Category Theory in Coq 8.5

Amin Timany Bart Jacobs

iMinds-Distrinet KU Leuven

7" Coq Workshop — Sophia Antipolis
June 26, 2015

Amin Timn 32 5 Theory in Coq 8.5

List of the most important formalized notions

m basic constructions:

m terminal/initial object m pullbacks/pushouts
m products/sums = exponentials
m equalizers/coequalizers s +4A-dxand (—xa)da

m external constructions:

m comma categories
m product category

m for Cat: (Obj := Category, Hom := Functor)

m cartesian closure
m initial object

m for Set: (Obj := Type, Hom := fun A B => A — B)

local cartesian closuref

m initial object n
B sums m completeness
m equalizers 1
. n m co-completeness
m coequalizers : .
m pullbacks m sub-object classifier (Prop : Type)f
m cartesian closure] toposJf

tuses the axioms of propositional extensionality and constructive indefinite
description (axiom of choice).

m the Yoneda lemma

Theory in Coq 8.5

adjunction
m hom-functor adjunction, unit-counit adjunction, universal morphism adjunction
and their conversions
m duality : F 4G = G°P A F°P
m uniqueness up to natural isomorphism
m category of adjunctions
m kan extensions
m global definition
m local definition with both hom-functor and cones (along a functor)
®m uniqueness
m preservation by adjoint functors
m pointwise kan extensions (preserved by representable functors)

(co)limits
m as (left)right local kan extensions along the unique functor to the terminal category
m (sum)product-(co)equalizer (co)limits
m pointwise (as kan extensions)

T — (co)algebras (for an endofunctor T')
we use proof functional extensionality
we use proof irrelevance in many cases (mostly for proof of equality of arrows)

m This implementation can be found at:
https://bitbucket.org/amintimany/categories/

Theory in Coq 8.5

https://bitbucket.org/amintimany/categories/

m This implementation uses some features of Coq 8.5, most notably:

m Primitive projections for records:
m Universe polymorphism: for relative smallness/largeness

m Primitive projections for records:

m The n rule for records: two instance of a record type are definitionally equal if all
their respective projections are

m Eg, for{|x: A y: Aj} and f u={|x:=yu; y:=xu|}, wehavef (f u) =u

Amin Tim. Bart Jacobs

m Primitive projections for records:

m The n rule for records: two instance of a record type are definitionally equal if all
their respective projections are

m Eg, for{|x: A y: Aj} and f u={|x:=yu; y:=xu|}, wehavef (f u) =u

m This provides definitional equalities, e.g.: (similar to Coq/HoTT implementation)
m For Categories: (C"op) op = C
m For Functors: (F op) op = F

m For Natural Transformations: (N"op) op = N

Theory in Coq 8.5

m Universe polymorphism: for relative smallness/largeness

m Universe polymorphism: for relative smallness/largeness

Class Category : Type@{max(i+1, j+1)} :=
{
Obj : Type@{i}
Hom : Obj — Obj — Type@{j}
id : forall a: Obj, Hom a a
compose : forallabec, (f: Homab) (g: Homc d) : Homa c

Theory in Coq 8.5

m Universe polymorphism: for relative smallness/largeness

Class Category : Type@{max(i+1, j+1)} :=
{
Obj : Type@{i}
Hom : Obj — Obj — Type@{j}
id : forall a: Obj, Hom a a
compose : forallabec, (f: Homab) (g: Homc d) : Homa c

.

m Category is universe polymorphic

Theory in Coq 8.5

m Universe polymorphism: for relative smallness/largeness

Class Category : Type@{max(i+1, j+1)} :=
{
Obj : Type@{i}
Hom : Obj — Obj — Type@{j}
id : forall a: Obj, Hom a a
compose : forallabec, (f: Homab) (g: Homc d) : Homa c

}
m Category is universe polymorphic

m For each pair of levels (m,n), Categorye{m, n} is a copy at level (m,n)

