
Integer Representations towards Efficient Counting in
the Bit Probe Model

Gerth Stølting Brodala, Mark Grevea, Vineet Pandeyb, Srinivasa Rao Sattic,1

aMADALGO2, Department of Computer Science, Aarhus University,
IT Parken, Åbogade 34, 8200 Aarhus N, Denmark.

bComputer Science & Information Systems, BITS Pilani, 333031, India.
cSchool of Computer Science and Engineering, Seoul National University,

599 Gwanakro, Gwanak-Gu, Seoul 151-744, Republic of Korea.

Abstract

We consider the problem of representing integers in close to optimal number of
bits to support increment and decrement operations efficiently. We study the
problem in the bit probe model and analyse the number of bits read and written
to perform the operations, both in the worst-case and in the average-case. We
propose representations, called counters, with different trade-offs between the
space used and the number of bits probed. A counter is space-optimal if it
represents any integer in the range [0, . . . , 2n−1] using exactly n bits. We provide
a space-optimal counter which supports increment and decrement operations by
reading at most n − 1 bits and writing at most 3 bits in the worst-case. This
is the first space-optimal representation which supports these operations by
always reading strictly less than n bits. For redundant counters where we only
need to represent integers in the range [0, . . . , L − 1] for some integer L < 2n

using n bits, we define the space-efficiency of the counter as the ratio L/2n. We
provide representations that achieve different trade-offs between the read/write-
complexity and the efficiency.

We also examine the problem of representing integers to support addition
and subtraction operations. We propose a representation of integers using n bits
and with space efficiency at least 1/n, which supports addition and subtraction
operations, improving the efficiency of an earlier representation by Munro and
Rahman [Algorithmica, 2010]. We also show various trade-offs between the
operation times and the space complexity.

Email addresses: gerth@cs.au.dk (Gerth Stølting Brodal), mgreve@cs.au.dk
(Mark Greve), vineetp13@gmail.com (Vineet Pandey), ssrao@cse.snu.ac.kr
(Srinivasa Rao Satti)

1This work was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (Grant number 2012-0008241).

2Center for Massive Data Algorithmics, a Center of the Danish National Research Foun-
dation.

Preprint submitted to Elsevier November 15, 2013

Keywords: Integer representation. Bit probe model. Gray code. Binary
counter. Data structure.

1. Introduction

We consider the problem of representing integers in close to optimal number
of bits to support increment and decrement operations efficiently. We propose
data structures for representing integers which can perform increment, decre-
ment, addition and subtraction with varying trade-offs between the number of
bits read or written and the space needed to represent the integers. We study the
problem in the bit probe model of computation which was introduced to discuss
the average-case bit probe complexity of the set membership problem [10]. Even
as the cell probe model [13] has become more prevalent, the bit probe model
has been studied in theoretical computer science [9]. In the bit probe model,
the complexity measure includes only the bitwise accesses to the data structure
and not the resulting computations. The running time of an algorithm is given
by the number of bits probed (read) to support the operation. We also measure
the write-complexity as the number of bits written to perform an operation.

1.1. Problem definition and notation

A counter is a data structure which represents integers modulo L, for any
positive integer L, using d bits where L ≤ 2d; we refer to d as the dimension
of the counter. The data structure supports two operations called increment
and decrement where increment (decrement) refers to changing the counter
to represent its next (previous) value modulo L. We define a partial function
Val : {0, 1}d → {0, . . . , L − 1}, which is used to find the numeric value of a
counter.

We represent a counter using a bitstring X and show how to manipulate
X to support the counter’s operations. For any bitstring X and integer v, if
Val(X) = v then we say that v is represented by the bitstring X.

We define the space-efficiency of a counter as the ratio L/2d. Space-efficiency
equal to one implies that L = 2d and the counter is called space-optimal. A
counter with a space-efficiency less than one is called a redundant counter. For
a redundant counter, some integers can have more than one representation while
some representations might not correspond to any integer value.

For counters of dimension d with space-efficiency e, we define a (d, e, r, w)-
scheme as a description of the increment and decrement operations which can
be performed by reading r bits and writing w bits in the worst-case.

We define a code as any cyclic sequence of 2d distinct d-bit strings. We use
X = xdxd−1 . . . x1 to denote a bitstring in a code. To measure the complexity
of increment/decrement operations, we use R and W to denote the number of
bits read and written respectively. The average number of bits read (written)
to perform increment/decrement is computed by adding the total number of
bits read (written) to perform L increments/decrements starting from zero and

dividing this by L. Throughout the paper, log n denotes dlog2 ne, log(0) n = n

and log(c) n = log(c−1)(log n) for any integer c ≥ 1.

