
In this case, the CAS operation succeeds. Since we have lc 7→s false we know
that the acquire operation succeeds giving us lc 7→s true. Subsequently, we
use the rules for evaluation on the specification side to load, increment and
store back the incremented value of the specification side counter, giving us
cc 7→s S(n). Finally, we release the lock getting back lc 7→s false. This
reestablishes the invariant and gives us j Z⇒ () as the release operation returns
the () literal value. Thus we have to show that

wp if true then () else loop () {v. ∃v′. j Z⇒ v′ ∗ J· ` 1Kε(v, v′)}

holds. This now holds rather trivially and it is easy to show so.

The remaining case is the case where n 6= m. That is, while reading the value of
the counter and incrementing it, another thread has managed to successfully
increment the counter and has thus invalidated the value that we had read.
In this case, the CAS operation fails, resulting in a recursive call. The weakest
precondition for the recursive call, however, follows from our Löb induction
hypothesis.

5.7 Contextual refinement of stacks

The source code of the two concurrent stack implementations for which we
prove refinement are depicted in Figure 5.6. The code in this figure is written
in an ML style for conciseness and better readability. Here, on line 1, we use Λ
instead of let to emphasize that these values are polymorphic values and are
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1 Λ StackFine =
2 let fs =
3 ref (ref None)
4 in
5 let fpush x =
6 let pushloop () =
7 let z = fold !fs in
8 let w =
9 (ref (Some (x, z)))

10 in
11 if CAS(fs , z, w) then
12 ()
13 else
14 pushloop ()
15 in
16 pushloop ()
17 in
18 let fpop x =
19 let poploop () =
20 let z = !fs in
21 match !z with
22 | None -> None
23 | Some (top , rest) ->
24 let w = unfold rest
25 in
26 if CAS(fs , z, w)
27 then Some top
28 else poploop ()
29 in
30 poploop ()
31 in
32 let fiter f =
33 iloop v =
34 match unfold v with
35 | None -> ()
36 | Some (top , rest) ->
37 f top; iloop rest
38 in iloop (fold !fs)
39 let fread () = !fc in
40 (fpush , fpop , fiter)

1 Λ StackCoarse =
2 let cs = ref [] in
3 let lc = new_lock ()
4 in
5 let cpush x =
6 acquire lc;
7 cs := x :: !cs;
8 release lc
9 in

10 let cpop () =
11 acquire lc;
12 let z =
13 match !cs with
14 | [] -> None
15 | hd :: tl ->
16 cs := tl; hd
17 in
18 release lc; z
19 in
20 let citer f =
21 let iloop v =
22 match v with
23 | [] -> ()
24 | hd :: tl ->
25 f hd;
26 iloop tl
27 in
28 iloop !cs
29 in
30 (cpush , cpop , citer)

Figure 5.6: The source code of fine-grained (left) and coarse-grained (right)
concurrent stacks
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not evaluated until they are applied to a type. Lists and the option type are
encoded in the usual way, the former using recursive types:

τ list , µX. (τ ×X) option

[] , fold None

hd :: tl , fold (Some (hd, tl))

τ option , 1 + τ

None , inj1 ()

Some v , inj2 v

The type of both of these implementations is

StackT , ∀X. (X → 1)× (1→ X option)× ((X → 1)→ 1)

These modules provide three functions for three operations: pushing, popping
and iterating over the elements of the stack. The coarse grained stack simply
stores the entire stack as a list in a reference. It locks the whole data structure
during pushing and popping values. The iterator function, given a function
to apply to elements on the stack, reads the stack atomically and applies this
function to every element of the list representing the stack.

The fine-grained stack uses a linked-list implementation to represent the stack.
The type of the cells of linked-list is as follows:

τ cell , µX. ref((τ ×X) option)

where τ is the type of the elements stored on the stack. That is, each cell is
a reference whose content, if available, is a value together with a reference to
another cell, which represents the next pointer of the linked-list. The stack has
a head pointer, which has the type ref((τ × τ cell) option).5 The push and
pop operations only change the head pointer of the stack. In other words, the
cells are immutable in practice in the sense that we never change any of the
values stored in the references in cells. For this reason, once we read the head
pointer we know that the linked-list obtained will never change even though
the stack can change. This is crucial for the refinement of iterators.

In this section we will discuss the following refinement:

· | · � StackFine ≤ctx StackCoarse : StackT

The proof of refinements for individual operations of the stack modules are
straightforward but lengthy. Hence, we omit these here. Suffice it to say that
CAS loops in the push and pop functions of the fine-grained implementation
are treated similarly to the increment function of the counter refinement proof.

5We store the unfolded version of the head cell as we cannot perform CAS on references
whose contents are recursive types. See the typing rule T-CAS for details.



108 TYPE SOUNDNESS AND CONTEXTUAL REFINEMENT VIA LOGICAL RELATIONS IN
HIGHER-ORDER CONCURRENT SEPARATION LOGIC

Furthermore, the iteration operations are almost identical, they both read the
entire stack (the fine-grained version reads the head pointer which points to
a first cell of the stack) and loop over the contents applying each their given
function. What is crucial in this proof is the invariant that relates the internal
representation of the two modules. This is what we will discuss in what remains
of this section.

Reasoning about stack cells As mentioned earlier, cells of linked-lists used to
represent fine-grained stacks are immutable in the sense that these are references
whose content never changes. This is crucial for correctness of the iterator and
the relatedness of its two different implementations. Here, we introduce Iris
propositions for reasoning about these immutable cells. These propositions
are encoded using Iris resources. Details of the encoding can be found in
Appendix D.4. The propositions that we introduce are AllCells(f) and ` 7→stk v,
where f : Loc fin−⇀ Val is a finite partial map from locations to values. Intuitively,
the proposition AllCells(f) holds if all the cells ever used in the stack, i.e., cells
that currently are or previously have been part of the stack, are described by
f . The proposition ` 7→stk v states that there is a stack cell at location l with
value v. The following rules govern propositions AllCells(f) and ` 7→stk v:

cell-persistent
persistent(` 7→stk v)

cell-agree
` 7→stk v ` 7→stk w

v = w

cell-in-all
AllCells(f) ` 7→stk v

f(`) = v

cell-alloc
AllCells(f) ` 6∈ dom(f)

|VEAllCells(f [` 7→ v]) ∗ ` 7→stk v
all-cells-unique
AllCells(f) ∗AllCells(g) ` ⊥

Notice that immutability of cells is guaranteed by the rules cell-persistent
and cell-agree.

To associate the introduced Iris propositions above to the physical stack cells in
the memory we define the following Iris predicates:

StackOwns(f) , AllCells(f) ∗ ∗
(`,v)∈f

` 7→ v

LRelΦ(`, v′) , µr. (` 7→stk None ∗ v′ = [])∨

∃w,w′, u′,m. ` 7→stk Some (w, foldm) ∗ v′ = w′ :: u′∗

Φ(w,w′) ∗ . r(m,u′)
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The predicate StackOwns(f) asserts that all of the cells are described by f
and that we own the memory corresponding to all of these cells. The relation
LRelΦ(`, v) ensures that the linked-list pointed by ` and the list v have the
same length and that corresponding values in these lists are related by the value
relation Φ. For these predicates we can derive the following rules:

stack-reveal
StackOwns(f) ` 7→stk v

` 7→ v ∗ (` 7→ v −∗ StackOwns(f))

stack-alloc
StackOwns(f) ` 7→ v

|VE StackOwns(f [` 7→ v]) ∗ ` 7→stk v

LRel-persistent
persistent(Φ)

persistent(LRelΦ(`, v))

The stack invariant The two stack implementations that we are considering
are polymorphic. Hence, in proving their refinement we have to maintain
that the contents stored in the two stacks are related by the binary value
relation corresponding to the types that stacks are applied to. Let us fix
Φstk : Val× Val → iProp as this binary value relation. The invariant relating
the internal representation of the two stacks is defined as follows:

∃f, `, v′. fc 7→ fold ` ∗ cc 7→s v
′ ∗ lc 7→s false

∗ StackOwns(f) ∗ LRelΦstk (`, v′)

N .Stacks

(Stack-Invariant)

5.8 Related work

The idea of formalizing the logical relations for a programming language on top
of a logic goes back to Plotkin and Abadi (1993) who to specify such a logical
relation for System F and Dreyer, Ahmed, and Birkedal (2009) who constructed
such a logical relation for a programming language featuring recursive types. Our
Logical relations model is inspired by the model of Krogh-Jespersen, Svendsen,
and Birkedal (2017) which is in turn based on the model by Turon, Dreyer, and
Birkedal (2013).

There has been a lot of earlier work on concrete logical relations models (not
formalized in some specialized logic) for reasoning about contextual refinement.
Kripke logical relations models for higher-order languages with dynamically
allocated state include Ahmed, Dreyer, and Rossberg, 2009; Birkedal, Reus,
Schwinghammer, Støvring, Thamsborg, and Yang, 2011; Birkedal, Støvring, and
Thamsborg, 2009; Dreyer, Neis, and Birkedal, 2010. The first logical relation
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for a higher order language similar to the one considered here was developed
in Birkedal, Sieczkowski, and Thamsborg, 2012, but it only used a simple
kind of Kripke world, which did not suffice for reasoning about fine-grained
concurrent data structures. The model in Turon, Thamsborg, Ahmed, Birkedal,
and Dreyer, 2013 improved on Birkedal, Sieczkowski, and Thamsborg, 2012 by
using more sophisticated worlds, which allowed to reason about fine-grained
concurrent data structures, and it formed the basis for the logical treatment
in Turon, Dreyer, and Birkedal, 2013 mentioned above.

5.9 Conclusion

Type soundness and contextual refinements are two of the most important
problems in the study of programs and programming languages. In this
paper we presented operationally-based logical relations models formalized
in the Iris program logic to tackle these problems. In particular, we
have developed our logical relations models for Fµ,ref ,conc, a programming
language featuring polymorphism, recursive types, higher-order references and
concurrency. We used our unary logical relations model to prove type soundness
of Fµ,ref ,conc. We used our binary logical relations model to prove that fine-
grained implementations of concurrent counters and stacks refine their coarse-
grained counterparts.

It is well-known that developing and using logical relations models for
programming languages with advanced type systems, e.g., featuring both
polymorphism and higher-order references, is intricate. Using the logical
framework of the Iris program logic allowed us to avoid these intricacies by
reasoning about them at a high level of abstraction. Another advantage of
working in Iris is that we can use its rich logic, e.g., invariants, resources, weakest
preconditions, etc., to prove contextual refinement of programs. We illustrated
this in proving refinements for concurrent counter and stack modules. Finally,
working in Iris allowed us to use Iris as a Coq library to facilitate formalizing our
results in Coq. This is the first time that logical relations models are formalized
in a proof assistant for a programming language as expressive as Fµ,ref ,conc.



Chapter 6

A Logical Relation for
Monadic Encapsulation of
State
Proving Contextual Equivalences in the Presence of

RunST

This chapter and its appendix are published in the proceedings of
the 45th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL’18) (Timany, Stefanesco, Krogh-Jespersen, and
Birkedal, 2018).
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We present a logical relations model of a higher-order functional programming
language with impredicative polymorphism, recursive types, and a Haskell-
style ST monad type with runST. We use our logical relations model to show
that runST provides proper encapsulation of state, by showing that effectful
computations encapsulated by runST are heap independent. Furthermore, we
show that contextual refinements and equivalences that are expected to hold
for pure computations do indeed hold in the presence of runST. This is the
first time such relational results have been proven for a language with monadic
encapsulation of state. We have formalized all the technical development and
results in Coq.

6.1 Introduction

Haskell is often considered a pure functional programming language because
effectful computations are encapsulated using monads. To preserve purity, values
usually cannot escape from those monads. One notable exception is the ST
monad, introduced by Launchbury and Peyton Jones (1994). The ST monad
comes equipped with a function runST : (∀β, ST β τ)→ τ that allows a value
to escape from the monad: runST runs a stateful computation of the monadic
type ST β τ and then returns the resulting value of type τ . In the original
paper Launchbury and Peyton Jones (1994), the authors argued informally that
the ST monad is “safe”, in the sense that stateful computations are properly
encapsulated and therefore the purity of the functional language is preserved.

In this paper we present a logical relations model of STLang, a call-
by-value higher-order functional programming language with impredicative
polymorphism, recursive types, and a Haskell-style ST monad type with runST.
In contrast to earlier work, the operational semantics of STLang uses a single
global mutable heap, capturing how the language would be implemented in reality.
We use our logical relations model to show for the first time that runST provides
proper encapsulation of state. Concretely, we state a number of contextual
refinements and equivalences that are expected to hold for pure computations
and we then use our logical relations model to prove that they indeed hold for
STLang, i.e., in the presence of stateful computations encapsulated using runST.
Moreover, we show a State-Independence theorem that intuitively expresses
that, for any well-typed expression e of type τ , the evaluation of e in a heap h is
independent of the choice of h, i.e., e cannot read from or write to locations in h
but may allocate new locations (via encapsulated stateful computations). Note
that this is the strong result one really wishes to have since it is proved for a
standard operational semantics using a single global mutable heap allowing for
updates in-place, not an abstract semantics partitioning memory into disjoint
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regions as some earlier work (Launchbury and Peyton Jones, 1995; Moggi and
Sabry, 2001).

In STLang, values of any type can be stored in the heap, and thus it is an
example of a language with so-called higher-order store. It is well-known that it
is challenging to construct logical relations for languages with higher-order store.
We define our logical relations model in Iris, a state-of-the-art higher-order
separation logic (Jung, Krebbers, Birkedal, and Dreyer, 2016; Jung, Swasey,
Sieczkowski, Svendsen, Turon, Birkedal, and Dreyer, 2015; Krebbers, Jung,
Bizjak, Jourdan, Dreyer, and Birkedal, 2017). Iris’s base logic (Krebbers,
Jung, Bizjak, Jourdan, Dreyer, and Birkedal, 2017) comes equipped with
certain modalities which we use to simplify the construction of the logical
relation. Logical relations for other type systems have recently been defined in
Iris (Krebbers, Timany, and Birkedal, 2017; Krogh-Jespersen, Svendsen, and
Birkedal, 2017), but to make our logical relations model powerful enough to prove
the contextual equivalences for purity, we use a new approach to defining logical
relations in Iris, which involves several new technical innovations, described in
§6.3.

Another reason for using Iris is that the newly developed powerful proof mode
for Iris (Krebbers, Timany, and Birkedal, 2017) makes it possible to conduct
interactive proofs in the Iris logic in Coq, much in the same way as one normally
reasons in the Coq logic itself. Indeed, we have used the Iris proof mode to
formalize all the technical results in this paper in Iris in Coq.

In the remainder of this Introduction, we briefly recap the Haskell ST monad
and recall why runST intuitively encapsulates state. We emphasize that STLang,
unlike Haskell, is call-by-value; we show Haskell code to make the examples
easier to understand. Finally, we give an overview of the technical development
and our new results.

6.1.1 A Recap of the Haskell ST Monad

The ST monad, as described in (Launchbury and Peyton Jones, 1994) and
implemented in the standard Haskell library, is actually a family ST β of
monads, where β ranges over types, which satisfy the following interface. The
first two functions

return :: α → ST β α
(>>=) :: ST β α → (α → ST β α’) → ST β α’

are the standard Kleisli arrow interface of monads in Haskell; »= is pronounced
“bind”. Recall that in Haskell, free type variables (α, α′, and β above) are
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implicitly universally quantified.1

The next three functions

newSTRef :: α → ST β (STRef β α)
readSTRef :: STRef β α → ST β α
writeSTRef :: STRef β α → α → ST β ()

are used to create, read from and write into references, respectively. Notice that
the reference type STRef β τ , contains the type of the contents of the reference
cells, τ , but also another type parameter, β, which, intuitively, indicates which
(logical) region of the heap this reference belongs to. The interesting part of the
interface is the interaction of this type parameter with the following function

runST :: (∀ β. ST β α) → α

The runST function runs effectful computations and extracts the result from
the ST monad. Notice the impredicative quantification of the type variable of
runST.

Finally, equality on references is decidable:

(==) :: STRef β α → STRef β α → bool

Notice that equality is an ordinary function, since it returns a boolean value
directly, not a value of type ST β bool.

Figure 6.1 shows how to compute the n-th term of the Fibonacci sequence
in Haskell using the ST monad and, for comparison, in our model language
STLang. Haskell programmers will notice that the STLang program on the right
is essentially the same as the one on the left after the do-notation has been
expanded. The inner function fibST’ can be typed as follows:
fibST ’ :: Integer → STRef β Integer → STRef β Integer →

ST β Integer

Hence, the argument of runST has type (∀ β. STRef β Integer) and thus fibST
indeed has return type Integer.

1In STLang, we use capital letters, e.g. X, for type variables and use ρ for the index type
in ST ρ τ and STRef ρ τ .
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fibST :: Integer → Integer
fibST n =

let fibST ’ 0 x _ =
readSTRef x

fibST ’ n x y = do
x’ <- readSTRef x
y’ <- readSTRef y
writeSTRef x y’
writeSTRef y (x ’+y ’)
fibST ’ (n -1) x y

in
if n < 2 then n else

runST $ do
x <- newSTRef 0
y <- newSTRef 1
fibST ’ n x y

let fibST : Z -> Z =
let rec fibST ’ n x y =

if n = 0 then !x
else

bind !x in λ x’ ->
bind !y in λ y’ ->
bind x := y’ in λ () ->
bind y := (x’+y’) in
λ () ->

fibST ’ (n -1) x y
in
if n < 2 then n else

runST {
bind (ref 0) in λ x ->

bind (ref 1) in λ y ->
fibST ’ n x y }

Figure 6.1: Computing Fibonacci numbers using the ST monad in Haskell (left)
and in STLang (right). Haskell code adapted from https://wiki.haskell.
org/Monad/ST. do is syntactic sugar for wrapping bind around a sequence of
expressions.

6.1.2 Encapsulation of State Using runST: What is the
Challenge?

The operational semantics of the newSTRef, readSTRef, writeSTRef operations
is intended to be the same as for ML-style references. In particular, an
implementation should be able to use a global heap and in-place update for the
stateful operations. The ingenious idea of Launchbury and Peyton Jones (1994)
is that the parametric polymorphism in the type for runST should still ensure
that stateful computations are properly encapsulated and thus that ordinary
functions remain pure.

The intuition behind this intended property is that the first type variable
parameter of ST , denoted β above, actually denotes a region of the heap, and
that we can imagine that the heap consists of a collection of disjoint regions,
named by types. A computation e of type ST β τ can then read, write, and
allocate in the region named β, and then produce a value of type τ .

Moreover, if e has type ∀β. ST β τ , with β not free in τ , the intuition is that
runST e can allocate a fresh region, which e may use and then, since β is not
free in τ , the resulting value of type τ cannot involve references in the region β.

https://wiki.haskell.org/Monad/ST
https://wiki.haskell.org/Monad/ST
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It is therefore safe to discard the region β and return the value of type τ . Since
stateful computations intuitively are encapsulated in this way, this should also
entail that the rest of the “pure” language indeed remains pure. For example,
it should still be the case that for an expression e of type τ , running e twice
should be the same as running it once. More precisely, we would expect the
following contextual equivalence to hold for any expression e of type τ :

letx = e in (x, x) ≈ctx (e, e) (∗)

Note that, of course, this contextual equivalence would not hold in the presence
of unrestricted side effects as in ML: if e is the expression y := !y + 1, which
increments the reference y, then the reference would be incremented by 1 on
the left hand-side of (∗) and by 2 on the right.

Similar kinds of contextual equivalences and refinements that we expect should
hold for a pure language should also continue to hold. Moreover, we also expect
that the State-Independence theorem described above should hold.

Notice that this intuitive explanation is just a conceptual model — the real
implementation of the language uses a standard global heap with in-place update
and the challenge is to prove that the type system still enforces this intended
proper encapsulation of effects.

In this paper, we provide a solution to this challenge: we define a higher-
order functional programming language, called STLang, with impredicative
polymorphism, recursive types, and a Haskell-style ST monad type with runST.
The operational semantics uses a global mutable heap for stateful operations. We
develop a logical relations model which we use to prove contextual refinements
and equivalences that one expects should hold for a pure language in the presence
of stateful computations encapsulated using runST.

Earlier work has focused on simpler variations of this challenge; specifically, it
has focused on type safety, and none of the earlier formal models can be used to
show expected contextual equivalences for the pure part of the language relative
to an operational semantics with a single global mutable heap. In particular,
the semantics and parametricity results of Launchbury and Peyton Jones (1995)
is denotational and does not use a global mutable heap with in-place update,
and they state Launchbury and Peyton Jones, 1995, Section 9.1 that proving
that the remaining part of the language remains pure for an implementation
with in-place update “would necessarily involve some operational semantics.”
We discuss other related work in §6.5.
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6.1.3 Overview of Results and the Technical Development

In §6.2 we present the operational semantics and the type system for our
language STLang. In this paper, we focus on the encapsulation properties of
a Haskell-style monadic type system for stateful computations. The choice of
evaluation order is an orthogonal issue and, for simplicity (to avoid having
to formalize a lazy operational semantics), we use call-by-value left-to-right
evaluation order. Typing judgments take the standard form Ξ | Γ ` e : τ , where
Ξ is an environment of type variables, Γ an environment associating types to
variables, e is an expression, and τ is a type. For well-typed expressions e and e′
we define contextual refinement, denoted Ξ | Γ � e �ctx e

′ : τ . As usual, e and
e′ are contextually equivalent, denoted Ξ | Γ � e ≈ctx e

′ : τ , if e contextually
refines e′ and vice versa. With this in place, we can explain which contextual
refinements and equivalences we prove for STLang. The soundness of these
refinements and equivalences means, of course, that one can use them when
reasoning about program equivalences.

The contextual refinements and equivalences that we prove for pure computations
are given in Figure 6.2. To simplify the notation, we have omitted environments
Ξ and Γ in the refinements and equivalences in the Figure. Moreover, we do not
include assumptions on typing of subexpressions in the Figure; precise formal
results are stated in §6.4.

Refinement (Neutrality) expresses that a computation of unit type
either diverges or produces the unit value. The contextual equivalence
in (Commutativity) says that the order of evaluation for pure computations
does not matter: the computation on the left first evaluates e2 and then e1,
on the right we first evaluate e1 and then e2. The contextual equivalence
in (Idempotency) expresses the idempotency of pure computations: it
does not matter whether we evaluate an expression once, as done on
the left, or twice, as done on the right. The contextual refinements
in (Rec hoisting) and (Λ hoisting) formulate the soundness of λ-hoisting
for ordinary recursive functions and for type functions. The contextual
refinements (η expansion for rec) and (η expansion for Λ) express η-rules
for ordinary recursive functions and for type functions. The contextual
refinements (β reduction for rec) and (β reduction for Λ) express the
soundness of β-rules for ordinary recursive functions and for type functions.

In addition, we prove the expected contextual equivalences for monadic
computations, shown in Figure 6.3.

The results in Figure 6.2 are the kind of results one would expect for pure
computations in a call-by-value language; the challenge is, of course, to show
that they hold in the full STLang language, that is, also when subexpressions
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e �ctx () : 1 (Neutrality)

letx = e2 in (e1, x) ≈ctx (e1, e2) : τ1 × τ2 (Commutativity)

letx = e in (x, x) ≈ctx (e, e) : τ × τ (Idempotency)

let y = e1 in rec f(x) = e2 �ctx rec f(x) = let y = e1 in e2 : τ1 → τ2
(Rec hoisting)

let y = e1 inΛ e2 �ctx Λ (let y = e1 in e2) : ∀X. τ (Λ hoisting)

e �ctx rec f(x) = (e x) : τ1 → τ2
(η expansion for rec)

e �ctx Λ (e _) : ∀X. τ (η expansion for Λ)

(rec f(x) = e1) e2 �ctx e1[e2, (rec f(x) = e1)/x, f ] : τ
(β reduction for rec)

(Λ e) _ ≈ctx e : τ [τ ′/X] (β reduction for Λ)

Figure 6.2: Contextual Refinements and Equivalences for Pure Computations

bind e in (λx. returnx) ≈ctx e : ST ρ τ (Left Identity)

e2 e1 �ctx bind (return e1) in e2 : ST ρ τ
(Right Identity)

bind (bind e1 in e2) in e3 �ctx bind e1 in (λx. bind (e2 x) in e3) : ST ρ τ ′
(Associativity)

Figure 6.3: Contextual Equivalences for Stateful Computations
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may involve arbitrary (possibly nested) stateful computations encapsulated
using runST. That is the purpose of our logical relation, which we present in §6.3.
We further use our logical relation to show the following State-Independence
theorem:

Theorem 6.1.1 (State Independence).

· | x : STRef ρ τ ′ ` e : τ ∧ (∃h1, `, h2, v. 〈h1, e[`/x]〉 →∗ 〈h2, v〉) =⇒

∀h′1, `′. ∃h′2, v′. 〈h′1, e[`′/x]〉 →∗ 〈h′2, v′〉 ∧ h′1 ⊆ h′2.

This theorem expresses that, if the execution of a well-typed expression e, when
x is substituted by some location, in some heap h1 terminates, then running e,
when x is substituted by any location, in any heap h′1 will also terminate in some
heap h′2 which is an extension of h′1, i.e., the execution cannot have modified
h′1 but it can have allocated new state, via encapsulated stateful computations.
Note that this implies that e never reads from or writes to x.

Summary of contributions To sum up, the main contributions of this paper
are as follows:

• We present a logical relation for a programming language STLang
featuring a parallel to Haskell’s ST monad with a construct, runST, to
encapsulate stateful computations. We use our logical relation to prove
that runST provides proper encapsulation of state, by showing (1) that
contextual refinements and equivalences that are expected to hold for pure
computations do indeed hold in the presence of stateful computations
encapsulated via runST and (2) that the State-Independence theorem
holds. This is the first time that these results have been established for a
programming language with an operational semantics that uses a single
global higher-order heap with in-place destructive updates.

• We define our logical relation in Iris, a state-of-the-art higher-order
separation logic designed for program verification, using a new approach
involving novel predicates defined in Iris, which we explain in §6.3.

• We have formalized the whole technical development, including all proofs
of the equations above and the State-Independence theorem, in the Iris
implementation in Coq.

The paper is organized as follows. We begin by formally defining STLang, its
semantics and typing rules in §6.2. There, we also formally state our definition
of contextual refinement and contextual equivalence. In §6.3, we present our
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} ::= + | − | ∗ | = | <

e ::= x | () | true | false | n | ` | (e, e) | inji e | rec f(x) = e | Λ e | fold e

| unfold e | e e | e _ | πi e | match e with inji x⇒ ei end

| if e then e else e | e} e | ref(e) | ! e | e← e | e == e | bind e in e

| return e | runST {e}

v ::= () | true | false | n | ` | (v, v) | inji v | rec f(x) = e | Λ e | fold v

| ref(v) | ! v | v ← v | bind v in v | return v

τ ::= X | ρ | 1 | B | Z | τ × τ | τ + τ | τ → τ | ∀X. τ | µX. τ | ref(τ) | ST ρ τ

Figure 6.4: The syntax of STLang

logical relation after briefly introducing the parts of Iris needed for a conceptual
understanding of the logical relation. We devote §6.4 to the precise statement
and proof sketches of the refinements in Figure 6.2 and Figure 6.3. We discuss
related work in §6.5 and conclude in §6.6.

6.2 The STLang language

In this section, we present STLang, a higher-order functional programming
language with impredicative polymorphism, recursive types, higher-order store
and a ST-like type.

Syntax The syntax of STLang is mostly standard and presented in Figure 6.4.
Note that there are no types in the terms; following Ahmed (2006) we write
Λ e for type abstraction and e _ for type application / instantiation. For the
stateful part of the language, we use return and bind for the return and bind
operations of the ST monad, and ref(e) creates a new reference, !e reads from
one and e ← e writes into one. Finally, runST runs effectful computations.
Note that we treat the stateful operations as constructs in the language rather
than as special constants.
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Ξ | Γ ` e : τ

Tvar
Ξ | Γ, x : τ ` x : τ

Trec
Ξ | Γ, x : τ1, f : τ1 → τ2 ` e : τ2
Ξ | Γ ` rec f(x) = e : τ1 → τ2

Tabs
Ξ, X | Γ ` e : τ

Ξ | Γ ` Λ e : ∀X. τ

Tfold
Ξ | Γ ` e : τ [µX. τ/X]
Ξ | Γ ` fold e : µX. τ

Tinst
Ξ | Γ ` e : ∀X. τ Ξ ` τ ′

Ξ | Γ ` e _ : τ [τ ′/X]

Tnew
Ξ | Γ ` e : τ Ξ ` ρ

Ξ | Γ ` ref(e) : ST ρ (STRef ρ τ)

Tderef
Ξ | Γ ` e : STRef ρ τ

Ξ | Γ ` ! e : ST ρ τ

Tgets
Ξ | Γ ` e : STRef ρ τ Ξ | Γ ` e′ : τ

Ξ | Γ ` e← e′ : ST ρ 1

Trunst
Ξ, X | Γ ` e : ST X τ Ξ ` τ

Ξ | Γ ` runST {e} : τ

Trefeq
Ξ | Γ ` e : STRef ρ τ Ξ | Γ ` e′ : STRef ρ τ

Ξ | Γ ` e == e′ : B

Treturn
Ξ | Γ ` e : τ Ξ ` ρ

Ξ | Γ ` return e : ST ρ τ

Tbind
Ξ | Γ ` e : ST ρ τ Ξ | Γ ` e′ : τ → (ST ρ τ ′)

Ξ | Γ ` bind e in e′ : ST ρ τ ′

Figure 6.5: An excerpt of the typing rules for STLang

Typing Typing judgments are of the form Ξ | Γ ` e : τ , where Ξ is a set of
type variables, and Γ is a finite partial function from variables to types. An
excerpt of the typing rules are shown in Figure 6.5.

Operational semantics We present a small-step call-by-value operational
semantics for STLang, using a transition system 〈h, e〉 → 〈h′, e′〉 whose nodes
are configurations consisting of a heap h and an expression e. A heap
h ∈ Loc⇀fin Val is a finite partial function that associates values to locations,
which we suppose are positive integers (Loc , Z+)2.

2This choice is due to the fact that Iris library in Coq provides extensive support for the
type of positive integers.
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Reduction: 〈h, e〉 → 〈h′, e′〉 and head step: 〈h, e〉 →h 〈h′, e′〉
Evaluation contexts:

K ::=[] | (K, e) | (v,K) | injiK | foldK | unfoldK | K e | v K | K _ |

K } e | v }K | πiK | matchK with inji x⇒ ei end |

ifK then e else e | ref(K) | !K | K ← e | v ← K | K == e |

v == K | bindK in e | bind v inK | returnK | runST {K}

〈h, e〉 →h 〈h′, e′〉
〈h,K[e]〉 → 〈h′,K[e′]〉

〈h, unfold (fold v)〉 →h 〈h, v〉

〈h, (Λ e) _〉 →h 〈h, e〉 〈h, (rec f(x) = e) v〉 →h 〈h, e[v, rec f(x) = e/x, f ]〉

` = `′

〈h, ` == `′〉 →h 〈h, true〉

〈h, match inji v with inji x⇒ ei end〉 →h 〈h, ei[v/x]〉

` 6= `′

〈h, ` == `′〉 →h 〈h, false〉
〈h, v〉 〈h′, e〉

〈h, runST {v}〉 →h 〈h′, runST {e}〉

〈h, runST {return v}〉 →h 〈h, v〉

Figure 6.6: An excerpt of the dynamics of STLang, a call-by-value, small-step
operational semantics (part 1)

The semantics, shown in Figures 6.6 and 6.7, is presented in the Felleisen-Hieb
style (Felleisen and Hieb, 1992), using evaluation contexts K: the reduction
relation→ is the closure by evaluation context of the head reduction relation→h.
Notice that even the “pure” reductions steps, such as β-reduction, mention the
heap. The more subtle part of the operational semantics is how the ST monad
is handled, indeed, we only want the stateful computations to run when they
are wrapped inside runST. This is why we define an auxiliary reduction relation,
〈h, e〉 〈h′, e′〉. This auxiliary relation is also defined using a head reduction
and evaluation contexts K, which are distinct from the evaluation contexts for
the main reduction relation. This auxiliary relation in “embedded” in the main
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Effectful reduction: 〈h, v〉 〈h′, e〉 and effectful head step:

〈h, v〉 h 〈h′, e〉
Effectful evaluation contexts: K ::= [] | bindK in v

〈h, v〉 h 〈h′, e〉
〈h,K[v]〉 〈h′,K[e]〉

〈h, bind (return v) in v′〉 h 〈h, v′ v〉

Alloc
` 6∈ dom(h)

〈h, ref(v)〉 h 〈h ] {` 7→ v} , return `〉

〈h ] {` 7→ v} , ! `〉 h 〈h ] {` 7→ v} , return v〉

〈h ] {` 7→ v′} , `← v〉 h 〈h ] {` 7→ v} , return ()〉

If ⇀ is a relation, we note ⇀n its iterated self-composition and ⇀∗ its reflexive
and transitive closure.

