
1

Logical Relations in Iris

Amin Timany1 Robbert Krebbers2 Lars Birkedal3

1imec-Distrinet, KU Leuven, Belgium

2Delft University of Technology, The Netherlands

3Aarhus University, Denmark

January 21, 2017 @ CoqPL, Paris, France

2

Logical Relations

A powerful technique to prove properties of programs and programming languages
I Unary: type safety, (strong) normalization, . . .
I Binary: contextual refinement, contextual equivalence, non-interference, . . .

3

In this talk

I Formalization of a unary and binary logical relations

I In the Iris program logic which in turn is implemented in Coq

I For a programming language (Fµ,ref ,conc) with a very rich type system

I Use it to prove type safety and verify contextual refinement of concurrent
algorithms

4

Unary logical relation
Proving type safety

Define semantics of types (by recursion on τ): JτKE : Expr→ Prop

1. Prove adequacy: JτKE(e)⇒ Safeτ (e)

2. Prove compatibility lemmas for typing rules, e.g.:

Jτ1KE(e1) JτKE(e2)

Jτ1 × τ2KE(e1, e1)

3. Corollary (soundness): · ` e : τ ⇒ Safeτ (e)

4

Unary logical relation
Proving type safety

Define semantics of types (by recursion on τ): JτKE : Expr→ Prop

1. Prove adequacy: JτKE(e)⇒ Safeτ (e)

2. Prove compatibility lemmas for typing rules, e.g.:

Jτ1KE(e1) JτKE(e2)

Jτ1 × τ2KE(e1, e1)

3. Corollary (soundness): · ` e : τ ⇒ Safeτ (e)

4

Unary logical relation
Proving type safety

Define semantics of types (by recursion on τ): JτKE : Expr→ Prop

1. Prove adequacy: JτKE(e)⇒ Safeτ (e)

2. Prove compatibility lemmas for typing rules, e.g.:

Jτ1KE(e1) JτKE(e2)

Jτ1 × τ2KE(e1, e1)

3. Corollary (soundness): · ` e : τ ⇒ Safeτ (e)

4

Unary logical relation
Proving type safety

Define semantics of types (by recursion on τ): JτKE : Expr→ Prop

1. Prove adequacy: JτKE(e)⇒ Safeτ (e)

2. Prove compatibility lemmas for typing rules, e.g.:

Jτ1KE(e1) JτKE(e2)

Jτ1 × τ2KE(e1, e1)

3. Corollary (soundness): · ` e : τ ⇒ Safeτ (e)

5

Unary logical relation
Proving type safety

Remember adequacy: JτKE(e)⇒ Safeτ (e)

I e need not syntactically be well-typed!

I Compatibility lemmas say nothing about well-typedness:

Jτ1KE(e1) JτKE(e2)

Jτ1 × τ2KE(e1, e1)

Logical relation allows one to modularly prove safety in the presence of untyped
code, i.e., when linking with untyped but verified code, e.g., the unsafe blocks of
Rust

5

Unary logical relation
Proving type safety

Remember adequacy: JτKE(e)⇒ Safeτ (e)

I e need not syntactically be well-typed!

I Compatibility lemmas say nothing about well-typedness:

Jτ1KE(e1) JτKE(e2)

Jτ1 × τ2KE(e1, e1)

Logical relation allows one to modularly prove safety in the presence of untyped
code, i.e., when linking with untyped but verified code, e.g., the unsafe blocks of
Rust

5

Unary logical relation
Proving type safety

Remember adequacy: JτKE(e)⇒ Safeτ (e)

I e need not syntactically be well-typed!

