Cumulative Inductive Types in Coq

Amin Timany¹ Matthieu Sozeau² Bart Jacobs¹

imec-Distrinet, KU Leuven, Belgium

Inria Paris & IRIF, France

TYPES'17 - May 31, 2017

Budapest, Hungary

- ▶ In higher order dependent type theories:
 - Types are also terms and hence have a type
 - ► Type of all types, as it should be the type of itself, leads to paradoxes, like Girard's paradox
 - ► Thus, we have a countably infinite hierarchy of universes (types of types):

```
Type_0, Type_1, Type_2, \dots
```

where:

 $Type_0 : Type_1, Type_1 : Type_2, \dots$

- ▶ In higher order dependent type theories:
 - Types are also terms and hence have a type
 - Type of all types, as it should be the type of itself, leads to paradoxes, like Girard's paradox
 - ► Thus, we have a countably infinite hierarchy of universes (types of types):

$$Type_0, Type_1, Type_2, \dots$$

where:

$$\mathsf{Type}_0: \mathsf{Type}_1, \mathsf{Type}_1: \mathsf{Type}_2, \dots$$

▶ Such a system is cumulative if for any type *T* and *i*:

$$T: \mathsf{Type}_i \Rightarrow T: \mathsf{Type}_{i+1}$$

► Example: Predicative Calculus of Inductive Constructions (pCIC), the logic of the proof assistant Coq

- ▶ pCIC has recently been extended with universe polymorphism
 - Definitions can be polymorphic in universe levels, e.g., categories:

```
\begin{split} & \texttt{Record Category@\{i\ j\}: Type@\{max(i+1,\ j+1)\}:=} \\ & \{ \ \texttt{Obj: Type@\{i\};} \\ & \texttt{Hom: Obj} \rightarrow \texttt{Obj} \rightarrow \texttt{Type@\{j\};} \dots \, \}. \end{split}
```

- ▶ pCIC has recently been extended with universe polymorphism
 - Definitions can be polymorphic in universe levels, e.g., categories:

```
\label{eq:cord_category} \begin{split} & \text{Record Category} \emptyset \{ \text{i} \ j \} : \\ & \text{Type} \emptyset \{ \text{max}(\text{i}+1, \ j+1) \} := \\ & \{ \ \text{Obj} : \\ & \text{Type} \emptyset \{ \text{i} \}; \\ & \text{Hom} : \text{Obj} \rightarrow \text{Obj} \rightarrow \text{Type} \emptyset \{ \text{j} \}; \dots \}. \end{split}
```

► To keep consistent, universe polymorphic definitions come with constraints, e.g., category of categories:

with constraints:

$$k < i$$
 and $l < i$

- ► For universe polymorphic inductive types, e.g., Category, copies are considered
- With no cumulativity (subtyping), i.e., Category@{i j} ≤ Category@{k l} implies i = k and j = l

- ► For universe polymorphic inductive types, e.g., Category, copies are considered
- With no cumulativity (subtyping), i.e., Category@{i j} ≤ Category@{k 1} implies i = k and j = 1
- ► This means Cat@{i j k l} is the category of all categories at {k l} and not lower 1

¹There are however categories isomorphic to the categories in lower levels.

- ► Constraints on statements about universe polymorphic inductive definitions restrict to which copies they apply
- For Cat@{i j k l} the fact that it has exponentials has constraints j = k = 1

- Constraints on statements about universe polymorphic inductive definitions restrict to which copies they apply
- ▶ For Cat@{i j k l} the fact that it has exponentials has constraints j = k = 1
- In particular:

```
Definition Type_Cat0{i j} := 
{| Obj := Type0{j};
Hom := fun A B \Rightarrow A \rightarrow B; ... |} : Category0{i j}.
```

with constraints: i < i

It is not an object of any copy of Cat with exponentials!

