Introduction to Computational Chemistry. 2 Ed.

                                                                                                                                               

                                                                                                                                   

Preface.                                                                                                                     

Chapter 1: Introduction.                                                                                           

            1.1 Fundamental Issues.                                                                                   

            1.2 Describing the System.                                                                               

            1.3 Fundamental Forces.                                                                                 

            1.4 The Dynamical Equation.                                                                           

            1.5 Solving the Dynamical Equation.                                                                 

            1.6 Separation of Variables.                                                                             

                        1.6.1 Separating space and time variables.                                           

                        1.6.2 Separating nuclear and electronic variables.                                 

                        1.6.3 Separating variables in general.                                                   

            1.7 Classical Mechanics.                                                                                  

                        1.7.1 The Sun–Earth system.                                                               

                        1.7.2 The Solar system.                                                                       

            1.8 Quantum Mechanics.                                                                                 

                        1.8.1 A hydrogen-like atom.                                                                

                        1.8.2 The helium atom.                                                                        

            1.9 Chemistry.                                                                                                 

            References                                                                                                      

Chapter 2: Force Field Methods.                                                                             

            2.1 Introduction.                                                                                              

            2.2 The Force Field Energy.                                                                            

                        2.2.1 The stretch energy.                                                                     

                        2.2.2 The bending energy.                                                                   

                        2.2.3 The out-of-plane bending energy.                                                

                        2.2.4 The torsional energy.                                                                  

                        2.2.5 The van der Waals energy.                                                         

                        2.2.6 The electrostatic energy: charges and dipoles.                              

                        2.2.7 The electrostatic energy: multipoles and polarizabilities.                

                        2.2.8 Cross terms.                                                                               

                        2.2.9 Small rings and conjugated systems.                                            

                        2.2.10 Comparing energies of structurally different molecules.               

            2.3 Force Field Parameterization.                                                                     

                        2.3.1 Parameter reductions in force fields.                                            

                        2.3.2 Force fields for metal coordination compounds.                           

                        2.3.3 Universal force fields.                                                                 

            2.4 Differences between Force Fields.                                                             

            2.5 Computational Considerations.                                                                   

            2.6 Validation of Force Fields.                                                                         

            2.7 Practical Considerations.                                                                            

            2.8 Advantages and Limitations of Force Field Methods.                                  

            2.9 Transition Structure Modelling.                                                                   

                        2.9.1 Modelling the TS as a minimum energy structure.                         

                        2.9.2 Modelling the TS as a minimum energy structure on the reactant/product energy seam.     

                        2.9.3 Modelling the reactive energy surface by interacting force field functions or by geometry dependent parameters.      

            2.10 Hybrid Force Field Electronic Structure Methods.                                    

            References                                                                                                      

Chapter 3: Electronic Structure Theory. Independent Particle Models.              