Amin ; art Jacobs 5 y ory in Coq 8.5

m Universe polymorphism: for relative smallness/largeness

Class Category : Type@{max(i+1, j+1)} :=
{
Obj : Type@{i}
Hom : Obj — Obj — Type@{j}
id : forall a: Obj, Hom a a
compose : forallabec, (f: Homab) (g: Homc d) : Homa c

}
m Category is universe polymorphic

m For each pair of levels (m,n), Categorye{m, n} is a copy at level (m,n)

m Universe levels in definitions and theorems are inferred by Coq and never appear
in the source code

Amin ; art Jacobs 5 y ory in Coq 8.5

m Universe polymorphism: for relative smallness/largeness

Class Category : Type@{max(i+1, j+1)} :=
{
Obj : Type@{i}
Hom : Obj — Obj — Type@{j}
id : forall a: Obj, Hom a a
compose : forallabec, (f: Homab) (g: Homc d) : Homa c

}
m Category is universe polymorphic

m For each pair of levels (m,n), Categorye{m, n} is a copy at level (m,n)

m Universe levels in definitions and theorems are inferred by Coq and never appear
in the source code

m For each definition, theorem, etc., we get some constraints on universe levels

m The definition, theorem, etc. only works for those copies that satisfy the side
constraint

Amin , art Jacobs 5 y ory in Coq 8.5

m This notion of smallness/largeness using universe levels works so well that we
can define Cat:

m Instance Cat : Category := {0bj := Category; Hom := Functor; ...}

m This notion of smallness/largeness using universe levels works so well that we
can define Cat:

m Instance Cat : Category := {0bj := Category; Hom := Functor; ...}
m Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (0Obj C), Hom x y’ ~ ((Arrow C) — Hom x y)

Theory in Coq 8.5

m This notion of smallness/largeness using universe levels works so well that we
can define Cat:

m Instance Cat : Category := {0bj := Category; Hom := Functor; ...}
m Or prove the following:
Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (0Obj C), Hom x y’ ~ ((Arrow C) — Hom x y)

m This theorem results in a contradiction as soon as there are objects a and b in C
such that |hom(a,b)| > 2

Theory in Coq 8.5

This notion of smallness/largeness using universe levels works so well that we
can define Cat:

Instance Cat : Category := {0bj := Category; Hom := Functor; ...}

Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (0Obj C), Hom x y’ ~ ((Arrow C) — Hom x y)

This theorem results in a contradiction as soon as there are objects a and b in C'
such that |hom(a,b)| > 2

In fact, this theorem holds only for small categories

Amin ; art Jacobs 5 y ory in Coq 8.5

This notion of smallness/largeness using universe levels works so well that we
can define Cat:

Instance Cat : Category := {0bj := Category; Hom := Functor; ...}

Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (0Obj C), Hom x y’ ~ ((Arrow C) — Hom x y)

This theorem results in a contradiction as soon as there are objects a and b in C'
such that |hom(a,b)| > 2

m In fact, this theorem holds only for small categories

m This can be seen in universe constraints of this theorem

Theory in Coq 8.5

This notion of smallness/largeness using universe levels works so well that we
can define Cat:

Instance Cat : Category := {0bj := Category; Hom := Functor; ...}

Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (0Obj C), Hom x y’ ~ ((Arrow C) — Hom x y)

This theorem results in a contradiction as soon as there are objects a and b in C'
such that |hom(a,b)| > 2

m In fact, this theorem holds only for small categories

m This can be seen in universe constraints of this theorem

m For C : Category@{k, 1} we get the restriction that k <1
m This is in contradiction with the fact that Set : Category@{m, n} withm >n

Amin ; art Jacobs 5 y ory in Coq 8.5

This notion of smallness/largeness using universe levels works so well that we
can define Cat:

Instance Cat : Category := {0bj := Category; Hom := Functor; ...}

Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (0Obj C), Hom x y’ ~ ((Arrow C) — Hom x y)