- Constraints on statements about universe polymorphic inductive definitions restrict to which copies they apply
- ▶ For Cat@{i j k l} the fact that it has exponentials has constraints j = k = 1
- In particular:

```
Definition Type_Cat@{i j} := 
{| Obj := Type@{j};
   Hom := fun A B \Rightarrow A \rightarrow B; ... |} : Category@{i j}.
with constraints: i < i
```

- ▶ It is *not* an object of any copy of Cat with exponentials!
- ► Yoneda embedding can't be simply defined as the exponential transpose of the *hom* functor

Inductive typs in pCIC:

Ind

$$A \in Ar(s)$$
 $\Gamma \vdash A : s'$ $\Gamma, X : A \vdash C_i : s$ $C_i \in Co(X)$

$$\Gamma \vdash \operatorname{Ind}(X : A)\{C_1, \ldots, C_n\} : A$$

Ar(s) is the set of types of the form: $\Pi_{x}^{\rightarrow}: \stackrel{\rightarrow}{M}. s$

Co(X) is the set of types of the form: $\overrightarrow{\Pi_X}: \overrightarrow{M}. X \xrightarrow{m}$

Inductive typs in pCIC:

 $\frac{A \in Ar(s) \qquad \Gamma \vdash A : s' \qquad \Gamma, X : A \vdash C_i : s \qquad C_i \in Co(X)}{\Gamma \vdash Ind(X : A)\{C_1, \dots, C_n\} : A}$

Ar(s) is the set of types of the form: $\Pi \vec{x} : \vec{M}. s$

Co(X) is the set of types of the form: $\Pi_X^{\rightarrow}: \stackrel{\rightarrow}{M}. \stackrel{\rightarrow}{X} \stackrel{\rightarrow}{m}$ No Parameters (A in vec A n) are considered in this rule.

Inductive vec $(T : Type) : nat \rightarrow Type := nil : vec T 0$

cons : forall n, T \rightarrow vec T n \rightarrow vec T (S n).

► Inductive typs in pCIC:

$$\frac{A \in Ar(s)}{A \in Ar(s)} \qquad \Gamma \vdash A : s' \qquad \Gamma, X : A \vdash C_i : s \qquad C_i \in Co(X)$$

$$\Gamma \vdash Ind(X : A) \{ C_1, \dots, C_n \} : A$$

Ar(s) is the set of types of the form: $\overrightarrow{\Pi x} : \overrightarrow{M}. s$

Co(X) is the set of types of the form: $\overrightarrow{\Pi x} : \overrightarrow{M}. X \xrightarrow{m}$ No Parameters (A in vec A n) are considered in this rule.

Inductive vec (T: Type): nat \rightarrow Type := nil: vec T 0

| cons : forall n, T
$$\rightarrow$$
 vec T n \rightarrow vec T (S n).

Some cumulativity rules in pCIC:

$$\frac{\begin{array}{ccc}
\text{Conv} \\
\Gamma \vdash t : A & \Gamma \vdash B : s & A \leq B \\
\hline
\Gamma \vdash t : B & \\
\text{C-Type} & & \text{C-Prod} \\
i \leq j & & A \simeq A' & B \leq B' \\
\hline
\text{Type}_i \leq \text{Type}_i & & \overline{\Pi}x : A \cdot B \leq \overline{\Pi}x : A' \cdot B'
\end{array}$$

```
C-IND
I \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N}. s) \{ \Pi \vec{x_1} : \vec{M_1}. X \ \vec{m_1}, \dots, \Pi \vec{x_n} : \vec{M_n}. X \ \vec{m_n} \})
I' \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N'}. s') \{ \Pi \vec{x_1} : \vec{M'_1}. X \ \vec{m'_1}, \dots, \Pi \vec{x_n} : \vec{M'_n}. X \ \vec{m'_n} \})
\forall i. \ N_i \leq N'_i \qquad \forall i, j. \ (M_i)_j \leq (M'_i)_j
length(\vec{m}) = length(\vec{x}) \qquad \forall i. X \ \vec{m_i} \simeq X \ \vec{m'_i}
```