2

Dimension
Space- Bits read (R) Bits written (W) Inc. &

Ref.
efficiency Average-case Worst-case Worst-case Dec.

n 1

2− 21−n

n

n Y Binary
n 1 Y [5]

6 log n 1 Y [1]

O(log(2c−1) n) c N [1]
n+ 1 1/2 O(1) log n+ 4 4 Y [11]

n+ log n 2/n−O(2−n+1) 3 log n+ 1 log n+ 1 Y [3]

n+ t log n 1−O(n−t) O(log(2c) n) O(t log n) 2c+ 1 (c ≥ 1) N [1]

O(n) 1/2O(n) O(log n) O(log n) 1 N [4]

Table 1: Summary of previous results

1.2. Previous work

The Standard Binary Code (SBC) uses n bits xnxn−1 . . . x1 to represent an
integer in the range [0, . . . , 2n − 1], where Val(X) =

∑n
i=1 xi2

i−1. An SBC
gives an (n, 1, n, n)-scheme, but the average number of bits read and written
to perform increment/decrement is 2. A Gray code is any code in which suc-
cessive bitstrings in the sequence differ in exactly one position. Gray codes
have been studied extensively owing to their utility in digital circuits [12]. The
problem of generating Gray codes has also been discussed by Knuth [8]. The
Binary Reflected Gray Code (BRGC) [5] gives an (n, 1, n, 1)-scheme for incre-
ment/decrement. Bose et al. [1, 7, 6] have developed a different Gray code
called Recursive Partition Gray Code (RPGC). A counter of dimension n using
RPGC requires on average O(log n) reads to perform increment operations. For
the Gray codes BRGC and RPGC, we define Val(X) as the number of times
one needs to increment the string 0 . . . 0 to obtain X.

For redundant counters, Munro and Rahman gave an (n+1, 1/2, log n+4, 4)-
scheme [11], i.e., using one additional bit of space the worst-case number of bits
read can be reduced form n to log n+4. For efficiency close to one, Bose et al. [1]
describe an (n+t log n, 1−O(n−t), O(t log n), 3)-scheme for any parameter t > 0.
Fredman [4] provided a redundant (O(n), 1/2O(n), O(log n), 1)-scheme, that with
a constant factor space overhead supports increments with a logarithmic number
of bit reads and a single bit write. The previous results are summarized in
Table 1.

To add an integer M to an integer N , where M and N are represented in
SBC or BRGC using m and n bits respectively, where m ≤ n, we need O(n) time
in the worst-case. Munro and Rahman [11] gave a representation which uses
n+O(log2 n) bits to represent an integer in the range [0, . . . , 2n−1]. Performing
addition or subtraction using this representation takes O(m+ log n) time.

1.3. Our results

For space-optimal counters, we define an (n, r, w)-scheme as a (d, e, r, w)-
scheme with d = n and e = 1. We present a (4, 3, 2)-scheme obtained by
exhaustive search and use it to construct an (n, n−1, 3)-scheme which supports
increment and decrement operations reading at most n− 1 bits. All previously

3

Dimension
Space- Average-case Worst-case Inc. &

Ref.
efficiency R W R W Dec.

4
1

3 1.25 3 2
Y

Th. 1
n O(log n) 1 +O(2−n) n− 1 3 Th. 2

n ≥ 1− 1
2t O(log log n) 1 +O(n−1)

log n+ t+ 1 3
N

Th. 3, 5
log n+ t+ 2 2 Th. 4, 5
log n+ t+ 3 1 Th. 6
log n+ t+ 2 3

Y Th. 7, 8
log n+ t+ 3 2

Table 2: Summary of our results for increment/decrement operations

known results for space-optimal counters read n bits in the worst-case. For
example, the codes BRGC and RPGC immediately give us (n, n, 1)-schemes.
Bose et al. [1] state the conjecture that for Gray codes, any counter of dimension
n requires n bits to be read in the worst-case to increment the counter. If this
conjecture is true, this would imply that if there exists a space optimal counter
with the property that all increments can be made by reading less than n bits,
then it would need to write at least 2 bits in the worst-case.

For redundant counters, we provide an (n, 1/2, log n+ 3, 3)-scheme. We can
further reduce the number of bits written to 2 by reading log n + 4 bits using
the one-bit read-write trade-off described in Section 3.2. We also provide an
(n, 1 − 2−t, log n + t + 2, 2)-scheme for any integer 1 ≤ t ≤ n − log n − 1. By
choosing t = t′ log n, we can achieve a space-efficiency of 1−O(n−t

′
) by reading

O(t′ log n) bits and writing 2 bits which improves the write-complexity of [1].
Our results are summarized in Table 2.

To support addition and subtraction operations efficiently, we introduce data
structures based on the counters mentioned above. We give a representation
which uses n+O(log n) bits to represent an integer in the range [0, . . . , 2n−1] and
supports addition and subtraction operations by reading O(m+ log n) bits and
writing O(m) bits, improving the space complexity of Munro and Rahman [11].
We also show different trade-offs between the number of bits read in the worst-
case and the number of bits used to represent a number while maintaining the
write-complexity.