I Compatibility lemmas say nothing about well-typedness:

Jτ1KE(e1) JτKE(e2)

Jτ1 × τ2KE(e1, e1)

Logical relation allows one to modularly prove safety in the presence of untyped
code, i.e., when linking with untyped but verified code, e.g., the unsafe blocks of
Rust

6

Motivation for using a high-level logic (Iris)
Recursive types and higher order references

I Recursive types: the logical relation usually involves step-indexing

The crux of the matter: semantics of a recursive type µX . τ is the fixpoint of the
semantics of τ

I References: the logical relation usually involves step-indexing and possible worlds

The crux of the matter: a memory location is of type ref(τ) if the value stored in
it is in the semantics of type τ at all times

I Iris provides support for invariants and taking (guarded) fixpoints

7

20 D. Dreyer et al.

HeapAtomn
def
= {(W,h1,h2) | W ∈ Worldn}

HeapReln
def
= {ψ ⊆ HeapAtomn | ∀(W,h1,h2) ∈ ψ. ∀W W. (W ,h1,h2) ∈ ψ}

Islandn
def
= {ι = (s,δ ,ϕ, ,H) | s ∈ State∧δ ⊆ State2 ∧ϕ ⊆ δ ∧δ ,ϕ reflexive∧

δ ,ϕ transitive∧ ⊆ State∧H ∈ State → HeapReln}
Worldn

def
= {W = (k,Σ1,Σ2,ω) | k < n∧∃m. ω ∈ Islandm

k }
ContAtomn[τ1,τ2]

def
= {(W,K1,K2) | W ∈ Worldn ∧W.Σ1; ·; K1 ÷τ1 ∧W.Σ2; ·; K2 ÷τ2}

TermAtomn[τ1,τ2]
def
= {(W,e1,e2) | W ∈ Worldn ∧W.Σ1; ·; e1 : τ1 ∧W.Σ2; ·; e2 : τ2}

HeapAtom[τ1,τ2]
def
= n HeapAtomn[τ1,τ2]

World
def
= n Worldn

ContAtom[τ1,τ2]
def
= n ContAtomn[τ1,τ2]

TermAtom[τ1,τ2]
def
= n TermAtomn[τ1,τ2]

ValRel[τ1,τ2]
def
= {r ⊆ TermAtomval[τ1,τ2] | ∀(W,v1,v2) ∈ r. ∀W W. (W ,v1,v2) ∈ r}

SomeValRel
def
= {R = (τ1,τ2,r) | r ∈ ValRel[τ1,τ2]}

(ι1, . . . , ιm) k
def
= (ι1 k, . . . , ιm k) H k

def
= λ s. H(s) k

(s,δ ,ϕ, ,H) k
def
= (s,δ ,ϕ, , H k) ψ k

def
= {(W,h1,h2) ∈ r | W.k < k}

(k+1,Σ1,Σ2,ω)
def
= (k,Σ1,Σ2, ω k)

r
def
= {(W,e1,e2) | W.k > 0 ⇒ (W,e1,e2) ∈ r}

(k ,Σ1,Σ2,ω) (k,Σ1,Σ2,ω)
def
= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω ω k

(ι1, . . . , ιm) (ι1, . . . , ιm)
def
= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j ι j

(s ,δ ,ϕ , ,H) (s,δ ,ϕ, ,H)
def
= (δ ,ϕ , ,H) = (δ ,ϕ, ,H)∧ (s,s) ∈ δ

(k ,Σ1,Σ2,ω) pub (k,Σ1,Σ2,ω)
def
= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω pub ω k

(ι1, . . . , ιm) pub (ι1, . . . , ιm)
def
= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j

pub ι j ∧
∀ j ∈ {m+1, . . . ,m }. safe(ι j)

(s ,δ ,ϕ , ,H) pub (s,δ ,ϕ, ,H)
def
= (δ ,ϕ , ,H) = (δ ,ϕ, ,H)∧ (s,s) ∈ ϕ

safe(W)
def
= ∀ι ∈W.ω. safe(ι) safe(ι) def

= ∀s . (ι .s,s) ∈ ι .ϕ ⇒ s /∈ ι .

consistent(W)
def
= ι ∈W.ω. ι .s ∈ ι .

ψ ⊗ψ def
= {(W,h1 h1,h2 h2) | (W,h1,h2) ∈ ψ ∧ (W,h1,h2) ∈ ψ }

(h1,h2) : W
def
= h1 : W.Σ1 h2 : W.Σ2 ∧ (W.k > 0 ⇒ (W,h1,h2) ∈ {ι .H(ι .s) | ι ∈W.ω})

Fig. 5. Worlds and auxiliary definitions.

it is defined on a particular set of “states of interest”—whether there is other junk

in the State space is irrelevant.