            3.1 The Adiabatic and Born-Oppenheimer Approximations.                             

            3.2 Self Consistent Field Theory.                                                                     

            3.3 The Energy of a Slater Determinant.                                                           

            3.4 Koopmans’ Theorem.                                                                                

            3.5 The Basis Set Approximation.                                                                    

            3.6 Alternative Formulation of the Variational Problem.                                    

            3.7 Restricted and Unrestricted Hartree-Fock.                                                 

            3.8 SCF Techniques.                                                                                       

                        3.8.1 SCF convergence.                                                                      

                        3.8.2 Use of symmetry.                                                                       

                        3.8.3 Ensuring that the HF energy is a minimum, and the correct minimum..       

                        3.8.4 Initial guess orbitals.                                                                    

                        3.8.5 Direct SCF.                                                                               

                        3.8.6 Reduced scaling techniques.                                                        

            3.9 Periodic Systems.                                                                                      

            3.10 Semi-Empirical Methods.                                                                         

                        3.10.1 Neglect of Diatomic Differential Overlap Approximation (NDDO).       

                        3.10.2 Intermediate Neglect of Differential Overlap Approximation (INDO).    

                        3.10.3 Complete Neglect of Differential Overlap Approximation (CNDO).      

            3.11 Parameterization.                                                                                     

                        3.11.1 Modified Intermediate Neglect of Differential Overlap (MINDO).         

                        3.11.2 Modified NDDO models.                                                         

                        3.11.3 Modified Neglect of Diatomic Overlap (MNDO).                     

                        3.11.4 Austin Model 1 (AM1).                                                            

                        3.11.5 Modified Neglect of Diatomic Overlap, Parametric Method number 3 (MNDO-PM3). 

                        3.11.6 Parametric Method number 5 (PM5) and PDDG/PM3 methods.          

                        3.11.7 The MNDO/d and AM1/d methods.

                        3.11.8 Semi Ab Initio Method 1.                                                         

            3.12 Performance of Semi-Empirical Methods.                                                

            3.13 Hückel Theory.                                                                                        

                        3.13.1 Extended Hückel theory.                                                          

                        3.13.2 Simple Hückel Theory.                                                             

            3.14 Limitations and Advantages of Semi-Empirical Methods.                          

            References                                                                                                      

Chapter 4: Electron Correlation.                                                                             

            4.1 Excited Slater Determinants.                                                                      

            4.2 Configuration Interaction.                                                                           

                        4.2.1 CI matrix elements.                                                                     

                        4.2.2 Size of the CI matrix.                                                                  

                        4.2.3 Truncated CI methods.                                                               

                        4.2.4 Direct CI methods.                                                                     

            4.3 Illustrating how CI Accounts for Electron Correlation, and the RHF Dissociation Problem.  

            4.4 The UHF Dissociation and the Spin Contamination Problem.                      

            4.5 Size Consistency and Size Extensivity.                                                        

            4.6 Multi Configurational Self Consistent Field.                                                 

            4.7 Multi Reference Configuration Interaction.                                                  

            4.8 Many Body Perturbation Theory.                                                               

                        4.8.1 Møller-Plesset perturbation theory.                                             

                        4.8.2 Unrestricted and projected Møller-Plesset methods.                    

            4.9 Coupled Cluster Methods.                                                                         

                        4.9.1 Truncated coupled cluster methods.                                            

            4.10 Connections between Coupled Cluster, Configuration Interaction and Perturbation Theory.           

                        4.10.1 Illustrating correlation methods for the berylium atom.                

            4.11 Methods Involving Interelectronic Distances.                                            

            4.12 Direct Methods.                                                                                      

            4.13 Localized Orbital Methods.                                                                      

            4.14 Summary of Electron Correlation Methods.                                              

            4.15 Excited States.                                                                                         

            4.16 Quantum Monte Carlo Methods.                                                             

            References                                                                                                      

Chapter 5: Basis Sets.                                                                                              

            5.1 Slater and Gaussian Type Orbitals.                                                             

            5.2 Classification of Basis Sets.                                                                        

            5.3 Even- and Well-tempered Basis Sets.                                                        

            5.4 Contracted Basis Sets.                                                                               

                        5.4.1 Pople style basis sets.                                                                 

                        5.4.2 Dunning-Huzinaga basis sets.                                                      

                        5.4.3 MINI, MIDI, MAXI basis sets.                                                  

                        5.4.4 Ahlrichs type basis sets.                                                              

                        5.4.5 Atomic Natural Orbitals basis sets.                                             

                        5.4.6 Correlation Consistent basis sets.                                                

                        5.4.7 Polarization Consistent basis sets.                                               

                        5.4.8 Basis set extrapolation.                                                               

            5.5 Plane Wave Basis Functions.                                                                     

            5.6 Recent Developments and Computational Issues.                                       

            5.7 Composite Extrapolation Procedures.                                                        

            5.8 Isogyric and Isodesmic Reactions.                                                              

            5.9 Effective Core Potentials.                                                                           

            5.10 Basis Set Superposition Errors.                                                                

            5.11 Pseudospectral Methods.                                                                         

            References                                                                                                      

Chapter 6: Density Functional Theory.                                                                   