2. Space-optimal counters with increment and decrement

In this section, we describe space-optimal counters which are constructed
using a (4, 3, 2)-scheme.

(4, 3, 2)-scheme. Figure 1 shows our (4, 3, 2)-scheme which represents integers
from 0 . . . 15. The scheme was obtained through a brute-force search. Assuming
the integer is of the form x4x3x2x1, the increment and decrement trees for our
(4, 3, 2)-scheme are shown in Figure 1. For any internal node corresponding to
reading bit xt, the left edge corresponds to xt = 0 and the right edge corresponds

4

x1

x2

x4

100 011

x4

110 010

x3

x2

010 000

x4

111 101

x1

x2

x3

110 100

x4

011 001

x3

x4

000 111

x4

010 110

Increment tree Decrement tree

0000(0)
1−→ 0001(1)

2−→ 0100(2)
1−→ 0101(3)

1−→ 1101(4)
1−→ 1001(5)

2−→
1100(6)

1−→ 1110(7)
1−→ 0110(8)

1−→ 0111(9)
1−→ 1111(10)

1−→ 1011(11)
2−→

1000(12)
1−→ 1010(13)

1−→ 0010(14)
1−→ 0011(15)

2−→ 0000(0)

Figure 1: The increment and decrement trees for the (4, 3, 2)-scheme and the generated se-
quence (numbers above the arrows are the number of bits changed)

to xt = 1. The leaves contain information about the new values for the bits read
and the modified bits are shown underlined in the tree and the text. It is easy
to see that a space-optimal scheme can only write to bits that were read.

As an example, for the fifth leaf from the left in the increment tree, old
x1x3x2 = 100 and new x1x3x2 = 010. To increment 9, for example, we
take its representation in the (4, 3, 2)-scheme 0111 and go through the path
x1x3x4 = 110 in the increment tree to reach the seventh leaf; so the new val-
ues are x1x3x4 = 111 and the new representation is 1111 which represents 10
(ten). To decrement 9, we go through the path x1x3x4 = 110 in the decrement
tree to reach the seventh leaf; so the new values are x1x3x4 = 010 and the
representation is 0110 which represents 8.

Theorem 1. There exists a space-optimal counter of dimension 4 which sup-
ports increment and decrement operations with R = 3 and W = 2 in the worst-
case. On average, an increment/decrement requires R = 3 and W = 1.25.

2.1. Constructing an (n, n− 1, 3)-scheme using a (4, 3, 2)-scheme

We construct an n-bit space-optimal counter for n > 4 by dividing the
representation for an integer X into two sections X(4,3,2) and XG of length 4
and n− 4 respectively, where X(4,3,2) uses the above-mentioned (4, 3, 2)-scheme
and XG uses RPGC [1]. To increment X, we first increment XG and then check
if it represents 0. If XG is 0, then we increment X(4,3,2). To decrement, we
decrement XG, and decrement X(4,3,2) if XG was zero before the decrement.

Worst-case analysis. In the worst-case, increment and decrement require n− 4
reads and 1 write to increment/decrement XG and then 3 reads and 2 writes
to increment/decrement X(4,3,2), providing us with n − 1 reads and 3 writes
overall.

5

X(4,3,2) XG

xn . . . xn−3 xn−4 . . . x2 x1

Figure 2: Structure of an (n, n− 1, 3)-scheme

Average-case analysis. XG is represented using RPGC where performing an
increment or decrement operation on a counter of dimension n requires 6 log n
average number of reads (although [1, Theorem 2] considers only generating the
next bitstring, i.e., increment operation, one can verify that the same analysis
holds for the decrement operations as well). The worst-case and hence the
average number of writes to increment or decrement a counter using RPGC
is 1. Since the average number of reads and writes for X(4,3,2) are 3 and 1.25
respectively, and we increment/decrement X(4,3,2) only in one out of every 2n−4

bitstrings, the average number of reads and writes are 6 log(n−4)+3/2n−4 and
1 + 1.25/2n−4 respectively.

Theorem 2. There exists a space-optimal counter of dimension n > 4 which
supports increment and decrement operations with R = n− 1 and W = 3 in the
worst-case. On average, an increment/decrement requires R = 6 log(n − 4) +
O(2−n) and W = 1 +O(2−n).

To the best of our knowledge, this is the first space-optimal counter with R
strictly less than n.

2.2. Exhaustive search results

r
1 2 3

w
1 ⊥ ⊥ +1

2 ⊥ ⊥ +
3 ⊥ ⊥ +

r
1 2 3 4

w

1 ⊥ ⊥ ⊥ +1

2 ⊥ ⊥ +2 +
3 ⊥ ⊥ + +
4 ⊥ ⊥ + +

r
1 2 3 4 5

w

1 ⊥ ⊥ ⊥ ? +1

2 ⊥ ⊥ ⊥ ? +
3 ⊥ ⊥ ⊥ +2 +
4 ⊥ ⊥ ⊥ + +
5 ⊥ ⊥ ⊥ + +

Figure 3: Exhaustive search results for (n, r, w)-scheme for n = 3, 4 and 5 respectively

We used exhaustive search to find (n, r, w)-schemes for small values of n. The
results are shown in Figure 3 for n = 3, 4 and 5 respectively. For a combination
of n, r and w, a ‘⊥’ shows that no counter exists and a ‘+’ refers to its existence.
A superscript of 1 shows that this is a Gray code while 2 refers to Theorem 2.
A ‘?’ shows that the existence of (n, r, w)-scheme remains unknown for the
corresponding value. A value enclosed by a box shows that no counters were
found by our brute-force search.