Based on the two transition relations (full and public), we define two notions

of future worlds (aka world extension). First, we say that W ′ extends W , written

W ′ � W , iff it contains the same islands as W (and possibly more), and for each

island in W , the new state s′ of that island in W ′—which is the only aspect of the

20 D. Dreyer et al.

HeapAtomn
def
= {(W,h1,h2) | W ∈ Worldn}

HeapReln
def
= {ψ ⊆ HeapAtomn | ∀(W,h1,h2) ∈ ψ. ∀W W. (W ,h1,h2) ∈ ψ}

Islandn
def
= {ι = (s,δ ,ϕ, ,H) | s ∈ State∧δ ⊆ State2 ∧ϕ ⊆ δ ∧δ ,ϕ reflexive∧

δ ,ϕ transitive∧ ⊆ State∧H ∈ State → HeapReln}
Worldn

def
= {W = (k,Σ1,Σ2,ω) | k < n∧∃m. ω ∈ Islandm

k }
ContAtomn[τ1,τ2]

def
= {(W,K1,K2) | W ∈ Worldn ∧W.Σ1; ·; K1 ÷τ1 ∧W.Σ2; ·; K2 ÷τ2}

TermAtomn[τ1,τ2]
def
= {(W,e1,e2) | W ∈ Worldn ∧W.Σ1; ·; e1 : τ1 ∧W.Σ2; ·; e2 : τ2}

HeapAtom[τ1,τ2]
def
= n HeapAtomn[τ1,τ2]

World
def
= n Worldn

ContAtom[τ1,τ2]
def
= n ContAtomn[τ1,τ2]

TermAtom[τ1,τ2]
def
= n TermAtomn[τ1,τ2]

ValRel[τ1,τ2]
def
= {r ⊆ TermAtomval[τ1,τ2] | ∀(W,v1,v2) ∈ r. ∀W W. (W ,v1,v2) ∈ r}

SomeValRel
def
= {R = (τ1,τ2,r) | r ∈ ValRel[τ1,τ2]}

(ι1, . . . , ιm) k
def
= (ι1 k, . . . , ιm k) H k

def
= λ s. H(s) k

(s,δ ,ϕ, ,H) k
def
= (s,δ ,ϕ, , H k) ψ k

def
= {(W,h1,h2) ∈ r | W.k < k}

(k+1,Σ1,Σ2,ω)
def
= (k,Σ1,Σ2, ω k)

r
def
= {(W,e1,e2) | W.k > 0 ⇒ (W,e1,e2) ∈ r}

(k ,Σ1,Σ2,ω) (k,Σ1,Σ2,ω)
def
= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω ω k

(ι1, . . . , ιm) (ι1, . . . , ιm)
def
= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j ι j

(s ,δ ,ϕ , ,H) (s,δ ,ϕ, ,H)
def
= (δ ,ϕ , ,H) = (δ ,ϕ, ,H)∧ (s,s) ∈ δ

(k ,Σ1,Σ2,ω) pub (k,Σ1,Σ2,ω)
def
= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω pub ω k

(ι1, . . . , ιm) pub (ι1, . . . , ιm)
def
= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j

pub ι j ∧
∀ j ∈ {m+1, . . . ,m }. safe(ι j)

(s ,δ ,ϕ , ,H) pub (s,δ ,ϕ, ,H)
def
= (δ ,ϕ , ,H) = (δ ,ϕ, ,H)∧ (s,s) ∈ ϕ

safe(W)
def
= ∀ι ∈W.ω. safe(ι) safe(ι) def

= ∀s . (ι .s,s) ∈ ι .ϕ ⇒ s /∈ ι .

consistent(W)
def
= ι ∈W.ω. ι .s ∈ ι .