            6.1 Orbital Free Density Functional Theory.                                                     

            6.2 Kohn-Sham Theory.                                                                                  

            6.3 Reduced Density Matrix Methods.                                                             

            6.4 Exchange and Correlation Holes.                                                               

            6.5 Exchange-Correlation Functionals.                                                             

                        6.5.1 Local Density Approximation.                                                     

                        6.5.2 Gradient corrected methods.                                                       

                        6.5.3 Higher order gradient or meta-GGA methods.                             

                        6.5.4 Hybrid or hyper-GGA methods.                                                 

                        6.5.5 Generalized random phase methods.                                           

                        6.5.6 Functional overview.                                                                   

            6.6 Performance and Properties of Density Functional Methods.                       

            6.7 DFT Problems.                                                                                          

            6.8 Computational Considerations.                                                                   

            6.9 Final Considerations.                                                                                 

            References                                                                                                      

Chapter 7: Valence Bond Methods.                                                                        

            7.1 Classical Valence Bond.                                                                            

            7.2 Spin Coupled Valence Bond.                                                                     

            7.3 Generalized Valence Bond.                                                                        

            References                                                                                                      

Chapter 8: Relativistic Methods.                                                                            

            8.1 The Dirac Equation.                                                                                   

            8.2 Connections Between the Dirac and Schrödinger Equations.                       

                        8.2.1 Including electric potentials.                                                        

                        8.2.2 Including both electric and magnetic potentials.                            

            8.3 Many Particle Systems.                                                                              

            8.4 Four Component Calculations.                                                                   

            8.5 Relativistic Effects.                                                                                     

            References                                                                                                      

Chapter 9: Wave Function Analysis.                                                                       

            9.1 Population Analysis Based on Basis Functions.                                           

            9.2 Population Analysis Based on the Electrostatic Potential.                            

            9.3 Population Analysis Based on the Electron Density.                                    

                        9.3.1 Atoms In Molecules.                                                                  

                        9.3.2 Voronoi, Hirshfeld and Stewart atomic charges.                          

                        9.3.3 Generalized Atomic Polar Tensor charges.                                  

            9.4 Localized Orbitals.                                                                                     

                        9.4.1 Computational considerations.                                                    

            9.5 Natural Orbitals.                                                                                        

            9.6 Natural Atomic Orbital and Natural Bond Orbital Analysis.                        

            9.7 Computational Considerations.                                                                   

            9.8 Examples.                                                                                                  

            References                                                                                                      

Chapter 10: Molecular Properties.                                                                          

            10.1 Examples of Molecular Properties.                                                           

                        10.1.1 External electric field.                                                                

                        10.1.2 External magnetic field.                                                             

                        10.1.3 Internal magnetic moments.                                                       

                        10.1.4 Geometry change.                                                                    

                        10.1.5 Mixed derivatives.                                                                    

            10.2 Perturbation Methods.                                                                             

            10.3 Derivative Techniques.                                                                             

            10.4 Lagrangian Techniques.                                                                            

            10.5 Coupled Perturbed Hartree-Fock.                                                           

            10.6 Electric Field Perturbation.                                                                       

                        10.6.1 External electric field.                                                                

                        10.6.2 Internal electric field.                                                                 

            10.7 Magnetic Field Perturbation.                                                                    

                        10.7.1 External magnetic field.                                                             

                        10.7.2 Nuclear spin.                                                                            

                        10.7.3 Electron spin.                                                                           

                        10.7.4 Classical terms.                                                                        

                        10.7.5 Relativistic terms.                                                                      

                        10.7.6 Magnetic properties.                                                                 

                        10.7.7 Gauge dependence of magnetic properties.                               

            10.8 Geometry Perturbations.                                                                          

            10.9 Response and Propagator Methods.                                                        

            10.10 Property Basis Sets.                                                                              

            References                                                                                                      

Chapter 11: Illustrating the Concepts.                                                                    