6

3. Redundant counters with increment

To reduce the number of bits read exponentially, we consider counters with
space-efficiency less than one. In this section, we discuss redundant counters
supporting increment and which show better results and trade-offs for bits read
and written.

3.1. Counters with one-bit redundancy

XH S XL

`

xn . . . xlogn+2 xlogn+1 xlogn . . . x1

Figure 4: Structure of a one-bit redundant counter

Construction. We use n bits to represent integers in the range [0 . . . 2n−1 − 1].
An integer X represented by xn . . . x1 consists of an upper block XH of the
n− log n− 1 bits xn . . . xlogn+2, a carry bit S = xlogn+1, and a lower block XL

of the log n bits xlogn . . . x1. We let ` refer to the value represented by XL, and
let p = ` + log n+ 2 be a location in XH . This is used to perform a delayed
propagation of the carry as explained below. We represent XL using the Gray
code RPGC, so that an increment operation writes only one bit in XL. The
block XH is represented using SBC. Using |XK | to denote the number of bits
in XK , and XK to also represent Val(XK), the value of X is given by:

Val(X) = `+ 2|XL| · ((XH + 2` · S) mod 2|XH |) .

Increment. The increment step is summarized in Table 3. We determine the
number of bits read and written in the worst-case by finding the maximum
values of R and W respectively. XL and S are read at every step, therefore R
is at least log n + 1. S = 1 implies that the carry needs to be propagated and
we will read one bit from XH , whereas S = 0 implies no carry propagation and
we do not need to access XH . If ` ≥ |XH |, we set S to 0. The different cases
for increment are the following, where `max = 2|XL| − 1:

Case 1. S = 0 and ` < `max: Increment XL. (R = log n+ 1, W = 1)

Case 2. S = 1, ` < |XH |, and xp = 1: Propagation of the carry. Change xp
to 0, and increment XL. (R = log n+ 2, W = 2)

Case 3. S = 1, ` < |XH |, and xp = 0: Final bit flip in XH . Change xp to 1,
S to 0, and increment XL. (R = log n+ 2, W = 3).

Case 4. S = 1 and ` = |XH |: p is outside XH , reset carry bit. Set S to 0, and
increment XL. (R = log n+ 1, W = 2)

Case 5. S = 0 and ` = `max: XL reached the max value, initialize a new carry.
Set S to 1, and increment XL (i.e., set XL to zero). (R = log n + 1,
W = 2)

7

Previous New
` S xp S xp

1 < `max 0 x 0 x
2 < |XH | 1 1 1 0
3 < |XH | 1 0 0 1
4 = |XH | 1 − 0 −
5 = `max 0 − 1 −

Table 3: Transition table for the increment step where ` = Val(XL), `max = 2|XL| − 1, and
p = logn + ` + 2. Underlines show the changed bits, x represents ‘don’t care’ condition, and
‘-’ shows that the value does not exist

Average-case analysis. The average number of bits read to increment XL is
O(log log n), since XL is a (log n)-bit RPGC. The bit S is read at every step
and it is flipped at most twice out every n steps. When S = 1, we also need to
read O(log n) bits to find Val(XL), but on average S = 1 only for two out of n
steps. To test if ` = `max on average two bits of XL are read. Thus the average
number of bits read is O(log log n). The average number of writes is 1 +O(n−1)
since we need to change S at most twice out of n steps and XH on average at
most twice out of n steps. Hence we have the following theorem.

Theorem 3. There exists a counter of dimension n with efficiency 1/2 which
supports increment operations with R = log n + 2 and W = 3. On average, an
increment requires R = O(log log n) and W = 1 +O(n−1).

3.2. One-bit read-write trade-off

We next show how to modify the increment step of the previous section
(Theorem 3) to reduce W from 3 to 2 by increasing R by 1.

Increment. The worst-case for the number of writes, W , happens in Case 3 of
the increment procedure in Section 3.1 where W = 3, since S and one bit each
in XH and XL are modified. As it turns out, we can improve W further by
delaying setting S = 0 by one step if we read another bit. Instead of reading
just one bit xp from XH when S = 1, we can read the pair (xp, xp−1). If the
previously modified bit xp−1 = 1, then the propagation of the carry is complete,
else we flip the current bit xp. The only exception to this case is when ` = 0.
In this case, only the first bit of XH is read and flipped. We modify the cases
2 and 3 of the increment procedure in Section 3.1 as described below. Table 4
shows the resulting transitions.