Figure 6.7: An excerpt of the dynamics of STLang, a call-by-value, small-step
operational semantics (part 2)

one by the rule
〈h, v〉 〈h′, e〉

〈h, runST {v}〉 →h 〈h′, runST {e}〉

Notice that  always reduces from a value: this is because values of type
ST can be seen as “frozen” computations, until they appear inside a runST.
The expression e on the right hand-side of the rule above can be a reducible
expression, which is reduced by using K = runST{[]} as a context for the main
reduction rule →.

This operational semantics is new, therefore we include an example of how a
simple program reduces. The program initializes a reference r to 3, then writes
7 into r and finally reads r.〈

∅, runST

bind ref(3) in (λ r. bind (r ← 7) in

(λ_. bind ! r in (λx. returnx)))


〉

The contents of the runST is a value, so we can use the rule above, and the
context K = bind [] in · · · to reduce 〈∅, ref(3)〉  h 〈[l 7→ 3], return l〉 (for
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some arbitrary l) and get:〈
[l 7→ 3], runST

bind (return l) in (λ r. bind (r ← 7) in

(λ_. bind ! r in (λx. returnx)))


〉

The contents of runST is still a value, and this time we use the empty context
K = [] and the rule for the bind of a return,

〈[l 7→ 3], bind (return l) in (λ r. · · · )〉  h 〈[l 7→ 3], (λ r. · · · ) l〉

to get:

〈[l 7→ 3], runST {(λ r. bind (r ← 7) in (λ_. bind ! r in (λx. returnx))) l}〉

This time we use the context K = runST {[]} and the rule for β-reduction to
get:

〈[l 7→ 3], runST {bind (l← 7) in (λ_. bind ! l in (λx. returnx))}〉

The situation is now the same as for the first two reduction steps and we reduce
further to:

〈[l 7→ 7], runST {bind (return ()) in (λ_. bind ! l in (λx. returnx))}〉

and then, in two steps (rule for bind and return, then β-reduction):

〈[l 7→ 7], runST {bind ! l in (λx. returnx)}〉

Finally we get:
〈[l 7→ 7], runST {return 7}〉

and, from the rule for runST and return v:

〈[l 7→ 7], 7〉.

Having defined the operational semantics and the typing rules we can now
define contextual refinement and equivalence. In this definition we write C :
(Ξ | Γ; τ)  (· | ·; 1) to express that C is a well-typed closing context (the
remaining rules for this relation are completely standard).

Definition 6.2.1 (Contextual refinement and equivalence). We define
contextual refinement �ctx and contextual equivalence ≈ctx as follows.

Ξ | Γ � e �ctx e
′ : τ , Ξ | Γ ` e : τ ∧ Ξ | Γ ` e′ : τ ∧

∀h, h′, C. C : (Ξ | Γ; τ) (· | ·; 1) ∧
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(h,C[e])↓ =⇒ (h′, C[e′])↓

Ξ | Γ � e ≈ctx e
′ : τ , Ξ | Γ � e �ctx e

′ : τ ∧ Ξ | Γ � e′ �ctx e : τ.

where (h, e)↓ , ∃h′, v. (h, e)→∗ (h′, v)

6.3 Logical Relation

It is well-known that it is challenging to construct logical relations for languages
with higher-order store because of the so-called type-world circularity (Ahmed,
Appel, and Virga, 2002; Ahmed, 2004; Birkedal, Reus, Schwinghammer,
Støvring, Thamsborg, and Yang, 2011). Other recent work has shown how
this challenge can be addressed by using the original Iris logic to define logical
relations for languages with higher-order store (Krebbers, Timany, and Birkedal,
2017; Krogh-Jespersen, Svendsen, and Birkedal, 2017). In fact, a key point is
that Iris has enough logical features to give a direct inductive interpretation of
the programming language types into Iris predicates.

The binary relations in Krebbers, Timany, and Birkedal (2017) and Krogh-
Jespersen, Svendsen, and Birkedal (2017) were defined using Iris’s built-in
notion of Hoare triple and weakest precondition. This approach is, however, too
abstract for our purposes: to prove the contextual refinements and equivalences
for pure computations mentioned in the Introduction, we need to have more
fine-grained control over how computations are related.

In this section we start by giving a gentle introduction to the base logic of Iris.
Hereafter, we use the Iris base logic to define two new logical connectives called
future modality and If-Convergent. We use these, instead of the weakest
precondition used in Krebbers, Timany, and Birkedal (2017) and Krogh-
Jespersen, Svendsen, and Birkedal (2017), when defining our binary logical
relation.

We focus on properties that are necessary for understanding the key ideas of
the definition of the logical relation; more technical details, including definitions
and lemmas required for proving properties of the logical relation, are deferred
to Appendix E.

6.3.1 An Iris Primer

Iris was originally presented as a framework for higher-order (concurrent)
separation logic, with built-in notions of physical state (in our case heaps), ghost-
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state (monoids) invariants and weakest preconditions, useful for Hoare-style
reasoning about higher-order concurrent imperative programs (Jung, Swasey,
Sieczkowski, Svendsen, Turon, Birkedal, and Dreyer, 2015). Subsequently,
Iris was extended with a notion of higher-order ghost state (Jung, Krebbers,
Birkedal, and Dreyer, 2016), i.e., the ability to store arbitrary higher-order
separation-logic predicates in ghost variables. Recently, a simpler Iris base logic
was defined, and it was shown how that base logic suffices for defining the earlier
built-in concepts of invariants, weakest preconditions, and higher-order ghost
state (Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal, 2017).

In Iris one can quantify over the Iris types κ:

κ ::= 1 |κ× κ |κ→ κ |Expr |Val |Z |B |κ fin−⇀ κ |

finset(κ) |Monoid |Names | iProp | . . .

Here Expr and Val are the types of syntactic expressions and values of STLang,
Z is the type of integers, B is the type of booleans, κ ⇀fin κ is the type of
partial functions with finite support, finset(κ) is the type of finite sets, Monoid
is the type of monoids, Names is the type of ghost names, and iProp is the type
of Iris propositions. A basic grammar for Iris propositions P is:

P ::= > | ⊥ | P ∗ P | P −∗ P | P ∧ P | P ⇒ P | P ∨ P | ∀x : κ. Φ | ∃x : κ. Φ

| .P | µr.P | �P | |VP

The grammar includes the usual connectives of higher-order separation logic (>,
⊥, ∧, ∨, ⇒, ∗, −∗, ∀ and ∃). In this grammar Φ is an Iris predicate, i.e., a term
of type κ→ iProp (for appropriate κ). The intuition is that the propositions
denote sets of resources and, as usual in separation logic, P ∗ P ′ holds for
those resources which can be split into two disjoint parts, with one satisfying
P and the other satisfying P ′. Likewise, the proposition P −∗ P ′ describes
those resources which satisfy that, if we combine it with a disjoint resource
satisfied by P we get a resource satisfied by P ′. In addition to these standard
connectives there are some other interesting connectives, which we now explain.

The . is a modality, pronounced “later”. It is used to guard recursively defined
propositions: µr.P is a well-defined guarded-recursive predicate only if r appears
under a . in P . The . modality is an abstraction of step-indexing (Appel and
McAllester, 2001; Appel, Melliès, Richards, and Vouillon, 2007; Dreyer, Ahmed,
and Birkedal, 2011). In terms of step-indexing .P holds if P holds a step later;
hence the name. In Iris it can be used to define weakest preconditions and to
guard impredicative invariants to avoid self-referential paradoxes (Krebbers,
Jung, Bizjak, Jourdan, Dreyer, and Birkedal, 2017). Here we simply use it to
take a guarded fixed point when we give the interpretation of recursive types,
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similarly to what was done in Dreyer, Ahmed, and Birkedal (2011). For any
proposition P , we have that P ` .P . The later modality commutes with all of
the connectives of higher-order separation logic, including quantifiers.

Another modality of the Iris logic is the “persistence” modality (�). This
modality is used in Iris to capture a sublogic of knowledge (as opposed to
resources) that obeys standard rules for intuitionistic higher-order logic. We
say that P is persistent if P ` �P . Intuitively, �P holds if P holds without
asserting any exclusive ownership. Hence �P is a duplicable assertion, i.e.,
we have (�P ) ∗ (�P ) a` �P , where a` is the logical equivalence of formulas.
Hence persistent propositions are therefore duplicable. The persistence modality
is idempotent, �P ` ��P , and also satisfies �P ` P . It (and by extension
persistence) also commutes with all of the connectives of higher-order separation
logic, including quantifiers.

The final modality we present in this section is the “update” modality3 (|V).
Intuitively, the proposition |VP holds for resources that can be updated (through
allocation, deallocation, or alteration) to resources that satisfy P , without
violating the environment’s knowledge or ownership of resources. We write
P ≡−∗ Q as a shorthand for P −∗ |VQ. The update modality is idempotent,
|V(|VP ) a` |VP .

6.3.2 Future Modality and If-Convergent

In this subsection we define two new constructs in Iris, which we will use to
define the logical relation. The first construct, the future modality, will allow
us to reason about what will happen in a “future world”. The second construct,
the If-Convergent predicate, will be used instead of weakest preconditions to
reason about properties of computations.

Future Modality We define the future modality |�{·}≡. as follows:

|�{n}≡.P , (|V .)n|VP

where (|V .)n is n times repetition of |V .. Intuitively, |�{n}≡.P expresses that
n steps into the future, we can update our resources to satisfy P . We write
P�{n}≡∗Q as a shorthand for P −∗ |�{n}≡.Q.

3In (Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal, 2017) this modality is called
the fancy update modality. Technically, this modality comes equipped with certain “masks”
but we do not discuss those here.
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If-Convergent (IC) We define the If-Convergent (IC) predicate in Iris as
follows:

ICγ e {|v. Q|} , ∀h1, h2, v, n. 〈h1, e〉 →n 〈h2, v〉 ∗ heapγ(h1)

�{n}≡∗ heapγ(h2) ∗Q v

In general the number of steps, n, can also appear in Q but here we only present
this slightly simpler version. The ICγ e {|v. Q|} predicate expresses that, for any
heap h1, if (e, h1) can reduce to (v, h2) in n steps, and if we have ownership
over h1, then, n steps into the future, we will have ownership over the heap h2,
and the postcondition Q will hold.

A crucial feature of the IC predicate is that it allows us to use a ghost state
name γ to keep track of the contents of the heap during the execution of e.
This allows us to abstract away from the concrete heaps when reasoning about
IC predicates4. Note that the IC predicate does not require that it is safe to
execute the expression e: in particular, if e gets stuck (or diverges) in all heaps,
then ICγ e {|v. Q|} holds trivially.

The predicate heapγ(h1) is a ghost state predicate stating ownership of a logical
heap identified by the ghost state name γ (one can think of this as the usual
ownership of a heap in separation logic). Ownership of a logical heap cell l
is written as ` 7→γ v, and says that the heap identified by γ stores the value
v at location `. We show the precise definition of heapγh(h) and ` 7→γ v in
Appendix E; here we just highlight the properties that these abstract predicates
enjoy:

heapγ(h) ∗ ` 7→γ v ⇒ h(l) = v (6.1)

heapγ(h) ∧ l 6∈ dom(h) ≡−∗ heapγ(h[l 7→ v]) ∗ ` 7→γ v (6.2)

heapγ(h) ∗ ` 7→γ v ≡−∗ heapγ(h[l 7→ v′]) ∗ ` 7→γ v
′ (6.3)

` 7→γ v ∗ ` 7→γ v
′ ⇒ ⊥ (6.4)

Property (6.1) says that if we have ownership of a heap h and a location l
pointing to v, both with the same ghost name γ, then we know that h(l) = v.
Property (6.2) expresses that we can allocate a new location l in h, if l is not
already in the domain of h. Finally, Property (6.3) says that we can update
the value at location l, if we have both heapγ(h) and ` 7→γ v. Property (6.4)
expresses exclusivity of the ownership of locations.

4This is related to the way the definition of weakest preconditions in Iris hides
state (Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal, 2017).
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Akin to the way Hoare triples are defined in Iris using the weakest precondition,
we define a new notion called IC triple as follows:

{|P |} e {|v. Q|}γ , �(P −∗ ICγ e {|v. Q|})

The IC triple says, that given resources described by P , if e reduces in a heap
identified by γ, then the post-condition Q will hold. Notice that the IC triple is
a persistent predicate and is not allowed to own any exclusive resources.

6.3.3 Definition of the Logical Relation

We now have enough logical machinery to describe the logical relation
(pedantically, it is a family of logical relations) shown in Figures 6.8 and 6.9. The
logical relation is a binary relation, which allows us to relate pairs of expressions
and pairs of values to each other. We will show that if two expressions are
related in the logical relation, then the left hand side expression contextually
approximates the right hand side expression. Therefore, we sometimes refer
to the left hand side as the implementation and the right hand side as the
specification.

The value relation JΞ ` τK∆ is an Iris relation of type (Val×Val)→ iProp and,
intuitively, it relates STLang values of type τ . The value relation is defined by
induction on the type τ . Here, Ξ is an environment of type variables, and ∆ is
a semantic environment for these type variables, as is usual for languages with
parametric polymorphism (Reynolds, 1983).

If τ is a ground type like 1,B or Z, two values are related at type τ if and only
if they are equal (and compatible with the type). For instance, if τ is Z, then
JΞ ` ZK∆(v, v′) , v = v′ ∈ Z.

For a product type of the form τ × τ ′, two values v and v′ are related if and
only if they both are pairs, and the corresponding components are related at
their respective types:

JΞ ` τ × τ ′K∆(v, v′) , ∃w1, w2, w
′
1, w

′
2. v = (w1, w2) ∧ v′ = (w′1, w′2) ∧

JΞ ` τK∆(w1, w
′
1) ∧ JΞ ` τ ′K∆(w2, w

′
2)

Note that the formula on the right hand side of , is simply a formula in (the
first order fragment of) Iris. The case of sum types is handled in a very similar
fashion.

Two values v and v′ are related at a function type τ → τ ′ if, given any two
related values w and w′ at type τ , the applications v w and v′ w′ are related at
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Value relations:
JΞ ` XK∆ , (∆(X)).1

JΞ ` 1K∆(v, v′) , v = v′ = ()

JΞ ` BK∆(v, v′) , v = v′ ∈ {true, false}

JΞ ` ZK∆(v, v′) , v = v′ ∈ Z

JΞ ` τ × τ ′K∆(v, v′) , ∃w1, w2, w
′
1, w

′
2. v = (w1, w2) ∧ v′ = (w′

1, w
′
2)∧

JΞ ` τK∆(w1, w
′
1) ∧ JΞ ` τ ′K∆(w2, w

′
2)

JΞ ` τ + τ ′K∆(v, v′) , (∃w,w′. v = inj1 w ∧ v
′ = inj1 w

′∧

JΞ ` τK∆(w,w′))∨

(∃w,w′. v = inj2 w ∧ v
′ = inj2 w

′∧

JΞ ` τ ′K∆(w,w′))

JΞ ` τ → τ ′K∆(v, v′) , �
(
∀(w,w′). JΞ ` τK∆(w,w′)⇒ E JΞ ` τK∆ (v w, v′ w′)

)
JΞ ` ∀X. τK∆(v, v′) , �

(
∀f, r ∈ R. persistent(f)⇒

E JΞ, X ` τK∆,X 7→(f,r) (v _, v′ _)
)

JΞ ` µX. τK∆(v, v′) , µf. ∃w,w′. v = foldw ∧ v′ = foldw′∧

.JΞ, X ` τK∆,X 7→(f,toRgn(∆,µX. τ))(w,w′)

Figure 6.8: Binary logical relation
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Value relations (continued):
JΞ ` STRef ρ τK∆(v, v′) , ∃`, `′, r. v = ` ∧ v′ = `′ ∧ isRgn(toRgn(∆, ρ), r)

∗ bij(r, `, `′) ∗ rel(r, `, `′, JΞ ` τK∆)

JΞ ` ST ρ τK∆(v, v′) , ∀γh, γ′h, h′1.
∣∣∣∣∣∣
heapγ′

h
(h′1) ∗ regions∗

region(toRgn(∆, ρ), γh, γ′h)

∣∣∣∣∣∣


runST {v}
∣∣∣∣∣∣
w. (h′1, runST {v′}) ⇓

γ′
h

JΞ`τK∆(w,·) ∗

region(toRgn(∆, ρ), γh, γ′h)

∣∣∣∣∣∣

γh

Expression relation:
E Φ(e, e′) , ∀γh, γ′h, h′1.

{∣∣∣heapγ′
h
(h′1) ∗ regions

∣∣∣}
e{∣∣∣w. (h′1, e′) ⇓

γ′
h

Φ(w,·)

∣∣∣}
γh

Environment relation:
JΞ ` ·KG∆(~v, ~v′) , >

JΞ ` Γ, x : τKG∆(w~v,w′~v′) , JΞ ` τK∆(w,w′) ∗ JΞ ` ΓKG∆(~v, ~v′)
Logical relatedness:

Ξ | Γ � e �log e
′ : τ , ∀∆, ~v, ~v′.

JΞ ` ΓKG∆(~v, ~v′)⇒

E JΞ ` τK∆

(
e[~v/~x], e′[~v′/~x]

)

toRgn(∆, τ) ,

∆(X).2 if τ = X is a type variable

1 otherwise

Figure 6.9: Binary logical relation (continued)
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type τ ′. Notice that those latter two terms are expressions, not values; thus
they have to be related under the expression relation E JΞ ` τ ′K∆ , which we
will define later. Using Iris, the case for function types is defined as follows:

JΞ ` τ → τ ′K∆(v, v′) ,

�
(
∀(w,w′). JΞ ` τK∆(w,w′)⇒ E JΞ ` τK∆ (v w, v′ w′)

)
The � modality is used to ensure that JΞ ` τ → τ ′K∆(v, v′) is persistent and
hence duplicable. In fact, we will make sure that all predicates JΞ ` τK∆(v, v′)
are persistent. The intuition behind this is that the types of STLang just express
duplicable knowledge (the type system is not a substructural type system
involving resources).

Let us now discuss the case of polymorphic types. We use the semantic
environment ∆, which maps type variables to pairs consisting of an Iris relation
on values (the semantic value relation interpreting the type variable) and a
region name (we use positive integers, Z+, to identify regions):

∆ : Tvar→ (((Val×Val)→ iProp)× Z+)

Thus, we simply define JΞ ` XK∆ , ∆(X).1.

For type abstraction, two values v and v′ are related at ∀X. τ when v _ and
v′ _ are related at τ , where the environments (Ξ and ∆) have been extended
with X, and any persistent binary value relation f . (Recall that v_ is the
syntax for type application).

JΞ ` ∀X. τK∆(v, v′) , �
(
∀f. persistent(f)⇒ E JΞ, X ` τK∆,X 7→f (v _, v′ _)

)
The last case, before we get to the types associated to the ST monad, is
the case of recursive types: two values are related at type µX. τ if they are
of the form foldw and foldw′ and, moreover, w and w′ are related at τ ,
where the type variable X is added to the environments, and mapped in ∆ to
(JΞ ` µX. τK∆, toRgn(∆, µX. τ)) (ignore toRgn(∆, µX. τ) for now):

JΞ ` µX. τK∆(v, v′) , µf.
(
∃w,w′. v = foldw ∧ v′ = foldw′∧

.JΞ, X ` τK∆,X 7→(f,toRgn(∆,µX. τ)) (w,w′)
)

Notice that we use a guarded recursive predicate in Iris, which is well-defined
because the occurrence of f is guarded by the later modality ..
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Before describing the cases for STRef ρ τ and ST ρ τ we touch upon the
expression relation, which is defined independently of the value relation and
has the following type:

E · : ((Val×Val)→ iProp)→ (Expr× Expr)→ iProp

Intuitively, the expression relation E Φ(e, e′) holds for two expressions e and e′
if e (the implementation) refines, or approximates, e′ (the specification). That
is, reduction steps taken by e can be simulated by zero or more steps in e′. We
use IC triples to define the expression relation. The IC triples are unary and
are used to express a property of the implementation expression e. We use the
following Iris assertion in the postcondition of the IC triple to talk about the
reductions in the specification expression e′:

(h′1, e′) ⇓
γ
Φ , ∃h′2, v′. 〈h′1, e′〉 →∗d 〈h′2, v′〉 ∗ heapγ(h′2) ∗ Φ(v′)

This assertion says that there exists a deterministic reduction from (h′1, e′) to
(h′2, v′), that the resulting heap h′2 is owned and the value satisfies Φ. The
deterministic reduction relations,→d and d, are defined by the same inference
rules as→ and , except that the only non-deterministic rule, Alloc, is replaced
by a deterministic one:

det-Alloc
` = min(Loc \ dom(h))

〈h, ref(v)〉 h 〈h ] {` 7→ v} , return `〉

The requirement that the reduction on the specification side is deterministic
is used crucially in the proofs of the purity properties in §6.4. We emphasize
that even with this requirement, we can still prove that logical relatedness
implies contextual refinement (without requiring that STLang use deterministic
reductions), essentially since we only require determinism on the specification
side.

Thus, in more detail, the expression relation E Φ(e, e′) says that, when given full
ownership of a heap h′1 for the specification side (heapγ′(h′1)), if e reduces to a
value w when given some heap h (quantified in IC), then a deterministic reduction
on the specification side exists, and the resulting values are related. Notice
that the heaps used for the implementation and specification side reductions
are universally quantified, because we quantify over the ghost names γh, and
γ′h, and that we do not require any explicit relationship between them. The
persistent Iris assertion regions is responsible for keeping track of all allocated
regions; it will be explained later.

For the value interpretation of STRef ρ τ and ST ρ τ , the key idea is to tie each
type ρ in an ST monad type (ρ in ST ρ τ) to a semantic region name r ∈ Z+.
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The association can be looked up using the function toRgn. Intuitively, a region
r contains a collection of pairs of locations (one for the implementation side
and one for the specification side) in one-to-one correspondence, together with
a semantic predicate φ for each pair of locations in the region. The idea is
that an implementation-side heap h and a specification-side heap h′ satisfies a
region r if, for any pair of locations (`, `′) in r, we have values v and v′, such
that h(`) = v and h′(`′) = v′ and φ(v, v′). All this information is contained
in the predicate region(r, γh, γ′h), where γh and γ′h are the ghost names for the
implementation and specification heap, respectively.

We have to maintain a one-to-one correspondence between locations because the
operational semantics allows for comparison of locations. Given the one-to-one
correspondence, we know that two locations on the implementation side are
equal if and only if their two related counterparts on the specification side are.

We write isRgn(r, ρ) to say that r is the semantic region tied to ρ. We keep
track of all regions by the regions assertion, which allows us to allocate new
regions, as so:

regions ≡−∗ ∃r. region(r, γh, γ′h) (6.5)

Notice that (6.5) gives back a fresh semantic region r. The region(r, γh, γ′h)
predicate allows for local reasoning about relatedness of two locations in a region
r. We use a predicate bij(r, `, `′), which in conjunction with region captures that
` and `′ are related by the one-to-one correspondence in r. Similarly, we use a
predicate rel(r, `, `′, φ) in conjunction with region for local reasoning about the
fact that values at locations ` and `′ in region r are related by predicate φ.

With this in mind, the definition of the value relation for STRef ρ τ is that
there exists a semantic region r and locations ` and `′ in a bijection, bij(r, `, `′),
such that values pointed to by these locations are related by the relation
corresponding to the type τ , asserted by rel(r, `, `′, JΞ ` τK∆).

Finally, (v, v′) are related by JΞ ` ST ρ τK∆ if, for any h1 and h′1 related in
r (region(r, γh, γ′h)) along with some h2 and w such that 〈h1, runST {v}〉 →∗
〈h2, w〉, then there is a heap h′2 and a value w′ such that we afterwards have
〈h′1, runST {v′}〉 →∗d 〈h′2, w′〉 and region(r, γh, γ′h) still holds. The intuitive
meaning of the word afterwards refers to an application of the future modality
(in the IC triple). Note that it is important that the semantic region r still
holds after runST {v} and runST {v′} have been evaluated. This captures that
encapsulated computations cannot modify the values of existing locations, but
may allocate new locations (in new regions).

We have now completed the explanation of the value and expression relation
for closed values and expressions. As usual for logical relations, we then relate
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open terms by closing them by related substitutions, as specified according the
environment relation G, and finally relate them in the expression relation for
closed terms, see the definition of Ξ | Γ � e �log e

′ : τ in Figures 6.8 and 6.9.

6.3.4 Properties of the Logical Relation

To show the fundamental theorem and the soundness of the logical relation wrt.
contextual approximation, we prove compatibility lemmas for all typing rules.
Instead of working with the explicit definition of the IC triple, we make use of
the following properties of IC:

Lemma 6.3.1 (Properties of IC).

1. ICγ e {|v. Q|} ∗ (∀w. (Q w) −∗ ICγ K[w] {|v. Q′ v|}) ` ICγ K[e] {|v. Q′|}

2. |V(Q w) ` ICγ w {|v. Q|}

3. (∀v. (P v) ≡−∗ (Q v)) ∗ ICγ e {|v. P |} ` ICγ e {|v. Q|}

4. |VICγ e {|v. Q|} ` ICγ e {|v. Q|}

5. ICγ e {|v. |VQ|} ` ICγ e {|v. Q|}

6. (∀h. 〈h, e〉 → 〈h, e′〉) ∗ . ICγ e′ {|v. Q|} ` ICγ e {|v. Q|}

7. .(∀`. ` 7→γ v ≡−∗ Q `) ` ICγ runST {ref(v)} {|w. Q|}

8. . ` 7→γ v ∗ .(` 7→γ v ≡−∗ Q v) ` ICγ runST {! `} {|w. Q|}

9. . ` 7→γ v
′ ∗ .(` 7→γ v ≡−∗ Q ()) ` ICγ runST {`← v} {|w. Q|}

10. ICγ runST {e} {|v. Q|} ∗
(
∀w. (Q w) −∗

ICγ runST {K[returnw]} {|v. Q′ w|}
)
` ICγ runST {K[e]} {|v. Q′|}

Items (1) and (2) above show that IC is a monad in the same way that weakest
precondition is a monad, known as the Dijkstra monad. Item (3) allows one to
strengthen the post-condition. Items (4) and (5) says that we can dispense with
the update modality |V for IC since the update modality is idempotent and IC
is based on the update modality. Item (6) says that if a pure reduction from e
to e′ exists and later the postcondition Q will hold when reducing e′, then Q
will also hold when reducing e. Items (7),(8) and (9) are properties that allow
to allocate, read and modify the heap, all expressing, that the post-condition
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Q will hold, if the resources needed are given and Q holds for the updated
resources. Finally, (10) captures the “bind” property for the RunST monad.

All the compatibility lemmas have been proved in the Coq formalization; here
we just sketch the proof of the compatibility lemma for runST :

Lemma 6.3.2 (Compatibility for runST). Suppose Ξ, X | Γ � e �log e
′ : ST X τ

and Ξ ` τ . Then

Ξ | Γ � runST {e} �log runST {e′} : τ

Proof Sketch. We prove that for any f and r that

JΞ, X ` ST X τK∆,X 7→(f,r)(v, v′) implies E JΞ ` τK∆ (runST {v} , runST {v′})

The lemma follows from the assumption that e and e′ are suitably related.
Assume we have regions, ghost names for the implementation and specification
side, γh and γ′h, and heapγ′

h
(h′1) for some h′1. We are to show:

ICγh runST {v}


∣∣∣∣∣∣∣∣∣w. ∃h

′
2, w

′. 〈h′1, runST {v′}〉 →∗d 〈h′2, w′〉 ∗

heapγ′
h
(h′2) ∗ JΞ ` τK∆(w,w′)

∣∣∣∣∣∣∣∣∣


Using (6.5) with regions we know there exists a fresh semantic region r and that
the predicate region(r, γh, γ′h) holds for r. We then instantiate our assumption
by the unit relation JΞ ` 1K∆ and r to get JΞ, X ` ST X τK∆,X 7→(JΞ`1K∆,r)(v, v′).

By the definition of the value relation for the type ST X τ , we get that if we
give a starting specification heap heapγ′

h
(h′1) and region(r, γh, γ′h), then we have

runST {v} reduces to a value w, and there exist a reduction on the specification
side producing w′ such that w and w′ are related by JΞ, X ` τK∆,X 7→(JΞ`1K,ρ).
Moreover, we also get the ownership of the resulting specification heap
heapγh(h′2).

By Lemma 6.3.1 (3), it suffices to show: |V∃h′2, w′. 〈h′1, runST {v′}〉 →∗d
〈h′2, w′〉 ∗ heapγ′

h
(h′2) ∗ JΞ ` τK∆(w,w′). The only thing that we do not

immediately have from our assumption is JΞ ` τK∆(w,w′), we only have
that w and w′ are related in a larger environment. However since X does
not appear free in τ (which follows from Ξ ` τ) it follows by induction on τ
that JΞ, X ` τK∆,X 7→(JΞ`1K,r)(w,w′) a` JΞ ` τK∆(w,w′) which concludes the
proof.

Notice that in the above proof we start out with two completely unrelated heaps
for the specification and the implementation side since these are universally
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quantified inside the IC triple. We then establish a trivial relation between them
by creating a new empty region. We extend and maintain this relation during
the simulation of the stateful expressions on both sides. This is in essence the
reason why our expression relations need not assume (or guarantee at the end)
any relation between the heaps on the implementation and specification sides.

Using the compatibility lemmas, we can prove the following two theorems.

Theorem 6.3.3 (Fundamental theorem). Ξ | Γ ` e : τ ⇒ Ξ | Γ � e �log e : τ

Theorem 6.3.4 (Soundness of logical relation).

Ξ | Γ ` e : τ ∧ Ξ | Γ ` e′ : τ ∧ Ξ | Γ � e �log e
′ : τ ⇒ Ξ | Γ � e �ctx e

′ : τ

6.4 Proving Contextual Refinements and Equiva-
lences

In this section we show how to prove the contextual refinements and equivalences
mentioned in the Introduction. For the sake of illustration we present the proofs
of Neutrality and one side of the Commutativity theorems in moderate
detail — the proofs of these two cases demonstrate the key techniques that are
also used to show the remaining contextual refinements and equivalences from
the Introduction. For the remaining theorems, we only sketch their proofs at a
higher level of abstraction. Readers who are eager to see all proofs in all their
details are thus referred to our Coq formalization. Details pertaining to the
Coq formalization can be found in Appendix E.