ψ ⊗ψ def
= {(W,h1 h1,h2 h2) | (W,h1,h2) ∈ ψ ∧ (W,h1,h2) ∈ ψ }

(h1,h2) : W
def
= h1 : W.Σ1 h2 : W.Σ2 ∧ (W.k > 0 ⇒ (W,h1,h2) ∈ {ι .H(ι .s) | ι ∈W.ω})

Fig. 5. Worlds and auxiliary definitions.

it is defined on a particular set of “states of interest”—whether there is other junk

in the State space is irrelevant.

Based on the two transition relations (full and public), we define two notions

of future worlds (aka world extension). First, we say that W ′ extends W , written

W ′ � W , iff it contains the same islands as W (and possibly more), and for each

island in W , the new state s′ of that island in W ′—which is the only aspect of the

Figure taken from: D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state
and control effects on local relational reasoning. Journal of Functional Programming,
February 2012.

8

Unary logical relation (for type safety)
Definition in Iris

JτKE∆(e) , {True} e {w . JτK∆(w)}

JNK∆(v) , v ∈ N

Jτ1 × τ2K∆(v) , ∃v1, v2. v = (v1, v2) ∧ Jτ1K∆(v1) ∧ Jτ2K∆(v2)

Jτ1 → τ2K∆(v) , ∀v ′. {Jτ1K∆(v ′)} v v ′ {w . Jτ2K∆(w)}

JµX . τK∆(v) , µ f .∃w . v = foldw ∧ .JτK∆[X 7→f](w)

JX K∆(v) , ∆(X)(v)

Jref(τ)K∆(v) , ∃`. v = ` ∧ ∃w . ` 7→ w ∗ JτK∆(w)
N .`

8

Unary logical relation (for type safety)
Definition in Iris

JτKE∆(e) , {True} e {w . JτK∆(w)}

JNK∆(v) , v ∈ N

Jτ1 × τ2K∆(v) , ∃v1, v2. v = (v1, v2) ∧ Jτ1K∆(v1) ∧ Jτ2K∆(v2)

Jτ1 → τ2K∆(v) , ∀v ′. {Jτ1K∆(v ′)} v v ′ {w . Jτ2K∆(w)}

JµX . τK∆(v) , µ f .∃w . v = foldw ∧ .JτK∆[X 7→f](w)

JX K∆(v) , ∆(X)(v)

Jref(τ)K∆(v) , ∃`. v = ` ∧ ∃w . ` 7→ w ∗ JτK∆(w)
N .`

8

Unary logical relation (for type safety)
Definition in Iris

JτKE∆(e) , {True} e {w . JτK∆(w)}

JNK∆(v) , v ∈ N

Jτ1 × τ2K∆(v) , ∃v1, v2. v = (v1, v2) ∧ Jτ1K∆(v1) ∧ Jτ2K∆(v2)

Jτ1 → τ2K∆(v) , ∀v ′. {Jτ1K∆(v ′)} v v ′ {w . Jτ2K∆(w)}

JµX . τK∆(v) , µ f .∃w . v = foldw ∧ .JτK∆[X 7→f](w)

JX K∆(v) , ∆(X)(v)

Jref(τ)K∆(v) , ∃`. v = ` ∧ ∃w . ` 7→ w ∗ JτK∆(w)
N .`

8

Unary logical relation (for type safety)
Definition in Iris

JτKE∆(e) , {True} e {w . JτK∆(w)}

JNK∆(v) , v ∈ N

Jτ1 × τ2K∆(v) , ∃v1, v2. v = (v1, v2) ∧ Jτ1K∆(v1) ∧ Jτ2K∆(v2)

Jτ1 → τ2K∆(v) , ∀v ′. {Jτ1K∆(v ′)} v v ′ {w . Jτ2K∆(w)}

JµX . τK∆(v) , µ f .∃w . v = foldw ∧ .JτK∆[X 7→f](w)

JX K∆(v) , ∆(X)(v)

