Cumulative Inductive Types in Coq

Amin Timany! Matthieu Sozeau? Bart Jacobs!

imec-Distrinet, KU Leuven, Belgium

Inria Paris & IRIF, France
TYPES'17 — May 31, 2017

Budapest, Hungary

> In higher order dependent type theories:

» Types are also terms and hence have a type

» Type of all types, as it should be the type of itself, leads to
paradoxes, like Girard's paradox

» Thus, we have a countably infinite hierarchy of universes
(types of types):

Typeg, Typey, Typey, - .

where:
Typeg : Type;, Type; : Type,, ...

> In higher order dependent type theories:

» Types are also terms and hence have a type
» Type of all types, as it should be the type of itself, leads to

paradoxes, like Girard's paradox
» Thus, we have a countably infinite hierarchy of universes
(types of types):
Typeg, Typey, Typey, - .
where:
Typeg : Typeq, Type; : Type,,...

» Such a system is cumulative if for any type T and i:
T : Type; = T : Type; 1

» Example: Predicative Calculus of Inductive Constructions
(pCIC), the logic of the proof assistant Coq

» pCIC has recently been extended with universe polymorphism
» Definitions can be polymorphic in universe levels, e.g.,
categories:
Record Category@{i j} : Type@{max(i+1, j+1)} :=

{ Obj : Type@{i};
Hom : Obj — Obj — Type@{j}; ... }.

» pCIC has recently been extended with universe polymorphism

» Definitions can be polymorphic in universe levels, e.g.,
categories:

Record Category@{i j} : Type@{max(i+1, j+1)} :=

{ Obj : Type@{i};
Hom : Obj — Obj — Type@{j}; ... }.

» To keep consistent, universe polymorphic definitions come with
constraints, e.g., category of categories:

Definition Cat@{i j k 1} :=
{] Obj := Category@e{k 1};
Hom := fun CD = Functor@{k 1k 1} CD;...|}
. Category@{i j}.

with constraints:
k<i and I <i

» For universe polymorphic inductive types, e.g., Category,
copies are considered

» With no cumulativity (subtyping), i.e.,
Category@{i j} < Category@{k 1} impliesi =% and j=1

» For universe polymorphic inductive types, e.g., Category,
copies are considered

» With no cumulativity (subtyping), i.e.,
Category@{i j} < Category@{k 1} impliesi =% and j=1

> This means Cat@{i j k 1} is the category of all categories at
{x 1} and not lower !

!There are however categories isomorphic to the categories in lower levels.

» Constraints on statements about universe polymorphic
inductive definitions restrict to which copies they apply

> For Cat@{i j k 1} the fact that it has exponentials has
constraints j =k =1

Constraints on statements about universe polymorphic
inductive definitions restrict to which copies they apply

For Cate{i j k 1} the fact that it has exponentials has
constraints j =k =1

In particular:

Definition Type_Cat@{i j} :=

{| O0bj := Typee{j};
Hom := fun AB = A — B; ... |} : Category@{i j}.

with constraints: j < i

It is not an object of any copy of Cat with exponentials!

Constraints on statements about universe polymorphic
inductive definitions restrict to which copies they apply

For Cate{i j k 1} the fact that it has exponentials has
constraints j =k =1

In particular:

Definition Type_Cat@{i j} :=

{| O0bj := Typee{j};
Hom := fun AB = A — B; ... |} : Category@{i j}.

with constraints: j < i
It is not an object of any copy of Cat with exponentials!

Yoneda embedding can't be simply defined as the exponential
transpose of the hom functor

» Inductive typs in pCIC:

IND
AeAr(s) Fr-A:s MX:AFCGC:s C;eCo(X)

M=Ind(X : A{G,...,C} A

—
Ar(s) is the set of types of the form: Nx :M.s

—

—
Co(X) is the set of types of the form: Nx : M. X m

» Inductive typs in pCIC:

IND
AeAr(s) Fr-A:s MX:AFCGC:s C;eCo(X)

M=Ind(X : A{G,...,C} A

—
Ar(s) is the set of types of the form: Nx :M.s

- —
Co(X) is the set of types of the form: Tx : M. X m
No Parameters (A in vec A n) are considered in this rule.

Inductive vec (T : Type) : nat — Type :=nil : vec T 0
| cons: foralln, T — vec Tn — vec T (S n).

» Inductive typs in pCIC:

IND
AeAr(s) Fr-A:s MX:AFCGC:s C;eCo(X)

M=Ind(X : A{G,...,C} A

—
Ar(s) is the set of types of the form: Nx :M.s

- —
Co(X) is the set of types of the form: Tx : M. X m
No Parameters (A in vec A n) are considered in this rule.

Inductive vec (T : Type) : nat — Type :=nil : vec T 0
| cons: foralln, T — vec Tn — vec T (S n).

» Some cumulativity rules in pCIC:

Conv
M=t: A =B:s A=<B
N-t:B
C-TYPE C-ProD
i<j A~ A B=B

Type; = Type; Mx:A B=MNx:A. B

» Predicative Calculus of Cumulative Inductive Types (pCulC):

C-IND = B
I=(nd(X:Nx:N.s){Mx3 : My. X miy, ..., Nx; 0 M,. X m,})
I'=(Ind(X : 0% : N'.){N& : M. X m,....Nx;, : M.