Cases 2a and 3a S = 1 and ` = 0: flip first bit in XH and increment XL.
(R = log n+ 2, W = 2).

Cases 2b and 3b S = 1, 0 < ` < |XH |, and xp−1 = 0: propagation of the
carry to continue. xp−1 = 0 implies that the previous bit was 1 before
getting modified. Therefore, flip xp irrespective of its value and increment
XL. (R = log n+ 3, W = 2).

8

Previous New
` S xp xp−1 S xp

1 < `max 0 x x 0 x
2a = 0 1 1 − 1 0
2b 0 < ` < |XH | 1 1 0 1 0
3a = 0 1 0 − 1 1
3b 0 < ` < |XH | 1 0 0 1 1
3c 0 < ` < |XH | 1 x 1 0 x
4 = |XH | 1 − x 0 −
5 = `max 0 − − 1 −

Table 4: Transition table for the increment step for read-write trade-off where ` = Val(XL),
`max = 2|XL|−1 and p = logn + ` + 2. Underlines show the changed bits, x represents ‘don’t
care’ condition, and ‘-’ shows that the value does not exist

Case 3c S = 1 and xp−1 = 1: The previous bit was 0 before modification,
hence carry has been propagated and xp is not read. Reset S to 0 and
increment XL. (R = log n+ 2, W = 2).

This improves the overall worst-case write-complexity to 2. The number
of reads and writes required in average-case are O(log log n) and 1 + O(n−1)
respectively as described in Section 3.1. The value of a counter is

Val(X) =
(
`+ 2|XL| ·

(
XH + 2` · χ(X)

))
mod 2n ,

where χ(X) = 1 if S = 1 ∧ (` = 0 ∨ xp−1 = 0); otherwise χ(X) = 0. We show
a sequence of increments for an 8-bit integer using standard binary code and a
one-bit redundant counter in Figure 5.

Theorem 4. There exists a counter of dimension n with efficiency 1/2 which
supports increment operations with R = log n + 3 and W = 2. On average, an
increment requires R = O(log log n) and W = 1 +O(n−1).

3.3. Forbidden-state counter

To increase the space-efficiency of the above proposed representation, we
modify the data structure proposed in [1] for a counter of dimension n, which
uses a particular set of t bits as a forbidden state.

Construction. An integer X = xn . . . x1 consists of XH = xn . . . xlogn+t+1,
XF = xlogn+t . . . xlogn+1 and XL = xlogn . . . x1 of n− log n− t, t and log n bits
respectively. Similar to the one-bit redundant counter discussed in Section 3.1,
XH and XL represent the upper and lower blocks in the integer while XF acts
as an alternative to the carry bit S. We use ` to refer to the value represented
by XL, and Fmax refers to the value 2t − 1.

All the states for which Val(XF) < Fmax are considered as normal states for
XF and the state where Val(XF) = Fmax is used to propagate the carry over XH

9

X XH S XL XH S XL

0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0

4.3752470 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0

5.2128680 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1

6.6675050 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1

6.8431750 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1

(i) (ii) (iii)

Figure 5: Five increments for an 8-bit integer using (i) standard binary code (SBC), (ii) one-
bit redundant counter with W = 3, and (iii) with W = 2. XH and XL are represented using
SBC and RPGC respectively

XH XF XL

`

xn . . . xlogn+t+1 xlogn+t . . . xlogn+1 xlogn . . . x1

Figure 6: Structure of a forbidden-state counter

(conceptually Val(XF) = Fmax corresponds to S = 1). This representation will
allow us to represent a 1 − 1/2t fraction of the 2n numbers and hence has
efficiency equal to 1− 1/2t. The block XH is represented using SBC while XF

and XL are each individually represented using RPGC. The value of of a counter
is

Val(X) = `+ 2|XL| ·
{
Fmax ·XH +XF if XF < Fmax ,
Fmax · ((XH + 2`) mod 2|XH |) if XF = Fmax .

Increment. The increment scheme is similar to the one-bit redundant counter
of Section 3.1. We first read XL and XF . If XF 6= Fmax, we increment XL. If
XL now becomes 0, we also increment XF . For the case XF = Fmax, block XL

is used to point to a position p in XH . If the bit xp at position p is equal to 1,
it is set to 0 and XL is incremented to point to the next position in XH . This
corresponds to the increment scheme in the one-bit redundant counter when S
is set to 1. If XL now equals n− log n− t, then we increment XF (to set XF = 0
and terminate the propagation of the carry). On the other hand, if the value
of bit xp is 0, we set xp to 1 and XF is incremented (to set XF = 0). This
corresponds to the carry bit S being set to 0 in Section 3.1.

Worst-case analysis. The above scheme gives a representation with R = log n+
t+1 and W = 3. Similar to Section 3.2, we can also obtain a representation with
R = log n+ t+ 2 and W = 2 by reading xp−1 and postponing incrementing XF

from Fmax to 0 by one step.