 $I \vec{m} \prec I' \vec{m}$

C-IND
$$I \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N}. s) \{ \Pi \vec{x_1} : \vec{M_1}. X \ \vec{m_1}, \dots, \Pi \vec{x_n} : \vec{M_n}. X \ \vec{m_n} \})$$

$$I' \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N'}. s') \{ \Pi \vec{x_1} : \vec{M'_1}. X \ \vec{m'_1}, \dots, \Pi \vec{x_n} : \vec{M'_n}. X \ \vec{m'_n} \})$$

$$\forall i. \ N_i \leq N'_i \qquad \forall i, j. \ (M_i)_j \leq (M'_i)_j$$

$$length(\vec{m}) = length(\vec{x}) \qquad \forall i. X \ \vec{m_i} \simeq X \ \vec{m'_i}$$

 $I \vec{m} \prec I' \vec{m}$

C-IND
$$I \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N}. s) \{ \Pi \vec{x_1} : \vec{M_1}. X \ \vec{m_1}, \dots, \Pi \vec{x_n} : \vec{M_n}. X \ \vec{m_n} \})$$

$$I' \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N'}. s') \{ \Pi \vec{x_1} : \vec{M'_1}. X \ \vec{m'_1}, \dots, \Pi \vec{x_n} : \vec{M'_n}. X \ \vec{m'_n} \})$$

$$\forall i. \ N_i \preceq N'_i \qquad \forall i, j. \ (M_i)_j \preceq (M'_i)_j$$

$$length(\vec{m}) = length(\vec{x}) \qquad \forall i. X \ \vec{m_i} \simeq X \ \vec{m'_i}$$

$$I \ \vec{m} \prec I' \ \vec{m}$$

C-IND
$$I \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N}. s) \{ \Pi \vec{x_1} : \vec{M_1}. X \ \vec{m_1}, \dots, \Pi \vec{x_n} : \vec{M_n}. X \ \vec{m_n} \})$$

$$I' \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N'}. s') \{ \Pi \vec{x_1} : \vec{M'_1}. X \ \vec{m'_1}, \dots, \Pi \vec{x_n} : \vec{M'_n}. X \ \vec{m'_n} \})$$

$$\forall i. \ N_i \leq N'_i \qquad \forall i, j. \ (M_i)_j \leq (M'_i)_j$$

$$length(\vec{m}) = length(\vec{x}) \qquad \forall i. \ X \ \vec{m_i} \simeq X \ \vec{m'_i}$$

 $I \ \vec{m} \leq I' \ \vec{m}$

```
C-IND
I \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N}. s) \{ \Pi \vec{x_1} : \vec{M_1}. X \ \vec{m_1}, \dots, \Pi \vec{x_n} : \vec{M_n}. X \ \vec{m_n} \})
I' \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N'}. s') \{ \Pi \vec{x_1} : \vec{M'_1}. X \ \vec{m'_1}, \dots, \Pi \vec{x_n} : \vec{M'_n}. X \ \vec{m'_n} \})
\forall i. \ N_i \leq N'_i \qquad \forall i, j. \ (M_i)_j \leq (M'_i)_j
length(\vec{m}) = length(\vec{x}) \qquad \forall i. X \ \vec{m_i} \simeq X \ \vec{m'_i}
```

 $I \vec{m} \leq I' \vec{m}$

```
C-Ind
I \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N}. s) \{ \Pi \vec{x_1} : \vec{M_1}. X \ \vec{m_1}, \dots, \Pi \vec{x_n} : \vec{M_n}. X \ \vec{m_n} \})
I' \equiv (\operatorname{Ind}(X : \Pi \vec{x} : \vec{N'}. s') \{ \Pi \vec{x_1} : \vec{M'_1}. X \ \vec{m'_1}, \dots, \Pi \vec{x_n} : \vec{M'_n}. X \ \vec{m'_n} \})
\forall i. \ N_i \leq N'_i \qquad \forall i, j. \ (M_i)_j \leq (M'_i)_j
length(\vec{m}) = length(\vec{x}) \qquad \forall i. X \ \vec{m_i} \simeq X \ \vec{m'_i}
```

 $I \vec{m} \prec I' \vec{m}$

Example:

$$\texttt{Category@\{i\ j\}} \equiv \mathsf{Ind}(X: \texttt{Type}_{max(i+1,j+1)}) \{ \Pi o: \texttt{Type}_i. \Pi h: o \rightarrow o \rightarrow \texttt{Type}_j. \cdots \}$$