Vi Ni N Yigj (M) = (M),
length(m) = length(X) Vi. X mi~ X m]

I m=1m

» Predicative Calculus of Cumulative Inductive Types (pCulC):

C-InD -
I = (Ind(X : NX: N. s){l'lxl My. X iy, ..., N% : M. X rﬁ’,,})
I'=(Ind(X : Nx: N'. s){Nx : ML X ml, ... T, M. X mi})
Vi, j. (Mp); = (M), .
length(m) = length(X) Vi. X mij~ X m),
I'm=< 1 i

» Predicative Calculus of Cumulative Inductive Types (pCulC):

C-InD -
I = (Ind(X : NX: N. s){l'lxl My. X rify, . ..,I'I‘,’, : M, X rﬁ’,,})
I'=(Ind(X : Nx: N'. s){Nx : ML X ml, ... T, M. X mi})
Vi. Np < N
length(m) = length(X) Vi. X i~ X n:;f
I'm=1"m

» Predicative Calculus of Cumulative Inductive Types (pCulC):

C-InD
I =(Ind(X : N%: N. s){N5 : My. X iy, ..., N5 My X min})
I'=(Ind(X : N%: N $) Mg M. X m), ... 0%, M. X ml})
Vio Ni =N Vg (My); < (M));

length(m) = length(X)

I m=<1 m

» Predicative Calculus of Cumulative Inductive Types (pCulC):

C-InD . B B
I=(nd(X:Nx:N.s){Mx3 : My. X miy,...,Nx, : M,. X m,})
I'=(Ind(X : N%: N $) Mg M. X m), ... 0%, M. X ml})
Vi N =N Yigg (M) < (MD);
Vi, X i~ X m)

I m=<1m

» Predicative Calculus of Cumulative Inductive Types (pCulC):

C-IND = B
I=(nd(X:Nx:N.s){Mx3 : My. X miy, ..., Nx; 0 M,. X m,})
I'=(Ind(X : 0% : N'.){N& : M. X m,....Nx;, : M.

Vi Ni N Yigj (M) = (M),
length(m) = length(X) Vi. X mi~ X m]

I m=1m

» Predicative Calculus of Cumulative Inductive Types (pCulC):
C-InD

I =(Ind(X : N%: N. s){N5 : My. X iy, ..., N5 My, X min})

I'=(Ind(X : 0% : N'.){N& : M. X m,....Nx;, : M.
Vi. N; <N Vi (Mi); < (M));
length(m) = length(X) Vi. X mi~ X m]

I m=1m

» Example:
Categorye{i j} = Ind(X : Typemax(i+1J+1)){ﬂo : Type;.[h :
O—>O—>Typej.~-}
» By C-IND:
i <kand j <1 = Category@{i j} X Categorye{k 1}

Predicative Calculus of Cumulative Inductive Types (pCulC):

C-IND = B
I=(nd(X:Nx:N.s){Mx3 : My. X miy, ..., Nx; 0 M,. X m,})
I'=(Ind(X : 0% : N'.){N& : M. X m,....Nx;, : M.

Vi Ni N Yigj (M) = (M),
length(m) = length(X) Vi. X mi~ X m]

I m=1m

Example:
Categorye{i j} = Ind(X : Typemax(i+1J+1)){ﬂo : Type;.[h :
O—>O—>Typej.~-}
By C-IND:
i <kand j <1 = Category@{i j} X Categorye{k 1}
Notice C-IND does not consider parameters or sort of the
inductive type

> Example:

liste{i} (A : Type;) = Ind(X : Type;){X,A = X — X}
» By C-IND:

liste{i} A < liste{j} A

> Example:

liste{i} (A : Type;) = Ind(X : Type;){X,A = X — X}
» By C-IND:

liste{i} A =< liste{j} A (regardless of i and j)

> Example:
liste{i} (A : Type;) = Ind(X : Type;){X,A = X — X}
» By C-IND:
liste{i} A =< liste{j} A (regardless of i and j)
» In pCulC we consider fully applied inductive types /| m and
I” m convertible if they are mutually subtypes
Conv-IND
Im=<l'm I"'m=<Im
/ m

~ [

3.

v

v

v

v

Example:

liste{i} (A : Type;) = Ind(X : Type;){X,A = X — X}
By C-IND:

liste{i} A =< liste{j} A (regardless of i and j)
In pCulC we consider fully applied inductive types /| m and
I” m convertible if they are mutually subtypes

Conv-IND
I m=<1m 'm=<1m
I m~1Im

Examples:
i=kand j =1 = Category@{i j} ~ Category@{k 1}

liste{i} A ~ liste{j} A (regardless of i and j)

Demo

This is implemented in Coq!

Theoretical justification

In set theoretic models of pCIC [] : Terms,cic — ZF?
For subtyping A < B we have [A] C [B]

Inductive types interpreted using least fixpoints of
monotone? functions

This justifies both C-IND and CoONV-IND

v

v

v

v

27F with suitable axioms, e.g., inaccessible cardinals or Grothendieck
universes, to model pCIC universes
3Due to strict positivity condition

Thanks

	Universe polymorphism and Inductive Types