Theorem 6.4.1 (Neutrality). If Ξ | Γ ` e : 1 then Ξ | Γ � e �ctx () : 1

Proof Sketch. By the fundamental theorem we have Ξ | Γ � e �log e : 1. We
show that this implies Ξ | Γ � e �log () : 1. The final result follows from the
soundness theorem.

By unfolding the IC predicate, we get the assumption that 〈h1, e〉 →∗ 〈h2, v〉,
including the ownership of heapγh(h1) and heapγ′

h
(h′1), and have to prove that5

〈h′1, ()〉 reduces deterministically to a value w (and some heap) and that (v, w)
are in the value relation for the unit type. We proceed by allocating a copy
of h′1, obtaining heapγ(h′1) for some fresh γ. We use this together with our
assumptions, notably Ξ | Γ � e �log e : 1, to get that 〈h′1, e〉 →∗d 〈h′2, v′〉 for some
v′ and h′2 such that (v, v′) are related in the value relation for the unit type, i.e.,
v = v′ = (), heapγh(h2) and heapγ(h′2). Notice that we have, crucially, retained

5We ignore the future modality for the sake of simplicity.
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the ownership of heapγ′
h
(h′1) and have only updated the freshly allocated copy

of h′1 with the fresh name γ. We are allowed to do this because the relatedness
of expressions, as in Ξ | Γ � e �log e : 1, universally quantifies over ghost names
for the specification and implementation side heaps. We conclude the proof by
noting that since () is a value, we have, trivially, 〈h′1, ()〉 →∗d 〈h′1, ()〉 and that
(v, ()) are related at the unit type.

Theorem 6.4.2 (Commutativity). If Ξ | Γ ` e1 : τ1 and Ξ | Γ ` e2 : τ2 then

Ξ | Γ � letx = e2 in (e1, x) ≈ctx (e1, e2) : τ1 × τ2

Proof Sketch. We only show Ξ | Γ � letx = e2 in (e1, x) �log (e1, e2) : τ1×τ2,
the other direction is similar. Unfolding the IC predicate we get the assumption
that 〈h1, letx = e2 in (e1, x)〉 →∗ 〈h2, v〉 for some h2 and v, the ownership of
heapγh(h1) and heapγ′

h
(h′1) and we have to prove that 〈h′1, (e1, e2)〉 →∗d 〈h′2, v′〉

for some h′2 and v′, and that (v, v′) are in the value relation for τ × τ ′. From the
first assumption, we can conclude that 〈h1, e2〉 →∗ 〈h3, v2〉, 〈h3, e1〉 →∗ 〈h2, v1〉
and that v = (v1, v2).

We proceed by allocating a fresh copy of h3 (the heap in the middle of execution
of the implementation side) with the fresh name γ, heapγ(h3) and also a fresh
heapγ′(h′1) (the heap at the beginning of execution of the specification side).
Notice that these are heaps (on either side) immediately before executing e1.
We use these freshly allocated heaps together with Ξ | Γ � e1 �log e1 : τ1 (which
follows from the fundamental theorem) to conclude6 〈h′1, e1〉 →∗d 〈h′3, v′1〉 for
some v′1 and h′3.

Now we have the information about the starting heap for execution of e2 on
the specification side. Thus, we are ready to simulate the execution of e2 on
both sides. Note that the order of simulations is dictated by the order on
the implementation side as we have to prove that the implementation side is
simulated by the specification side.

To simulate e2 we proceed by allocating a fresh copy of h′3 (the heap immediately
before executing e2 on the specification side) with a fresh name γ′′, heapγ′′(h′3).
We use this, together with heapγh(h1) (which we originally got by unfolding the
IC predicate) and Ξ | Γ � e2 �log e2 : τ2 (which we know from the fundamental
theorem). We can do this as we know 〈h1, e2〉 →∗ 〈h3, v2〉. This allows us
to conclude that 〈h′3, e2〉 →∗d 〈h′2, v′2〉 for some h′2 and v′2, the ownership of
heapγ′′(h′2) and heapγh(h3) together with the fact that (v2, v

′
2) are related at

type τ2.
6For simplicity, we are ignoring some manipulations involving the future modality.
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Now we are ready to simulate e1 on both sides. We use Ξ | Γ � e1 �log e1 : τ1
(which we know from the fundamental theorem) together with heapγh(h3)
(from simulating e2) and heapγ′

h
(h′1) (which we had as an assumption from the

definition relatedness). We can do this because we know that 〈h3, e1〉 →∗ 〈h2, v1〉.
This allows us to conclude that 〈h′1, e1〉 →∗d 〈h′′3 , v′′1 〉 for some h′′3 and v′′1 , the
ownership of heapγ′

h
(h′′3) and heapγh(h2) together with the fact that (v1, v

′′
1 )

are related at type τ1. It follows from the determinism of reduction on the
specification side that h′3 = h′′3 and v′1 = v′′1 .

The only thing we need to conclude the proof is the ownership of heapγ′
h
(h2)

(the heap at the end of execution of the specification side) whereas we own
heapγ′

h
(h′′3) which is the heap of the specification side after execution of e1 and

before execution of e2. However, using some resource reasoning (which depends
on details explained in Appendix E), we can conclude that h′′3 ⊆ h2. This in
turn allows us to update our heap resource to get heapγ′

h
(h2), which concludes

the proof.

The proof sketches of the two theorems above show that the true expressiveness
of our logical relation comes from the fact that the expression relation quantifies
over the names of resources used for the heaps on the specification and
implementation sides. This allows us to allocate fresh instances of ghost resources
corresponding to the heaps (for any of the two sides) and simulate the desired
part of the program. This is the reason why we can prove such strong equations
as Commutativity, Idempotency, Hoisting, etc. The proof of Commutativity
above also elucidates the use of deterministic reduction for the specification
side.

Theorem 6.4.3 (Idempotency). If Ξ | Γ ` e : τ then Ξ | Γ � letx =
e in (x, x) ≈ctx (e, e) : τ × τ

Proof Sketch. We show the contextual equivalence, by proving logical related-
ness in both directions. For the left-to-right direction, we allocate a fresh heap
and simply simulate twice on the specification side using the same reduction
on the implementation side. For the other direction, we simulate the same
reduction on the specification side twice for the two different reductions on the
implementation side. For the latter we conclude, by determinism of reduction
on the specification side, that the two reductions coincide.

Theorem 6.4.4 (Rec Hoisting). If Ξ | Γ ` e1 : τ and Ξ | Γ, y : τ, x : τ1, f :
τ1 → τ2 ` e2 : τ2 then

Ξ | Γ � let y = e1 in rec f(x) = e2 �ctx rec f(x) = let y = e1 in e2 : τ1 → τ2
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Proof Sketch. The proof of this theorem is quite tricky, in particular because
the the number of operational steps do not match up for the function bodies on
the implementation and specification sides. We do not delve into those issues
here, but concentrate instead on the high-level structure of the proof.

We prove three different contextual refinements, such that their composition
gives us the desired contextual refinement in the theorem. These three contextual
refinements are:

(a) let y = e1 in rec f(x) = e2 �ctx let y = e1 in rec f(x) = let z =
e1 in e2 : τ1 → τ2

(b) let y = e1 in rec f(x) = let z = e1 in e2 �ctx let z = e1 in rec f(x) =
let y = e1 in e2 : τ1 → τ2

(c) let z = e1 in rec f(x) = let y = e1 in e2 �ctx rec f(x) = let y =
e1 in e2 : τ1 → τ2 where z is a fresh variable.

We prove (a) by proving the corresponding logical relatedness. Since e1 reduces
to a value we know that it will reduce deterministically to some value under any
heap on the specification side. We prove (c) also by the corresponding logical
relatedness which is rather trivial to prove.

To prove (b) we show the corresponding logical relatedness for a slightly stronger
logical relation; �NNlog . The NN-logical relation is defined entirely similarly to
the primary logical relation above except that the specification side is required
to deterministically reduce to a value in the same number of steps as the
implementation side. Notice that the proofs of the fundamental theorem and
soundness for NN-logical relation are very similar to those of the primary logical
relation.

Formally, for (b) we show

let y = e1 in rec f(x) = let z = e1 in e2

�NNlog let z = e1 in rec f(x) = let y = e1 in e2 : τ ′ → τ ′′

This logical relatedness is in fact rather easy to show if we know that all
reductions of e1 (on either side) take the same number of steps. This is precisely
why we use the NN-logical relation: By the fundamental theorem of the NN-
logical relation we know that e1 �NNlog e1 : τ ′ → τ ′′ and hence we can conclude
that both outer reductions (on either side) take the same number of steps, say
n. Similarly we know that both reductions of e1 inside the functions also take
the same number of steps, say m. Hence, by allocating appropriate heaps, we
can show that the outer reduction of e1 on the implementation side takes the
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same number steps as that of the reduction of the inner one on the specification
side. This shows, by determinism of reduction on the specification side, that
n = m, which allows us to conclude the proof.

Theorem 6.4.5 (η expansion for Rec). If Ξ | Γ ` e : τ1 → τ2 then Ξ | Γ �
e �ctx rec f(x) = e x : τ1 → τ2

Proof Sketch. We prove this theorem by proving the following three contextual
refinements.

(a) Ξ | Γ � e �ctx let y = e in rec f(x) = (y x) : τ → τ ′

(b) Ξ | Γ � let y = e in rec f(x) = (y x) �ctx rec f(x) = let y = e in (y x) :
τ → τ ′

(c) Ξ | Γ � rec f(x) = let y = e in (y x) �ctx rec f(x) = (e x) : τ → τ ′

Refinements (a) and (c) follow rather easily from their corresponding logical
relatedness while case (b) is an instance of rec Hoisting above. For (c) notice
that f does not appear free in e.

Theorem 6.4.6 (β reduction for λ). If Ξ | Γ, x : τ1 ` e1 : τ2 and Ξ | Γ ` e2 : τ1
then

(λx. e1) e2 �ctx e1[e2/x] : τ

Proof Sketch. By induction on the typing derivation of e1; for each case we use
appropriate contextual refinements proven by (using the induction hypothesis if
necessary) some of the contextual refinement theorems stated above and some
instances of logical relatedness. We only present a couple cases here.

Case e1 = inji e The induction hypothesis tells us that Ξ | Γ � (λx. e) e2 �ctx
e[e2/x] : τi and we have to show that Ξ | Γ � (λx. inji e) e2 �ctx (inji e)[e2/x] :
τ1 + τ2. Notice that it is easy to prove (using the fundamental theorem) that
Ξ | Γ � (λx. inji e) e2 �log inji ((λx. e) e2) : τ1 + τ2 The final result follows
by the induction hypothesis, transitivity of contextual refinement and the fact
that contextual refinement is a congruence relation.

Case e1 = rec f(y) = e The induction hypothesis tells us that Ξ | Γ, y :
τ1, f : τ1 → τ2 � (λx. e) e2 �ctx e[e2/x] : τ2 and we have to show that Ξ | Γ �
(λx. (rec f(y) = e)) e2 �ctx (rec f(y) = e)[e2/x] : τ1 → τ2 or equivalently
(by simply massaging the terms) Ξ | Γ � letx = e2 in (rec f(y) = e) �ctx
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(rec f(y) = e[e2/x]) : τ1 → τ2. By rec Hoisting and transitivity of contextual
refinement, it suffices to show Ξ | Γ � (rec f(y) = letx = e2 in e) �ctx
(rec f(y) = e[e2/x]) : τ1 → τ2 which easily follows from the induction hypothesis
and the fact that contextual refinement is a congruence relation.

We omit the theorems of hoisting and η-expansion for polymorphic terms
as they are fairly similar in statement and proof to their counterparts for
recursive functions. We also omit β-reduction for polymorphic terms and
recursive functions. The former follows directly from the corresponding logical
relatedness and the latter follows from β-reduction for λ’s and rec-unfolding: if
Ξ | Γ, x : τ1, f : τ1 → τ2 ` e : τ2, then

Ξ | Γ � rec f(x) = e �ctx λx. e′[(rec f(x) = e′)/f ] : τ1 → τ2,

which is a consequence of the corresponding logical relatedness.

Theorem 6.4.7 (Equations for stateful computations). See Figure 6.3.

Proof. Left identity follows by proving both logical relatednesses. Right identity
is proven as follows using equational reasoning:

e2 e1 �ctx letx = e2 in let y = e1 in bind (return y) in

let z = x y in (λ_. z)

�ctx letx = e2 in let y = e1 in bind (return y) in

(λ_. let z = x y in z)

�ctx letx = e2 in let y = e1 in bind (return y) inx

�ctx let y = e1 in letx = e2 in bind (return y) inx

�ctx bind (return e1) in e2 : ST ρ τ

Here the second equation is by rec Hoisting and the fourth by a variant of
commutativity. The rest follow by proving the corresponding logical relatedness.
Associativity is proven as follows using equational reasoning:

bind (bind e1 in e2) in e3

�ctx let y = e1 in bind y in let z = (e2, e3) in (λx. bind (π1 z) x inπ2 z)

�ctx let y = e1 in bind y in (λx. let z = (e2, e3) in bind (π1 z) x inπ2 z)
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�ctx let y = e1 in bind y in (λx. let z1 = e2 in

let z2 = e3 in let z3 = (z1 x) in bind z3 in z2)

�ctx let y = e1 in bind y in (λx. let z1 = e2 in

let z3 = (z1 x) in let z2 = e3 in bind z3 in z2)

�ctx bind e1 in (λx. bind (e2 x) in e3) : ST ρ τ

Here the second equation is by rec Hoisting and the fourth by a variant of
commutativity. The rest follow by proving the corresponding logical relatedness.

6.5 Related work

The most closely related work is the original seminal work of Launchbury and
Peyton Jones (1994), which we discussed and related to in the Introduction. In
this section we discuss other related work.

Moggi and Sabry (2001) showed type soundness of calculi with runST-like
constructs, both for a call-by-value language (as we consider here) and for a lazy
language. The type soundness results were shown with respect to operational
semantics in which memory is divided into regions: a runST-encapsulated
computation always start out in an empty heap and the final heap of such a
computation is thrown away. Thus their type soundness result does capture some
aspects of encapsulation. However, the models in loc. cit. are not relational and
therefore not suitable for proving relational statements such as our theorems
above. The authors write: “Indeed substantially more work is needed to establish
soundness of equational reasoning with respect to our dynamic semantics (even
for something as unsurprising as β-equivalence)” (Moggi and Sabry, 2001).

In contrast to Moggi and Sabry (2001), who also considered type soundness for
a call-by-need language, we only develop our model for a call-by-value language.
For call-by-need one would need to keep track of the dependencies between
effectful operations in the operational semantics and only evaluate them if they
contribute to the end result. These dependencies would also have to be reflected
in the logical relations model. It is not clear how difficult that would be and we
believe it deserves further investigation.

It was pointed out already in Launchbury and Peyton Jones (1994) that there
seems to be a connection between encapsulation using runST and effect masking
in type-and-effect systems à la Gifford and Lucassen (1986). This connection
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was formalized by Semmelroth and Sabry (1999), who showed how a language
with a simplified type-and-effect system with effect masking can be translated
into a language with runST. Moreover, they showed type soundness on their
language with runST with respect to an operational semantics. In contrast
to our work, they did not investigate relational properties such as contextual
refinement or equivalence.

Benton et al. have investigated contextual refinement and equivalence for type-
and-effect systems in a series of papers (Benton and Buchlovsky, 2007; Benton,
Kennedy, Beringer, and Hofmann, 2007, 2009; Benton, Kennedy, Hofmann, and
Beringer, 2006) and their work was extended by Thamsborg and Birkedal (2011)
to a language with higher-order store, dynamic allocation and effect masking.
These papers considered soundness of some of the contextual refinements and
equivalences for pure computations that we have also considered in this paper,
but, of course, with very different assumptions, since the type systems in loc.
cit. were type-and-effect systems. Thus, as an alternative to the approach taken
in this paper, one could also imagine trying to prove contextual equivalences in
the presence of runST by translating the type system into the language with
type-and-effects used in Thamsborg and Birkedal (2011) and then appeal to
the equivalences proved there. We doubt, however, that such an alternative
approach would be easier or better in any way. The logical relation that we
define in this paper uses an abstraction of regions and relates regions to the
concrete global heap used in the operational semantics. At a very high level,
this is similar to the way regions are used as an abstraction in the models for
type-and-effect systems, e.g., in Thamsborg and Birkedal (2011). However, since
the models are for different type systems, they are, of course, very different in
detail. One notable advance of the current work over the models for type-and-
effect systems, e.g., the concrete step-indexed model used in Thamsborg and
Birkedal (2011), is that our use of Iris allows us to give more abstract proofs
of the fundamental lemma for contextual refinements than a more low-level
concrete step-indexed model would.

Recently Iris has been used in other works to define logical relations for different
type systems than the one we consider here (Krebbers, Timany, and Birkedal,
2017; Krogh-Jespersen, Svendsen, and Birkedal, 2017). The definitions of logical
relations in those works have used Iris’s weakest preconditions wp e {v. P}
to reason about computations. Here, instead, we use our if-convergence
predicate, ICγ e {|v. P |}. One of the key technical differences between the weakest
precondition predicate and the if convergence predicate is that the latter keeps
explicit track of the ghost variable γ used for heap. This allows us to reason
about different (hypothetical) runs of the same expression, a property we exploit
in the proofs of contextual refinements in §6.4.
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6.6 Conclusion and Future Work

We have presented a logical relations model of STLang, a higher-order functional
programming language with impredicative polymorphism, recursive types, and
a Haskell-style ST monad type with runST. To the best of our knowledge,
this is the first model which can be used to show that runST provides proper
encapsulation of state, in the sense that a number of contextual refinements
and equivalences that are expected to hold for pure computations do indeed
hold in the presence of stateful computations encapsulated using runST. We
defined our logical relation in Iris, a state-of-the-art program logic. This greatly
simplified the construction of the logical relation, e.g., because we could use
Iris’s features to deal with the well-known type-world circularity. Moreover, it
provided us with a powerful logic to reason in the model. Our logical relation
and our proofs of contextual refinements used several new technical ideas: in
the logical relation, e.g., the linking of the region abstraction to concrete heaps
and the use of determinacy of evaluation on the specification side; and, in the
proof of contextual refinements, e.g., the use of a helper-logical relation for
reasoning about equivalence of programs using the same number of steps on
the implementation side and the specification side. Finally, we have used and
extended the Iris implementation in Coq to formalize our technical development
and proofs in Coq.

Future work Future work includes developing a model for a call-by-need
variant of STLang. In the original paper (Launchbury and Peyton Jones,
1994), Launchbury and Peyton Jones argue that it would be useful to have a
combinator for parallel composition of stateful programs, as opposed to the
sequential composition provided by the monadic bind combinator. One possible
direction for future work is to investigate the addition of concurrency primitives
in the presence of encapsulation of state. It is not immediately clear what the
necessary adaptations are for keeping the functional language pure. It would
be interesting to investigate whether a variation of the parallelization theorem
studied for type-and-effect systems in Krogh-Jespersen, Svendsen, and Birkedal
(2017) would hold for such a language.
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Concurrent higher-order imperative programming languages with continuations
are very flexible and allow for the implementation of sophisticated programming
patterns. For instance, researchers and practitioners have argued that the
implementation of web servers can be simplified by using a programming pattern
based on continuations. This programming pattern can, in particular, help
simplify keeping track of the state of clients interacting with the server. However,
such advanced programming programming languages are very challenging to
reason about.

In this paper we present the first completely formalized tool for interactive
mechanized relational verification of programs written in a concurrent higher-
order imperative programming language with continuations (call/cc and
throw). In more detail, we develop a novel logical relation which can be
used to give mechanized proofs of contextual refinement. We use our method
on challenging examples and prove, e.g., that a rudimentary web server
implemented using the continuation-based pattern is contextually equivalent to
one implemented without the continuation-based pattern.

7.1 Introduction

It is well-known that web servers are intricate to program, in particular because
one has to keep track of the complex evolution of the state of clients. Clients
can refresh pages, press back and forward buttons of the browser, and so
forth. Both researchers (Flatt, 2017; Krishnamurthi, Hopkins, McCarthy,
Graunke, Pettyjohn, and Felleisen, 2007; Queinnec, 2004) and practitioners
(Written in Racket; Might, 2017) have therefore advocated that one can simplify
web server implementations considerably by using explicitly captured (using
call/cc) server-side continuations. The point is that using continuations
simplifies the book-keeping of the clients’ state and hence allows for a more
direct style implementation of web servers, where the interaction with clients
can be programmed as though one was communicating through a console.

This continuation-based approach to web server implementation is in contrast
to the perhaps more common practice, which we refer to as state-storing, where
for every request, the server needs to analyze its internally stored state along
with the client request in order to determine the proper response. In the
continuation-based approach, the server simply resumes its internally stored
continuation when it gets a new request from the client. The Racket web
development community (Flatt, 2017) is probably the most prominent user of
continuation-based servers.
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Continuation-based servers make use of sophisticated programming language
features, in particular continuations and concurrency, each of which are
known to be very difficult to model and reason about. In this paper, we
develop a new model for reasoning about concurrent higher-order imperative
programs with continuations. Specifically, we develop a new logical relations
model for proving contextual equivalence of programs written in Fµ,ref

conc,cc,
a call-by-value programming language featuring concurrency, impredicative
polymorphism, recursive types, dynamically allocated higher-order store and
first-class continuations with call/cc and throw primitives. We employ this
logical relations model to prove (contextual) equivalence of two simple web
server implementations: a continuation-based one and a state-storing one.

We define our logical relations model in a variant of the Iris program logic
framework (Jung, Krebbers, Birkedal, and Dreyer, 2016; Jung, Swasey,
Sieczkowski, Svendsen, Turon, Birkedal, and Dreyer, 2015; Krebbers, Jung,
Bizjak, Jourdan, Dreyer, and Birkedal, 2017). Iris is a framework for state-of-
the-art higher-order concurrent separation logics. We use Iris because (1) it
allows us to define our logical relations and reason about them at a higher level
of abstraction (compared to an explicit model construction); (2) we side-step the
well-known type-world-circularity problems (Ahmed, Appel, and Virga, 2002;
Ahmed, 2004; Birkedal, Reus, Schwinghammer, Støvring, Thamsborg, and Yang,
2011) involved in defining logical relations for programming languages with
higher-order store (since that is already “taken care of” by the model of Iris); and
(3) we can leverage the Coq implementation of the Iris base logic (Krebbers, Jung,
Bizjak, Jourdan, Dreyer, and Birkedal, 2017) and the Iris Proof Mode (Krebbers,
Timany, and Birkedal, 2017) when mechanizing our development in Coq. Indeed,
accompanying this paper is a tool for mechanized relational verification of
concurrent programs with continuations. The mechanization has been done in
Coq and all the results in the paper have been formally verified.

One of the most important features of concurrent separation logics for reasoning
about concurrent imperative programs, e.g. Dinsdale-Young, Dodds, Gardner,
Parkinson, and Vafeiadis (2010), Dinsdale-Young, Birkedal, Gardner, Parkinson,
and Yang (2013), Jung, Krebbers, Birkedal, and Dreyer (2016), Jung, Swasey,
Sieczkowski, Svendsen, Turon, Birkedal, and Dreyer (2015), Krebbers, Jung,
Bizjak, Jourdan, Dreyer, and Birkedal (2017), Krebbers, Timany, and Birkedal
(2017), Ley-Wild and Nanevski (2013), Nanevski, Ley-Wild, Sergey, and
Delbianco (2014), O’Hearn (2007), Sergey, Nanevski, and Banerjee (2015),
Svendsen and Birkedal (2014), Turon, Dreyer, and Birkedal (2013), and da
Rocha Pinto, Dinsdale-Young, and Gardner (2014), is the support for modular
/ local reasoning. In particular, weakest preconditions and Hoare-triples enable
thread-local and context-local reasoning. Here thread-local means that we can
reason about each thread in isolation: when we reason about a particular thread,
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we need not explicitly consider interactions from other concurrently executing
threads. Similarly, context-local means that when we reason about a particular
expression, we need not consider under which evaluation context it is being
evaluated. The latter is sometimes codified by the soundness of a proof rule
such as the following:

Hoare-Bind (inadmissible in presence of continuations)
{P } e {Ψ} ∀w. {Ψ(w)}K[w] {Φ}

{P }K[e] {Φ}

The Hoare-triple {P } e {Ψ} intuitively means that, given precondition P ,
expression e is safe and, whenever it reduces to a value v, we are guaranteed
that Ψ(v) holds. Intuitively, the above rule expresses that to prove a Hoare
triple for an expression e in an evaluation context K, it suffices to prove a
property for e in isolation from K, and then show that the desired postcondition
Φ can be obtained when substituting a value w satisfying the postcondition
Ψ for e into the evaluation context. In a programming language with control
operators, e.g. call/cc and throw, the context under which a program is being
evaluated is of utmost importance, and thus the above proof rule is not sound
in general.

Thus, in general, when reasoning about concurrent programs with continuations
in a concurrent separation logic, we cannot use context-local reasoning. Hence
as part of this work, we develop new non-context-local proof rules for Hoare
triples. Those are somewhat more elaborate to use than the standard context-
local rules, but that is the price we have to pay to be able to reason in
general about non-local control flow. We define our logical relation in terms of
Hoare triples, following earlier work (Krebbers, Timany, and Birkedal, 2017;
Turon, Dreyer, and Birkedal, 2013), and thus we use the non-context-local
proof rules for establishing contextual equivalence of concurrent programs with
continuations (and also when proving the soundness of the logical relation
itself). To simplify reasoning about parts of programs that do not use control
operators, we introduce a new notion of context-local Hoare triples. They are
defined in terms of the non-context-local Hoare triples and therefore we are
able to mix and match reasoning steps using (non-context local) Hoare triples
and context-local Hoare triples.

Contributions In this paper, we make the following contributions:

• We present a program logic (weakest preconditions and Hoare-triples) for
reasoning about programs written in Fµ,ref

conc,cc, a programming language
with impredicative polymorphism, recursive types, higher-order functions,
higher-order store, concurrency and first-class continuations.
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• We present context-local weakest-preconditions and Hoare-triples which
simplify reasoning about programs without non-local control flow.

• We present a novel logical relations model for Fµ,ref
conc,cc.

• We use our logical relations model and context-local reasoning to prove
equivalence of two simple web server implementations: a continuation-
based one and a state-storing one.

• We further use our logical relations model to prove correctness of Friedman
and Haynes (1985) encoding of continuations by means of one-shot
continuations in a concurrent programming language.

• We have developed a fully formalized tool for mechanized interactive
relational verification of concurrent programs with continuations. Our
tool is developed on top of Iris, a state-of-the-art program logic framework,
and we have used it to mechanize all of our contributions in the Coq proof
assistant.

Before we begin with the more technical development, we show the essential
parts of a continuation-based and a store-based server, which we later on show
are contextually equivalent.

7.1.1 Two Servers

Figure 7.1 shows implementations of two handlers mimicking rudimentary web
servers. We use an ML-like syntax for the sake of brevity and legibility, but all
our example programs can be written in the syntax of our programming language,
Fµ,ref

conc,cc, and that is indeed what we have done in our Coq formalization. Given
a connection, serverConnT, a pair of functions for reading and writing, each
handler will sum up the numbers given by the client so far, and return the
sum back to the client together with a resumption id. The client may chose to
resume an old computation by giving a new number along with a resumption
id or simply make a request to start a computation by giving the first number
in the sum to be computed.

handler1 is a store-based implementation, which stores each state (the sum so
far) together with a resumption id in a table. handler2 is a continuation-based
implementation. It simply implements a loop in a fashion as though the user
interaction is taking place over a terminal rather than between a client and
a server. This loop prints the sum so far and subsequently reads from the
client. The operation of reading a value from the client is implemented using
the call/cc command to capture the current continuation. The captured
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1 let handler1 : ServerConnT -> 1 =
2 let tb = newTable () in
3 fun (cn : ServerConnT ) ->
4 let (reader , writer ) = cn in
5 match reader () with
6 (Some cid , n) ->
7 begin
8 match get tb cid with
9 None -> () (* unknown resumption id! *)

10 | Some sum ->
11 writer ( result (sum + n));
12 writer ( resumptionid ( associate tb (sum + n)));
13 abort
14 end
15 | (None , n) ->
16 writer ( result n);
17 let cid = associate tb n
18 in writer ( resumptionid cid)

1 let read_client tb writer =
2 callcc (k. writer ( resumptionid ( associate tb k));
3 abort)
4

5 let handler2 : ServerConnT -> 1 =
6 let tb = newTable () in
7 fun (cn : ServerConnT ) ->
8 let (reader , writer ) = cn in
9 match reader () with

10 (Some cid , n) ->
11 begin
12 match get tb cid with
13 | None -> () (* unknown resumption id! *)
14 | Some k -> throw (n, reader , writer ) to k
15 end
16 | (None , n) ->
17 let rec loop m reader writer =
18 writer ( result m);
19 let (v, reader , writer ) = read_client tb writer in
20 loop (m + v) reader writer
21 in loop n reader writer

Figure 7.1: Two server handlers: one storing the state of the server explicitly
(top) and one storing the continuation (bottom)
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continuation is associated to a resumption id which is given to the client, so
that it may continue the computation by providing a new value to be added to
the current sum along with the resumption id in question. Note that since after
“reading from the client”, we will be communicating with the client on a different
connection, we need the read_client function to return the new connection as
well as the “read value”.1 See Queinnec (2004) and Krishnamurthi, Hopkins,
McCarthy, Graunke, Pettyjohn, and Felleisen (2007) for more details on how
these kinds of web servers are implemented and used.

One important advantage of using the continuation-based server implementation
strategy is scalability. In our rudimentary example in Figure 7.1, the state of the
server for each client is primitively simple: the current sum! In general, the state
of the web server can be fairly complex. For instance, for a simple web shop,
the state of the server for each client includes at the very least: authentication,
the contents of the shopping basket, and the information corresponding to
every completed stage of ordering: shipping address, shipping method, payment
method, payment having been processed or not, etc. Indeed, the complexity
of the state is in some cases the main reason for functionality flaws in web
applications (Krishnamurthi, Hopkins, McCarthy, Graunke, Pettyjohn, and
Felleisen, 2007).

A store-based server implementation for such a web shop could be implemented
as follows:
. . .

match reader () with
(Some cid , req) ->
begin

match get cid with
None -> () (* unknown resumption id! *)

| Some state -> resumeShopping req state
end

| (None , req) -> startShopping req
. . .

Here the startShopping function initializes a session and displays the home page.
When given the stored state and the current request, the resumeShopping function
has to resume the operation by determining what needs to be done based on
the given state:
let resumeShopping state =

if not state. authenticated then authenticate ()
else if state. address = None then . . .
else if . . .

1The command abort is the command that ends the program (thread) and can be written
in our programming language as throw () to - where - is the empty evaluation context.
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On the other hand, the continuation-based implementation can be implemented
as follows:
. . .

match reader () with
(Some cid , req) ->
begin

match get cid with
None -> () (* unknown resumption id! *)

| Some k -> throw (req , reader , writer ) to k
end

| (None , req) -> startShoppingCC req
. . .

Here the function startShoppingCC is implemented in a much more direct style,
as though it is interfacing with the user on a console:
let startShoppinCC req =

let ( credentials , reader , writer ) = authenticate () in
let ( shippingaddr , reader , writer ) = getShippingAddress ()
in . . .

This works, because the continuation keeps track of the state (!) and thus,
we need not case analyze explicitly on stored state. Note also that in the
continuation-based reader, when a valid resumption id is provided, the program
simply uses the stored continuation.

A server program using either of our two handlers could be implemented as
follows:
let rec serve ( listener : 1 -> ServerConnT )

( handler : ServerConnT -> 1) : 1 =
let v = listener () in
fork { handler v}; serve listener handler

This server program accepts a listener (a function returning a connection) and
a handler. It loops, waiting for connections. For each connection it creates a
new thread and hands the connection over to its handler. This server program
can be applied to any proper listener and either of the handlers depicted in
Figure 7.1.