10

Previous New
` XF xp xp−1 ` XF xp xp−1

< `max < Fmax − 1, even x x `+ 1 XF x x
`max < Fmax − 1, even x x ` XF + 1 x x
> 0 < Fmax − 1, odd x x `− 1 XF x x
0 < Fmax − 1, odd x x ` XF + 1 x x
0 Fmax − 1 0 − ` Fmax 0 −
0 Fmax − 1 1 − 1 Fmax − 1 1 −

0 < ` ≤ |XH | Fmax − 1 x 1 ` Fmax − 1 x 0
0 < ` < |XH | Fmax − 1 1 0 `+ 1 Fmax − 1 1 0
0 < ` < |XH | Fmax − 1 0 0 ` Fmax 0 0
|XH | Fmax − 1 − 0 ` Fmax − 0

0 ≤ ` < |XH | Fmax 0 x ` Fmax 1 x
0 ≤ ` < |XH | Fmax 1 x ` 0 1 x
|XH | Fmax − x ` 0 − x

Table 5: Transition table for the increment step writing only one bit. ` = Val(XL), `max =
2|XL| − 1 and p = logn + ` + t + 1. Underlines show the modified values, x represents ‘don’t
care’ condition, and ‘-’ shows that the value does not exist

Average-case analysis. The average number of reads and writes to increment
the log n bits in XL are O(log log n) and 1 respectively. The average number of
reads and writes to increment XF are O(log t) and 1 respectively. Since XF is
incremented at most twice in every n steps, this adds only O(log t

n) and O(1
n) to

the average number of reads and writes, respectively. Similarly, incrementing
XH also takes O(1

n·Fmax
) reads and writes on average. In addition, at every step

we need to check if Val(XF) is equal to either Fmax or Fmax − 1 which requires
an average of O(1) reads. Finally the cost of reading XL to find p on average
costs at most O(1

n·Fmax
log n). Thus we have the following theorem.

Theorem 5. Given two integers n and t such that t ≤ n− log n, there exists a
counter of dimension n with efficiency 1− 2−t which supports increment oper-
ations with R = log n+ t+ 1 and W = 3 or R = log n+ t+ 2 and W = 2. On
average, an increment requires R = O(log log n) and W = 1 +O(n−1).

3.4. Redundant counters with increment using one-bit write

In this section we present a scheme supporting increment with only one
bit write. The main idea is to modify the scheme of Theorem 5 with W = 2
and R = log n + t + 2 to have two forbidden states Fmax − 1 and Fmax, for
t ≥ 2. Whenever the increment algorithm in Section 3.3 needs to flip two bits
simultaneously, we instead perform it over two increments. More specifically,
carry propagation happens in the state XF = Fmax − 1 where we alternate
between clearing xp−1 and incrementing `. For the final carry position we have
the state XF = Fmax, where we set xp.

As in Section 3.3 a counter consists of three parts XH , XF , and XL of
n − log n − t, t, and log n bits, respectively, where XH is represented using

11

SBC, and XF and XL are represented using RPGC (see Figure 6). We let
` = Val(XL). When XF is not in a forbidden state, we increment XL in the
order 0 to `max = 2|XL|−1 when XF is even, and in the reverse order from `max

down to 0 when XF is odd. The transition table for the resulting increment
scheme is shown in Table 5.

We do not give an explicit expression for the value of a counter X using
this scheme. Instead, let L be the smallest value such that for some bitstring of
length n, performing L increments on that string returns the same bitstring. We
define the value of a counter X as the number of times, modulo L, we need to
perform the increment operation on the bitstring 0n to reach X. The efficiency
of this counter is between 1− 2/2t and 1− 1/2t, since we do not increment ` in
each increment of the counter and we have two forbidden states.

Theorem 6. Given two integers n and t such that 2 ≤ t ≤ n − log n, there
exists a counter of dimension n with efficiency at least 1− 21−t which supports
increment operations with R = log n + t + 2 and W = 1. On average, an
increment requires R = O(log log n).

4. Redundant counters with increment and decrement

Construction. To support decrement operations interleaved with increment op-
erations, we modify the representation of an integerX described in Section 3.1 as
follows: an integerX = xn . . . x1 consists of an upper blockXH = xn . . . xlogn+3,
a bit S = xlogn+2, an indicator bit XI = xlogn+1, and a lower block XL =
xlogn . . . x1. The bit S is interpreted as either a carry bit or a borrow bit:
When the indicator bit XI is set to 0, S is interpreted as a carry bit, and when
the indicator bit is 1, then S is interpreted as a borrow bit.