Jref(τ)K∆(v) , ∃`. v = ` ∧ ∃w . ` 7→ w ∗ JτK∆(w)
N .`

8

Unary logical relation (for type safety)
Definition in Iris

JτKE∆(e) , {True} e {w . JτK∆(w)}

JNK∆(v) , v ∈ N

Jτ1 × τ2K∆(v) , ∃v1, v2. v = (v1, v2) ∧ Jτ1K∆(v1) ∧ Jτ2K∆(v2)

Jτ1 → τ2K∆(v) , ∀v ′. {Jτ1K∆(v ′)} v v ′ {w . Jτ2K∆(w)}

JµX . τK∆(v) , µ f .∃w . v = foldw ∧ .JτK∆[X 7→f](w)

JX K∆(v) , ∆(X)(v)

Jref(τ)K∆(v) , ∃`. v = ` ∧ ∃w . ` 7→ w ∗ JτK∆(w)
N .`

8

Unary logical relation (for type safety)
Definition in Iris

JτKE∆(e) , {True} e {w . JτK∆(w)}

JNK∆(v) , v ∈ N

Jτ1 × τ2K∆(v) , ∃v1, v2. v = (v1, v2) ∧ Jτ1K∆(v1) ∧ Jτ2K∆(v2)

Jτ1 → τ2K∆(v) , ∀v ′. {Jτ1K∆(v ′)} v v ′ {w . Jτ2K∆(w)}

JµX . τK∆(v) , µ f .∃w . v = foldw ∧ .JτK∆[X 7→f](w)

JX K∆(v) , ∆(X)(v)

Jref(τ)K∆(v) , ∃`. v = ` ∧ ∃w . ` 7→ w ∗ JτK∆(w)
N .`

9

10

11

Contextual refinement

ei contextually refines es (Γ ` ei �ctx es : τ):

Γ ` ei �ctx es : τ , Γ ` ei : τ ∧
Γ ` es : τ ∧
∀C : (Γ ` τ ; · ` 1). C[ei] ↓⇒ C[es] ↓

Useful when: ei is a more efficient version of es (e.g., optimized by the compiler) or
when es is easier to verify than ei

The idea: Use a binary logical relation such that being related implies contextual
refinement

12

Binary logical relation
To establish contextual refinement

Define semantics of types (by recursion on τ): JτKE : Expr→ Expr→ iProp

1. Prove Adequacy: JτKE(e, e ′)⇒ e ↓⇒ e ′ ↓
2. Prove compatibility lemmas for typing rules, e.g.:

Jτ1KE(e1, e
′
1) JτKE(e2, e

′
2)

Jτ1 × τ2KE((e1, e2), (e ′1, e
′
2))

3. Corollary (soundness): Γ |= e �log e ′ : τ ⇒ Γ ` e �ctx e ′ : τ

12

Binary logical relation
To establish contextual refinement

Define semantics of types (by recursion on τ): JτKE : Expr→ Expr→ iProp

1. Prove Adequacy: JτKE(e, e ′)⇒ e ↓⇒ e ′ ↓

2. Prove compatibility lemmas for typing rules, e.g.:

Jτ1KE(e1, e
′
1) JτKE(e2, e

′
2)

Jτ1 × τ2KE((e1, e2), (e ′1, e
′
2))

3. Corollary (soundness): Γ |= e �log e ′ : τ ⇒ Γ ` e �ctx e ′ : τ

12

Binary logical relation
To establish contextual refinement

Define semantics of types (by recursion on τ): JτKE : Expr→ Expr→ iProp

1. Prove Adequacy: JτKE(e, e ′)⇒ e ↓⇒ e ′ ↓
2. Prove compatibility lemmas for typing rules, e.g.:

Jτ1KE(e1, e
′
1) JτKE(e2, e

′
2)

Jτ1 × τ2KE((e1, e2), (e ′1, e
′
2))

3. Corollary (soundness): Γ |= e �log e ′ : τ ⇒ Γ ` e �ctx e ′ : τ

12

Binary logical relation
To establish contextual refinement

Define semantics of types (by recursion on τ): JτKE : Expr→ Expr→ iProp

1. Prove Adequacy: JτKE(e, e ′)⇒ e ↓⇒ e ′ ↓
2. Prove compatibility lemmas for typing rules, e.g.:

Jτ1KE(e1, e
′
1) JτKE(e2, e

′
2)