The following is an example of a client program that can interface with the
above server (when instantiated with either handler):

1 let send_receive cid number =
2 let (reader1 , writer1 , reader2 , writer2 ) =
3 newConnection ()
4 in contact_server (reader2 , writer1 );
5 writer1 (cid , number ); reader2 ()
6
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7 let client () =
8 let (cid1 , ans1) = send_receive None 10 in
9 (* ans1 = 10 *)

10 let (cid2 , ans2) = send_receive (Some cid1) 5 in
11 (* ans2 = 15 *)
12 let (cid3 , ans3) = send_receive (None) 17 in
13 (* ans3 = 17 *)
14 let (cid4 , ans4) = send_receive (Some cid3) 9 in
15 (* ans4 = 26 *)
16 let (cid5 , ans5) = send_receive (Some cid1) 19 in
17 (* ans5 = 29 *)
18 let (cid6 , ans6) = send_receive (Some cid2) 17 in
19 (* ans6 = 32 *)
20 ()

It shows that a client can indeed go back and forth on the state, e.g., by pressing
the back button in the browser. For instance, the resumption id cid1 is resumed
twice, once on line 10 and once on line 16, with a few interactions there in
between. In this program the function send_receive creates a new connection,
sends it to the server (establishing a connection to the server) and subsequently
makes the request and retrieves the response from the server and returns it.

7.2 The language: Fµ,ref
conc,cc

The language that we consider in this paper, Fµ,ref
conc,cc, is a typed lambda calculus

with a standard call-by-value small-step operational semantics. It features
impredicative polymorphism, recursive types, higher-order mutable references,
fine-grained concurrency and first-class continuations. The types of Fµ,ref

conc,cc are
as follows:

τ ::= X | 1 | B | N | τ → τ | ∀X. τ | µX. τ | τ × τ | τ + τ | ref(τ) | cont(τ)

The type ref(τ) is the type of references with contents of type τ and cont(τ)
is the type of continuations that can be resumed by throwing them a value of
type τ .

The syntax for expressions and values is:

e ::= x | () | true | false | n | e} e | rec f(x) = e | e e | Λ e | e _ | fold e

| unfold e | (e, e) | πi e | inji e | match e with inji x⇒ ei end | `

| ref(e) | ! e | e← e | CAS(e, e, e) | fork {e} | cont(K) | call/cc (x. e)
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| throw e to e

v ::= () | true | false | n | rec f(x) = e | Λ e | fold v | (v, v) | inji v | `

| cont(K)

We write n for natural numbers and the symbol } stands for binary operations
on natural numbers (both basic arithmetic operations and basic comparison
operations). We consider both recursive functions rec f(x) = e and polymorphic
type abstractions Λ e value. We write e _ for type level application (e is a
polymorphic expression). We use fold and unfold to fold and unfold elements
of recursive types. Memory locations loc are values of reference types. The
expression ! e reads the memory location e evaluates to, and e ← e′ is an
assignment of the value computed by e′ to the memory location computed by e.
The expression fork {e} is for forking off a new thread to compute e and we
write CAS(e, e′, e′′) for the compare-and-set operation. A continuation, cont(K),
is essentially a suspended evaluation context (see the operational semantics
below).

Evaluation contexts of Fµ,ref
conc,cc are as follows:

K ::= − | K e | v K | K _ | foldK | unfoldK | ifK then e else e | (K, e)

| (v,K) | πiK | injiK | matchK with inji x⇒ ei end | ref(K) | !K

| K ← e | v ← K | CAS(K, e, e) | CAS(v,K, e) | CAS(v, v,K)

| throwK to e | throw v toK

The evaluation context − is the empty evaluation context.

7.2.1 Typing

An excerpt of the typing rules is depicted in Figure 7.2. The context Ξ =
α1, . . . , αn is a list of distinct type variables and the context Γ = x1 : τ1, . . . xn; τn
assigns types to program variables. The notation K : (Ξ | Γ; τ)  (Ξ | Γ; τ ′)
means that the evaluation context K satisfies the property that Ξ | Γ ` K[e] : τ ′
holds whenever Ξ | Γ ` e : τ does.

7.2.2 Operational semantics

We define the call-by-value small-step operational semantics of Fµ,ref
conc,cc in two

stages. We first define a head-step relation →K . Here, K is the context under
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T-Var
x : τ ∈ Γ

Ξ | Γ ` x : τ
T-Unit
Ξ | Γ ` () : 1

T-Nat
Ξ | Γ ` n : N

T-TLam
Ξ, X | Γ ` e : τ

Ξ | Γ ` Λ e : ∀X. τ

T-Rec
Ξ | Γ, x : τ, f : τ → τ ′ ` e : τ ′

Ξ | Γ ` | rec f(x) = e : τ → τ ′

T-TApp
Ξ | Γ ` e : ∀X. τ

Ξ | Γ ` e _ : τ [τ ′/X]

T-Fold
Ξ | Γ ` e : τ [µX. τ/X]
Ξ | Γ ` fold e : µX. τ

T-UnFold
Ξ | Γ ` e : µX. τ

Ξ | Γ ` unfold e : τ [µX. τ/X]

T-Ref
Ξ | Γ ` e : τ

Ξ | Γ ` ref(e) : ref(τ)

T-DeRef
Ξ | Γ ` e : ref(τ)

Ξ | Γ ` ! e : τ

T-Fork
Ξ | Γ ` e : τ

Ξ | Γ ` fork {e} : 1

T-Cont
K : (Ξ | Γ; τ) (Ξ | Γ; τ ′)
Ξ | Γ ` cont(K) : cont(τ)

T-Assign
Ξ | Γ ` e : ref(τ) Ξ | Γ ` e′ : τ

Ξ | Γ ` e← e′ : 1

T-CAS
Ξ | Γ ` e1 : ref(τ) Ξ | Γ ` e2 : τ Ξ | Γ ` e3 : τ

Ξ | Γ ` CAS(e1, e2, e3) : 1

T-Call/cc
Ξ | Γ, x : cont(τ) ` e : τ
Ξ | Γ ` call/cc (x. e) : τ

T-Throw
Ξ | Γ ` e : τ Ξ | Γ ` e′ : cont(τ)

Ξ | Γ ` throw e to e′ : τ ′

Figure 7.2: An excerpt of the typing rules
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((rec f(x) = e) v, σ)→K (e[v, (rec f(x) = e)/x, f], σ)

((Λ e) _, σ)→K (e, σ) (unfold (fold v), σ)→K (v, σ)

(if true then e2 else e3, σ)→K (e2, σ) (π1 (v1, v2), σ)→K (v1, σ)

` 6∈ dom(σ)
(ref(v), σ)→K (`, σ ] {` 7→ v})

σ = σ′ ] {` 7→ v′}
(`← v, σ)→K ((), σ′ ] {` 7→ v})

v = σ(`)
(! `, σ)→K (v, σ)

σ = σ′ ] {` 7→ v}
(CAS(`, v, v′), σ)→K (true, σ′ ] {` 7→ v′})

σ = σ′ ] {` 7→ v′′} v 6= v′′

(CAS(`, v, v′), σ)→K (false, σ)
(call/cc (x. e), σ)→K (e[cont(K)/x], σ)

Figure 7.3: An excerpt of the head-reduction rules

which the head step is being performed. Based on this, we define the operational
semantics of programs by what we call the thread-pool step relation →. A thread
pool reduces by making a head reduction step in one of the threads, by forking
off a new thread, or by resuming a captured continuation:

(e, σ)→K (e′, σ′)
(~e1,K[ e ], ~e2;σ)→ (~e1,K[ e′ ], ~e2;σ′)

(~e1,K[ fork {e} ], ~e2;σ)→ (~e1,K[ () ], ~e2, e;σ)

(~e1,K[ throw v to cont(K ′) ], ~e2;σ)→ (~e1,K
′[ v ], ~e2;σ)

Here, σ is the physical state of the program, i.e., the program heap, which is a
finite partial map from memory locations to values. An excerpt of the head-step
relation is given in Figure 7.3. Notice that the head-step for call/cc captures
the continuation that is the index of the head-step relation.

Contextual refinement/equivalence A program e contextually refines a
program e′ of type τ if both programs have type τ and no well-typed context
(a closed top-level program with a hole) can distinguish a situation where e′ is
replaced by e.
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Ξ | Γ ` e ≤ctx e
′ : τ , Ξ | Γ ` e : τ ∧ Ξ | Γ ` e′ : τ∧

∀K. K : (Ξ | Γ; τ) (· | ·; 1) ∧K[ e ] ⇓ ⇒ K[ e′ ] ⇓

where
e ⇓ , ∃v,~e, σ. (e; ∅)→∗ (v,~e;σ)

The intuitive explanation above for contextual refinement is the reason why in
a contextual refinement e ≤ctx e or in a logical relatedness relation e ≤log e

′,
usually, the program on the left hand side, e, is referred to as the implementation
side and the program on the right hand side, e′, is referred to as the specification
side.

Two programs are contextually equivalent, if each contextually refines the other:

Ξ | Γ ` e ≈ctx e
′ : τ , Ξ | Γ ` e ≤ctx e

′ : τ ∧ Ξ | Γ ` e′ ≤ctx e : τ

7.3 Logical relations

It is challenging to construct logical relations for languages with higher-
order store because of the so-called type-world circularity (Ahmed, Appel,
and Virga, 2002; Ahmed, 2004; Birkedal, Reus, Schwinghammer, Støvring,
Thamsborg, and Yang, 2011). The logic of Iris is rich enough to allow for a
direct inductive specification of the logical relations for programming languages
with advanced features such as higher-order references, recursive types, and
concurrency (Krebbers, Timany, and Birkedal, 2017; Krogh-Jespersen, Svendsen,
and Birkedal, 2017; Timany, Stefanesco, Krogh-Jespersen, and Birkedal, 2018).

7.3.1 An Iris primer

Iris (Jung, Krebbers, Birkedal, and Dreyer, 2016; Jung, Swasey, Sieczkowski,
Svendsen, Turon, Birkedal, and Dreyer, 2015; Krebbers, Jung, Bizjak, Jourdan,
Dreyer, and Birkedal, 2017) is a state-of-the-art higher-order concurrent
separation logic designed for verification of programs.

In Iris one can quantify over the Iris types κ:

κ ::= 1 |κ× κ |κ→ κ |Ectx |Var |Expr |Val |N |B |κ fin−⇀ κ |finset(κ) |Monoid
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|Names | iProp | . . .

Here Ectx, Var, Expr and Val are Iris types for evaluation contexts, variables,
expressions and values of Fµ,ref

conc,cc. Natural numbers, N, and Booleans B are also
included among the base types of Iris. Iris also features partial maps with finite
support κ fin−⇀ κ and finite sets, finset(κ). Resources in Iris are represented using
partial commutative monoids, Monoid, and instances of resources are named
using so-called ghost-names Names. Finally, and most importantly, there is a
type of Iris propositions iProp. The grammar for Iris propositions is as follows:

P ::= > | ⊥ | P ∗ P | P −∗ P | P ∧ P | P ⇒ P | P ∨ P | ∀x : κ. Φ | ∃x : κ. Φ

| .P | µr.P | �P | wp e {x. P} | {P } e {x. Q} | |VP | P N | . . .

Here, >, ⊥, ∧, ∨, ⇒, ∀, ∃ are the standard higher-order logic connectives. The
predicates Φ are Iris predicates, i.e., terms of type κ→ iProp.

The connective ∗ is the separating conjunction. Intuitively, P ∗ Q holds if
resources owned can be split into two disjoint pieces such that one satisfies P
and the other Q. The magic wand connective P −∗ Q is satisfied by resources
such that when these resources are combined with some resource satisfying P
the resulting resources would satisfy Q.

The . modality, pronounced “later” is a modality that intuitively corresponds
to some abstract form of step-indexing (Appel and McAllester, 2001; Appel,
Melliès, Richards, and Vouillon, 2007; Dreyer, Ahmed, and Birkedal, 2011).
Intuitively, .P holds if P holds one step into the future. Iris has support for
taking fixed points of guarded propositions, µr.P . This fixed point can only be
defined if all occurrences of r in P are guarded, i.e., appear under a . modality.
We use guarded fixed points for defining the interpretation of recursive types in
Fµ,ref

conc,cc. For any proposition P we have P ` .P .

When the modality � is applied to a proposition P , the non-duplicable resources
in P are forgotten, and thus �P is “persistent.” In general, we say that a
proposition P is persistent if P a` �P (where a` is the logical equivalence of
Iris propositions). A key property of persistent propositions is that they are
duplicable: P a` P ∗ P . The type system of Fµ,ref

conc,cc is not a sub-structural
type system and variables (in the typing environment) may be used multiple
times. Therefore when we interpret types as logical relations in Iris, then those
relations should be duplicable. We use the persistence modality � to ensure
this.

Iris facilitates specification and verification of programs by means of weakest-
preconditions wp e {v. P}, which intuitively hold whenever e is safe and,



LOGICAL RELATIONS 161

moreover, whenever e terminates with a resulting value v, then P [v/x] holds.
When x does not appear in P we write wp e {x. P} as wp e {P}. Also, we
sometimes write wp e {Φ} for wp e {x. Φ(x)}

In Iris, Hoare triples are defined in terms of weakest preconditions like this:
{P } e {v. Q} , � (P −∗ wp e {v. Q}). Note that the � modality ensures that
the Hoare triples are persistent and hence duplicable (in separation logic jargon,
Hoare triples should just express “knowledge” and not claim ownership of any
resources).

A key feature of Iris (as for other concurrency logics) is that specification
and verification is done thread-locally: the weakest precondition only describes
properties of execution of a single thread. Concurrent interactions are abstracted
and reasoned about in terms of resources (rather than by explicit reasoning about
interleavings). For programming languages that do not include continuations
or other forms of non-local control flow, the weakest precondition is not only
thread-local, but also what we may call context-local. Context-local means that
to reason about an expression in an evaluation context, it suffices to reason
about the expression in isolation, and then separately about what the context
does to the resulting value. This form of context-locality is formally expressed
by the soundness of the following bind rule

inadmissible-bind
wp e {v. wpK[v] {Φ}}

wpK[e] {Φ}

Clearly, this rule is not sound when expressions include call/cc (since call/cc
captures the context its behaviour depends on the context). See Appendix F
for a proof of inadmissibility of this rule.

Thus, for reasoning about Fµ,ref
conc,cc we cannot use the “standard” Iris rules (Jung,

Krebbers, Birkedal, and Dreyer, 2016; Jung, Swasey, Sieczkowski, Svendsen,
Turon, Birkedal, and Dreyer, 2015; Krebbers, Jung, Bizjak, Jourdan, Dreyer, and
Birkedal, 2017; Krebbers, Timany, and Birkedal, 2017) for weakest preconditions.
Instead, we use new rules such as the following — the difference from the
standard rules is that our new rules include an explicit context K (earlier, such
rules could be derived using the bind rule, but that is not sound in general
so we cannot do that). Note that the context is used in the rules callcc-wp
and throw-wp for call/cc and throw. These two rules directly reflect the
operational semantics of call/cc and throw.

fst-wp
.wpK[v] {Φ}

wpK[π1 (v, w)] {Φ}

if-true-wp
.wpK[e] {Φ}

wpK[if true then e else e′] {Φ}
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rec-wp
.wpK[e[rec f(x) = e, v/f, x]] {Φ}

wpK[(rec f(x) = e) v] {Φ}

callcc-wp
.wpK[e[cont(K)/x]] {Φ}
wpK[call/cc (x. e)] {Φ}

throw-wp
.wpK ′[v] {Φ}

wpK[throw v to cont(K ′)] {Φ}

In summa, for Fµ,ref
conc,cc we use new non-context-local rules for reasoning about

weakest preconditions, and the non-context-local rules allow us to reason about
call/cc and throw.

Because of the explicit context K, the non-context-local rules for weakest
preconditions are somewhat more elaborate to use than the corresponding
context-local rules. However, that is the price we have to pay to be able to
reason in general about non-local control flow. In Section 7.4 we will see how
we can still recover a form of context-local weakest precondition for reasoning
about those parts of the program that do not use non-local control flow.

In the rules above, the antecedent is only required to hold a step of computation
later (.) — that is because these rules correspond to expressions performing a
reduction step.

The update modality |V accounts for updating (allocation, deallocation and
mutation) of resources.2 Intuitively, |VP is satisfied by resources that can be
updated to new resources for which P holds. For any proposition P , we have
that P ` |VP . If P holds, then resources can be updated (trivially) so as to
have that P holds. The update modality is also idempotent, |V|VP a` |VP .
We write P ≡−∗ Q as shorthand for P −∗ |VQ. Crucially, resources can be
updated throughout a proof of weakest preconditions:

|Vwp e {Φ} a` wp e {Φ} a` wp e {v. |VΦ(v)}

Iris features invariants P
N for enforcing concurrent protocols. Each invariant

P
N has a name, N , associated to it. Names are used to keep track of which

invariants are open.3 Intuitively, P N states that P always holds. The following
2This modality is called the fancy update modality in Krebbers, Jung, Bizjak, Jourdan,

Dreyer, and Birkedal (2017).
3Officially in Iris, the update modality is in fact annotated with so-called masks (sets of

invariant names), which are used to ensure that invariants are not re-opened. For simplicity,
we do not include masks in this paper.
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rules govern invariants.

inv-alloc
.P

|V P
N

inv-open-wp
e is atomic

R
N (.R) −∗ wp e {y. (.R) ∗ wpK[y] {x. Q}}

wpK[e] {x. Q}

These rules say that invariants can always be allocated by giving up the resources
being protected by the invariant and they can be kept opened only during
execution of physically atomic operations. Iris invariants are impredicative, i.e.,
they can state P holds invariantly for any proposition P , including invariants.
This is why the later operator is used as a guard to avoid self-referential paradoxes
(Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal, 2017). Invariants
essentially express the knowledge that some proposition holds invariantly. Hence,
invariants are always persistent, i.e., P N a` � P

N .

7.3.2 Resources used in defining logical relations

We need some resources in order to define our logical relations in Iris. We need
resources for representing memory locations of the implementation side, the
memory locations of the specification side and the expression being evaluated
on the specification side. These resources are written as follows:

– ` 7→i v: memory location ` contains value v on the implementation side.

– ` 7→s v: memory location ` contains value v on the specification side.

– j Z⇒ e: the thread j on the specification is about to execute e.

These resources are defined using more primitive resources in Iris, but we omit
such details here. What is important is that we can use these resources to reason
about programs. In particular, we can derive the following rules (and similarly
for other basic expressions) for weakest preconditions and for execution on the
specification side.

∀`. ` 7→i v −∗ wpK[`] {Φ}
wpK[ref(v)] {Φ}

` 7→i v −∗ wpK[v] {Φ} . ` 7→i v

wpK[! `] {Φ}

` 7→i w −∗ wpK[()] {Φ} . ` 7→i v

wpK[`← w] {Φ}
j Z⇒ K[ref(v)]

|V∃`. ` 7→s v ∗ j Z⇒ K[`]

` 7→s v j Z⇒ K[! `]
|V` 7→s v ∗ j Z⇒ K[v]

` 7→s v j Z⇒ K[`← w]
|V` 7→s w ∗ j Z⇒ K[()]
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These resources are all exclusive in the sense that:

` 7→i v ∗ ` 7→i v
′ ` ⊥ ` 7→s v ∗ ` 7→s v

′ ` ⊥ j Z⇒ e ∗ j Z⇒ e′ ` ⊥

7.3.3 Logical relations in Iris

Figure 7.4 presents our binary logical relation for Fµ,ref
conc,cc. We define the logical

relation in several stages. The first thing we define is the relation of observational
refinement. Intuitively, an expression e observationally refines an expression e′
if, whenever e reduces to a value so does e′. We define this in Iris using magic
wand and weakest precondition. The whole formula reads as follows: Assuming
that there is some thread j on the specification side that is about to execute e′
(represented in Iris by j Z⇒ e′) then, after execution of e, we know that thread j
on the specification side has also been executed to some value w.

We then use the notion of observational refinement defined above to define the
value relation, the expression relation and the evaluation context relation for
each type. In contrast to earlier definitions of logical relations in Iris (Krebbers,
Timany, and Birkedal, 2017; Krogh-Jespersen, Svendsen, and Birkedal, 2017;
Timany, Stefanesco, Krogh-Jespersen, and Birkedal, 2018), our logical relation is
an example of so-called biorthogonal logical relations (Pitts, 2005), also known as
top-top closed logical relations. That is, we define two expressions to be related if
plugging them into related evaluation contexts results in observationally related
expressions. Two evaluation contexts are defined to be related if plugging related
values into them results in observationally related expressions.

The value relation interpretation JΞ ` τK∆ of a type in context is defined by
induction on τ . Here ∆ is an environment mapping type variables in Ξ to Iris
relations. For all the non-continuation types, the definition is exactly as in for
the language without call/cc, see Krebbers, Timany, and Birkedal (2017), and
thus we only include the cases for type variables, Booleans and function types
in addition to the new case for the continuation types (the full definition can
be found in Appendix F).

Two values of the Boolean type B are related if they are both true or they are
both false. The value relation for functions types τ → τ ′ expresses that two
values of the function type are related if whenever applied to related values of the
domain type, τ , the resulting expressions are related at the codomain type, τ ′.
The use of the persistently modality here is to make sure that the interpretations
are persistent. Finally, the relational interpretation of cont(τ) expresses that
two continuations are related whenever their corresponding evaluation contexts
are related at the evaluation context relation for the type in question.
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Observational refinement: O : Expr× Expr→ iProp

O(e, e′) , ∀j. j Z⇒ e′ −∗ wp e {∃w. j Z⇒ w}

Value interpretation of types: JΞ ` τK∆ : Val × Val → iProp for ∆ : Var →
(Val×Val)→ iProp

JΞ ` XK∆ , ∆(X)

JΞ ` BK∆(v, v′) , v = v′ = true ∨ v = v′ = false

JΞ ` τ → τ ′K∆(v, v′) , �
(
∀w,w′. JΞ ` τK∆(w,w′)⇒ JΞ ` τ ′KE∆(v w, v′ w′)

)
JΞ ` cont(τ)K∆(v, v′) , ∃K,K ′. v = cont(K) ∧ v′ = cont(K ′)∧

KJΞ ` τK∆(K,K ′)

Evaluation context interpretation of types: KJΞ ` τK∆ : Ectx× Ectx→ iProp
for ∆ : Var→ (Val×Val)→ iProp

KJΞ ` τK∆(K,K ′) , ∀v, v′. JΞ ` τK∆(v, v′)⇒ O(K[v],K ′[v′])

Expression interpretation of types: JΞ ` τKE∆ : Expr × Expr → iProp for
∆ : Var→ (Val×Val)→ iProp

JΞ ` τKE∆(e, e′) , ∀K,K ′. KJΞ ` τK∆(K,K ′)⇒ O(K[e],K ′[e′])

Logical relatedness: Ξ | Γ � e ≤log e
′ : τ : iProp

Ξ | Γ � e ≤log e
′ : τ , ∀∆, #»v ,

#»

v′.

(∗
xi:τi

JΞ ` τiK∆(vi, v′i)
)
⇒

JΞ ` τKE∆(e[ #»v / #»x ], e′[
#»

v′/ #»x ])

if Γ = x1 : τ1, . . . , xn : τn

Figure 7.4: An excerpt of the logical relations for Fµ,ref
conc,cc
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The evaluation context relation KJΞ ` τK∆ relates evaluation contexts K and
K ′ if plugging related values of type τ in them results in observationally related
expressions.

The expression relation is the standard biorthogonal expression relation. It
states that KJΞ ` τK∆(e, e′) holds whenever, for any two related evaluation
contexts K and K ′, the expressions K[e] and K ′[e′] are observationally related.

The notion of logical relatedness states, as usual for call-by-value languages,
that two expressions e and e′ are logically related if substituting related values
for their free variables results in related expressions.

We can now state and prove the fundamental theorem of logical relations for
Fµ,ref

conc,cc. The theorem expresses that any well-typed expression is logically
related to itself.

Theorem 7.3.1 (Fundamental theorem of logical relations).

Ξ | Γ ` e : τ ⇒ Ξ | Γ � e ≤log e : τ

This theorem is proven by induction on the typing derivation using the basic
rules for weakest-preconditions and executions on the specification side.

The above theorem, together with some basic properties of observational
refinement, implies the soundness of our logical relations, i.e., that logical
relatedness implies contextual refinement:

Theorem 7.3.2 (Soundness of logical relations).

Ξ | Γ � e ≤log e
′ : τ ⇒ Ξ | Γ � e ≤ctx e

′ : τ

Our logical relation is expressed in terms of weakest preconditions and the
proofs of the above theorems use the earlier presented proof rules for weakest
preconditions. Before turning to applications, we pause to present context-local
weakest preconditions, which we can use to simplify reasoning about program
fragments, which do not use non-local control flow.

7.4 Context-local weakest preconditions (CLWP)

To make it simpler to reason about expressions that do not use non-local
control flow, we define a new notion of context-local weakest precondition. The
definition is given in terms of the earlier weakest precondition, which, as we
will explain below, means that we will be able to mix and match reasoning
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steps using (non-context local) weakest preconditions and context-local weakest
preconditions.

Definition 7.4.1. The context-local weakest precondition of e wrt. Φ is defined
as:

clwp e
{
Φ
}
, ∀K,Ψ. (∀v. Φ(v) −∗ wpK[v] {Ψ}) −∗ wpK[e] {Ψ}

Note how the above definition essentially says that clwp e
{
Φ
}
holds if the bind

rule holds for e, which intuitively means that e does not use non-local control
flow. Therefore, the bind rule is sound for context-local weakest preconditions:

bind
clwp e

{
v. clwpK[v]

{
Φ
}}

clwpK[e]
{
Φ
}

Moreover, the “standard” rules for the basic language constructs (excluding
call/cc and throw, of course) can also be derived for context-local weakest
preconditions: Here is an excerpt of the rules that we can derive:

fst-clwp
. clwp v

{
Φ
}

clwp π1 (v, w)
{
Φ
} if-true-clwp

. clwp e
{
Φ
}

clwp if true then e else e′
{
Φ
}

rec-clwp
. clwp e[rec f(x) = e, v/f, x]

{
Φ
}

clwp (rec f(x) = e) v
{
Φ
} alloc-clwp

clwp ref(v)
{
w. ∃`.w = ` ∗ ` 7→i v

}
load-clwp

. ` 7→i v

clwp ! `
{
w. w = v ∗ ` 7→i v

}
We can also use invariants during atomic steps of computation while proving
context-local weakest preconditions:

inv-open-clwp
R
N (.R) −∗ clwp e

{
v. (.R) ∗Q

}
e is atomic

clwp e
{
v. Q

}
Now we have both (non-context-local) weakest preconditions and context-local
weakest preconditions. What is the upshot of this? The key point is that
when we prove correctness / relatedness of programs, then we can use the
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simpler context-local weakest preconditions for reasoning about those parts
of the program which are context local (do not use call/cc or throw) and
only use the (non-context-local) weakest preconditions for reasoning about
those parts that may involve non-local control flow. This fact is expressed
formally by the following derivable rule, which establishes a connection between
weakest-preconditions and context-local weakest preconditions.

clwp-wp
clwp e

{
Ψ
}

∀v. Ψ(v) −∗ wpK[v] {Φ}
wpK[e] {Φ}

This rule basically says that if we know that e context-locally guarantees
postcondition Ψ then we can prove wpK[e] {Φ} by assuming that locally, under
the context K, it will only evaluate to values that satisfy Ψ. Moreover, it
guarantees that evaluation of e does not tamper with the evaluation context
that we are considering it under.

Similarly to Hoare-triples above, we define context-local Hoare-triples based on
context-local weakest preconditions:

{P }cl e {v. Q} , �
(
P −∗ clwp e

{
v. Q

})

7.5 Case study: server with continuations

In this section we show that the two server implementations discussed
in the Introduction, the continuation-based implementation and the state-
storing implementation, are contextually equivalent. Note that our server
implementations are parameterized on a pair of functions, one for reading
requests from the client and one for writing to the client. The idea is that
these functions are an abstraction of a TCP connection and thus the contextual
equivalence can be understood as showing that clients cannot distinguish between
the two implementations.

The crux of the proof of contextual equivalence is proving that the two handlers
in Figure 7.1 are contextually equivalent. Both of these handlers start out by
establishing an empty table for storing their resumptions. In the state-storing
implementation, the table is used to store the state (the sum so far), while in
the continuation-based implementation, the table stores the continuation. After
creating the tables, both implementations return functions which are the actual
handlers. These functions internally use their respective tables to store and
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look-up resumptions. The table implementation itself is straightforward and
thus omitted. It uses a spin lock (omitted) for synchronization. Since the table
and the lock do not make use of call/cc and throw, we employ context-local
weakest preconditions to give relational specifications for them. Hence we can
reason about the table and lock implementations in the way we usually do in Iris
for concurrent programs without continuations. When proving relatedness of
the handlers, which we do using (non context-local) weakest preconditions, the
clwp-wp rule allows us to make use of the context-local relational specifications
of the table and lock.

In the rest of this section we will first present and discuss our relational
specifications for the table and the lock. After that we will discuss the logical
relatedness of the two handlers. Our relational specifications for the table
and the lock are stronger than the specifications one usually encounters in the
literature. We need this strengthening because the continuations stored in the
table refers to the table itself in the continuation-based implementation. This
is, fundamentally, also the reason why, although the table code is identical in
both handlers, we cannot use the fundamental theorem of logical relations to
conclude that they are related in a sufficiently strong way.

7.5.1 Relational spec for the table and the lock

We now discuss the relational specifications for the tables and the locks that they
use for synchronization. All the reasoning in this subsection is context-local,
using the primitive rules for context-local weakest preconditions. The table
specifications are used in the proof of relatedness of the handlers, which we
discuss in the following subsection.

The essence of relating the tables on both sides (specification side and
implementation side) is simple. The contents of new tables are related (as
they are both empty) and we only store values that are suitably related. Hence,
when looking the table up we are guaranteed to receive related values, if any.
This is formally captured in the following relational specifications:

{j Z⇒ K[newTable ()]}cl newTable ()

{v. ∃v′. j Z⇒ K[v′] ∗ ∀Φ. |V∃γ. relTables(v, v′, γ, Φ)}
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{relTables(tb, tb′, γ, Φ) ∗ j Z⇒ K[get tb′ n]}cl get tb n

{v. ∃v′. j Z⇒ K[v′] ∗
(
v = v′ = None∨

(∃w,w′ v = Some(w) ∧ v′ = Some(w′) ∗ Φ(v, v′))
)}

{relTables(tb, tb′, γ, Φ) ∗ Φ(v, v′)

∗ j Z⇒ K[associate tb′ v] }cl
associate tb v

{v. ∃n. v = n ∗ j Z⇒ K[n]}

The specifications for get and associate are exactly as we explained above. The
most important part of this spec is the persistent proposition relTables(v, v′, γ, Φ)
which intuitively says that the tables v and v′ have contents that are pair-wise
related by the binary predicate Φ. The name γ for ghost resources is used
for synchronization purposes. The specification of newTable is stronger than
usual in that it guarantees that for any user picked predicate we can obtain
that the two tables are related. Contrast this with the weaker standard style
specification

∀Φ. {j Z⇒ K[newTable ()]}cl newTable ()

{v. ∃v′. j Z⇒ K[v′] ∗ ∃γ. relTables(v, v′, γ, Φ)}

(weaker standard spec)

which quantifies over Φ outside the whole triple.

Notice that with our stronger specification we can refer to the tables themselves
in the predicate Φ that we pick for relating the contents, whereas in the
(weaker standard spec) specification one has to pick this relation beforehand,
and hence one cannot refer to the tables v and v′ because they have not been
created yet!