XH S XI XL

`

xn . . . xlogn+3 xlogn+2 xlogn+1 xlogn . . . x1

Figure 7: Structure of a one-bit redundant counter with increment and decrement

We use RPGC to represent XL so that an increment or decrement writes only
one bit in XL. The block XH is represented using SBC. The value ` = Val(XL)
is used to point to a location in XH to perform a delayed carry or borrow.
Borrowing ideas from RPGC used for dealing with counters with an odd number
of bits, we will let XI and XL together denote a value Val(XIXL) in the range
[0 . . . 2logn+1−1]. To increment XIXL, we first check the value of XI . If XI = 0
and ` is not the maximal value `max = 2logn − 1, we increment XL. If XI = 0
and ` = 2logn − 1, we set XI = 1. If XI = 1 and ` > 0 we decrement XL.
Finally if XI = 1 and ` = 0 we set XI = 0. Decrementing XIXL is similar. The
relationship between `, XI and Val(XIXL) is shown in Table 6. The value of
the counter X is given by the expression

Val(X) = Val(XIXL) + 2|XL|+1 ·
((
XH + χ(X) · 2`

)
mod 2|XH |

)
,

12

where χ(X) is the signed carry

χ(X) =

 0 if S = 0 ,
1 if S = 1 ∧XI = 0 ,
−1 if S = 1 ∧XI = 1 .

Val(XIXL) 0 1 2 . . . 2|XL| − 1 2|XL| 2|XL| + 1 2|XL| + 2 . . . 2|XL|+1 − 1

XI 0 0 0 0 0 1 1 1 1 1

` 0 1 2 . . . 2|XL| − 1 2|XL| − 1 2|XL| − 2 2|XL| − 3 . . . 0

Table 6: Relationship between `, XI and Val(XIXL)

Increment and decrement operations. The main ideas behind the representa-
tion and the increment/decrement algorithms are as follows: when the carry bit
S = 0 and XIXL is not the maximum/minimum value, we perform the incre-
ment/decrement by incrementing/decrementing XIXL. To increment X when
S = 0, XI = 1 and ` = 0 (i.e., XIXL has the maximum value), we set S = 1
and XI = 0. Since XI is now set to 0, S will be interpreted as a carry bit until
it is reset again. Similarly, to decrement X, when S = 0, XI = 0 and ` = 0
(i.e., XIXL has value zero), we set S = 1 and XI = 1. Since XI is now set to 1,
S will be interpreted as a borrow bit.

To increment X when S = 1 and XI = 0, we perform one step of carry
propagation in XH , and then increment XL. If the propagation finishes in the
current step, then we also reset S to 0. To decrement X when S = 1 and
XI = 0, we first decrement XL and “undo” one step of carry propagation (i.e.,
set the bit xp in XH to 1). Note that when performing increments, the carry
propagation will finish before we need to change the indicator bit XI from 0
to 1 (as the length of XH is less than 2logn). The increment and decrement
algorithms when the borrow bit are set, i.e., S = 1 and XI = 1, are similar.
The details of the increment and decrement algorithms are described in Table 7.

Worst-case analysis. Since we read XL, XI , S and at most one bit in XH , the
read complexity R = log n+ 3. Since we change either XI or at most one bit in
XL, and one bit in XH and S, the write-complexity W = 3.

Average-case analysis. The above scheme requires O(log log n) average num-
ber of reads, as XL is represented using RPGC and incrementing it requires
O(log log n) reads on average.

Similarly to Section 3.2 we can move the cost of writing one bit to the reading
cost by postponing clearing the carry bit S by one increment/decrement, such
that we never have to flip both S and xp during one increment/decrement.

Theorem 7. There exists a counter of dimension n with efficiency 1/2 which
supports increment and decrement operations with R = log n + 3 and W = 3
or R = log n + 4 and W = 2. On average, an increment/decrement requires
R = O(log log n) and W = 1 +O(n−1).

13

Increment
Previous New

Comments
S XI ` xp xp−1 S XI ` xp xp−1
0 0 ` < `max x x 0 0 `+ 1 x x

Normal increment0 0 ` = `max x x 0 1 `max x x
0 1 ` > 0 x x 0 1 `− 1 x x
0 1 ` = 0 x x 1 0 ` = 0 x x Set carry
1 0 |XH | > ` ≥ 0 1 x 1 0 `+ 1 0 x Carry propagation
1 0 |XH | > ` ≥ 0 0 x 0 0 `+ 1 1 x (End of carry propagation) Reset S
1 0 ` = |XH | − 1 0 0 `+ 1 − 1 (End of XH) Reset S
1 1 ` = 0 x − 0 0 ` = 0 x − Reset borrow
1 1 |XH | > ` > 0 x 1 1 1 `− 1 x 0 Undo one step of borrow