Jτ1 × τ2KE((e1, e2), (e ′1, e
′
2))

3. Corollary (soundness): Γ |= e �log e ′ : τ ⇒ Γ ` e �ctx e ′ : τ

13

Binary logical relation (for contextual refinement)
Definition in Iris: value relations

JNK∆(v , v ′) , v = v ′ ∈ N

Jτ1 × τ2K∆(v , v ′) , ∃v1, v2, v
′
1, v

′
2. v = (v1, v2) ∧ v ′ = (v ′1, v

′
2) ∧ Jτ1K∆(v1, v

′
1) ∧ Jτ2K∆(v2, v

′
2)

JµX . τK∆(v , v ′) , µ f . ∃w ,w ′. v = foldw ∧ v ′ = foldw ′ ∧ .JτK∆[X 7→f](w ,w
′)

JX K∆(v , v ′) , ∆(X)(v , v ′)

Jref(τ)K∆(v , v ′) , ∃`, `′. v = ` ∧ v ′ = `′ ∧ ∃w ,w ′. ` 7→i w ∗ `′ 7→s w
′ ∗ JτK∆(w ,w ′)

N .`.`′

14

Binary logical relation (for contextual refinement)
Definition in Iris: expression relation

The idea1: simulate the running of the right hand side as ghost state

I Ghost state for threads on the right hand side: j Z⇒ e

I Ghost state for the heap of the right hand side: ` 7→s v

JτKE∆(e, e ′) , ∀j ,K {j Z⇒ K [e ′]} e {w .∃w ′. j Z⇒ K [w ′] ∗ JτK∆(w ,w ′)}
Jτ1 → τ2K∆(v , v ′) , ∀w ,w ′, j ,K .

{Jτ1K∆(w ,w ′) ∗ j Z⇒ K [v ′ w ′]} v w {z . ∃z ′. j Z⇒ K [z ′] ∗ Jτ2K∆(z , z ′)}

1See: A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-style reasoning in a
logic for higher-order concurrency. In Proceedings of ICFP, 2013.
and M. Krogh-Jespersen, K. Svendsen, and L. Birkedal. A relational model of types-and-effects in
higher-order concurrent separation logic. In Proceedings of POPL 2017, 2017.

14

Binary logical relation (for contextual refinement)
Definition in Iris: expression relation

The idea1: simulate the running of the right hand side as ghost state

I Ghost state for threads on the right hand side: j Z⇒ e

I Ghost state for the heap of the right hand side: ` 7→s v

JτKE∆(e, e ′) , ∀j ,K {j Z⇒ K [e ′]} e {w .∃w ′. j Z⇒ K [w ′] ∗ JτK∆(w ,w ′)}

Jτ1 → τ2K∆(v , v ′) , ∀w ,w ′, j ,K .

{Jτ1K∆(w ,w ′) ∗ j Z⇒ K [v ′ w ′]} v w {z . ∃z ′. j Z⇒ K [z ′] ∗ Jτ2K∆(z , z ′)}

1See: A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-style reasoning in a
logic for higher-order concurrency. In Proceedings of ICFP, 2013.
and M. Krogh-Jespersen, K. Svendsen, and L. Birkedal. A relational model of types-and-effects in
higher-order concurrent separation logic. In Proceedings of POPL 2017, 2017.

14

Binary logical relation (for contextual refinement)
Definition in Iris: expression relation

The idea1: simulate the running of the right hand side as ghost state

I Ghost state for threads on the right hand side: j Z⇒ e

I Ghost state for the heap of the right hand side: ` 7→s v

JτKE∆(e, e ′) , ∀j ,K {j Z⇒ K [e ′]} e {w .∃w ′. j Z⇒ K [w ′] ∗ JτK∆(w ,w ′)}
Jτ1 → τ2K∆(v , v ′) , ∀w ,w ′, j ,K .