The predicate relTables(tb, tb′, γ, Φ) is defined in terms of the relLocks predicate,
which pertains to the relational specification of spin locks given below.

relTables(tb, tb′, γ, Φ) , relLocks(tb.lock, tb′.lock, γ, PΦ)
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PΦ , ∃ls. contents(tb,map π1 ls) ∗ contents(tb′,map π2 ls)

∗ ∗
(x,x′)∈ls

Φ(x, x′)

Here tb.lock is the lock associated with the table tb. The proposition PΦ above
simply states that the there is a list of pairs of values, which are pairwise related
by Φ and, moreover, that the first projections of these pairs are stored in the
implementation side table and the second projections of these pairs are stored
in the specification side table. The contents predicate simply specifies that the
index of an element in the table is its index in the list.

Relational spec for the spin lock We use the following relational specification
for relating the locks used on the implementation and the specification side.

{j Z⇒ K[newlock ()]}cl

newlock ()

{v. ∃v′. j Z⇒ K[v′] ∗ ∀P.P ≡−∗ ∃γ. relLocks(v, v′, γ, P )}

{relLocks(v, v′, γ, P ) ∗ j Z⇒ K[acquire v′]}cl

acquire v

{_. j Z⇒ K[()] ∗ locked(γ) ∗ P }

{relLocks(v, v′, γ, P ) ∗ P ∗ locked(γ) ∗ j Z⇒ K[release v′]}cl

release v

{_. j Z⇒ K[()]}

The specification captures that whenever we acquire the lock on the
implementation side, the lock on the specification side is free and can be acquired.
We need this for showing contextual refinements because if the implementation
side converges, then we need to show that so does the specification side and the
acquire operation is potentially non-terminating. This also means that whenever
we release the lock on the implementation side, the lock on the specification
side is also released.
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Our relational lock specification is also a bit stronger than usual, (cf. the
quantification over P in the newlock specification), because we use the lock
specification when proving the relational specification for tables described above.

The persistent proposition relLocks(v, v′, γ, P ) states that v is a lock protecting
two things: resources P and the fact that v′ is not acquired. The proposition
locked(γ) states that both of the locks associated to γ are currently acquired.

7.5.2 Proving equivalence of handlers

We devote the reset of this section to discussing the main result of this section:
proving relatedness of handlers in Figure 7.1.

Theorem 7.5.1.

Ξ | Γ � handler2 ≈ctx handler1 : ServerConnT→ 1

Our mechanized proof of the above theorem is done by showing logical relatedness
in both directions and then appealing to the soundness of the logical relation
(Theorem 7.3.2). Here we only discuss the proof of one direction:

Ξ | Γ � handler2 ≤log handler1 : ServerConnT→ 1

We use the rules for weakest preconditions and executions on the specification
side explained above and make use of the relational specification given above
for tables, which is justified by the clwp-wp rule. A key element of the proof is
the choice of predicate for relating the contents of the two tables. We use the
following predicate:

Φhandlers(w,w′) = ∃sum ∈ N. w′ = sum∧

∃K. w = cont

K
let (v, reader ,writer) = − in

loop (sum + v) reader writer


It essentially states that the values that are related in the two tables are: a
captured continuation, on the implementation side, and a number, on the
specification side. Furthermore, there is a number, sum, which is intuitively
the sum so far. The natural number on the specification side is exactly this
sum. The captured continuation on the implementation side is a continuation
under some evaluation context K (existentially quantified). When resumed
with a new value and connection, the stored continuation calls loop with the
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new connection along with sum plus that value. The relation Φhandlers above is
indeed capturing the essence of the intuitive reason why the two implementations
of handlers have contextually equivalent behavior.

According to the definition of our logical relations, to show logical relatedness
we need to show that given any two related contexts the two programs behave in
a related way. Since at the time of picking the predicate above we do not know
what contexts we will have to operate under, we have to consider that our code
of interest is inside some arbitrary (hence existentially quantified) evaluation
context.

Note that the captured continuation mentioned in Φhandlers refers to loop,
which internally (see the code in Figure 7.1), uses the table itself. This is the
reason why we need stronger relational specification for the table mentioned
above.

7.6 Case study: one-shot call/cc

In this section we consider a more technical verification challenge involving
continuations, due to Friedman and Haynes (1985). The challenge is to show
that call/cc can be implemented using references and one-shot continuations,
i.e., continuations that can only be called once. This problem has been studied
for sequential higher-order languages with references in Dreyer, Neis, and
Birkedal (2012) and Støvring and Lassen (2007), with pen-and-paper proofs,
not mechanized formal verication. Here we show that the equivalence also holds
in our concurrent language (subtly so; because we are using may contextual
equivalence) and we give a mechanized formal proof thereof. Our proof is
inspired by the proof of Dreyer, Neis, and Birkedal (2012), but we use a more
involved invariant because of concurrency.

First, we define a polymorphic higher-order function that given a function f
calls f with the current continuation:

CC , Λλf. call/cc (x. f x)

Note that CC has type · | · ` CC : ∀X. (cont(X) → X) → X. Next, we will
define a variant CC′ using one-shot continuations, and then prove the contextual
equivalence of CC and CC′.

To this end, we first define one-shot continuations CC1 as follows:

CC1 , Λλf. let b = false in
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call/cc (x. f (cont(let y = − in if !b thenΩ else b← true; throw y tox)))

Here Ω is the trivially diverging expression. Note that · | · ` CC1 :
∀X. (cont(X)→ X)→ X. When applied, the one-shot continuation, CC1, first
allocates a one-shot bit b and then calls the given function with a continuation
that uses b to ensure that the continuation is only called once.

Using one-shot continuations, we now define CC′:

CC′ , Λλf. let ` = ref(cont(−)) inG f

G , recG(f) =

letx =

CC1 _ (λy. `← y; f (cont(throw cont(−) to !`)))

inCC1 _ (λy.G (λ_. throwx to y))

The expression CC′ above has the same type as CC. CC′ perhaps looks fairly
complex but the intuition is straightforward. It first allocates ` with the trivial
continuation, then it takes a one-shot continuation and updates `. When the one-
shot continuation is used, it will first grab another fresh one-shot continuation
and update ` with it before continuing. Hence, intuitively, every time the
one-shot continuation stored in ` is used, it is immediately refreshed with an
unused one, thus mimicking the behavior of CC.

We now prove that CC is contextually equivalent to CC′:

Theorem 7.6.1.

· | · � CC ≈ctx CC′ : ∀X. (cont(X)→ X)→ X

We only discuss one side of the refinement, namely, CC′ ≤ctx CC. The proof of
the other side is similar but simpler.

Our proof is similar to the one by Dreyer, Neis, and Birkedal (2012), except for
the invariant that is used to prove relatedness.4 Translated to our setting, the

4In the work of Dreyer, Neis, and Birkedal (2012), invariants were called islands.
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invariant used by Dreyer, Neis, and Birkedal (2012) is:

∃b. b 7→i false ∗

` 7→i cont

let y = − in if ! b thenΩ else

b← true; throw y to cont(K[restore(`)])


N .CC

where

restore(`) , letx = − inCC1 _ (λy.G (λ_. throwx to y))

Here K is the continuation that is captured by CC. Intuitively, it states that
the continuation stored in ` is a one-shot continuation that has never been used
(as the one-shot bit b stores false). Furthermore, whenever used it will first
restore ` with a fresh one-shot continuation (using the nested evaluation context
restore(`)).

This invariant suffices for a sequential programming language. However, in our
concurrent settting, the “continuation” captured by CC′ may be shared among
multiple threads and, if they use it concurrently, a race may occur. In other
words, it may happen that a thread is using the continuation captured by CC′

and before this thread manages to capture another one-shot continuation and
restore `, another thread attempts to use the then invalid one-shot continuation,
and hence it diverges.

We prove that the contextual refinement still holds (despite the possibility of
divergence). However, because of the possible racing, we need to use a weaker
invariant:

∃b,M. OneShotBits(M) ∗ isOneShotBit(b)∗(∗
r∈M
∃v ∈ {true, false} . r 7→i v

)
∗

` 7→i cont

let y = − in if ! b thenΩ else

b← true; throw y to cont(K[restore(`)])



N .CC

This invariant says that ` stores a one-shot continuation with a one-shot
bit b and that we have a set of bits that, intuitively, have been associated
to one-shot continuations. We also know that b is one such one-shot bit,
isOneShotBit(b). The predicates OneShotBits() and isOneShotBit() are defined
using iris resources. Details can be found in Appendix F. Here we only need to
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know two things about them, namely that isOneShotBit(b) is persistent and
that

OneShotBits(M) ∗ isOneShotBit(b) ` b ∈M (in-bits)

Persistence allows us to retain the information isOneShotBit(b) once we have
opened the invariant and have read `. Due to the race condition explained
above, when we open the invariant we know, by (in-bits), that there is a value
v ∈ {true, false} stored in b, and this suffices for being able to complete the
refinement proof.

The other refinement, CC ≤ctx CC′ is simpler and follows basically using the
same argument as in Dreyer, Neis, and Birkedal (2012). This makes sense
intuitively because we simply have to show that there exists an execution on
the specification side that converges.

7.7 Mechanization in Coq

Taking advantage of the Coq formalization of Iris and Iris Proof Mode (IPM)
(Krebbers, Timany, and Birkedal, 2017), we have mechanized all the technical
development and results in Coq. This includes mechanizing the small-step
operational semantics of Fµ,ref

conc,cc and instantiating Iris with it. Our Coq
development is about 9900 lines and includes proofs of contextual refinements
for pairs of fine-grained/coarse-grained stacks and counters which we omitted
discussion of for reasons of space.

For binders, we use the Autosubst library (Schäfer, Tebbi, and Smolka,
2015) which facilitates the use of de Bruijn indices by providing support for
simplification of substitutions. In Fµ,ref

conc,cc, evaluation contexts are also values
and hence also expressions. This forces us to define these mutually inductively.
This means that we need to derive the induction principle for these inductive
types in Coq by hand. Furthermore, we have to help Autosubst in deriving
substitution and simplification lemmas for Fµ,ref

conc,cc that it should otherwise
automatically infer. This is mainly why the definition of Fµ,ref

conc,cc itself takes up
about 10% of the whole Coq development.
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7.8 Related work

There has been a considerable body of work on (delimited) continuations, but,
we are not aware of any logics or relational models for reasoning about concurrent
programs with continuations, let alone a mechanized framework for relational
verification of concurrent programs with continuations.

Program logics for reasoning about continuations Delbianco and Nanevski
(2013) present a type theory for Hoare-style reasoning about an imperative
higher-order programming language with (algebraic) continuations, but without
concurrency. The system of Delbianco and Nanevski (2013) does not allow
higher-order code (including continuations) to be stored in the heap. Note that
storing higher-order code in the heap is essential for both implementing the
continuation-based web servers and implementing continuations in terms of
one-shot continuations. Crolard and Polonowski (2012) develop a program logic
for reasoning about jumps but their sequential programming language features
no heap or recursive types. Berger (2010) presents a program logic for reasoning
about programs in a programming language which is essentially an extension of
PCF (Plotkin, 1977) with continuations.

Relational reasoning about continuations The work most closely related
to ours is that of Dreyer, Neis, and Birkedal (2012) who consider a variety
of different stateful programming languages and investigate the impact of
the higher-order state and control effects (including call/cc and throw). In
contrast to our work, they do not consider concurrency. Moreover, they reason
directly in a model, whereas we define our logical relation using a program logic
(Iris), which means that we can reason more compositionally and at a higher
level of abstraction. Another advantage of using Iris, is that we have been able
to leverage its Coq formalization and thus to mechanize all of our development.
As mentioned in Section 7.6, our proof that continuations can be expressed in
terms of one-shot continuations is inspired by loc. cit.

There are several other works on relational reasoning for sequential programming
languages with continuations, e.g., Felleisen and Hieb (1992), Laird (1997), and
Støvring and Lassen (2007). These differ from our work at least in that they do
not consider concurrency.

Relational reasoning about concurrency There has been much work on
relational reasoning about concurrent higher-order imperative programs, without
continuations. The work most closely related to ours also is that of Krebbers,
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Timany, and Birkedal (2017), who develop mechanized logical relations (in
Iris) for reasoning about contextual equivalence of programs in Fµ,ref ,conc, a
language similar to the one we consider but without call/cc and throw. The
approach in loc. cit. is based on earlier, non-mechanized logical relations for
fine-grained concurrent programs (Birkedal, Sieczkowski, and Thamsborg, 2012;
Turon, Dreyer, and Birkedal, 2013; Turon, Thamsborg, Ahmed, Birkedal,
and Dreyer, 2013). These relational models give an alternative method
to linearizability (Herlihy and Wing, 1990) for reasoning about contextual
refinement for fine-grained concurrent programs. The logical relations method
also works in the presence of higher-order programs, which linearizability
traditionally struggles with, although there has been some recent promising
developments (Cerone, Gotsman, and Yang, 2014; Murawski and Tzevelekos,
2017). In this paper, we have extended the method of logical relations for
reasoning about contextual refinement for higher-order fine-grained concurrent
programs to work for programs that also use continuations.

7.9 Conclusion and future work

We have developed a logical relation for Fµ,ref
conc,cc, a programming language

with advanced features such as impredicative polymorphism à la system F,
higher-order mutable references, recursive types, concurrency and most notably
continuations. We have devised new non-context-local proof rules for reasoning
about weakest preconditions in Iris in the presence of continuations and
also introduced context-local weakest preconditions for regaining context-local
reasoning about expressions that do not involve non-local control flow. We
have defined our relational model and proved properties thereof in the Iris
program logic framework. This has greatly simplified the definition of our
relational model, the existence of which is non-trivial because of the type-world
circularity (Ahmed, Appel, and Virga, 2002; Ahmed, 2004; Birkedal, Reus,
Schwinghammer, Støvring, Thamsborg, and Yang, 2011). Furthermore, working
inside Iris has enabled us to mechanize the entire development presented in this
paper on top of the Coq proof assistant.

We have demonstrated how our logical relation can be used to establish
contextual equivalence for a pair of simplified web-server implementations:
one storing the state explicitly and one storing the current continuation. The
application of context local reasoning in the middle of our logical relatedness
proofs demonstrates the usefulness and versatility of context-local weakest
preconditions. Finally, we have also given the first (mechanized) proof of the
correctness of Friedman and Haynes (1985) encoding of continuations by means
of one-shot continuations in a concurrent programming language.
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In the future, we wish to extend our mechanization to reason about delimited
continuations (Danvy and Filinski, 1990; Felleisen, 1988). Currently our
mechanized reasoning is done interactively, in the same style as one reasons in
Coq. In the future, we would also like to complement that with more automated
reasoning methods.





Chapter 8

Conclusion and future work

Correctness of safety- and security-critical software is crucial. An important tool
in achieving high assurance of safety and security of such software systems is
type theory. Compilers of statically typed programming languages like OCaml,
Haskell, etc. use types to make sure that programs are well-behaved, i.e., they
will not crash, before they compile programs. On the other hand, dependent
type theories form the basis of proof assistants like the calculus of constructions
(CoC) and its extensions forming the basis of the proof assistant Coq. Proof
assistants are important tools for mathematicians and computer scientists that
allow us to formally verify the correctness of a mathematical theories. This
ranges from mathematical developments like category theory to the study of
programming languages and proving correctness and safety of programs. In the
course of this thesis we presented contributions to both of these applications of
types. We used and contributed to the type theory of the Coq proof assistant.
We also studied programs and programming languages through their types.

In Chapter 3 we presented a formal development of category theory in the proof
assistant Coq. This development encompasses most of the basic category
theoretical constructions, i.e., not including higher or enriched categories.
As such, we believe that this development is fit to be used as a library for
formalization of theories that build on categories, e.g., categorical semantics of
type theory and logic. In particular, an interesting future work is to develop
a general framework for working with categorical logic. That is, an extensible
language of connectives of predicate logic that is interpreted in general on top of
a suitable family of categories that have enough structure to interpret predicate
logic, e.g., (sheaf/presheaf) toposes. This would allow us to easily add more
connectives and modalities to the logic, e.g., the later modality in the topos
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of trees (Birkedal, Mogelberg, Schwinghammer, and Stovring, 2011). Such a
setup would be best complemented with an interactive proof mode similar to
the one that is presented for the Iris program logic (Krebbers, Timany, and
Birkedal, 2017). Such a setup would allow us to easily study different logics
and their extensions both externally (working with the objects and morphism
of the category itself) and internally (working with the logic of the category
through the interactive proof mode).

The development of category theory presented in Chapter 3 uses Coq’s universes
to formalize the concept of relative smallness and largeness. This feature of
the development points out a limitation in the predicative calculus of inductive
constructions (pCIC), the underlying logic of the proof assistant Coq at time
of that development. This limitation, i.e., lack of the cumulativity (subtyping)
relation for inductive types in pCIC has since been alleviated by the introduction
of the predicative calculus of cumulative inductive constructions (pCuIC) which
is presented in Chapter 4. The type system of pCuIC extends that of pCIC
with rules for cumulativity and conversion of inductive types. The cumulativity
relation of pCuIC for categories corresponds precisely to smallness and largeness
of categories as expected, i.e., any small category is also a large category. This
extension also applies to inductive types that do not involve the mathematical
notion of smallness and largeness. For instance, due to cumulativity, for a
type A : Typei we have A : Typej for any i ≤ j. So, we can construct types
listi A and listj A, where listk is the universe-polymorphic inductive type of
lists instantiated with universe Typek. In pCuIC inductive types listi A and
listj A are considered subtypes of one another and also judgementally equal.

Chapter 4 presents a proof of consistency of pCuIC by constructing a model
in ZFC with the added axiom that there is a countable hierarchy of strictly
increasing uncountable strongly inaccessible cardinals. This model is based on
and inspired by the model of pCIC constructed by Lee and Werner (2011). We
have used the axiom of choice in this construction to prove that the fixpoint that
is taken to construct the model the inductive types does indeed belong to the set-
theoretic universe that it should, i.e., the set-theoretic universe corresponding to
the type-theoretic universe that is its arity. The use of the axiom of choice does
not seem absolutely necessary. We only need it to show that the closure ordinal
for the fixpoint is in the necessary universe, a fact that can be easily shown
to be equivalent to the fixpoint itself being in the universe. Further research
is required to determine whether or not the axiom of choice (or potentially a
weaker axiom) is indeed necessary for proving that fixpoints of inductive types
are in the expected universe. For instance, hypothetically one could argue based
on the syntactic criteria for well-formedness of inductive types, that for the
equations that arise from inductive types the closing ordinal, or the fixpoint
itself, does belong to the required set-theoretic universe. We have not managed
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to find such a proof. Our model, like the model of Lee and Werner (2011), does
not support inductive types in the sort Prop. Future research is necessary to
shed light on how to incorporate inductive types in Prop into our model. This
problem is related to the previous one and is in fact made more complicated by
it. In particular, the way that we have reasoned about fixpoints of inductive
types being in the required universe relies on the fact that all of the inductive
types in a mutual inductive block are in the same arity. Considering inductive
types in Prop breaks this assumption: an inductive type I in Typei can be an
argument of a constructor of an inductive type J in Prop, and J can be an
argument of a constructor of an inductive type K in Typek. Notice, that this
does not impose the restriction i ≤ k as it would, had I been an argument of a
constructor of K. One other restriction of our system with respect to Coq is
the requirement that parameters of inductive types must be uniform, i.e., fixed
for the entire mutual inductive block. The only part of our construction that
needs this assumption is the proof that the interpretation of inductive types
are in the set-theoretic universe corresponding to their arity (Lemma B.3.8).
Future work on set-theoretic models of Coq includes constructing a set-theoretic
model that allows for inductive types with heterogeneous parameters. Finally,
we believe that the model of Barras (2012) for pCIC which he uses to prove
strong normalization can be adapted to support the extensions that pCuIC
offers similarly to how we have adapted the model of Lee and Werner (2011).
Note that strong normalization is strictly stronger than (implies) consistency of
the type system that we have proven in this thesis.

Chapter 5 presented the development of unary and binary operationally-based
logical relations models for Fµ,ref ,conc, respectively to prove type soundness
and to establish equivalence of programs. Operationally-based logical relations
have the benefit that they are modular, i.e., separate parts of the code can be
proven separately (possibly through different approaches) and proofs can be
composed. Furthermore, as a semantics-based approach they guarantee that the
abstraction barriers within programs are respected. Moreover, for programming
languages featuring advanced types, e.g., a combination of polymorphism
and dynamically allocated higher-order references, operationally-based logical
relations are much easier to develop and use compared to approaches based
on denotational semantics. The logical relations models that we presented in
this chapter and those that follow it are developed on top of the Iris program
logic. The benefits of developing these models in Iris are twofold. First and
most importantly the logic of Iris comes equipped with advanced reasoning
principles that allow a direct inductive encoding of our logical relations models.
That is, these features allow us reason about intricate details of the model,
e.g., step-indices, at a high level of abstraction. The second benefit of working
in Iris is the formalization of the Iris program logic on top of the Coq proof
assistant which we use as a Coq library to formalize our logical relations models
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and the results obtained from them in Coq. The development presented in
Chapter 5 is the first formalization of logical relations, in a proof assistant,
for a programming language with a type system as rich as the type system of
Fµ,ref ,conc.

The approach taken in Chapter 5, i.e., developing logical relations models
in the Iris program logic, is quite general and versatile. This methodology
can be applied to other programming languages and problems as we have
done in Chapters 6 and 7 of this very thesis. Future research in this area
includes applying this methodology to other programming language features
and problems. In particular, the study of compilers would benefit from this
methodology. Logical relations models can be used to prove correctness (Benton
and Hur, 2009) and security of compilers (Devriese, Patrignani, and Piessens,
2016).

In Chapter 6 we studied proper encapsulation of state by a Haskell-style ST
monad. We did this by studying equivalence of programs in the presence of the
ST monad in the programming language STLang. This was an open problem
for about two decades. Future research is required to show that monadic
encapsulation of state by the ST monad does indeed encapsulate state properly
in the presence of other programming language features, e.g., concurrency.
This is specially interesting as it is not immediately clear how one can extend
IC predicates that we have used for defining our logical relations model to
a language with concurrency. There is another important problem regarding
monadic encapsulation of state that deserves attention: “is STLang indeed pure?”
But to answer that question one needs to give a formal definition of purity
in the presence of state. These problems are important and quite interesting.
However, they require more exploratory research and it is not immediately clear
how to begin to attack these problems.

Chapter 7 studied a programming language Fµ,ref
conc,cc which is an extension of

Fµ,ref ,conc with first-class continuations. There we presented unary and binary
logical relations models for this programming language. We used these logical
relations models to prove type safety and to prove equivalence of programs.
Continuations allow programs to be suspended and later resumed. As a result
programs cannot be verified in isolation as the context under which they are
running can be captured into a continuation. Technically, in Iris this means that
weakest precondition proposition predicates that we use for program verification
are not context-local anymore. Hence, we presented so called context-local
weakest preconditions. This variant of weakest precondition predicates not
only guarantee the safety of the program but it also requires the program to
behave (according to the operational semantics) as though it does not involve
continuations. Hence, context-local weakest preconditions can be used to verify
parts of programs that do not involve continuations in a disruptive way. We used
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context-local weakest preconditions together with our binary logical relations
model to establish equivalence of two web server implementations where one
uses continuations to store the state of its communication with the client and
the other stores the state directly.

Arguably one of the most important use cases of continuations in programming
languages is to mimic concurrency. There are many libraries for different
programming languages that provide this functionality, usually referred to as
green threads or light-weight threads. Creation and using of green threads is much
more efficient compared to genuine threads provided by the operating system;
hence the name. For this reason they are quite useful and are in fact often used
in conjunction with real concurrency to run multiple green threads at once. The
development presented in Chapter 7 provides a suitable platform for proving
correctness of green threads and more interestingly to show that programs using
green threads are equivalent to programs using actual concurrency and that
hence programmers can switch between the two paradigms or a combination
thereof without any change to the overall behavior of programs.





Appendix A

The formal definition of pCIC

Notations for different equalities and the like:

a , b a is defined as b
a = b equality of mathematical objects, e.g., sets, sequences, etc.
t ≡ t′ Syntactically identical terms

Γ ` t ' t′ : A Judgemental equality, i.e., t and t′ are judgementally equal
terms of type A under context Γ

A.1 Syntax of pCIC

In this section we present the predicative calculus of inductive constructions
(pCIC). The terms and contexts of the language pCIC is as follows:

x, y, z, . . . (Variables)

s ::= Prop, Type0, Type1, . . . (Sorts)

t, u, . . . ,

M,N, . . . ,

A,B, . . . ::= x | s | Πx : A.B | λx : A. t | (Terms)

letx := t : A inu | M N |

D.x |
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Elim(t;D.di; #»u ;Qd1 , . . . , Qdn) {fc1 , . . . , fcm}

D ::= Indn {∆I := ∆C} (Inductive blocks)

∆ ::= · | ∆, x : A (Declarations)

Γ ::= · | Γ, x : A, | Γ, x := t : A | Γ,D (Contexts)

Note that although by abuse of notation we write x : A ∈ Γ, x := t : A ∈ Γ or
x : A ∈ ∆, contexts and declarations are not sets. In particular, the order in
declarations is important, this is even the case for declarations where there can
be no dependence among the elements. We write ∆(x) to refer to A whenever
x : A ∈ ∆.

Here, Indn {∆I := ∆C} is a block of mutual inductive definitions where n is
the number of parameters, the declarations in ∆I are the inductive types of
the block and declarations in ∆C are constructors of the block. The term
Indn {∆I := ∆C} .x is an inductive definition whenever x ∈ ∆I and a construc-
tor whenever x ∈ ∆C . The term Elim(t;D.dk; #»u ;Qd1 , . . . , Qdn) {fc1 , . . . , fcm}
is the elimination of t (a term of the inductive type D.dk applied to parameters
#»u ), Qdi ’s are the motives of elimination, i.e., the result of the elimination will
have type Qdk #»u #»a t whenever the term being eliminated, t, has type D.dk #»u #»a .
The term fci in the eliminator above is a case-eliminator corresponding to the
case where t is constructed using constructor D.ci.

We write len( #»s ), len(p), dom(f), dom(∆) and dom(Γ) respectively for the length
of a sequence #»s , length of a tuple p, the domain of a partial map f , domain of
a declaration ∆ or domain of a context Γ. Notice crucially that the inductive
types and constructors of an inductive block are not part of the domain of the
context that they appear in. We write nil for the empty sequence. We write
Inds(Γ) for the sequence of inductive types in the context Γ. We write tuples
as 〈a1; a2; . . . ; an〉.

Definition A.1.1 (Free variables).
Free variables of terms

FV (Prop) , ∅

FV (Typei) , ∅

FV (z) , {z}

FV (λy : A. u) , FV (A) ∪ (FV (u) \ {y})

FV (let y := u : A in v) , FV (A) ∪ FV (u) ∪ (FV (v) \ {y})
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FV (u v) , FV (u) ∪ FV (v)

FV (D.z) , FV (D)

FV (Elim(u;D.di; #»u ; #»

Q)
{

#»

f
}

) , FV (u) ∪ FV (D) ∪ FV ( #»u )∪

FV ( #»

Q) ∪ FV ( #»

f )

Free variables of inductive blocks

FV (Indn {∆I := ∆C}) , FV (∆I) ∪ FV (∆C)

Free variables of sequences of terms

FV (nil) , nil

FV (v, #»v ) , FV (v) ∪ FV ( #»v )

Free variables of declarations

FV (·) , ∅

FV (y : A,∆) , FV (A) ∪ FV (∆)

We define simultaneous substitution for terms as follows:

Definition A.1.2 (Simultaneous substitution). We assume that #»x is a sequence
of distinct variables. In this definition for the sake of simplicity we use y for all
bound variables.

Substitution for terms

Prop[ #»
t / #»x ] , Prop

Typei[
#»
t / #»x ] , Typei

z[ #»
t / #»x ] , ti if xi = z

z[ #»
t / #»x ] , z if ∀i. xi 6= z

(λy : A. u)[ #»
t / #»x ] , λy : A[ #»

t / #»x ]. u[ #»
t ′/ #»x ′]

(let y := u : A in v)[ #»
t / #»x ] , let y := u[ #»

t / #»x ] : A[ #»
t / #»x ] in v[ #»

t ′/ #»x ′]

(u v)[ #»
t / #»x ] , u[ #»

t / #»x ] v[ #»
t / #»x ]
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Indn {∆I := ∆C} .z[
#»
t / #»x ] , Indn

{
∆I [

#»
t / #»x ] := ∆C [ #»

t / #»x ]
}
.z

Elim(u;D.di; #»u ; #»

Q)
{

#»

f
}

[ #»
t / #»x ] , Elim(u[ #»

t / #»x ];D.di[
#»
t / #»x ]; #»u [ #»

t / #»x ]){
#»

Q[ #»
t / #»x ]

}
#»

f [ #»
t / #»x ]

Substitution for inductive blocks

Indn {∆I := ∆C}[
#»
t / #»x ] , Indn

{
∆I [

#»
t / #»x ] := ∆C [ #»

t / #»x ]
}

Substitution for sequences

nil[ #»
t / #»x ] , nil

v, #»v [ #»
t / #»x ] , v[ #»

t / #»x ], #»v [ #»
t / #»x ]

Substitution for declarations

·[ #»
t / #»x ] , ·

y : A,∆[ #»
t / #»x ] , y : A[ #»

t / #»x ],∆[ #»
t / #»x ]

Substitution for context

·[ #»
t / #»x ] , ·

y : A,Γ[ #»
t / #»x ] , y : A[ #»

t / #»x ],Γ[
#»

t′/
#»

x′]

where
#»

x′ = #»x and
#»

t′ = #»
t if y does not appear in #»x and is as follows whenever

xi = y:
#»

x′ = x0, . . . , xi−1, xi+1, . . . , xn
#»

t′ = t0, . . . , ti−1, ti+1, . . . , tn

A.2 Basic constructions

Figure A.1 shows typing rules for the basic constructions, i.e., well-formedness
of contexts (WF(Γ)), sorts, let bindings, dependent products (also referred to
as dependent functions), lambda abstractions and applications. It also contains
the rules for the judgemental equality for these constructions. In this figure,
the relation Rs indicates the sort that a (dependent) product type belongs to.
The sort Prop is impredicative and therefore any product type with codomain
in Prop also belongs to Prop.
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WF-ctx-empty
WF(·)

WF-ctx-hyp
Γ ` A : s x 6∈ dom(Γ)

WF(Γ, x : A)

WF-ctx-def
Γ ` t : A x 6∈ dom(Γ)
WF(Γ, (x := t : A))

Prop
WF(Γ)

Γ ` Prop : Typei

Hierarchy
WF(Γ) i < j

Γ ` Typei : Typej

Let
Γ, (x := t : A) ` u : B

Γ ` letx := t : A inu : B[t/x]

Var
WF(Γ) x : A ∈ Γ or (x := t : A) ∈ Γ

Γ ` x : A

Let-eq
Γ ` A ' A′ : s Γ ` t ' t′ : A Γ, (x := t : A) ` u ' u′ : B

Γ ` letx := t : A inu ' letx := t′ : A′ inu′ : B[t/x]

Prod
Γ ` A : s1 Γ, x : A ` B : s2 Rs(s1, s2, s3)

Γ ` Πx : A.B : s3

Prod-eq
Γ ` A ' A′ : s1 Γ, x : A ` B ' B′ : s2 Rs(s1, s2, s3)

Γ ` Πx : A.B ' Πx : A′. B′ : s3

Lam
Γ, x : A `M : B Γ ` Πx : A.B : s

Γ ` λx : A.M : Πx : A.B

App
Γ `M : Πx : A.B Γ ` N : A

Γ `M N : B[N/x]

Lam-eq
Γ ` A ' A′ : s1 Γ, x : A `M 'M ′ : B Γ ` Πx : A.B : s2

Γ ` λx : A.M ' λx : A′.M ′ : Πx : A.B

App-eq
Γ `M 'M ′ : Πx : A.B Γ ` N ' N ′ : A

Γ `M N 'M ′ N ′ : B[N/x]

Predicativity
Rs(Typei, Typej , Typemax{i,j})

Predicativity’
Rs(Prop, Typei, Typei)

Impredicativity
Rs(s, Prop, Prop)

Figure A.1: Basic construction
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A.3 Inductive types and their eliminators

We consider blocks of predicative (not in Prop) mutual inductive types. Most
inductive types in Prop can be encoded using their Church encoding. The
typing rules for inductive types, their constructors and eliminators are depicted
in Figure A.2.