This theorem results in a contradiction as soon as there are objects a and b in C'
such that |hom(a,b)| > 2

m In fact, this theorem holds only for small categories

m This can be seen in universe constraints of this theorem

m For C : Category@{k, 1} we get the restriction that k <1
m This is in contradiction with the fact that Set : Category@{m, n} withm >n

Set@{m, n} :=
{l

0bj := Type@{n} : Type@{m};

Hom := fun AB = A — B : Obj — Obj — Type@{n}; ...
|} : Category@{m, n}

Amin , art Jacobs 5 y ory in Coq 8.5

m Cat in Coq:
Instance Cat : Category@{i, j} := {0bj := Category@{k, 1}; Hom := Functor; ...}

Amin art . ory ory in Coq 8.5

m Cat in Coq:
Instance Cat : Category@{i, j} := {0bj := Category@{k, 1}; Hom := Functor; ...}

m But according to Coq’s universe polymorphism, if C : Categorye{k, 1} and
C: Categorye{k’, 1’}, we must have k =k’ and 1 =1’

Theory in Coq 8.5

m Cat in Coq:
Instance Cat : Category@{i, j} := {0bj := Category@{k, 1}; Hom := Functor; ...}

m But according to Coq’s universe polymorphism, if C : Categorye{k, 1} and
C: Categorye{k’, 1’}, we must have k =k’ and 1 =1’

m This means Cate{i, j, k, 1} is not the category of all categories at level (k,[) or
lower but only at level (k,1)

Amin , art Jacobs 5 y ory in Coq 8.5

m Cat in Coq:
Instance Cat : Category@{i, j} := {0bj := Category@{k, 1}; Hom := Functor; ...}
m But according to Coq’s universe polymorphism, if C : Categorye{k, 1} and
C: Categorye{k’, 1’}, we must have k =k’ and 1 =1’

m This means Cate{i, j, k, 1} is not the category of all categories at level (k,[) or
lower but only at level (k,1)

m We can lift category:
lift (C: Category@{k, 1}) : Category@{k’, 1’} :=

{l
0bj := 0bj C;
Hom := Hom C;
I}

for k <k and 1 <l

Amin Timany Bart Jacobs Category Theory in Coq 8.5

m Cat in Coq:
Instance Cat : Category@{i, j} := {0bj := Category@{k, 1}; Hom := Functor; ...}
m But according to Coq’s universe polymorphism, if C : Categorye{k, 1} and
C: Categorye{k’, 1’}, we must have k =k’ and 1 =1’

m This means Cate{i, j, k, 1} is not the category of all categories at level (k,[) or
lower but only at level (k,1)

m We can lift category:
lift (C: Category@{k, 1}) : Category@{k’, 1’} :=

{l

0bj := 0bj C;

Hom := Hom C;

I}

for k< k' and I <’
= But

m We can’t prove or even specify (universe inconsistency)
forall (C: Category), C = lift C

Amin , art Jacobs 5 y ory in Coq 8.5

m Cat in Coq:
Instance Cat : Category@{i, j} := {0bj := Category@{k, 1}; Hom := Functor; ...}
m But according to Coq’s universe polymorphism, if C : Categorye{k, 1} and
C: Categorye{k’, 1’}, we must have k =k’ and 1 =1’

m This means Cate{i, j, k, 1} is not the category of all categories at level (k,[) or
lower but only at level (k,1)

m We can lift category:
lift (C: Category@{k, 1}) : Category@{k’, 1’} :=

{l

0bj := 0bj C;

Hom := Hom C;

I}

for k< k' and I <’
= But

m We can’t prove or even specify (universe inconsistency)
forall (C: Category), C = lift C
m We can’t prove forall (C: Category), JMeq C (1lift C)