{Jτ1K∆(w ,w ′) ∗ j Z⇒ K [v ′ w ′]} v w {z . ∃z ′. j Z⇒ K [z ′] ∗ Jτ2K∆(z , z ′)}

1See: A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-style reasoning in a
logic for higher-order concurrency. In Proceedings of ICFP, 2013.
and M. Krogh-Jespersen, K. Svendsen, and L. Birkedal. A relational model of types-and-effects in
higher-order concurrent separation logic. In Proceedings of POPL 2017, 2017.

15

16

17

Examples of refinement of concurrent programs

I Fine-grained/coarse-grained counter pair

let FG counter =

let c = ref 0 in

let read () = !c in

let rec increment () =

let x = !c in if CAS(c, x, x+1) then () else increment ()

in (increment, read)

let CG counter =

let c = ref 0 in let l = make lock () in

let read () = !c in

let increment () = acquire l; c := !c + 1; release l

in (increment, read)

We show: J(1→ 1)× (1→ N)KE∅ (FG counter, CG counter)

I Fine-grained/coarse-grained stack pair with push, pop and iter operations

18

Trusted computing base

Core Iris

Proof mode

Full Iris: derived constructs

Logical relations

Program refinements

Program correctness

Coq

Coq

IPM

IPM

IPM

Component: Proofs using:

Figure 1. A formally verified stack of abstractions.

it is foundational. That means, correctness can be reduced to the
adequacy result of the program logic, putting Iris and IPM outside
of the trusted computing base. Moreover, by developing a reasoning
tool in a proof assistant, we can piggy back on many of its features,
instead of having to implement these features ourselves.

Contributions. We present a method for extending Coq with
proof contexts and tactics for reasoning in embedded logics, and
implement our method on top of the Iris logic. We show that our
method and implementation – called IPM: Iris Proof Mode – are
modular and widely applicable by verifying a stack of abstractions
as shown in Figure 1. During the course of this paper we present the
following contributions:

1. We use IPM to implement general purpose tactics for interactive
proofs in higher-order separation logic. These tactics are partly
implemented using reflection to ensure efficiency.

2. We show how Coq’s type class machinery can be used to make
these tactics modular. In particular, we show how additional
logical connectives can be supported without the need to modify
the implementation of the tactics.

3. We show how IPM can be used to prove the correctness of
fine-grained concurrent algorithms.

4. We show that IPM can be used to prove soundness of a binary
logical relation for a rich language with concurrency, higher-
order store, polymorphism and recursive types. This is the first
formalization of a binary logical relation for such a language in
a proof assistant.

5. We use IPM to prove refinements of coarse- and fine-grained
concurrent algorithms using the aforementioned logical relation.

Outline. We discuss the challenges involved in reasoning in an
embedded logic using a proof assistant and outline the methodology
of this paper in §2. Then, in §3, we give a tutorial-style introduction
to IPM, and discuss the implementation in §4. In §5 we discuss
how IPM is used for reasoning about concurrency, and in §6, we
show how IPM can be used to prove the fundamental theorem and
soundness of unary and binary logical relations for Fµ,ref ,conc . In
§6.4, we show how to use the logical relation to prove contextual
refinement of fine-grained concurrent programs. Finally, we evaluate
IPM in §7, discuss related work in §8, and conclude in §9.

Coq sources. The Coq sources can be found at:

http://iris-project.org

2. Embedding a Logic into a Proof Assistant
The most frequently used way of embedding an object logic into the
meta logic of a proof assistant is through a shallow embedding [43].
That way, one represents the propositions of the object logic as
semantic objects in the meta logic.

This surprisingly simple approach scales well to formalize the
meta-theory of (quite sophisticated) object logics, for example [36,
5, 6, 22, 37, 24, 23, 25]. Unfortunately, as we will show in the
remaining part of this section, this approach does not provide well-
suited reasoning principles for doing proofs in the object logic. We
use traditional separation logic as our running example.