Well-formedness of inductive types The first rule in this figure is the well-
formedness of inductive types. It states that in order to have that the context
Γ is well-formed after adding the mutual inductive block Indn {∆I := ∆C},
i.e., WF(Γ, Indn {∆I := ∆C}), all inductive types in the block as well as all
constructors need to be well-typed terms. In addition, we must have that the
well-formedness side condition In(Γ,∆I ,∆C) holds. The well-formedness side
condition In(Γ,∆I ,∆C) holds whenever:

• All variables in ∆I and ∆C are distinct.

• The first n arguments of all inductive types and constructors in the block
are the parameters. In other words, there is a sequence of terms #»

P such
that len( #»

P ) = n and for all x : T ∈ ∆I ,∆C we have T ≡ Π #»p : #»

P .U for
some U .

• Parameters are parametric. In other words, for all c : T ∈ ∆C we have
T ≡ Π #»p : #»

P .Π #»x : #»

B. d #»p #»v . That is, every constructor constructs
a term of some inductive type in the block where values applied for
parameter arguments of the inductive type are parameter arguments of
the constructor. Parameters must be fixed in the whole inductive block.
That is, we do not support heterogeneous parameters where an inductive
type of the block can be an argument of a constructor with different
parameters than the inductive family being defined.

• Every inductive type is just a type (an element of a universe) that depends
on a number of arguments beginning with parameters. The non-parameter
arguments are called the arity of the inductive type. In other words, for
all d ∈ dom(∆I) we have ∆I(d) ≡ Π #»x : #»

P .Π #»m : # »

M.Ad where # »

M are
called the indices of the inductive type and Ad is a sort called the arity of
the inductive type d. We require that Ad 6= Prop.

• Every constructor is a constructs terms of an inductive type in the block.
In other words, for all c ∈ dom(∆C) we have c ∈ Constrs(∆C , d) for
some d ∈ ∆I where Constrs(∆C , d) is the set of constructors in ∆C that
construct terms of the inductive type d.

Constrs(∆C , d) ,
{
c ∈ dom(∆C) | ∆C(c) ≡ Π #»p : #»

P .Π #»x : #»

U. d #»u
}
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Ind-WF
In(Γ,∆I ,∆C)

(A ≡ Πp : P.Πm : M.Ad Γ ` A : sd for all (d : A) ∈ ∆I)
(T ≡ Πp : P. T ′

Γ,∆I , p : P ` T ′ : Ad for all (c : T ) ∈ ∆C if c ∈ Constrs(∆C , d))
WF(Γ, Indn {∆I := ∆C})

Ind-type
WF(Γ) D ≡ Indn {∆I := ∆C} ∈ Γ di ∈ dom(∆I)

Γ ` D.di : ∆I(di)

Ind-constr
WF(Γ) D ≡ Indn {∆I := ∆C} ∈ Γ c ∈ dom(∆C)

Γ ` D.c : ∆C(c)[ #       »∆I .d/
#»

d ]

Ind-Elim
WF(Γ) D ≡ Indn {∆I := ∆C} ∈ Γ

dom(∆I) = {d1, . . . , dl} dom(∆C) = {c1, . . . , cl′}
(Γ ` Qdi : Π #»x : #»

A. (di #»x )→ s′ where
∆I(di) ≡ Π #»x : #»

A. s for all 1 ≤ i ≤ l)
Γ ` t : D.dk #»u #»m len( #»u ) = n

Γ ` fci : ξ
#»
Q
D (ci,∆C(ci)) for all 1 ≤ i ≤ l′

Γ ` Elim(t;D.dk; #»u ;Qd1 , . . . , Qdl)
{
fc1 , . . . , fcl′

}
: Qdk #»u #»m t

Ind-Elim-eq
WF(Γ) D ≡ Indn {∆I := ∆C} ∈ Γ

dom(∆I) = {d1, . . . , dl} dom(∆C) = {c1, . . . , cl′}
(Γ ` Qdi ' Q′di : Π #»p : #»

P .Π #»x : #»

A. (di #»x )→ s′ where
∆I(di) ≡ Π #»p : #»

P .Π #»x : #»

A. s for all 1 ≤ i ≤ l)
Γ ` t ' t′ : D.dk #»u #»m len( #»u ) = n Γ ` #»u '

#»

u′ : #»

P

Γ ` fci ' f ′ci : ξ
#»
Q
D (ci,∆C(ci)) for all 1 ≤ i ≤ l′

Γ ` Elim(t;D.dk; #»u ;Qd1 , . . . , Qdl)
{
fc1 , . . . , fcl′

}
'

Elim(t′;D.dk;
#»

u′;Q′d1
, . . . , Q′dl)

{
f ′c1 , . . . , f

′
cl′

}
: Qdk #»u #»m t

Figure A.2: Inductive types and eliminators
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• All inductive types in the block appear only strictly positively in
constructors. In other words, for all c ∈ dom(∆C), Posdom(∆I)(∆C(c))
where PosS(t) is determined by the following rules:

u does not appear in #»

A or #»
t for all u ∈ S B ∈ S

Pos†S(Π #»x : #»

A.B
#»
t )

u does not appear in #»
t for all u ∈ S B ∈ S

PosS(B #»
t )

Pos†S(A) PosS(B)
PosS(A→ B)

u does not appear in #»

A for all u ∈ S PosS(B)
PosS(Π #»x : #»

A.B)

Inductive types and constructors Rules Ind-type and Ind-constr indicate,
respectively, the type of inductive types and constructs in a block of mutually
inductive types. The type of an inductive type of a block is exactly the same as
declared in the block. The type of constructors of a block is determined by the
type declared in the block except that inductive types in block are replaced by
their proper (global) names.

Example A.3.1. The following is the definition natural numbers inpCIC.

N , Ind0{nat : Type0 := zero : nat, succ : nat → nat}

nat , N .nat

zero , N .zero

succ , N .succ

Example A.3.2. The following is the definition of universe polymorphic lists
(for level i) in pCIC.

Li , Ind1{list : ΠA : Typei. Typei := nil : ΠA : Typei. list A,

cons : ΠA : Typei. A→ list A→ list A}

listi , Li.list

nili , Li.nil
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consi , Li.cons

Example A.3.3. Definition of a finitely branching tree as a mutual inductive
block in pCIC.

Ind0{FTree : Type0,Forest : Type0 :=

leaf : FTree,node : Forset → FTree,

Fnil : Forest,Fcons : FTree → Forest → Forest}

Eliminators The term Elim(t;D.dk; #»u ;Qd1 , . . . , Qdl)
{
fc1 , . . . , fcl′

}
is the

elimination of the term t (which is of type dk (in some inductive block D)
applied to parameters #»u ) where the result of elimination of inductive types
in the block, i.e., motives of eliminations, is given by #»

Q and #»

f are functions
for elimination of terms constructed using particular constructors. The term,
above, has type Qdk #»u #»m t if t has type dk #»u #»m.

Each case-eliminator fci is the recipe for generating a term of the appropriate
type (according to the corresponding motive) out of arguments of the constructor
ci under the assumption that all (mutually) recursive arguments are already
appropriately eliminated. This is perhaps best seen in the rule Iota below which
describes the judgemental equality corresponding to the (intended) operational
behavior of eliminators.

The function ξ
#»
Q
D (ci,∆C(ci)) ascribes a type to the case-eliminator fci in the

manner explained above. That is, ξ
#»
Q
D (ci,∆C(ci)) is a function type that

given arguments of the constructor ci (and their eliminated version if they
are (mutually) recursive arguments) produces a term of the appropriate type
according to the motives. It is formally defined as follows by recursion on
derivation of Posdom(∆I)(∆C(ci)):

If P ≡ Π #»x : #»

A. di
#»m and we have Pos†dom∆I

(P ) and Posdom∆I
(B)

ξ
#»
Q
D (t, P → B) , Πp : P. (Π #»x : #»

A.Qdi m (p #»x ))→ ξ
#»
Q
D (t p,B)

Otherwise,

ξ
#»
Q
D (t,Πx : A.B) , Πx : A. ξ

#»
Q
D (t x,B)

Otherwise, if d ∈ dom(∆I)

ξ
#»
Q
D (t, d #»m) , Qd #»m t
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Example A.3.4. The following is the definition of the recursive function
corresponding to the principle of mathematical induction on natural numbers in
pCIC.

nat_ind , λP : nat → Prop. λo : P zero. λstp : Πx : nat. P x→ P (succ x).

λn : nat.Elim(n; nat; nil;P ) {o, stp}

The term nat_ind above has the type

ΠP : nat → Prop. (P Z)→ (Πx : nat. P x→ P (S x))→ Πn : nat. P n

Example A.3.5. The following is the definition the recursive function to add
two natural numbers in pCIC.

add , λn : nat. λm : nat.

Elim(n; nat; nil;λ_ : nat.nat) {m,λ_ : nat. λy : nat. succ y}

Example A.3.6. The following is the definition the polymorphic and universe
polymorphic recursive function to compute the length of a list in pCIC.

length , λA : Typei. λl : listi A.Elim(l; list;A;λ_ : listi.nat)

{λB : Typei. zero, λB : Typei. λx : B. λy : listi B. λz : nat. succ z}

A.4 Judgemental equality

The main typing rules for judgemental equality, except for those related to
cumulativity, are presented in Figure A.3.

The rules Eq-ref, Eq-sym and Eq-trans make the judgemental equality an
equivalence relation. The rule Beta corresponds to the operational rule for
β-reduction in lambda calculus. The rules Delta and Zeta correspond to the
operation of expansion of global definitions (defined in the context) and let-
bindings, respectively. The rule Eta corresponds to η-expansion for (dependent)
functions.

The rule Iota corresponds to the operation of reduction of recursive functions
and case analysis (in systems featuring these, e.g., Coq itself) and that of
eliminators as in our case. Notice that this rule only applies if the term on
which elimination is being performed is a constructor applied to some terms1.

1This restriction is indeed necessary in Coq so as to guarantee strong normalization.
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Eq-ref
Γ ` t : A

Γ ` t ' t : A

Eq-sym
Γ ` t ' t′ : A
Γ ` t′ ' t : A

Eq-trans
Γ ` t ' t′ : A Γ ` t ' t′′ : A

Γ ` t ' t′′ : A

Beta
Γ, x : A `M : B Γ, x : A ` B : s Γ ` N : A

Γ ` (λx : A.M) N 'M [N/x] : B[N/x]

Delta
WF(Γ) x := t : A ∈ Γ

Γ ` x ' t : A

Eta
Γ ` t : Πx : A.B

Γ ` t ' λx : A. t x : Πx : A.B

Zeta
Γ ` t : A Γ, x := t : A ` u : B

Γ ` (letx := t : A inu) ' u[t/x] : B[t/x]

Iota
WF(Γ) D ≡ Indn {∆I := ∆C} ∈ Γ Γ ` D′ �† D
dom(∆I) = {d1, . . . , dl} dom(∆C) = {c1, . . . , cl′}

(Γ ` Qdi : Π #»x : #»

A. (di #»x )→ s′ where
∆I(di) ≡ Π #»x : #»

A. s for all 1 ≤ i ≤ l)
Γ ` D′.cj #»a : D.dk #»u #»m len( #»u ) = n 1 ≤ j ≤ l′

Γ ` fci : ξ
#»
Q
D (D.ci,∆C(ci)) for all 1 ≤ i ≤ l′

Γ ` Elim(D′.cj #»a ;D.dk; #»u ;Qd1 , . . . , Qdl)
{
fc1 , . . . , fcl′

}
'

µ
#»
Q; #»
f

D (fcj ; #»a ; ∆C(cj)) : Qdk #»u #»m (D′.cj #»a )

Figure A.3: The main judgemental equality rules

This rule specifies that, as expected, the eliminator, applied to a term that
is constructed out of a constructor (of the corresponding type or any of its
sub-types, see Remark A.4.1 below) applied to some terms, is equivalent to
the corresponding case-eliminator applied arguments of the constructor, after
(mutually) recursive arguments are appropriately eliminated. This is exactly
what the recursor µ

#»
Q; #»
f

D does, applying arguments of the constructor to the
corresponding case-eliminator after eliminating (mutually) recursive arguments
as necessary. Recursors are defined as follows by recursion on the derivation of
Posdom(∆I)(∆C(ci)):
If P ≡ Π #»x : #»

A. di
#»m and we have Pos†dom∆I

(P ) and Posdom∆I
(B)

µ
#»
Q; #»
f

D (t; b, #»a ;P → B) , µ
#»
Q; #»
f

D
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(
t b

(
λ #»x : #»

A.Elim(b #»x ;D.di;
#»

Q)
{

#»

f
})

; #»a ;B
)

Otherwise,

µ
#»
Q; #»
f

D (t; b, #»a ; Πx : A.B) , µ
#»
Q; #»
f

D (t b; #»a ;B)

Otherwise, if d ∈ dom(∆I)

µ
#»
Q; #»
f

D (t; nil; d #»m) , t

Remark A.4.1 (Iota and subtyping of cumulativity for inductive tpyes). We,
in addition, stipulate here that the eliminators can eliminate terms constructed
using the corresponding constructor of any inductive type that is a sub-type
of the inductive type for which the elimination is specified. Note that in the
Coq implementation of cumulativity for inductive types, cumulativity is only
considered for different instances of the same inductive type at different universe
levels. That is, only for two instances of the same universe polymorphic inductive
type. In those settings, the inductive types being sup-types of one another are
instance of the same inductive types and the eliminators, and in general the
operational semantics, simply ignore the universes in terms. Here, we have to
consider this side condition to achieve a similar result.

A.5 Conversion/Cumulativity

Figures A.4 shows the conversion/cumulativity rules of pCIC.

The core of these rules is the rule Cum. It states that whenever a term t has
type A and the conversion/cumulativity relation A � B holds, then t also
has type B. The rule Eq-Cum says that two judgementally equal (convertible)
types M and M ′ are in conversion/cumulativity relation M �M ′. The rules
Prop-in-Type and Cum-Type specify the order on the hierarchy of sorts. The
rule Cum-Prod states the conditions for conversion/cumulativity between two
(dependent) function types. Note in this rule that functions are not contravariant
in their domain type. This is also the case in Coq. This condition is crucial
for the construction of our set-theoretic model as set-theoretic functions (i.e.,
functional relations) are not contravariant.
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Prop-in-Type
Γ ` Prop � Typei

Cum-Type
i ≤ j

Γ ` Typei � Typej

Cum-trans
Γ `M � N Γ ` N � O

Γ `M � O

Cum-weaken
Γ `M � N Γ ` O : s x 6∈ dom(Γ)

Γ, x : O `M � N

Cum-Prod
Γ ` A1 ' B1 : s Γ, x : A1 ` A2 � B2

Γ ` Πx : A1. A2 � Πx : B1. B2

Cum-eq-L
Γ `M ' N : s Γ ` N � O

Γ `M � O

Cum-eq-R
Γ `M � N Γ ` N ' O : s

Γ `M � O

Cum
Γ ` t : A Γ ` A � B

Γ ` t : B

Cum-eq
Γ ` t ' t′ : A Γ ` A � B

Γ ` t ' t′ : B

Eq-Cum
Γ `M 'M ′ : s

Γ `M �M ′

Figure A.4: Cumulativity





Appendix B

The set theoretic model of
pCuIC

B.1 Set-theoretic background

In this section we shortly explain the set-theoretic axioms and constructions
that form the basis of our model. We assume that the reader is familiar with
the ZFC set theory. This is very similar to the theory that Lee and Werner
(2011) use as the basis for their model. In particular, we use Zermelo-Fraenkel
set theory with the axiom of choice (ZFC) together with an axiom that there
is a countably infinite strictly increasing hierarchy of uncountable strongly
inaccessible cardinals. In particular, we assume that we have a hierarchy of
strongly inaccessible cardinals κ0, κ1, κ2, . . . where κ0 > ω.

B.1.1 Von Neumann cumulative hierarchy and models of ZFC

The von Neumann cumulative hierarchy is a sequence of sets (indexed by ordinal
numbers) that is cumulative. That is, each set in the hierarchy is a subset of
the all sets after it. These sets are also referred to as von Neumann universes.
This hierarchy is defined as follows for ordinal number α:

Vα ,
⋃
β∈α

P (Vβ)

It is well-known (Drake, 1974) that whenever α is a strongly inaccessible cardinal
number of a cardinality strictly greater than ω, as is the case for κ0, κ2, . . . , Vα

201
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is a model for ZFC. The von Neumann universe Vω satisfies all axioms of ZFC
except for the axiom of infinity. This is due to the fact that all sets in Vω are
finite. This is why we have assumed that our hierarchy of strngly inaccessible
cardinals starts at one strictly greater than ω. In particular, if A and B are
two sets in Vκ then BA ∈ Vκ where BA is the set of all functions from B to
A. This allows us to use von Neumann universes to model the predicative
pCuIC universes. For more details about strongly inaccessible cardinals and
von Neumann universes refer to Drake (1974).

B.2 Rule sets and fixpoints: inductive construc-
tions in set theory

Following Lee and Werner (2011), who follow Dybjer (1991) and Aczel (1999),
we use inductive definitions (in set theory) constructed through rule sets to
model inductive types. Here, we give a very short account of rule sets for
inductive definitions. For further details refer to Aczel (1977).

A pair (A, a) is a rule based on a set U where A ⊆ U is the set of premises
and a ∈ U is the conclusion. We usually write A

a for a rule (A, a). A rule set
based on U is a set Φ of rules based on U . We say a set X ⊆ U is Φ-closed,
closedΦ(X) for a U based rule set Φ if we have:

closedΦ(X) , ∀A
a
∈ Φ. A ⊆ X ⇒ a ∈ X

The operator OΦ corresponding to a rule set Φ is the operation of collecting all
conclusions for a set whose premises are available in that set. That is,

OΦ(X) ,
{
a

∣∣∣∣Aa ∈ Φ ∧A ⊆ X
}

Hence, a set X is Φ-closed if OΦ(X) ⊆ X. Notice that OΦ is a monotone
function on P (U) which is a complete lattice. Therefore, for any U based rule
set Φ, the operator OΦ has a least fixpoint, I(Φ) ⊆ U :

I(Φ) ,
⋂
{X ⊆ U |closedΦ(X)}

We define by transfinite recursion a sequence, indexed by ordinal numbers OαΦ
for an ordinal number α:

OαΦ ,
⋃
β∈α

(
OβΦ ∪ OΦ(OβΦ)

)
Obviously, for β ≤ α we have OβΦ ⊆ OαΦ.
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Theorem B.2.1 (Aczel (1977)). For any rule set Φ there exists an ordinal
number ClOrd(Φ) called the closing ordinal of Φ such that it is the smallest
ordinal number for which we have I(Φ) = OClOrd(Φ)

Φ is the least fixpoint of OΦ.
In other words, OClOrd(Φ)+1

Φ = OΦ(OClOrd(Φ)
Φ ) = OClOrd(Φ)

Φ .

Lemma B.2.2 (Aczel (1977)). Let Φ be a rule set based on some set U and β
a regular cardinal such that for every rule A

a ∈ Φ we have that |A| < β then

ClOrd(Φ) ≤ β

In other words, OβΦ is the least fixpoint of OΦ.

B.2.1 Fixpoints of large functions

A set theoretic constructions is called large with respect to a set theoretic (von
Neumann) universe if it does not belong to that universe. As we shall see, the
functions that we will consider for interpreting of inductive types (operators of
certain rule sets) are indeed large. That is, they map subsets of the universe to
subsets of the universe. As a result, the fixpoint of these functions might not
have a fixpoint within the universe in question as the universe with the subset
relation on it is not a complete lattice. The following lemmas show that under
certain conditions, the fixpoint of the function induced by rule sets does exist in
the desired universe. We will use this lemma to show that the interpretations
of inductive types do indeed fall in the universe that they are supposed to.

Lemma B.2.3. Let Φ be a rule set based on the set-theoretic universe V and
α ∈ V be a cardinal number such that for all Aa ∈ Φ we have |A| ≤ α. Then,

ClOrd(Φ) ∈ V

Proof. By Lemma B.2.2, it suffices to show that there is a regular cardinal
β ∈ V such that |A| < β for any A

a ∈ Φ. Take β to be ℵα+1. By the fact that
V is a model of ZFC we know that ℵα+1 ∈ V. By the fact that α < ℵα+1 we
know that |A| < ℵα+1 for any A

a ∈ Φ. It is well known that under axioms of
ZFC (this crucially uses axiom of choice) ℵα+1 is a regular cardinal for any
ordinal number α – see Drake (1974) for a proof. This concludes our proof.

Lemma B.2.4. Let Φ be a rule set based on the set-theoretic universe V and
α ∈ V be a cardinal number such that for all Aa ∈ Φ we have |A| ≤ α. Then,

I(Φ) ∈ V
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Proof. By Lemma B.2.2 we know that I(Φ) = OClOrd(Φ)
Φ . We know that

OClOrd(Φ)
Φ ∈ V as it is constructed by transfinite recursion up to ClOrd(Φ) and

that we crucially know that ClOrd(Φ) ∈ V by Lemma B.2.3. More precisely,
this can be shown using transfinite induction up to ClOrd(Φ) showing that
every stage belongs to V. Notice that it is crucial for an ordinal to belong to
the universe in order for transfinite induction to be valid.

B.2.2 The use of the axiom of choice

The only place in this work that we make use of axiom of choice is in the proof
of Lemma B.2.3. We use this axiom to show the following statement which we
could have alternatively taken as a (possibly) weaker axiom.

In any von Neumann universe V for any cardinal number α there is
a regular cardinal β such that α < β.

Note that his statement is independent of ZF and certain axiom, e.g., the axiom
of choice as we have taken here, needs to be postulated. This is due to the
well-known fact proven by Gitik (1980) that under the assumption of existence
of strongly compact cardinals, any uncountable cardinal is singular!

B.2.3 Modeling the impredicative sort Prop: trace encoding

One of the challenges in constructing a model for a system like pCuIC is
treatment of an impredicative proof-irrelevant sort Prop. This can be done
by simply modeling Prop as the set {∅, {∅}} where provable propositions are
modeled as {∅} and non-provable propositions as ∅. This however, will only
work where we don’t have the cumulativity relation between Prop and Typei. In
presence of such cumulativity relations, such a naïve treatment of Prop breaks
interpretation of the (dependent) function spaces as sets of functions. The
following example should make the issue plain.
Example B.2.5 (Werner (1997)). Let’s consider the interpretation of the term
I ≡ λ(P : Type0). P → P . In this case, the semantics of JI TrueK will be
{∅} or {∅}{∅} depending on whether True : Prop or True : Type0 is considered,
respectively. And hence we should have {∅} = {∅}{∅} which is not the case, even
though the two sets are isomorphic (bijective).

In order to circumvent this issue, we follow Lee and Werner (2011), who in
turn follow Aczel (1999), in using the method known as trace encoding for
representation of functions.
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Definition B.2.6 (Trace encoding). The following two functions, Lam and
App, are used for trace encoding and application of trace encoded functions
respectively.

Lam(f) ,
⋃

(x,y)∈f

({x} × y)

App(f, x) , {y|(x, y) ∈ f}

Lemma B.2.7. Let f : X → Y be a set theoretic function then for any x ∈ X
we have

App(Lam(f), x) = f(x)

Note that using the trace encoding technique the problem mentioned in
Example B.2.5 is not present anymore. That is, we have:{

Lam(f)
∣∣∣f ∈ {∅}{∅}} = {∅}

Lemma B.2.8 (Aczel (1999)). Let A be a set and assume the set B(x) ⊆ 1 for
x ∈ A.

1. {Lam(f)|f ∈ Πx ∈ A.B(x)} ⊆ 1

2. {Lam(f)|f ∈ Πx ∈ A.B(x)} = 1 iff ∀x ∈ A. B(x) = 1

B.3 The set-theoretic model of pCuIC and its
soundness

We construct a model for pCuIC by interpreting predicative universes using von
Neumann universes and Prop as {0, 1} = {∅, {∅}}. We use the trace encoding
technique presented earlier for (dependent) function types. We will construct
the interpretation of inductive types and their eliminators using rule sets for
inductive definitions in set theory. We shall first define a size function on
terms, typing contexts, and pairs of a context and a term which we write as
size(Γ ` t). We will then define the interpretation of typing contexts and terms
(in appropriate context) by well-founded recursion on their size.

Definition B.3.1. We define a function called size on terms, contexts,
declarations and pairs consisting of a context and a term (which we write
as size(Γ ` t)) mutually recursively as follows:
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Size for typing contexts and declarations

size(·) , 1/2

size(Γ, x : A) , size(Γ) + size(A)

size(Γ, x := t : A) , size(Γ) + size(t) + size(A)

size(Γ, Indn {∆I := ∆C}) , size(Γ) + size(Indn {∆I := ∆C})

Size for term

size(Prop) , 1

size(Typei) , 1

size(x) , 1

size(Πx : A.B) , size(A) + size(B) + 1

size(λx : A. t) , size(A) + size(t) + 1

size(t u) , size(t) + size(u) + 1

size(letx := t : A inu) , size(t) + size(u) + size(A) + 1

size(D.z) , size(D)

size(Elim(t;D.di; #»u ; #»

Q)
{

#»

f
}

) , size(t) + size(D) +
∑
i

size(ui)

∑
i

size(Qi) +
∑
i

size(fi) + 1

Size for pairs consisting of a context and a term

size(Indn {∆I := ∆C}) ,
∑

d∈dom(∆I)

size(∆I(d))+

∑
c∈dom(∆C)

size(∆C(c)) + 1

Size for judgements

size(Γ ` t) , size(Γ) + size(t)− 1/2
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size(Γ ` Indn {∆I := ∆C}) , size(Γ) + size(Indn {∆I := ∆C})− 1/2

In the definition above, which is similar to that by Lee and Werner (2011) and
Miquel and Werner (2003), the ±1/2 is add to make sure size(Γ ` t) < size(Γ, x :
t) and that size(Γ) < size(Γ ` t).
Definition B.3.2 (The model). We define the interpretations for contexts and
terms by well-founded recursion on their sizes.
Interpretation of contexts

J·K , {nil}

JΓ, x : AK ,
{
γ, a
∣∣∣γ ∈ JΓK ∧ JΓ ` AKγ↓ ∧a ∈ JΓ ` AKγ

}
JΓ, x := t : AK ,

{
γ, a

∣∣∣∣ γ ∈ JΓK ∧ JΓ ` AKγ↓ ∧ JΓ ` tKγ↓ ∧
a = JΓ ` tKγ ∈ JΓ ` AKγ

}
JΓ, Indn {∆I := ∆C}K , JΓK if JΓ ` Indn {∆I := ∆C}Kγ↓ for all γ ∈ JΓK

Above, we assume that x 6∈ dom(Γ), otherwise, both JΓ, x : AK and JΓ, x := t : AK
are undefined.
Interpretation of terms

JΓ ` PropKγ , {∅, {∅}}

JΓ ` TypeiKγ , Vκi

JΓ ` xK #»a , alen(Γ1)−l if Γ = Γ1, x : A,Γ2 and

x 6∈ dom(Γ1) ∪ dom(Γ2) and l = len(Inds(Γ1))

JΓ ` Πx : A.BKγ ,
{

Lam(f)
∣∣∣f : Πa ∈ JΓ ` AKγ . JΓ, x : A ` BKγ,a

}
JΓ ` λx : A. tKγ , Lam

({
(a, JΓ, x : A ` tKγ,a)

∣∣∣a ∈ JΓ ` AKγ
})

JΓ ` t uKγ , App(JΓ ` tKγ , JΓ ` uKγ)

JΓ ` letx := t : A inuKγ , JΓ, x := t : A ` uKγ,JΓ`uKγ

Interpretation of inductive types, constructors and eliminators is defined below
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B.3.1 Modeling inductive types

We define the interpretation for inductive blocks by constructing a rule set
which will interpret the whole inductive block. We will define interpretation of
individual inductive types and constructors of the block based on the fixpoint
of this rule set.
Remark B.3.3. In the reset of this chapter, we assume for the construction of
the model for inductive types, constructors and eliminators, that the parameters
can be heterogeneous. The only lemma that we cannot prove for heterogeneous
parameters is Lemma B.3.8 below. This is the reason why in our system we
have assumed that parameters are uniform, i.e, they are fixed for the whole block.
Proving an analogue of Lemma B.3.8 for inductive types with heterogeneous
parameters is one of the future works of our work.
Definition B.3.4 (Interpretation of inductive types). Let us assume that
D ≡ Indn {∆I := ∆C} is an arbitrary but fixed inductive block such that ∆I =
d0 : A0, . . . dl : Al and ∆C = c0 : T0, . . . cl′ : Tl′ . Here, we assume Ai ≡ Π #»p :
#»

P .Π #»x : # »

Bi. s for some sequence of types #»

B and some sort s. Furthermore,
#»

P are parameters of the inductive block. The type of constructors are of the
following form: Tk ≡ Π #»p : #»

P .Π #»x : # »

Vk. dik
#»p

#»
tk for some #»

tk. Notice that
# »

Vk is a sequence itself. That is, it is of the form # »

Vk ≡ Vk,1, . . . , Vk,len( #  »
VK).

That is, each constructor ck, takes a number of arguments, first parameters #»

P
and then some more # »

Vk. The strict positivity condition implies that for any
non-parameter argument Vk,i of a constructor ck, either d ∈ dom(∆I) does not
appear in Vk,i or we have Vk,i ≡ Π #»x : #      »

Wk,i. dIk,i
#»q

#»
t where len( #»q ) = len( #»p ).

That is, each argument of a constructor where an inductive type (of the same
block) appears, is a (dependent) function with codomain being that inductive
type. In this case, no inductive type of the block appears the domain(s) of the
function, #      »

Wk,i. Notice that the codomain of the function is an inductive type in
the block but not necessarily of the same family as the one being defined – the
parameters applied are #»q instead of #»p ! We write rec(Vk,i) if some inductive of
the block appears in Vk,i in which case it will be of the form just described.

JΓ ` DKγ , I(ΦγΓ,D)

ΦγΓ,D ,
⋃

di∈dom(∆I)

⋃
ck∈Constrs(di)Ψdi,ck

ψdi,ck

∣∣∣∣∣∣
#»a ∈

r
Γ ` #»

P
z

γ
,

#»m ∈
r

Γ, #»p : #»

P ,
#»

d′ : #»s `
# »

V ′k

z

γ, #»a ,
#»
b
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Where,
#»

d′ is the sequence of d′Ik,j ’s occurring within
# »

V ′k below and si ≡ Adi is

the arity of the inductive type di,
#»

b ∈
r

Γ, #»p : #»

P ` #»s
z

γ, #»a
and,

ψdi,ck ,

〈
i; #»a ;

r
Γ, #»p : #»

P ,
#»

d′ : #»s , #»x :
# »

V ′k `
#»
tk

z

γ, #»a ,
#»
b , #»m

; 〈k; #»m〉
〉

Ψdi,ck ,
⋃

rec(Vk,j)

〈Ik,j ;s
Γk,j ,
#»y : #       »

Wk,j
` #»q

{

γ, #»a .
#»

b ,
#»e , #»u

;

s
Γk,j ,
#»y : #       »

Wk,j
` #»
t

{

γ, #»a ,
#»

b ,
#»e , #»u

;

#     »App(mIk,j ,
#»u )
〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
#»u ∈

r
Γk,j `

#       »

Wk,j

z

γ, #»a ,
#»
b , #»e


Γk,j , Γ, #»p : #»

P ,
#»

d′ : #»s , x1 : V ′k,1, . . . , xj−1 : V ′k,j−1

#»e , m1, . . .mj−1

For Ψk we assume that Vk,j ≡ Π #»y : #       »

Wk,j . dIk,j
#»q

#»
t .