Amin , art Jacobs 5 y ory in Coq 8.5

m Cat in Coq:
Instance Cat : Category@{i, j} := {0bj := Category@{k, 1}; Hom := Functor; ...}
m But according to Coq’s universe polymorphism, if C : Categorye{k, 1} and
C: Categorye{k’, 1’}, we must have k =k’ and 1 =1’

m This means Cate{i, j, k, 1} is not the category of all categories at level (k,[) or
lower but only at level (k,1)

m We can lift category:
lift (C: Category@{k, 1}) : Category@{k’, 1’} :=

{l

0bj := 0bj C;

Hom := Hom C;

I}

for k< k' and I <’
= But

m We can’t prove or even specify (universe inconsistency)
forall (C: Category), C = lift C
m We can’t prove forall (C: Category), JMeq C (1lift C)
m The equality forall (C: Category), 1ift C = lift (1ift C) is not definitional

Amin ; art Jacobs 5 y ory in Coq 8.5

m If we show that Cate{i, j, k, 1} has exponentials, we get the constraints that
j=k=1

m If we show that Cate{i, j, k, 1} has exponentials, we get the constraints that
j=k=1

m Therefore, no copy of Set is in a copy of Cat in which we have exponentials

Amin , art Jacobs 5 y ory in Coq 8.5

m If we show that Cate{i, j, k, 1} has exponentials, we get the constraints that
j=k=1
m Therefore, no copy of Set is in a copy of Cat in which we have exponentials

m That means we can’t define Yoneda embedding as exponential transpose
(currying) of the hom functor

Amin Tir y Bart Jacobs oF y Theory in Coq 8.5

m If we show that Cate{i, j, k, 1} has exponentials, we get the constraints that
j=k=1
m Therefore, no copy of Set is in a copy of Cat in which we have exponentials

m That means we can’t define Yoneda embedding as exponential transpose
(currying) of the hom functor

m Defining Yoneda separately, it still can only be applied in a category
C : Categorye{i, j} if ¢ = j.

Amin Tir y Bart Jacobs oF y Theory in Coq 8.5

m If we show that Cate{i, j, k, 1} has exponentials, we get the constraints that
j=k=1
m Therefore, no copy of Set is in a copy of Cat in which we have exponentials

m That means we can’t define Yoneda embedding as exponential transpose
(currying) of the hom functor

m Defining Yoneda separately, it still can only be applied in a category
C : Categorye{i, j} if ¢ = j.

m We can use Yoneda to prove that in any cartesian closed category:
(ab)c ~ ach

but this lemma can’t be applied to Cat or Set

Amin Tir y Bart Jacobs oF y Theory in Coq 8.5

m Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

Category Theory in Coq 8.5

m Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)
Assume for F, F’ : C — D : G, we have F 4G and F' - G, i.e.,

homp(F,—) ~ homc(—,G) and homp(F', =) ~ homc(—, G)

Yor f:a x b — ¢ we have curry(f) : a — c®

Theory in Coq 8.5

m Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)
Assume for F, F’ : C — D : G, we have F 4G and F' - G, i.e.,

homp(F,—) ~ homc(—,G) and homp(F', —) ~ homc(—,G)

Thus we have:
homp(F,—) ~ homp(F’',)

Yor f:a x b — ¢ we have curry(f) : a — c®

Amin Tir y Bart Jacobs oF y Theory in Coq 8.5

m Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)
Assume for F, F’ : C — D : G, we have F 4G and F' - G, i.e.,

homp(F,—) ~ homc(—,G) and homp(F', —) ~ homc(—,G)
Thus we have:

homp(F,—) ~ homp(F’',)

but for H,H' : C x C' = D, H ~ H' iff curry(H) ~ curry(H')!

Yor f:a x b — ¢ we have curry(f) : a — c®

Amin Timany s Category Theory in Coq 8.5

m Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)
Assume for F, F’ : C — D : G, we have F 4G and F' - G, i.e.,

homp(F,—) ~ homc(—,G) and homp(F', —) ~ homc(—,G)
Thus we have:

homp(F,—) ~ homp(F’',)

but for H,H' : C x C' = D, H ~ H' iff curry(H) ~ curry(H')!