▶ By C-Ind:

$$\mathtt{i} \leq \mathtt{k} \text{ and } \mathtt{j} \leq \mathtt{l} \Rightarrow \mathtt{Category} \mathtt{@\{\mathtt{i} \ \mathtt{j}\}} \preceq \mathtt{Category} \mathtt{@\{\mathtt{k} \ \mathtt{l}\}}$$

Example:

Category@
$$\{i j\} \equiv Ind(X : Type_{max(i+1,j+1)})\{\Pi o : Type_i.\Pi h : o \rightarrow o \rightarrow Type_i.\dots\}$$

▶ By C-Ind:

$$\mathtt{i} \leq \mathtt{k} \text{ and } \mathtt{j} \leq \mathtt{l} \Rightarrow \mathtt{Category} \mathtt{@\{\mathtt{i} \ \mathtt{j}\}} \preceq \mathtt{Category} \mathtt{@\{\mathtt{k} \ \mathtt{l}\}}$$

 Notice C-IND does not consider parameters or sort of the inductive type ► Example:

 $\texttt{list@\{i\}} \ (\texttt{A}: \texttt{Type}_i) \equiv \mathsf{Ind}(X: \texttt{Type}_i) \{X, A \rightarrow X \rightarrow X\}$

▶ By C-IND:

 $\texttt{list0}\{\texttt{i}\} \texttt{ A} \preceq \texttt{list0}\{\texttt{j}\} \texttt{ A}$

Example:

```
list@\{i\} (A : Type_i) \equiv Ind(X : Type_i)\{X, A \rightarrow X \rightarrow X\}
```

▶ By C-IND:

```
\label{eq:list_def} \texttt{list_0}\{i\} \; \texttt{A} \; \leq \; \texttt{list_0}\{j\} \; \texttt{A} \qquad \big( \textbf{regardless of } i \; \textbf{and} \; j \big)
```

Example:

$$list0{i} (A : Type_i) \equiv Ind(X : Type_i){X, A \rightarrow X \rightarrow X}$$

▶ By C-Ind:

▶ In pCuIC we consider *fully applied* inductive types $I \vec{m}$ and $I' \vec{m}$ convertible if they are mutually subtypes

CONV-IND
$$\frac{I \ \vec{m} \leq I' \ \vec{m}}{I \ \vec{m} \simeq I' \ \vec{m}} \leq I \ \vec{m}$$

Example:

$$list@\{i\}\ (A : Type_i) \equiv Ind(X : Type_i)\{X, A \rightarrow X \rightarrow X\}$$

▶ By C-Ind:

$$list0{i} A \leq list0{j} A$$
 (regardless of i and j)

▶ In pCuIC we consider *fully applied* inductive types $I \vec{m}$ and $I' \vec{m}$ convertible if they are mutually subtypes

CONV-IND
$$\frac{I \ \vec{m} \leq I' \ \vec{m}}{I \ \vec{m} \simeq I' \ \vec{m}} \leq I \ \vec{m}$$

Examples:

$$\begin{split} &i=\texttt{k} \text{ and } j=\texttt{l} \Rightarrow \texttt{Category} \texttt{0} \texttt{\{i j\}} \simeq \texttt{Category} \texttt{0} \texttt{\{k l\}} \\ &\texttt{list} \texttt{0} \texttt{\{i\}} \text{ A} \simeq \texttt{list} \texttt{0} \texttt{\{j\}} \text{ A} \quad \text{(regardless of i and j)} \end{split}$$

Demo

This is implemented in Coq!

Theoretical justification

- ▶ In set theoretic models of pCIC $\llbracket \cdot \rrbracket$: $Terms_{pCIC} \rightarrow ZF^2$
- ▶ For subtyping $A \leq B$ we have $\llbracket A \rrbracket \subseteq \llbracket B \rrbracket$
- Inductive types interpreted using least fixpoints of monotone³ functions
- ► This justifies both C-IND and CONV-IND

²ZF with suitable axioms, e.g., inaccessible cardinals or Grothendieck universes, to model pCIC universes

³Due to strict positivity condition

Thanks