            11.1 Geometry Convergence.                                                                          

                        11.1.1 Ab Initio methods.                                                                    

                        11.1.2 Density functional methods.                                                       

            11.2 Total Energy Convergence.                                                                      

            11.3 Dipole Moment Convergence.                                                                 

                        11.3.1 Ab Initio methods.                                                                    

                        11.3.2 Density functional methods.                                                       

            11.4 Vibrational Frequencies Convergence.                                                     

                        11.4.1 Ab Initio methods.                                                                    

                        11.4.2 Density functional methods.                                                       

            11.5 Bond Dissociation Curve.                                                                        

                        11.5.1 Basis set effect at the Hartree-Fock level.                                 

                        11.5.2 Performance of different types of wave functions.                      

                        11.5.3 Density functional methods.                                                       

            11.6 Angle Bending Curve.                                                                              

            11.7 Problematic Systems.                                                                               

                        11.7.1 The geometry of FOOF.                                                           

                        11.7.2 The dipole moment of CO.                                                       

                        11.7.3 The vibrational frequencies of O3.                                             

            11.8 Relative Energies of C4H6 Isomers.                                                          

            References                                                                                                      

Chapter 12: Optimization Techniques.                                                                    

            12.1 Optimizing Quadratic Functions.                                                               

            12.2 Optimizing General Functions: Finding Minima.                                         

                        12.2.1 Steepest Descent.                                                                     

                        12.2.2 Conjugate Gradient methods.                                                    

                        12.2.3 Newton-Raphson methods.                                                      

                        12.2.4 Step control.                                                                            

                        12.2.5 Obtaining the Hessian.                                                              

                        12.2.6 Storing and diagonalizing the Hessian.                                       

                        12.2.7 Extrapolations: the GDIIS method.                                            

            12.3 Choice of Coordinates.                                                                            

            12.4 Optimizing General Functions: Finding Saddle Points (Transition Structures).         

                        12.4.1 One-structure interpolation methods: coordinate driving, linear and quadratic synchronous transit, and sphere optimization.                                                                                                     

                        12.4.2 Two-structure interpolation methods: saddle, line-then-plane, ridge and step-and-slide optimizations.           

                        12.4.3 Multi-structure interpolation methods: chain, locally updated planes, self penalty walk, conjugate peak refinement and nudged elastic band.

                        12.4.4 Charateristics of interpolation methods.                                     

                        12.4.5 Local methods: gradient norm minimization.                               

                        12.4.6 Local methods: Newton-Raphson.                                            

                        12.4.7 Local methods: the dimer method.                                             

                        12.4.8 Coordinates for TS searches.                                                    

                        12.4.9 Charateristics of local methods.                                                 

                        12.4.10 Dynamic methods.                                                                  

            12.5 Constrained Optimization Problems.                                                         

            12.6 Conformational Sampling and the Global Minimum Problem.                    

                        12.6.1 Stochastical and Monte Carlo methods.                                    

                        12.6.2 Molecular Dynamics.                                                                

                        12.6.3 Simulated Annealing.                                                                

                        12.6.4 Genetic Algorithms.                                                                  

                        12.6.5 Diffusion methods.                                                                    

                        12.6.6 Distance Geometry methods.                                                    

            12.7 Molecular Docking.                                                                                 

            12.8 Intrinsic Reaction Coordinate Methods.                                                    

            References                                                                                                      

Chapter 13: Statistical Mechanics and Transition State Theory.                          

            13.1 Transition State Theory.                                                                           

            13.2 Rice-Ramsperger-Kasel-Marcus (RRKM) Theory.                                  

            13.3 Dynamical Effects.                                                                                   

            13.4 Statistical Mechanics.                                                                               

            13.5 The Ideal Gas, Rigid-Rotor Harmonic-Oscillator Approximation.              

                        13.5.1 Translational degrees of freedom.                                              

                        13.5.2 Rotational degrees of freedom.                                                 

                        13.5.3 Vibrational degrees of freedom.                                                

                        13.5.4 Electronic degrees of freedom.                                                  

                        13.5.5 Enthalpy and entropy contributions.                                           

            13.6 Condensed Phases.                                                                                 

            References                                                                                                      

Chapter 14: Simulation Techniques.                                                                        