The types V ′k,j are defined based on Vk,j as follows:

V ′k,j ,


Π #»x : #      »

Wk,i. d
′
Ik,j

if rec(Vk,j) and
Vk,i ≡ Π #»x : #      »

Wk,i. dIk,j
#»q

#»
t

Vk,j otherwise

We define the interpretation of the inductive types in the block as follows:

JΓ ` D.diKγ ,
#     »Lam(fdi)

fdi( #»a ,
#»
t ) ,

{
〈k; #»m〉

∣∣∣〈i; #»a ; #»
t ; 〈k; #»m〉

〉
∈ JΓ ` DKγ

}
for #»a ,

#»
t ∈

r
Γ ` #»

P ,
# »

Bi

z

γ

We define the interpretation of the constructors in the block as follows:

JΓ ` D.ckKγ ,
#     »Lam(gck)

gck( #»a , #»m) , 〈k; #»m〉 for #»a , #»m ∈
r

Γ ` #»

P ,
# »

Vk

z

γ
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Let us first discuss the intuitive construction of Definition B.3.4 above. In
this definition the most important part is the interpretation of the inductive
block. We have defined this as the fixpoint of the rule sets corresponding to
constructors of the inductive type. This rule set basically spells out the following.
Take, some set d′Ik,j in the universe as a candidate for the interpretation of jth

occurrence of inductive type dIk,j in the kth constructor. This candidate, d′Ik,j ,
is taken to be a candidate element of the inductive type dIk,j in case #      »

Wk,i = nil,
i.e., intuitively, if the recursive occurrence embeds an element of dIk,j in the
type being constructed. On the other hand, if the recursive occurrence of dIk,j
is, intuitively, embedding a function with codomain dIk,j into the type being
constructed then d′Ik,j is to be understood as the codomain of the function being
embedded by the constructor. In each of these two cases, we need to make
sure the candidate element and or function is correctly chosen, i.e., we need
to make sure that the element or the range of the function chosen is indeed in
the interpretation of the inductive type. This is where the rule sets come to
play, so to speak. The premise set Ψk makes sure that all candidate recursive
occurrences are indeed correctly chosen. This is done by basically making sure
that for any of the arguments of the function being embedded (here an element
is treated as a function with no arguments!) the result of applying the candidate
function to the arguments is indeed in the interpretation of the corresponding
inductive type. Do notice that #     »App(a, nil) = a.

Example B.3.5 (Rule set for construction of natural numbers).

ΦγΓ,N =
{

∅
〈0; nil; nil; 〈0; nil〉〉

}
∪
{
{〈0; nil; nil; a〉}
〈0; nil; nil; 〈1; a〉〉

∣∣∣∣a ∈ Vκ0

}
Example B.3.6 (Rule set for construction of lists).

ΦγΓ,Li =
{

∅
〈0;A; nil; 〈0; nil〉〉

}
∪
{
{〈0;A; nil, b〉}
〈0;A; nil; 〈1; a, b〉〉

∣∣∣∣b ∈ Vκ0 ∧ a ∈ JΓ ` AKγ

}
Lemma B.3.7. Values for arguments of arities are uniquely determined by
the values for arguments each constructor (including values for parameters) in
OαΦγΓ,D and in particular in JΓ ` DKγ . That is, if

〈
i; #»a ; #»

t ; 〈k; #»m〉
〉
,
〈
i; #»a ;

#»

t′ ; 〈k; #»m〉
〉
∈ OαΦγΓ,D

then, #»
t =

#»

t′ . Analogously for JΓ ` DKγ we have that if〈
i; #»a ; #»

t ; 〈k; #»m〉
〉
,
〈
i; #»a ;

#»

t′ ; 〈k; #»m〉
〉
∈ JΓ ` DKγ

then, #»
t =

#»

t′ .
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Proof. This immediately follows from the fact that for any two rules

X〈
i; #»a ; #»

t ; 〈k; #»m〉
〉 and X ′〈

i; #»a ;
#»

t′ ; 〈k; #»m〉
〉

in ΦγΓ,D we have #»
t =

#»

t′ .

We shall show that the interpretation of the inductive types in a block are each
in the universe corresponding to their arity. Notice that whenever two inductive
types appear in one another the syntactic criteria for typing enforce that they
are both have the same arity.1 Therefore, we assume without loss of generality
that all inductive types in the block have the same arity. In case it is not the
case, it must be that there are some inductive types in the block that are not
necessarily mutually inductive with the rest of the block. Hence, those inductive
types (and their interpretations) can be considered prior to considering the
block as a whole. Therefore, in the following theorem, we assume, without loss
of generality that the all of the inductive types of a block are of the same arity.

Lemma B.3.8. Let D ≡ Indn {∆I := ∆C} be a block of inductive types with
uniform parameters such that all inductive types of arity Typei. Furthermore,
let us assume that all the terms (and particularly types) appearing in the
body of the block are well defined under the context Γ and environment γ
and interpretation of each of these terms (and types) is in the interpretation of
the type (correspondingly sort) that is expected based on the typing derivation.2
Then, JΓ ` DKγ ↓, JΓ ` DKγ ∈ Vκj, where Typej is the maximal sort of the
inductive types in the block, and JΓ ` D.djKγ ∈ JΓ ` ∆I(dj)Kγ .

Proof. The construction of JΓ ` DKγ depends only on the interpretation of
terms JΓ ` uKγ where u appears in ∆I or ∆C and by our assumptions these
are all defined. Therefore, we can easily see that JΓ ` DKγ↓. We show that
JΓ ` DKγ ∈ Vκj . This follows by Lemma B.2.4. Notice that as all terms
appearing in the inductive block have types that are in Typej we know that the
cardinality of premises of rules in the rule set for constructing JΓ ` DKγ are also
all in Vκj . Since there are finitely many such terms we can take the maximum
of these cardinalities which allows us to use Lemma B.2.4.

Let #»

b be a sequence of sets that are in the interpretation for parameters
of the mutual inductive block. Let F(Φ) =

{
a =

〈
i; #»

b ; #»
t ; c
〉∣∣∣Aa ∈ Φ

}
and

G(A) =
{
a =

〈
i; #»

b ; #»
t ; c
〉∣∣∣a ∈ A}. That is, F filters a rule set so that only

1Note that this is the case in our work as there are no inductive types in Prop.
2These conditions will hold by induction hypotheses when this lemma is used in practice.
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those rules are retained that produce inductive types in the family indexed by
parameter values #»

b . Similarly, G filters the fixpoint of such a rule set.

We show, by transfinite induction up to the closing ordinal of ΦγΓ,D, that

G(I(ΦγΓ,D)) = I(F(ΦγΓ,D))

Notice that this crucially depends on the fact that parameters are uniform.
Now, non-parameter arguments of constructors need to be in the sort (see the
typing rule for inductive types). Therefore, for each fixed set of parameters, e.g.,
#»

b above, for each constructor there is a fixed cardinality α ∈ Vκi (cardinality
corresponding to the type of non-parameter arguments) such that the cardinality
of premises of rules in F(ΦγΓ,D) corresponding to that constructor is less than
or to α. Since, there are finitely many such cardinalities we can take the
maximum of these cardinalities which is again in Vκi. Hence, the closing ordinal
of I(F(ΦγΓ,D)) is in Vκi. Notice, that this does not imply that I(F(ΦγΓ,D)) is in
Vκi as there are parameters can values for indices in the tuples in I(F(ΦγΓ,D)).

Finally, we show that for each sequence #»c of sets that are in the interpretation
for the indices of an inductive type di,

{
a
∣∣∣〈i; #»

b ; #»c ; a
〉
I(F(ΦγΓ,D))

}
∈ Vκi. We

show this by transfinite induction up to the closing ordinal of I(F(ΦγΓ,D)) which,
crucially, we know that is in Vκi.

Lemma B.3.9. Let D ≡ Indn {∆I := ∆C} and D′ ≡ Indn {∆′I := ∆′C} be two
blocks of inductive types with dom(∆I) = dom(∆′I) and dom(∆C) = dom(∆′C).
Furthermore, assume that the for each d ∈ dom(∆I) the interpretation of the
arguments of the arity of ∆C(d) are subsets of the interpretation of corresponding
arguments of the arity of ∆C(d′). Similarly for the arguments of the constructors.
In addition, assume that in each case, the interpretation of values given as
parameters and arities in the resulting type of each corresponding constructors
(the inductive type being constructed by that constructor) are equal. These are
conditions in the rule Ind-leq in Figure 4.6 where cumulativity (subtyping)
relation is replaced with subset relation on the interpretation and the judgemental
equality is replaced with equality of interpretations.3

Let #»

P and
# »

P ′ be parameters of inductive blocks D and D′, respectively. In this
case,

∀d ∈ dom(∆I). ∆I(d) ≡ Π #»p : #»

P . #»m : # »

M.Ad ⇒

∀ #»a . #»a ∈
r

Γ ` #»

P
z

γ
∧ #»a ∈

r
Γ `

# »

P ′
z

γ
⇒

3These conditions will hold by the induction hypothesis when we shall use this lemma.
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∀ #»

b ∈
r

Γ, #»p : #»

P ` # »

M
z

γ
⇒ #     »App(JΓ ` D.dKγ , #»a ,

#»

b ) ⊆ #     »App(JΓ ` D′.dKγ , #»a ,
#»

b )

Proof. Expanding the definition of JΓ ` D.dKγ and JΓ ` D′.dKγ in the statement
above gives us:

∀d ∈ dom(∆I). ∆I(di) ≡ Π #»p : #»

P . #»m : # »

M.Adi ⇒

∀ #»a . #»a ∈
r

Γ ` #»

P
z

γ
∧ #»a ∈

r
Γ `

# »

P ′
z

γ
⇒

∀ #»

b ∈
r

Γ, #»p : #»

P ` # »

M
z

γ
⇒

{
c
∣∣∣〈i; #»a ; #»

b ; c
〉
∈ JΓ ` DKγ

}
⊆
{
c
∣∣∣〈i; #»a ; #»

b ; c
〉
∈ JΓ ` D′Kγ

}
In order to show this, we show, by transfinite induction on α up to the closing
ordinal of ΦγΓ,D, that the following holds

∀d ∈ dom(∆I). ∆I(di) ≡ Π #»p : #»

P . #»m : # »

M.Adi ⇒

∀ #»a . #»a ∈
r

Γ ` #»

P
z

γ
∧ #»a ∈

r
Γ `

# »

P ′
z

γ
⇒

∀ #»

b ∈
r

Γ, #»p : #»

P ` # »

M
z

γ
⇒

{
c
∣∣∣〈i; #»a ; #»

b ; c
〉
∈ OαΦγΓ,D

}
⊆
{
c
∣∣∣〈i; #»a ; #»

b ; c
〉
∈ OαΦγΓ,D′

}
The base case, and the case for limit ordinals are trivial. In case of a successor
ordinal, α+, let a k be in

{
c
∣∣∣〈i; #»a ; #»

b ; c
〉
∈ Oα+

ΦγΓ,D

}
. Then it must be generated

by a rule in ΦγΓ,D. By the premise of this rule, we know that all the recursive
(the same or other inductive types of the block) arguments are required to
be in the previous stage, OαΦγΓ,D . By induction hypothesis, we know that
those tuples should also belong to OαΦγΓ,D′

. Hence, the corresponding rule
exists in Φγ

Γ,D′ and is applicable. Therefore, the tuple k must also be in{
c

∣∣∣∣〈i; #»a ; #»

b ; c
〉
∈ Oα+

ΦγΓ,D′

}
.
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B.3.2 Modeling eliminators

We define the interpretation for eliminators by constructing a rule set which
will interpret the eliminators for the whole inductive block. We will define
interpretation of individual eliminators based on the fixpoint of this rule set.

Definition B.3.10 (Interpretation of recursors). Let D ≡ Indn {∆I := ∆C}
an arbitrary but fixed inductive block and assume, without loss of generality,
that ∆I = d0 : A0, . . . dl : Al and ∆C = c0 : T0, . . . cl′ : Tl′ . Where Ai ≡
Π #»p : #»

P .Π #»x : #»

B. s for some types #»

B and some sort s. Here, #»

P are parameters
of the inductive block. The type of constructors are of the following form:
Tk ≡ Π #»p : #»

P .Π #»x : # »

Vk. dik
#»p

#»
tk for some #»

tk. For the sake of simplicity of
presentation, let us write ELB ≡ ElimD(Qd1 , . . . , Qdl)

{
fc1 , . . . , fcl′

}
for the

block of eliminators being interpreted. Furthermore, let ξQd1 ,...,Qdl
D (ck, Tk) ≡

Π #»x : #  »

Uk. Qdik
#»u for some terms #»u . Notice that ξQd1 ,...,Qdl

D is simply the type
of the constructor where after each (mutually) recursive argument, an argument
is added for the result of the elimination of that (mutually) recursive argument.
Let us write Jk,i for the index of the ith argument of the kth constructor, Vk,i,
in #  »

Uk above. More precisely, whenever rec(Vk,i) holds, we have UJk,i+1 is the
argument of ξQd1 ,...,Qdl

D (ck, Tk) that corresponds to the result of the elimination
of Vk,i = UJk,i . We first define a rule set ΦγΓ,ELB for this interpretation:

ΦγΓ,ELB ,
⋃

di∈dom(∆I)

⋃
ck∈Constrs(di)

{
Ψdi,ck

ψdi,ck

∣∣∣∣ #»a ∈
r

Γ ` #  »

Uk

z

γ

}

Let #»

b be the subsequence of #»a corresponding to arguments of the constructor,
i.e., it is obtained from #»a by dropping any term in the sequence that corresponds
to some UJk,j+1 whenever rec(Vk,j).

ψdi,ck ,
〈〈
ck; #»

b
〉

; #     »App(JΓ ` fckKγ , #»a )
〉

For Ψk we assume that Vk,j ≡ Π #»y : #       »

Wk,j . dIk,j
#»q

#»
t .

Γk,j , Γ, #»p : #»

P , x1 : Vk,1, . . . , xj−1 : Vk,j−1

#»e , b1, . . . bj−1

Ψdi,ck ,
⋃

rec(Vk,j){〈 #     »App(
q
Γk,j ` UJk,j

y
γ, #»e

, #»u );
#     »App(

q
Γk,j ` UJk,j+1

y
γ, #»e

, #»u )

〉∣∣∣∣∣ #»u ∈
r

Γk,j `
#       »

Wk,j

z

γ, #»e

}
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We define the interpretation individual eliminators as follows:
q
Γ ` Elim(t;D.di; #»v ;Qd1 , . . . , Qdl)

{
fc1 , . . . , fcl′

}y
γ
, u

if JΓ ` tKγ = 〈k, #»m〉, and u is the unique set such that
〈〈
k; JΓ ` #»v Kγ ,

#»m
〉

;u
〉
∈

I(ΦγΓ,ELB).

The following lemma shows that in Definition B.3.10 above we have indeed
captured and interpreted all of the elements of all of the inductive types in the
block.
Lemma B.3.11. Let D ≡ Indn {∆I := ∆C} be a block of inductive types with
JΓ ` DKγ defined and let Qd1 , . . . , Qdl and fc1 , . . . , fcl′ be such that

JΓ ` QdiKγ ∈
r

Γ ` Π #»x : #»

A. (di #»x )→ s′
z

γ

and
JΓ ` fciKγ ∈

r
Γ ` ξ

#»
Q
D (ci,∆C(ci))

z

γ

Also, assume that for the term t we have JΓ ` tKγ ∈ JΓ ` D.d #»u #»v Kγ . Then,
q
Γ ` Elim(t;D.d; #»u ;Qd1 , . . . , Qdl)

{
fc1 , . . . , fcl′

}y
γ
↓

and
q
Γ ` Elim(t;D.d; #»u ;Qd1 , . . . , Qdl)

{
fc1 , . . . , fcl′

}y
γ
∈ JΓ ` Qdi #»u #»v tKγ

Proof. We show by transfinite induction up to the closing ordinal of ΦγΓ,D that
for any α and for any〈

〈k; #»a , #»m〉 ; #»
t
〉
∈
{〈
〈k; #»a , #»m〉 ; #»

t
〉∣∣∣〈i; #»a ; #»

t ; 〈k; #»m〉
〉
∈ OαΦγΓ,D

}
(note that by Lemma B.3.7 #»

t is uniquely determined by k, #»a and #»m) there is
a unique b ∈

r
Γ ` #     »App(Qdi , #»a ,

#»
t , 〈k; #»m〉)

z

γ
such that 〈〈k; #»m〉 ; b〉 ∈ OαΦγΓ,ELB

for

ELB ≡ ElimD(Qd1 , . . . , Qdl)
{
fc1 , . . . , fcl′

}
For the base case, α = 0 this holds trivially. For the other cases, it suffices
to notice that all the argument elements taken for the (mutually) recursive
arguments of constructors, i.e., corresponding to UJk,j for rec(VJk,j ) are uniquely
determined from the arguments of the constructor ( #»

b in the interpretation of
recursors above) as is so restricted by the antecedents of each rule.

Notice that the argument above also shows that ΦΓ
Γ,ELB and ΦΓ

Γ,D have the
same closing ordinal. This concludes the proof.
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B.3.3 Proof of Soundness

We show that the model that we have constructed throughout this section
is sound. That is, we show that for any typing context Γ, term t and type
A such that Γ ` t : A we have that for any environment γ ∈ JΓK, JΓ ` tKγ↓,
JΓ ` AKγ↓ and that JΓ ` tKγ ∈ JΓ ` AKγ . We use this result to prove consistency
of pCuIC.
Lemma B.3.12. Let Γ be a typing context, γ be an environment, t such that
JΓ ` tKγ↓. Then FV (t) ⊆ dom(Γ).

Proof. We prove that if there is a variable x ∈ FV (t) such that x 6∈ dom(Γ)
then ¬ JΓ ` tKγ↓. This follows easily by induction on t.

Lemma B.3.13 (Weakening). Let Γ be a typing context, γ be an environment,
t and A be terms such that JΓ,Γ′K↓, γ ∈ JΓK, γ, γ′ ∈ JΓ,Γ′K and JΓ,Γ′ ` tKγ,γ′↓.
Furthermore, let Ξ be a typing context and δ be an environment such that
(dom(Γ)∪ dom(Γ′))∩ dom(Ξ) = ∅, and we have that variables in dom(Ξ) do not
appear in Γ′ freely such that JΓ,Ξ,Γ′K↓ and γ, δ, γ′ ∈ JΓ,Ξ,Γ′K. Then

1. JΓ,Ξ,Γ′ ` tKγ,δ,γ′↓

2. JΓ,Ξ,Γ′ ` tKγ,δ,γ′ = JΓ,Γ′ ` tKγ,γ′

Proof. We prove the result above by induction on t. Most cases follow easily by
induction hypotheses. Here, for demonstration purposes we show the case for
variables and (dependent) function types.

• t = x: In this case, both Case 1 and Case 2 above follow by definition of
the model.

• t = Πx : A.B: We know by induction hypothesis that

JΓ,Ξ,Γ′ ` AKγ,δ,γ′↓

JΓ,Ξ,Γ′ ` AKγ,δ,γ′ = JΓ,Γ′ ` AKγ,γ′

Also by induction hypotheses we have that for all a ∈ JΓ,Ξ,Γ′ ` AKγ,δ,γ′ ,

(JΓ,Ξ,Γ′, x : A ` BKγ,δ,γ′,a)↓

JΓ,Ξ,Γ′, x : A ` BKγ,δ,γ′,a = JΓ,Γ′, x : A ` BKγ,γ′,a

Given the above induction hypotheses, both Case 1 and Case 2 above
follow by the definition of the model. Note that by Lemma B.3.12, we
know that variables in dom(Ξ) do not appear freely in A. This is why
induction hypothesis applies to B above.
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Lemma B.3.14 (Substitutivity). Let Γ be a typing context, γ be an
environment, u and A be terms such that JΓK↓, γ ∈ JΓK and JΓ ` uKγ↓. Then

1. If JΓ, x : A,ΞK↓ and γ, JΓ ` uKγ , δ ∈ JΓ, x : A,ΞK then γ, δ ∈ JΓ,Ξ[u/x]K

2. If
JΓ, x : A,ΞK↓ and γ, JΓ ` uKγ , δ ∈ JΓ, x : A,ΞK and

JΓ, x : A,Ξ ` tKγ,JΓ`uKγ ,δ
↓

then

(a) JΓ,Ξ[x/u] ` t[u/x]Kγ,δ↓
(b) JΓ,Ξ[x/u] ` t[u/x]Kγ,δ =

JΓ, x : A,Ξ ` tKγ,JΓ`uKγ ,δ
= JΓ, x := u : A,Ξ ` tKγ,JΓ`uKγ ,δ

Proof. We prove this lemma by well-founded induction on σ(Ξ, t) = size(Ξ) +
size(t)− 1/2. In the following we reason as though we are conducting induction
on the structure of terms and contexts. Note that this is allowed because
our measure σ(Ξ, t) does decrease for the induction hypotheses pertaining to
structural induction in each case σ(Ξ, t) is decreasing. This is in particular
crucial in some sub-cases of the case where Ξ = Ξ, y : B. There, we are
performing induction on t which enlarges the context Ξ (similar to case of
(dependent) functions in Lemma B.3.13).

• Case Ξ = ·: then Case 1 holds trivially. Case 2, follows by induction on t.
The only non-trivial case (not immediately following from the induction
hypothesis) is the case where t is a variable. In this case, both 2a and 2b
follow by definition of the model.

• Case Ξ = Ξ′, y : B and correspondingly, δ = δ′, a:

1. Follows by definition of the model and the induction hypothesis
corresponding to Case 2b:

JΓ,Ξ′[u/x] ` B[u/x]Kγ,δ′ = JΓ, x : A,Ξ′ ` BKγ,JΓ`uKγ ,δ′

2. We proceed by induction on t. The only non-trivial case is when t
is a variable, t = z. Notice, when z 6= x then both 2a and 2b hold
trivially by definition of the model. Otherwise, we have to show that
JΓ,Ξ′[u/x], y : B[u/x] ` uKγ,δ,a↓ and

JΓ,Ξ[u/x], y : B[u/x] ` uKγ,δ,a =
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JΓ, x : A,Ξ, y : B[u/x] ` xKγ,JΓ`uKγ ,δ.a
=

JΓ, x := u : A,Ξ, y : B[u/x] ` xKγ,JΓ`uKγ ,δ,a

These follow by Lemma B.3.13 above and our assumption that
JΓ ` uKγ↓.

• Case Ξ = Ξ′, Indn {∆I := ∆C}: We prove this case by induction on t.
The only non-trivial case here is the case where t = Indn {∆I := ∆C} .z.
Notice that the interpretation of JΓ,Ξ′[u/x], y : B[u/x] ` tKγ,δ,a is defined
based on the interpretation of terms of the form JΓ,Ξ′[u/x] ` mKγ,δ where
m appears in ∆I or ∆C to which the induction hypothesis applies.

Proof of soundness of the model (Lemma 4.5.1). Note that judgements of the
form WF(Γ), Γ ` t : A, Γ ` t ' t′ : A and Γ ` A � B are defined mutually. We
prove the theorem by mutual induction on the derivation of these judgements.

• Case WF-ctx-empty: trivial by definition.

• Case WF-ctx-hyp: trivial by definition and induction hypothesis.

• Case WF-ctx-def: trivial by definition and induction hypothesis.

• Case Prop: trivial by definition.

• Case Hierarchy: trivial by definition.

• Case Var: trivial by definition and induction hypotheses.

• Case Let: by definition, induction hypothesis and Lemma B.3.14.

• Case Let-eq: by definition, induction hypotheses and Lemma B.3.14.

• Case Prod: by induction hypotheses we know that JΓ ` AKγ ∈ JΓ ` s1Kγ
and that JΓ, x : A ` BKγ,a ∈ JΓ ` s2Kγ for any a ∈ JΓ ` AKγ . We also
know Rs(s1, s2, s3). We have to show that

JΓ ` Πx : A.BKγ ∈ JΓ ` s3Kγ (B.1)

Since Rs(s1, s2, s3) holds, we have that either s2 = s3 = Prop or s1 =
Typei, s2 = Typej and s3 = Typemax{i,j} or s1 = Prop, s2 = Typei and
s3 = Typei hold. In the first case, The membership relation above, (B.1),
follows from Case 1 of Lemma B.2.8. In the other two cases, note that
JΓ ` s3Kγ is a von Neumann universe and is hence closed under (dependent)
function space and also (by axiom schema of replacement) under taking
trace-encoding of elements of any set.
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• Case Prod-eq: by definition and induction hypotheses.

• Case Lam: by definition and induction hypotheses.

• Case Lam-eq: by definition and induction hypotheses.

• Case App: by induction hypotheses we know that JΓ ` NKγ ∈ JΓ ` AKγ
and JΓ `MKγ ∈ JΓ ` Πx : A.BKγ . From the latter we know that
JΓ `MKγ = Lam(f) for some f with domain dom(f) = JΓ ` AKγ such
that f(a) = JΓ, x : A ` BKγ,a. Therefore,

JΓ `M NKγ = App(Lam(f), JΓ ` NKγ)

= f(JΓ ` NKγ) ∈ JΓ, x : A ` BKγ,JΓ`NKγ
= JΓ ` B[N/x]Kγ

where the last equality is by Lemma B.3.14.

• Case App-eq: by a reasoning similar to that of Case App above.

• Case Ind-WF: by definition and induction hypotheses and Lemma B.3.8.

• Case Ind-type: by induction hypotheses we know that JΓK↓ which by
definition means that for any environment γ ∈ JΓK and any inductive
block D ∈ Γ we have (using the weakening lemma above) JΓ ` DKγ↓. By
Lemma B.3.8 the desired result follows.

• Case Ind-constr: by induction hypotheses we know that JΓK↓ which by
definition means that for any environment γ ∈ JΓK and any inductive
block D ∈ Γ we have (using the weakening lemma above) JΓ ` DKγ↓. The
desired result follows by the definition of JΓ ` D.cKγ , Lemma B.3.14 and
the fact that JΓ ` DKγ↓ is the fixpoint of the rule-set used to construct it.

• Case Ind-Elim: by Lemma B.3.11 and induction hypotheses.

• Case Ind-Elim-eq: similarly to Case Ind-Elim.

• Case Eq-ref: trivial by definition and induction hypothesis.

• Case Eq-sym: trivial by definition and induction hypothesis.

• Case Eq-trans: trivial by definition and induction hypothesis.

• Case Beta: by induction hypotheses that

JΓ, x : A `MKγ↓
∀a ∈ JΓ ` AKγ . JΓ, x : A `MKγ,a ∈ JΓ, x : A ` BKγ,a

On the other hand, we have that
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JΓ ` NKγ↓
JΓ ` NKγ ∈ JΓ ` AKγ
JΓ ` AKγ↓

and therefore
JΓ, x : A ` BKγ,JΓ`NKγ

∈ JΓ ` sKγ
Also, by Lemma B.3.14 we get that

JΓ ` B[N/x]Kγ = JΓ, x : A ` BKγ,JΓ`NKγ
∈ JΓ ` sKγ

and that

JΓ `M [N/x]Kγ = JΓ, x : A `MKγ,JΓ`uKγ
∈ JΓ, x : A ` BKγ,JΓ`uKγ

We finish the proof by:

JΓ ` (λx : A.M) NKγ

= App(JΓ ` λx : A.MKγ , JΓ ` NKγ)

= App(Lam(a ∈ JΓ ` AKγ 7→ JΓ, x : A `MKγ,a), JΓ ` NKγ)

= JΓ, x : A `MKγ,JΓ`NKγ

= JΓ `M [N/x]Kγ

• Case Eta: We need to show that

JΓ ` tKγ = JΓ ` λx : A. t xKγ ∈ JΓ ` Πx : A.BKγ

We know by induction hypothesis that JΓ ` tKγ ↓ and that JΓ ` tKγ ∈
JΓ ` Πx : A.BKγ and consequently we know that there is a set theoretic
function f :

f ∈ Πa ∈ JΓ ` AKγ . JΓ, x : A ` BKγ,a
such that JΓ ` tKγ = Lam(f). This implies that,

JΓ ` λx : A. t xKγ = Lam
({

(a, JΓ, x : A ` t xKγ,a)
∣∣∣a ∈ JΓ ` AKγ

})
= Lam

({
(a,App(JΓ, x : A ` tKγ,a , a))

∣∣∣a ∈ JΓ ` AKγ
})

= Lam
({

(a,App(JΓ ` tKγ,a , a))
∣∣∣a ∈ JΓ ` AKγ

})
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= Lam
({

(a,App(Lam(f), a))
∣∣∣a ∈ JΓ ` AKγ

})
= Lam

({
(a, f(a))

∣∣∣a ∈ JΓ ` AKγ
})

= Lam(f)

= JΓ ` tKγ

• Case Delta: by Lemma B.3.14 and induction hypotheses.

• Case Zeta: trivial by definition and induction hypothesis.

• Case Iota: by definition of the interpretation of recursors and induction
hypothesis. Notice that by construction of the interpretation of eliminators
in Definition B.3.10 the interpretation of elimination of ci #»a is basically,
the result of applying fci

#»

b where #»a is a subsequence of #»

b . The only
difference between #»

b and #»a is that in #»

b after each value that corresponds
to a (mutually) recursive argument of the constructor ci we have a value
that corresponds to the interpretation of elimination of that (mutually)
recursive argument. For those terms, µ

#»
Q; #»
f

D applies the elimination using
the eliminator, Elim, while the rule in rule set corresponding ci #»a ensures
in its antecedents that all elements are eliminated correctly according to
the interpretation of the eliminator (the fixpoint taken in Definition B.3.10).
Notice that if the constructor is of an inductive sub-type, then, by
construction of interpretation of constructors the interpretation of the two
constructors applied to those terms are equal.

• Case Prop-in-Type: trivial by definition.

• Case Cum-Type: trivial by definition.

• Case Cum-trans: trivial by definition and induction hypothesis.

• Case Cum-weaken: trivial by definition, induction hypothesis and
Lemma B.3.13.

• Case Cum-Prod: trivial by definition and induction hypothesis.

• Case Cum-eq-L: trivial by definition and induction hypothesis.

• Case Cum-eq-R: trivial by definition and induction hypothesis.

• Case Cum: trivial by definition and induction hypothesis.

• Case Cum-eq: trivial by definition and induction hypothesis.
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• Case Eq-Cum: trivial by definition and induction hypothesis.

• Case C-Ind: easy by definition, induction hypothesis and Lemma B.3.9.

• Case Ind-Eq: by definition, induction hypotheses and Lemma B.3.9.

• Case Constr-Eq-L: by definition, induction hypothesis.

• Case Constr-Eq-R: by definition, induction hypothesis.



Appendix C

Iris resources

Resources in Iris are described using a kind of partial commutative monoids,
and the user of the logic can introduce new monoids.1 For instance, in the
case of finite partial maps, the partiality comes from the fact that disjoint
union of finite maps is partial. Undefinedness is treated by means of a validity
predicate X :M→ iProp, which expresses which elements of the monoidM
are valid/defined.