For traditional intuitionistic separation logic, one would define
its propositions iProp as follows:

σ ∈ State , N fin−⇀ Val

P,Q ∈ iProp , State mon−−→ Prop

The connectives of the object logic are defined via their semantic
interpretation:

�φ , λσ. φ
` 7−→ v , λσ. σ(`) = v

P ∧Q , λσ. Pσ ∧Qσ
P ∗Q , λσ.∃σ1σ2. σ = σ1] σ2 ∧ Pσ1 ∧Qσ2

(∃x : A.P) , λσ.∃x : A.Pσ

Note that for some connectives (here ∧ and ∃) the definition is
given simply by lifting those of the meta logic into the object logic,
whereas for others (here ∗), the definition is slightly more involved.

A shallow embedding has a couple of advantages over a deep
embedding, which involves the extra step of defining an explicit
syntax for all the connectives of the object logic:

• One can piggy back on the binders of the meta logic. For
example, the predicate P in the existential quantifier ∃x : A.P
is modeled as a function P : A→ iProp in the meta logic.
• One can piggy back on higher-order quantification of the meta

logic. Using a proof assistant based on higher-order logic, one
thus gets higher-order quantification in the object logic for free.
• One can easily embed propositions of the meta logic into the

object logic, as done above using the � operator.

The entailment relation ` of our simple separation logic can be
defined as follows:

P ` Q , ∀σ. Pσ ⇒ Qσ

The naive approach to proving an entailment is to work directly
with the semantic interpretation of the logic by expanding the defini-
tions of ` and all logical connectives. However, for separating con-
junction, this results in having to reason explicitly about disjointness
] of states, which leads to an excessive number of proof obligations.
Indeed, this approach is in direct opposition to the whole purpose of
separation logic, which is to hide reasoning about disjointness. The
situation becomes worse for logics with a step-indexed model (such
as iCAP [40], CaReSL [41], VST [5] and Iris [24, 23, 26]), because
then one needs to reason explicitly about steps too.

A more viable approach is to prove lemmas that correspond to
the inference rules of the object logic. Examples of inference rules
for separation logic are (where P a` Q iff P ` Q ∧Q ` P):

P ∗Q a` Q ∗ P (SEP-COMM)
P ∗ (Q ∗R) a` (P ∗Q) ∗R (SEP-ASSOC)

(P1 ` Q1) and (P2 ` Q2) ⇒ P1 ∗ P2 ` Q1 ∗Q2 (SEP-MONO)
P ∗ (∃x.Q) a` ∃x. (P ∗Q) (SEP-EXIST-DISTR)

(∀x. (P ` Q)) ⇒ (∃x. P) ` Q (EXIST-ELIM)

However, using just those rules, and without supporting infras-
tructure, it is very tedious to reason in the object logic.

The only thing that needs be trusted is Coq
We use the adequacy of Iris to prove theorems (contextual refinement, typesafety,
. . .) in Coq

19

The refinement proven in Coq

Theorem counter ctx refinement :

[] � FG counter ≤ctx≤ CG counter :

TProd (TArrow TUnit TUnit) (TArrow TUnit TNat).

Definition ctx refines (Γ : list type)

(e e’ : expr) (τ : type) := ∀ K thp σ v,

typed ctx K Γ τ [] TUnit →
rtc step ([fill ctx K e], ∅) (of val v :: thp, σ) →
∃ thp’ σ’ v’, rtc step ([fill ctx K e’], ∅) (of val v’ :: thp’, σ
’).

Notation "Γ � e ’≤ctx≤’ e’ : τ" :=

(ctx refines Γ e e’ τ) (at level 74, e, e’, τ at next level).

20

Future work

I On the technical side:
I Use a more sensible binding representation (we currently use De Bruijn indexes)
I Better facilitate symbolic execution for Fµ,ref ,conc

I Prove more interesting (and larger) cases of contextual refinements

I Logical relations for languages with richer type systems and features (e.g.,
continuations, type-and-effect systems, algebraic effects, . . .)

I Apply it to other application (e.g., non-interference proofs, compiler correctness,
secure compilation, . . .)

I Your logical relation applications?! Please do not hesitate to talk to us!

21

Thanks

Thanks!