            14.1 Monte Carlo Methods.                                                                            

                        14.1.1 Generating non-natural ensembles.                                            

            14.2 Time Dependent Methods.                                                                       

                        14.2.1 Classical methods, Molecular Dynamics.                                   

                        14.2.2 Generating non-natural ensembles.                                            

                        14.2.3 Langevin methods.                                                                    

                        14.2.4 Direct methods.                                                                        

                        14.2.5 Extended Lagrange techniques (Car-Parrinello methods).          

                        14.2.6 Quantum methods using potential energy surfaces.                     

                        14.2.7 Reaction path methods.                                                            

                        14.2.8 Non-Born-Oppenheimer methods.                                           

                        14.2.9 Constrained sampling methods.                                                 

            14.3 Periodic Boundary Conditions.                                                                 

            14.4 Extracting Information from Simulations.                                                   

            14.5 Free-Energy Methods.                                                                             

                        14.5.1 Thermodynamic perturbation methods.                                      

                        14.5.2 Thermodynamic integration methods.                                        

            14.6 Solvation Models.                                                                                    

            14.7 Continuum Solvation Models.                                                                  

                        14.7.1 Poisson-Boltzmann methods.                                                    

                        14.7.2 Born/Onsager/Kirkwood models.                                             

                        14.7.3 Self consistent reaction field models.                                         

            References                                                                                                      

Chapter 15: Qualitative Theories.                                                                                       

            15.1 Frontier Molecular Orbital Theory.                                                           

            15.2 Concepts from Density Functional Theory.                                               

            15.3 Qualitative Molecular Orbital Theory.                                                       

            15.4 Woodward-Hoffmann Rules.                                                                   

            15.5 The Bell-Evans-Polanyi Principle / Hammond Postulate / Marcus Theory. 

            15.6 More O’Ferrall-Jencks Diagrams.                                                            

            References                                                                                                      

Chapter 16: Mathematical Methods.                                                                      

            16.1 Numbers, Vectors, Matrices and Tensors.                                               

            16.2 Change of Coordinate System.                                                                 

                        16.2.1 Examples of changing the coordinate system.                             

                        16.2.2 Vibrational normal coordinates.                                                 

                        16.2.3 Energy of a Slater determinant.                                                 

                        16.2.4 Energy of a CI wave function.                                                   

            16.3 Coordinates, Functions, Functionals, Operators and Superoperators.        

                        16.3.1 Differential operators.                                                               

            16.4 Normalization, Orthogonalization and Projection.                                      

            16.5 Differential Equations.                                                                              

                        16.5.1 Simple first-order differential equations.                                     

                        16.5.2 Less simple first-order differential equations.                             

                        16.5.3 Simple second-order differential equations.                               

                        16.5.4 Less simple second-order differential equations.                        

                        16.5.5 Second-order differential equations depending on the function itself.      

            16.6 Approximating Functions.                                                                        

                        16.6.1 Taylor expansion.                                                                     

                        16.6.2 Basis set expansion.                                                                  

            16.7 Fourier and Laplace Transformations.                                                      

            16.8 Surfaces.                                                                                                 

            References                                                                                                      

Chapter 17: Statistics and QSAR.                                                                           

            17.2 Elementary Statistical Measures.                                                              

            17.3 Correlation Between Two Sets of Data.                                                   

            17.4 Correlation between Many Sets of Data.                                                  

                        17.4.1 Multiple descriptor sets and quality analysis.                              

                        17.4.2 Multiple Linear Regression.                                                       

                        17.4.3 Principal Component and Partial Least Squares analysis.           

                        17.4.4 Illustrative example.                                                                  

            17.5 Quantitative Structure Activity Relationships (QSAR).                              

            References                                                                                                      

Chapter 18: Concluding Remarks.                                                                          

Appendix A.    Notation.                                                                                             

Appendix B.    The Variational Principle.                                                                     

                        The Hohenberg-Kohn Theorems.                                                        

                        The Adiabatic Connection Formula.                                                     

Appendix C.    Atomic Units.                                                                                      

Appendix D.    Z-matrix Construction.                                                                         

Index.