SO, we can assume:

curry(homp(F, =)) ~ curry(homp(F’, -))

Yor f:a x b — ¢ we have curry(f) : a — c®

Amin Timany s Category Theory in Coq 8.5

m Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)
Assume for F, F’ : C — D : G, we have F 4G and F' - G, i.e.,

homp(F,—) ~ homc(—,G) and homp(F', —) ~ homc(—,G)
Thus we have:

homp(F,—) ~ homp(F’',)

but for H,H' : C x C' = D, H ~ H' iff curry(H) ~ curry(H')!

S0, we can assume:
curry(homp(F, =)) ~ curry(homp(F’, -))
But according to axioms of exponentials we have

curry(homp(F,—)) = F o curry(homp)

Yor f:a x b — ¢ we have curry(f) : a — c®

Amin Timany s Category Theory in Coq 8.5

m Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)
Assume for F, F’ : C — D : G, we have F 4G and F' - G, i.e.,

homp(F,—) ~ homc(—,G) and homp(F', —) ~ homc(—,G)
Thus we have:

homp(F,—) ~ homp(F’',)

but for H,H' : C x C' = D, H ~ H' iff curry(H) ~ curry(H')!

S0, we can assume:
curry(homp(F, =)) ~ curry(homp(F’, -))
But according to axioms of exponentials we have
curry(homp(F,—)) = F o curry(homp)

‘Which means:
Fo YD ~ F ! o YD

Yor f:a x b — ¢ we have curry(f) : a — c®

Amin Timany s Category Theory in Coq 8.5

m Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)
Assume for F, F’ : C — D : G, we have F 4G and F' - G, i.e.,

homp(F,—) ~ homc(—,G) and homp(F', —) ~ homc(—,G)

Thus we have:
homp(F,—) ~ homp(F’',)

but for H,H' : C x C' = D, H ~ H' iff curry(H) ~ curry(H')!

S0, we can assume:
curry(homp(F, =)) ~ curry(homp(F’, -))
But according to axioms of exponentials we have
curry(homp(F,—)) = F o curry(homp)

‘Which means:
Fo YD ~ F ! o YD

This immediately gives F ~ F’ as Yp (the Yoneda embedding for D) is an
embedding

Yor f:a x b — ¢ we have curry(f) : a — c®

Amin Timany s Category Theory in Coq 8.5

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)
Assume for F, F’ : C — D : G, we have F 4G and F' - G, i.e.,

homp(F,—) ~ homc(—,G) and homp(F', —) ~ homc(—,G)

Thus we have:
homp(F,—) ~ homp(F’',)

but for H,H' : C x C' = D, H ~ H' iff curry(H) ~ curry(H')!
S0, we can assume:
curry(homp(F, =)) ~ curry(homp(F’, -))
But according to axioms of exponentials we have
curry(homp(F,—)) = F o curry(homp)

Which means:

Fo YD ~ F’ o YD
This immediately gives F ~ F’ as Yp (the Yoneda embedding for D) is an
embedding
But, we can’t use the general fact above, as it involves both exponentials and Set
(through hom) in Cat

Yor f:a x b — ¢ we have curry(f) : a — c®

Amin Timany s Category Theory in Coq 8.5

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)
Assume for F, F’ : C — D : G, we have F 4G and F' - G, i.e.,

homp(F,—) ~ homc(—,G) and homp(F', —) ~ homc(—,G)

Thus we have:
homp(F,—) ~ homp(F’',)

but for H,H' : C x C' = D, H ~ H' iff curry(H) ~ curry(H')!
S0, we can assume:
curry(homp(F, =)) ~ curry(homp(F’, -))
But according to axioms of exponentials we have
curry(homp(F,—)) = F o curry(homp)

Which means:

Fo YD ~ F’ o YD
This immediately gives F ~ F’ as Yp (the Yoneda embedding for D) is an
embedding
But, we can’t use the general fact above, as it involves both exponentials and Set
(through hom) in Cat — we have proven a separate instance of this fact for Cat

Yor f:a x b — ¢ we have curry(f) : a — c®

Amin Timany bs Ca ; Theory in Coq 8.5

m Another issue that we faced is that Set seems to have a special place:

m If we show that Set : Category@{i, j} has unit : Set as the terminal object, we
get the restriction j = Set

Amin Tim. Bart Jacobs

m Another issue that we faced is that Set seems to have a special place:

m If we show that Set : Category@{i, j} has unit : Set as the terminal object, we
get the restriction j = Set

m The problem occurs when we want to show that Prop is the subobject classifier for
Set. As then we need a monic arrow:

tr : unit — Prop
and unit — Prop is not a term of type Set

Theory in Coq 8.5

m Another issue that we faced is that Set seems to have a special place:
m If we show that Set : Category@{i, j} has unit : Set as the terminal object, we
get the restriction j = Set
m The problem occurs when we want to show that Prop is the subobject classifier for
Set. As then we need a monic arrow:

tr : unit — Prop

and unit — Prop is not a term of type Set
m This can be solved by defining a singleton inductive type at a level strictly higher
than Set

Theory in Coq 8.5

m Another issue that we faced is that Set seems to have a special place:
m If we show that Set : Category@{i, j} has unit : Set as the terminal object, we
get the restriction j = Set
m The problem occurs when we want to show that Prop is the subobject classifier for
Set. As then we need a monic arrow:

tr : unit — Prop

and unit — Prop is not a term of type Set

m This can be solved by defining a singleton inductive type at a level strictly higher
than Set

m But, that would cause a problem for the part where we show that type nat : Set
of the library of Coq is the initial algebra for T(X) = 1 + X in category Set

Amin , art Jacobs 5 y ory in Coq 8.5

m Another issue that we faced is that Set seems to have a special place:

m If we show that Set : Category@{i, j} has unit : Set as the terminal object, we
get the restriction j = Set

m The problem occurs when we want to show that Prop is the subobject classifier for
Set. As then we need a monic arrow:

tr : unit — Prop

and unit — Prop is not a term of type Set

m This can be solved by defining a singleton inductive type at a level strictly higher
than Set

m But, that would cause a problem for the part where we show that type nat : Set
of the library of Coq is the initial algebra for T(X) = 1 + X in category Set

m We therefore postulate existence of a universe polymorphic singleton type:

Parameter UNIT : Type.
Parameter TT : UNIT.
Axiom UNIT_SINGLETON : forall x y : UNIT, x = y.

Amin Timn bs 5 Theory in Coq 8.5

m Conclusion:

m We presented an implementation of category theory covering some of the basic
category theory

Amin

m Conclusion:
m We presented an implementation of category theory covering some of the basic
category theory
m We use features of Coq 8.5: primitive projections and universe polymorphism

Amin

m Conclusion:
m We presented an implementation of category theory covering some of the basic
category theory

m We use features of Coq 8.5: primitive projections and universe polymorphism
m Universe polymorphism to represent smallness/largeness

Amin

m Conclusion:

m We presented an implementation of category theory covering some of the basic
category theory
m We use features of Coq 8.5: primitive projections and universe polymorphism
m Universe polymorphism to represent smallness/largeness
m This works well to a degree that we don’t need to mention any universe levels and
can prove things like: Cat and Complete_Preorder

m Conclusion:

m We presented an implementation of category theory covering some of the basic
category theory
m We use features of Coq 8.5: primitive projections and universe polymorphism
m Universe polymorphism to represent smallness/largeness
m This works well to a degree that we don’t need to mention any universe levels and
can prove things like: Cat and Complete_Preorder
m It also has shortcomings: e.g., can’t use Yoneda in Cat and Set