We write a :M γ to assert that a monoid instance named γ, of typeM, has
contents a. Often, we disregard the type if it is obvious from the context and
simply write a

γ . We think of this assertion as a ghost variable γ with contents
a.

Ghost-Alloc
Xa ` |V∃γ. a γ

Own-Valid
a
γ ` X(a)

Sharing
a
γ ∗ b γ a` a · b γ

Some Useful Monoids Here, we describe a few monoids which are particularly
useful and which we will use in the sequel. We do not give the full definitions of
the monoids (those can be found in (Krebbers, Jung, Bizjak, Jourdan, Dreyer,
and Birkedal, 2017)), but focus instead on the properties which the elements
of the monoids satisfy, shown in Figure C.1. These rules stated are only for
monoids that we use in this work and not in Iris in its generality. For instance,

1Technically these are resource algebras (RAs) which are similar to monoids. In particular,
RAs need not necessarily have a unit element. Furthermore, RAs are step-indexed. We ignore
these details here as they are not directly relevant to our discussions. For more detail see
Jung, Krebbers, Birkedal, and Dreyer (2016) and Krebbers, Jung, Bizjak, Jourdan, Dreyer,
and Birkedal (2017).
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Auth-Included
• a · ◦ b ` b ⊆ a

Fpfn-valid
X(a) a` ∀x ∈ dom(a). X(a(x))

Agreement-Valid
X(ag(a) · ag(b)) a` a = b

Exclusive
X\ (ex(a) · b)

Frag-distributes
◦ a · ◦ b = ◦ (a · b)

Full-Exclusive
X\ (• a · • b)

Auth-Alloc-Finset
h ∩ a = ∅

•h γ ≡−∗ • (h ] a) · ◦ a γ

Auth-Alloc-Fpfn
dom(h) ∩ dom(a) = ∅
•h γ ≡−∗ • (h ] a) · ◦ a γ

Agree
ag(a) · ag(a) = ag(a)

Fpfn-operation-success

(a · b)(x) =


a(x) if x ∈ dom(a) ∧ x 6∈ dom(b)
a(x) · b(x) if x ∈ dom(a) ∩ dom(b)
b(x) if x ∈ dom(b) ∧ x 6∈ dom(a)

Auth-Update-Fpfn-Excl
• (h ] (` 7→ ex(v1))) · ◦ ` 7→ ex(v1) γ ≡−∗ • (h ] (` 7→ ex(v2))) · ◦ ` 7→ ex(v2) γ

Figure C.1: Rules for selected monoid resources in Iris

in the rule Auth-Included, ⊆ is a set relation and is defined for finite set and
finite partial function monoids and not in general.

Figure C.1 depicts the rules necessary for allocating and updating finite set
monoids, finset(A), and finite partial function monoids, A ⇀fin M . For finset(A),
the monoid operation x·y is union. The notation a 7→ b : A ⇀fin B , {(a, b)} is
a singleton finite partial function.

The constructs • and ◦ are constructors of the so-called authoritative monoid
Auth(M). We read • a as “full a” and ◦ a as “fragment a”. We use the
authoritative monoid to distribute ownership of fragments of a resource. The
intuition is that • a is the authoritative knowledge of the full resource, think of
it as being kept track of in a central location (see rule Auth-Included). The
fragments, ◦ a, can be shared (rule Frag-distributes) while the full part (the
central location) should always remain unique (rule Full-Exclusive).

In addition to authoritative monoids, we also use the agreement monoid Ag(M)
and exclusive monoid Ex(M). As the name suggests, the operation of the
agreement monoid guarantees that ag(a) · ag(b) is invalid whenever a 6= b (and
otherwise it is idempotent; see rules Agree and Agreement-Valid). From the
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rule Agree it follows that the ownership of elements of Ag(M) is duplicable.2

ag(a) γ a` ag(a) · ag(a) γ a` ag(a) γ ∗ ag(a) γ

The operation of the exclusive monoid never results in a valid element (rule
Exclusive), enforcing that there can only be one instance of it owned. We can
define the resource for keeping track of the physical heap of the programming
language, Heap. This is the canonical example of a monoid.

Heap , Auth(Loc fin−⇀ (Ex(Val)))

Hence, the points-to proposition of the separation logic can be defined as follows.

` 7→ v , ◦ [l 7→ ex(v)] γh

Here, γh is the globally fixed monoid name to keep track of the heap of Fµ,ref ,conc.
The full part of this monoid is used in the definition of the weakest precondition
to allow weakest preconditions to refer to the physical state of the program
(Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal, 2017). Notice here that
Heap is build from nesting Ex in the finite partial functions monoid, which
again is nested in the Auth monoid. Therefore, to allocate and update the
Heap monoid, we can use Auth-Alloc-Fpfn and Auth-Update-Fpfn-Excl
respectively.

2Indeed it can be shown that elements of Ag(M) are also persistent.





Appendix D

Details of type soundness and
refinements in Iris

D.1 Proof of semantic well-typedness of a program
that is not syntactically well-typed

The program below is not syntactically of the type well-typed. However, it
is semantically of the type ∀X.∀Y. (ref(X) → X) → X → (ref(Y ) → Y ) →
Y → X + Y .

Λ Λ (λf. λx. λg. λy. let l = ref(true) in fork {l← false} ;

if ! l thenwaitfor l; l← x; inj1 (f l) else l← y; inj2 (g l))

where

waitfor , rec f(x) = if !x then f x else ()

To prove this we use an invariant randInv:

randInv(`) , ` 7→ true ∨ (` 7→ false ∗ tok1) ∨ (tok1 ∗ tok2) N .rnd

Propositions tok1 and tok2 are exclusive tokens, i.e., two instances (with different
names) of the monoid Ex(1). The idea is that the protocol regarding the sharing
of location l (the result of allocation of true) can be in one of the following
three states: (1) ` is just allocated and has not been set to false (the left
disjunct in the invariant), (2) the other thread has performed writing false
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(the middle disjunct in the invariant), and (3) the main thread has noticed that
the other thread has finished (the right disjunct in the invariant). We start out
by allocating the two tokens when we allocate true. Subsequently, we establish
the invariant retaining both tokens. We give the invariant and the token tok1
to the launched thread. This thread can use exclusivity of tok1 to ensure that
the protocol is in stage 1 before writing the value false. Furthermore, it has
to give this token up when it succeeds in writing the value false to be able to
close the invariant back. The main thread retaining the token tok2 knows, when
reading the reference, and subsequently when waiting (if it has to), that the
protocol is not over. It has to give up tok2 to be able to take out the points-to
proposition out of the invariant at the end of waiting (or reading false the
first time). At the end, the main thread will have ` 7→ false before it has to
overwrite it with the appropriate value and establish the semantic typing of the
reference `.

D.2 Monoids for evaluation on the specification
side

In this section we discuss monoids that we use for reasoning about the evaluation
on the specification side. For the heap of the specification side we use (another
instance of) the exact same monoid Heap that we used for the heap of
the implementation side above in Appendix C. For the thread pool of the
specification side we use the monoid Tpool:1

Tpool , Auth(N fin−⇀ (Ex(Expr)))

We use globally fixed monoid names γ′h and γ′tp to respectively keep track of the
specification side heap and thread pool. Given these, we define SpecConf, Z⇒
and 7→s as follows:

SpecConf(σ, #»e ) , • res(σ) γ′
h ∗ • fpfnOf( #»e ) γ′

tp

` 7→s v , ◦ [` 7→ v] γ
′
h

j Z⇒s e , ◦ [j 7→ e] γ
′
tp

where

fpfnOf(e1, . . . , en) , {(i, ei)|1 ≤ i ≤ n}
1In the actual Coq implementation we use the product of these two monoids to represent

configurations as a single monoid. However, it is conceptually the same, and easier to explain
on paper, when two separate monoids are considered.
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Using the definitions above and the rules for allocating and updating resources
in Figure C.1 we can easily derive all the necessary rules in Section 5.5.

D.3 The spin lock implementation

The compare and set operation (CAS) of Fµ,ref ,conc can be used to construct
a spin lock. The following piece of code implements a spin lock as a boolean
reference that is set to false whenever the lock is free. The release operation
simply sets the lock to false. The acquire operation, on the other hand, tries
to acquire the lock by attempting to atomically set it to true if it is false. In
case it fails, i.e., the lock is acquired by another thread, it tries again. In other
words, the acquire operation busy-waits until the lock is free and it can acquire
it.

1 let new_lock () = let l = ref false
2

3 let acquire l =
4 let rec try_acquire () =
5 if CAS(l, false , true) then
6 ()
7 else
8 try_acquire ()
9

10 let release l = l := false

D.4 Monoids for contextual refinement of stacks

In this part we describe how the predicates AllCells and 7→stk are defined. For
this purpose we use a globally fixed instance, named γst, of the monoid STK
defined below.

STK , Auth(` fin−⇀ (Ag(v)))

Note the similarity between this monoid and the monoid Heap representing
heaps. The only difference is that STK is defined using the agreement
monoid while Heap is defined using the exclusive monoid. We will discuss the
consequences of this difference below.

We define the predicates AllCells and 7→stk as follows:

AllCells(f) , • cellsOf(f) γstk
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` 7→stk v , ◦ [` 7→ v] γstk

where

cellsOf(f) , {(`, ag(v))|(`, v) ∈ f}

The definitions above along with the rules for allocating and updating resources
in Figure C.1 allow us to easily derive all the necessary rules in Section 5.7. In
particular, due to the properties of the agreement monoid we have that ` 7→stk v
is persistent.



Appendix E

Details of Logical Relations
for Monadic Encapsulation of
State and its Coq
Formalization

E.1 Iris Definitions of Predicates used in the
Logical Relation

In this section we detail how the abstract predicates (regions, region(r, γh, γ′h),
isRgn(α, r), heapγh(h) and ` 7→γ v) used in the definition of the logical relation
are precisely defined in the Iris logic. To this end, we first introduce three more
concepts from the Iris logic: invariants, saved predicates and ghost-state.

E.1.1 Saved Predicates

For storing of Iris propositions we use a mechanism called saved predicates,
γ Z⇒ Φ. This is simply a convenient way of assigning a name γ to a predicate
Φ. There are only three rules governing the use of saved predicates. We can
allocate them (rule SavedPred-Alloc), they are persistent (rule SavedPred-
Persistent) and the association of names to predicates is functional (rule

231
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SavedPred-Equiv).

SavedPred-Alloc
|VE ∃γ. γ Z⇒ Φ

SavedPred-Persistent
γ Z⇒ Φ a` γ Z⇒ Φ ∗ γ Z⇒ Φ

SavedPred-Equiv
γ Z⇒ Φ ∗ γ Z⇒ Ψ
.Φ(a) ` .Ψ(a)

The later modality is used in rule SavedPred-Equiv as a guard to avoid self
referential paradoxes Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal,
2017, which is not so surprising, after all, since saved predicates essentially
allow us to store a predicate (something of type κ→ iProp) inside a proposition
(something of type iProp).

Resources for the heap of STLang We use the monoid Heap defined in
Appendix C to model the heap of the STLang. We define the propositions
heapγ(h) and ` 7→γ v as follows:

heapγ(h) , •h γ
` 7→γ v , ◦ [l 7→ ex(v)] γ

Notice here that Heap is build from nesting Ex in the finite partial functions
monoid, which again is nested in the Auth monoid. Therefore, to allocate
and update and in the Heap monoid, we can use Auth-Alloc-Fpfn and
Auth-Update-Fpfn-Excl respectively.

E.1.2 Encoding of Regions by Ghost Resources

Remark E.1.1. In this section we will use Iris invariants. However, for the
sake of simplicity, will ignore the names of invariants and the masks of the
update modalities. For more details about invariants see Section 5.3.

In order to concretely represent bijections and relatedness between locations,
we use a pair of monoids, one for the bijection (one-to-one correspondence) and
one for the semantic interpretation, i.e., a name to a saved predicate:

Rel , Auth((Loc× Loc) fin−⇀ (Ag(Names))) Bij , Auth(finset(Loc× Loc))

Both are defined as authorative monoids which allow for having a global and a
local part. To tie the two monoids together with a semantic region r (the name
r is simply a positive integer) we use a third monoid:

Region , Auth(Z+ fin−⇀ (Ag(Names×Names)))

We fix a global ghost name γreg for an instance of this last monoid. For
Region, ownership of ◦ r 7→ ag(γbij, γrel)

γreg indicates that the semantic region
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r is represented by two ghost variables named γbij and γrel, for Bij and Rel
respectively. Notice that this ownership of ◦ r 7→ ag(γbij, γrel)

γreg is duplicable
and also, due to the properties of the agreement monoid, we have that the
semantic region tied to r is uniquely defined. Formally,

◦ r 7→ ag(γbij, γrel)
γreg ∗ ◦ r 7→ ag(γ′bij, γ

′
rel)

γreg ` γbij = γ′bij ∧ γrel = γ′rel (E.1)

We can now present the region(r, γh, γ′h) predicate in detail:

region(r, γh, γ′h) , ∃R, γbij, γrel. ◦ r 7→ ag(γbij, γrel) : Region γreg ∗ •R : Rel γrel∗

∗
(`,`′) 7→ag(γpred)∈R

(
∃Φ : (Val×Val)→ iProp), v, v′. ` 7→γh v ∗

`′ 7→γ′
h
v′ ∗ γpred Z⇒ Φ ∗ .Φ(v, v′)

)
The predicate asserts that the semantic region r is associated with two ghost
names, γbij and γrel, by ◦ r 7→ ag(γbij, γrel)

γreg , and full authoritative ownership
of R, which is a mapping of pairs of locations to ghost names. Further, for each
element (`, `′) 7→ ag(γpred) ∈ R we have ownership of the points-to predicates
` 7→γh v and `′ 7→γ′

h
v′ and the knowledge about a saved predicate Φ, named by

γpred, that holds later for v and v′.

The regions predicate keeps track of all the allocated regions by having the full
authoritative part •M : Reg γreg :

regions ,

∃M. •M : Region γreg ∗

∗
r 7→ag(γbij,γrel)∈M


∃g :finset(Loc× Loc),

R : (Loc× Loc) fin−⇀ (Ag(Names)).

• g γbij ∗ bijection(g) ∗ ◦R γrel ∗ g = dom(R)


For each element r 7→ ag(γbij, γrel) inM , regions have full authoritative ownership
of a bijection g and fragment ownership of R, which maps each pairs of locations
to a ghost name for saved predicates. Here, g and the domain of R is forced to
be equal, ensuring that all pairs that are related in the bijection are also related
in the region. Notice that since the regions predicate is an invariant, it is also
persistent.

Notice here as well that individual regions are tied to the regions predicate,
regions, by having the fragment ownership of ◦ r 7→ ag(γbij, γrel) : Region γreg

since the authoritative element •M : Region γreg is owned by regions. Similarly,
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the regions predicate is tied to all regions by asserting ownership of the fragment
◦R γrel . This illustrates how ghost resources are important to enforce relations
in and out of invariants.

We can now give meaning to the abstract predicates used in the definition of
STRef ρ τ1:

isRgn(α, r) , ∃γbij, γrel, γpred. α = r ∗ ◦ r 7→ ag(γbij, γrel)
γreg

bij(r, `, `′) , ∃γbij, γrel. ◦ r 7→ ag(γbij, γrel)
γreg ∗ ◦ (`, `′) γbij

rel(r, `, `′, Φ) , ∃γbij, γrel, γpred. ◦ r 7→ ag(γbij, γrel)
γreg ∗ ◦ [(`, `′) 7→ ag(γpred)] γbij

∗ γpred Z⇒ Φ

Each of the predicates owns the ghost resource suggested by its name. For
instance, Property (6.5) from §6.3 can now be shown:

regions ≡−∗ ∃r. region(r, γh, γ′h)

First, we open the invariant to obtain •M : Region γreg . By Ghost-Alloc
we obtain • ∅ · ◦ ∅ : Rel γrel and • g γbij , for fresh ghost names γrel and γbij.
Now, by Auth-Alloc-Fpfn we can extend M with r 7→ ag(γbij, γrel), to
obtain ◦ r 7→ ag(γbij, γrel)

γreg , for some r not in dom(M), since M is finite.
region(r, γh, γ′h) now holds trivially, since there are no locations allocated in
• ∅ γrel . Similarly, bijection(∅) and dom(∅) = ∅ hold trivially, so we have
reestablished the body of the invariant.

E.2 Formalization in Coq

We have formalized our technical development and proofs in the Iris
implementation in Coq Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal,
2017; Krebbers, Timany, and Birkedal, 2017. The Iris implementation in
Coq Krebbers, Jung, Bizjak, Jourdan, Dreyer, and Birkedal, 2017 includes a
model of Iris and proof of soundness of the Iris logic itself. The Iris Proof Mode
(IPM) Krebbers, Timany, and Birkedal, 2017 allows users to carry out proofs
inside Iris in much the same way as in Coq itself by providing facilities for
working with the substructural contexts and modalities of Iris. We have used

1The predicate ◦ r 7→ ag(γbij, γrel)
γreg appears in all the abstract predicates to obtain γbij

and γrel. This is to keep the initial description of the predicates simple. The redundancy does
not exist in the actual implementation.
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Iris and IPM to formalize the future modality, the IC predicates, our logical
relation and to prove the state-independence theorem and all the refinements
presented in this paper.

The Trusted Computing Base

Even though our logical relation has been defined inside the Iris logic, the
soundness theorem of Iris (Krebbers, Jung, Bizjak, Jourdan, Dreyer, and
Birkedal, 2017) allows us to prove the soundness of our logical relation:
Theorem binary_soundness Γ e e’ τ : typed Γ e τ → typed Γ e’ τ →

(∀ Σ ‘{ICG_ST Σ} ‘{LogRelG Σ}, Γ |= e ≤log≤ e’ : τ)
→ Γ |= e ≤ctx≤ e’ : τ.

This statement says that whenever Ξ | Γ ` e : τ and Ξ | Γ ` e′ : τ and
we can prove in the Iris logic (notice the quantification of Iris parameters,
Σ ‘{ICG_ST Σ} ‘{LogRelG Σ})2 that e and e′ are logically related, then e
contextually refines e′. Notice that Ξ does not appear in the Coq code as
we are using de Bruijn indices to represent type variables and hence need no
type level context. The definition of contextual refinement and well-typedness
are in turn normal Coq statements, independent of Iris.

All lemmas and theorems in this paper are type checked by Coq without any
assumptions or axioms apart from the use of functional extensionality which is
used for the de Bruijn indices. It is used by the Autosubst library.

Extending Iris and IPM and instantiating them with STLang

The implementations of Iris and IPM in Coq are almost entirely independent of
the choice of programming language. In practice, the only definitions that are
parameterized by a language are the definitions of weakest-precondition and
Hoare triples. To use these with a particular programming language, one needs
to instantiate a data structure in Coq that represents the language. Basically,
one is required to instantiate this data structure with the language’s set of states
(heaps in our case), expressions, values and reduction relation, together with
proofs that they behave as expected (e.g., values do not reduce any further). In
this work we use IC predicates and IC triples instead of the weakest precondition
and Hoare triples used in earlier work. Therefore, we have also parameterized
IC predicates and IC triples by a data structure representing the programming
language. We instantiate these with STLang.

2Σ is the set of Iris resources and the other two parameters express that resources necessary
for IC and our logical relations are present in Σ.
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The formalization of Iris in Coq is a shallow embedding. That is, the model of
the Iris logic is formalized in Coq, and terms of the type iProp (propositions
of Iris) are defined as well-behaved predicates over the elements of that model.
The advantage of shallow embeddings is that one can easily introduce new
connectives and modalities to the logic by defining another function with iProp
as co-domain. For instance, our IC predicate is defined as follows in Coq.
Definition ic_def {Λ Σ} ‘{ICState Λ, ICG Λ Σ} γ E e Φ : iProp Σ :=

(∀ σ1 σ2 v n, (pnsteps pstep n (e, σ1) (of_val v, σ2)q
∗ ownP_full γ σ1) −∗ |�{E}=[n]⇒ Φ v n ∗ ownP_full γ σ2)%I.

Here, p · q embeds Coq propositions into Iris and ownP_full γ σ is the full
ownership of the physical state of the language (parameter Λ), equivalent to
our heapγ(σ). The %I at the end instructs Coq to parse connectives (e.g., the
universal quantification) as Iris connectives and not those of Coq.

As discussed in (Krebbers, Timany, and Birkedal, 2017), IPM tactics, like
the iMod tactic for elimination of modalities, simply apply lemmas with side
conditions that are discharged with the help of Coq’s type class inference
mechanism. Extending IPM with support for the future modality and IC
predicates essentially boils down to instantiating some of these type classes
appropriately.

Representing binders

We use de Bruijn indices to represent variables both at the term level and
the type level; in particular, we use the Autosubst library Schäfer, Tebbi, and
Smolka, 2015. It provides excellent support for manipulating and simplifying
terms with de Bruijn indices in Coq. The simplification procedure, however,
seems to be non-linear in the size of the term. This is the main reason for the
slowness of Coq’s processing of our proofs.3

3About 17 minutes on a laptop using “make -j4” to compile our Coq formalization of about
12,500 lines.
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Details of Relational
Verification of Concurrent
Programs with Continuation

F.1 Weakest precondition rules

rec-wp
.wpK[e[rec f(x) = e, v/f, x]] {Φ}

wpK[(rec f(x) = e) v] {Φ}

TApp-wp
.wpK[e] {Φ}

wpK[(Λ e) _] {Φ}

unfold-wp
.wpK[v] {Φ}

wpK[unfold (fold v)] {Φ}

if-true-wp
.wpK[e] {Φ}

wpK[if true then e else e′] {Φ}

if-false-wp
.wpK[e′] {Φ}

wpK[if false then e else e′] {Φ}

fst-wp
.wpK[v] {Φ}

wpK[π1 (v, w)] {Φ}

snd-wp
.wpK[w] {Φ}

wpK[π2 (v, w)] {Φ}

match-inj1-wp
.wpK[e1[v/x]] {Φ}

wpK[match inj1 v with inj1 x⇒ e1 | inj2 x⇒ e2 end] {Φ}
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match-inj2-wp
.wpK[e2[v/x]] {Φ}

wpK[match inj2 v with inj1 x⇒ e1 | inj2 x⇒ e2 end] {Φ}

alloc-wp
∀`. ` 7→i v −∗ wpK[`] {Φ}

wpK[ref(v)] {Φ}

load-wp
` 7→i v −∗ wpK[v] {Φ} . ` 7→i v

wpK[! `] {Φ}

store-wp
` 7→i w −∗ .wpK[()] {Φ} . ` 7→i v

wpK[`← w] {Φ}

CAS-suc-wp
` 7→i w −∗ .wpK[true] {Φ} . ` 7→i v

wpK[CAS(`, v, w)] {Φ}

CAS-fail-wp
` 7→i v

′ −∗ .wpK[false] {Φ} . ` 7→i v
′ v 6= v′

wpK[CAS(`, v, w)] {Φ}

fork-wp
.wpK[()] {Φ} wp e {_. >}

wpK[fork {e}] {Φ}

callcc-wp
.wpK[e[cont(K)/x]] {Φ}
wpK[call/cc (x. e)] {Φ}

throw-wp
.wpK ′[v] {Φ}

wpK[throw v to cont(K ′)] {Φ}

F.2 Rules for execution on the specification side

rec-step
j Z⇒ K[(rec f(x) = e) v]

|Vj Z⇒ K[e[rec f(x) = e, v/f, x]]

Tapp-step
j Z⇒ K[(Λ e) _]
|Vj Z⇒ K[e]

unfold-step
j Z⇒ K[unfold (fold v)]

|Vj Z⇒ K[v]

if-true-step
j Z⇒ K[if true then e else e′]

|Vj Z⇒ K[e]

if-false-step
j Z⇒ K[if false then e else e′]

|Vj Z⇒ K[e′]

fst-step
j Z⇒ K[π1 (v, w)]
|Vj Z⇒ K[v]

snd-step
j Z⇒ K[π2 (v, w)]
|Vj Z⇒ K[w]
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match-inj1-step
j Z⇒ K[match inj1 v with inj1 x⇒ e1 | inj2 x⇒ e2 end]

|Vj Z⇒ K[e1[v/x]]

match-inj2-step
j Z⇒ K[match inj2 v with inj1 x⇒ e1 | inj2 x⇒ e2 end]

|Vj Z⇒ K[e2[v/x]]

alloc-step
j Z⇒ K[ref(v)]

|V∃`. ` 7→s v ∗ j Z⇒ K[`]

load-step
` 7→s v j Z⇒ K[! `]
|V∃`. ` 7→s v ∗ j Z⇒ K[v]

store-step
` 7→s v j Z⇒ K[`← w]
|V` 7→s w ∗ j Z⇒ K[()]

CAS-suc-step
` 7→s v j Z⇒ K[CAS(`, v, w)]
|V` 7→s w ∗ j Z⇒ K[true]

CAS-fail-step
` 7→s v

′ j Z⇒ K[CAS(`, v, w)] v 6= v′

|V` 7→s v
′ ∗ j Z⇒ K[false]

fork-step
j Z⇒ K[fork {e}]

|Vj Z⇒ K[()] ∗ ∃j′. j′ Z⇒ e

callcc-step
j Z⇒ K[call/cc (x. e)]
|Vj Z⇒ K[e[cont(K)/x]]

throw-step
j Z⇒ K[throw v toK ′]
|Vj Z⇒ K ′[v]

F.3 Context-local Weakest precondition rules

rec-clwp
. clwp e[rec f(x) = e, v/f, x]

{
Φ
}

clwp (rec f(x) = e) v
{
Φ
} TApp-clwp

. clwp e
{
Φ
}

clwp (Λ e) _
{
Φ
}

unfold-clwp
. clwp v

{
Φ
}

clwp unfold (fold v)
{
Φ
} if-true-clwp

o

g relcc− app− if − true−

clwp. clwp e
{
Φ
}

clwpK[if true then e else e′]
{
Φ
}

if-false-clwp
. clwp e′

{
Φ
}

clwp if false then e else e′
{
Φ
} fst-clwp

. clwp v
{
Φ
}

clwp π1 (v, w)
{
Φ
} snd-clwp

. clwp w
{
Φ
}

clwp π2 (v, w)
{
Φ
}
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match-inj1-clwp
. clwp e1[v/x]

{
Φ
}

clwp match inj1 v with inj1 x⇒ e1 | inj2 x⇒ e2 end
{
Φ
}

match-inj2-clwp
. clwp e2[v/x]

{
Φ
}

clwp match inj2 v with inj1 x⇒ e1 | inj2 x⇒ e2 end
{
Φ
}

alloc-clwp
clwpK[ref(v)]

{
v. ∃`. v = ` ∗ ` 7→i v

} load-clwp
. ` 7→i v

clwp ! `
{
w. w = v ∗ ` 7→i v

}
store-clwp

. ` 7→i v

clwp `← w
{
v′. v′ = () ∗ ` 7→i w

}
CAS-suc-wp

. ` 7→i v

clwp CAS(`, v, w)
{
v′. v = true ∗ ` 7→i w

}
CAS-fail-clwp

. ` 7→i v
′ v 6= v′

clwp CAS(`, v, w)
{
v′′. v′′ = false ∗ ` 7→i v

′}
fork-clwp

. clwp e
{
_. >

}
clwp fork {e}

{
v. v = ()

}

F.4 Logical Relations

Observational refinement (O : Expr× Expr→ iProp):

O(e, e′) , ∀j. j Z⇒ e′ −∗ wp e {∃w. j Z⇒ w}

Value interpretation of types (JΞ ` τK∆ : Val × Val → iProp for ∆ : Var →
(Val×Val)→ iProp):

JΞ ` XK∆ , ∆(X)

JΞ ` 1K∆(v, v′) , v = v′ = ()

JΞ ` BK∆(v, v′) , v = v′ = true ∨ v = v′ = false

JΞ ` NK∆(v, v′) , ∃n. v = v′ = n
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JΞ ` τ1 + τ2K∆(v, v′) ,
∨

i∈{1,2}

∃w,w′. v = inji w ∧ v
′ = inji w

′∧

JΞ ` τiK∆(w,w′)


JΞ ` τ × τ ′K∆(v) , ∃w1, w2, w

′
1, w2′. v = (w1, w2) ∧ v′ = (w′1, w′2)∧

JΞ ` τK∆(w1, w
′
1) ∗ JΞ ` τ ′K∆(w2, w

′
2)

JΞ ` µX. τK∆(v, v′) , µf : Val×Val→ iProp. ∃w,w′. v = foldw∧

v′ = foldw′ ∧ .JX,Ξ ` τK∆,X 7→f (w,w′)

JΞ ` τ → τ ′K∆(v, v′) , �
(
∀w,w′. JΞ ` τK∆(w,w′)⇒ JΞ ` τKE∆(v w, v′ w′)

)
JΞ ` ∀X. τK∆(v, v′) , �

(
∀f : Val×Val→ iProp.

persistent(f)⇒ JX,Ξ ` τKE∆,X 7→f (v _, v′ _)
)

JΞ ` ref(τ)K∆(v, v′) , ∃`, `′. v = ` ∧ v′ = `′∧

∃w,w′. ` 7→i w ∗ `′ 7→s w
′ ∗ JΞ ` τK∆(w,w′) N .`.`

′

JΞ ` cont(τ)K∆(v, v) , ∃K,K ′. v = cont(K) ∧ v′ = cont(K ′)∧

KJΞ ` τK∆(K,K ′)

Evaluation context interpretation of types (KJΞ ` τK∆ : Ectx× Ectx→ iProp
for ∆ : Var→ (Val×Val)→ iProp):

KJΞ ` τK∆(K,K ′) , ∀v, v′. JΞ ` τK∆(v, v′)⇒ O(K[v],K ′[v′])

Expression interpretation of types (JΞ ` τKE∆ : Expr × Expr → iProp for
∆ : Var→ (Val×Val)→ iProp):

JΞ ` τKE∆(e, e′) , ∀K,K ′. KJΞ ` τK∆(K,K ′)⇒ O(K[e],K ′[e′])

Logical relatedness (Ξ | Γ � e ≤log e
′ : τ : iProp):

Ξ | Γ � e ≤log e
′ : τ , ∀∆, #»v ,

#»

v′.

(∗
xi:τi

JΞ ` τiK∆(vi, v′i)
)
⇒

JΞ ` τKE∆(e[ #»v / #»x ], e′[
#»

v′/ #»x ])
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assuming Γ = x1 : τ1, . . . , xn : τn

F.5 Inadmissibility of the Bind Rule

Consider the derivation given the following derivation

false = false
wp false {v. v = false}

wp if true then false else true {v. v = false}
wp true
{w. wp ifw then false else true {v. v = false}}
wp throw true to−
{w. wp ifw then false else true {v. v = false}}

wp if (throw true to−) then false else true
{v. v = false}

inadmissible-bind

wp call/cc (x. if (throw true tox) then false else true)
{v. v = false}

Here, we omit steps corresponding to eliminations of .. Note that we can easily
show that

call/cc (x. if (throw true tox) then false else true)

reduces to the value true which falsifies the derivation above.

F.5.1 The resource for one-shot bit

For details of representing resources with monoids in Iris see Appendix C.
The predicates for representing the one-shot bits, OneShotBits(M) and
isOneShotBit(b), are defined as follows:

OneShotBit , Auth(finset(`))

OneShotBits(M) , •M γos

isOneShotBit(b) , ◦ {b} γos
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It is easy to see, based on the rules for monoids in Appendix C, that
isOneShotBit(b) is persistent and that:

OneShotBits(M) ∗ isOneShotBit(b) ` X(•M · ◦ {b}) ` {b} ⊆M ` b ∈M
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Value restriction, 16

−∗, see Wand
Wand (connective), 82, 126, 160
Weakest precondition, 84, 160
WP, see Weakest precondition
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