Decrement
0 1 ` < `max x x 0 1 `+ 1 x x

Normal decrement0 1 ` = `max x x 0 0 `max x x
0 0 ` > 0 x x 0 0 `− 1 x x
0 0 ` = 0 x x 1 1 ` = 0 x x Set borrow
1 1 |XH | > ` ≥ 0 0 x 1 1 `+ 1 1 x Borrow propagation
1 1 |XH | > ` ≥ 0 1 x 0 1 `+ 1 0 x (End of borrow propagation) Reset S
1 1 ` = |XH | − 0 0 1 `+ 1 − 0 (End of XH) Reset S
1 0 ` = 0 x − 0 1 ` = 0 x − Reset carry
1 0 |XH | > ` > 0 x 0 1 0 `− 1 x 1 Undo one step of carry

Table 7: Transition table for the increment-decrement counter. ` = Val(XL), p = logn+ `+3
and `max = 2|XL| − 1. x represents ‘don’t care’ condition and ‘-’ shows that the value does
not exist. Underlines show the modified values. The cases which cannot occur are not shown
in the table

XH XF XI XL

`

xn . . . xlogn+t+2 xlogn+t+1 . . . xlogn+2 xlogn+1 xlogn . . . x1

Figure 8: Structure of a forbidden-state counter with increment and decrement

We can improve the efficiency of the counter by adopting the ideas of Sec-
tion 3.3 to replace S by a t-bit counter XF with a forbidden state Fmax = 2t−1
representing S = 1 (see Figure 8).

The value of a counter becomes Val(X) = Val(XIXL)+

2|XL|+1 ·


Fmax ·XH +XF if XF < Fmax ,
Fmax · ((XH + 2`) mod 2|XH |) if XF = Fmax ∧XI = 0 ,
Fmax · ((XH − 2`) mod 2|XH |) + Fmax − 1 if XF = Fmax ∧XI = 1 .

We can furthermore combine the forbidden-state idea with the one-bit read-
write trade-off to decrease the number of bits written by one and increase the
number of bits read by one.

Theorem 8. Given two integers n and t such that t ≤ n − log n, there exists
a counter of dimension n with efficiency 1− 2−t which supports increment and
decrement operations with R = log n + t + 2 and W = 3 or R = log n + t + 3
and W = 2. On average, an increment/decrement requires R = O(log log n)
and W = 1 +O(n−1).

14

Efficiency Read Write Reference
Θ(1/nlogn) O(m+ log n) O(m) [11]

≥ (1− 1/2t)logn O(m+ t log n) O(m) Theorem 9
Ω(1/n) O(m+ log n) O(m) Corollary 1
Θ(1) O(m+ log n log log n) O(m) Corollary 2

Table 8: Summary of results for addition and subtraction operations

5. Addition and Subtraction

In this section, we give a representation for integers which supports addition
and subtraction operations efficiently. Munro and Rahman [11] gave a repre-

sentation that with n bits achieves efficiency Θ(1/2log
2 n), i.e., uses O(log2 n)

bits of redundancy. The addition/subtraction of an m bit integer to an n bit
integer in this representation, where m ≤ n, is supported in O(m+ log n) time.
We improve the efficiency to O(1/n), i.e., O(log n) bits of redundancy, while
maintaining the operation times. We also achieve trade-offs between the space
efficiency and the number of bits read as summarized in Table 8.

Construction. In the following we let t be an integer parameter, 1 ≤ t ≤ n,
where increasing values of t will result in increased space efficiency of our rep-
resentations. Let b(i) = (t + 2) · 2i−1 for i ≥ 1. A counter X of n bits is
represented by k blocks B(1), B(2), . . . , B(k), where B(i) consists of b(i) bits for
1 ≤ i < k, and B(k) consists of between one and b(k) bits. It follows that
k = log(1 + n/(t + 2)). The representation of block B(i) is very similar to the

counters in Section 4: Block B(i) consists of the parts X
(i)
L , X

(i)
I , X

(i)
F , and X

(i)
H ,

consisting of 1+log(|B(i)|−t−1), 1, t, and |B(i)|−t−1−|X(i)
L | bits, respectively

(see Figure 9). X
(i)
H is represented using SBC, X

(i)
F and X

(i)
L using BRGC, and

X
(i)
I is an indicator bit. The only exception is if |B(k)| < t+2, in which case B(k)

is represented by a single BRGC. We let `i = Val(X
(i)
L) and `

(i)
max = 2|X

(i)

L
| − 1.

Note that since X
(i)
L is represented using BRGC, `(i) ≥ 2|X

(i)

L
|−1 iff the leftmost

bit x|X(i)

L
| in X

(i)
L equals one, and note that |X(i)

H | ≤ 2|X
(i)

L
|−1.

X
(i)
H X

(i)
F X

(i)
I X

(i)
L

`

xb(i) . . . x|X(i)

L
|+t+2

x|X(i)

L
|+t+1

. . . x|X(i)

L
|+2

x|X(i)

L
|+1

x|X(i)

L
| . . .x1

Figure 9: Block Bi of a counter with addition and subtractions

The main difference to the counter in Section 4 is that we have a different
number of bits for XL to ensure 2|XL| ≥ 2|XH |, and that we do not compute
modulo, to ensure the correct carry/borrow propagation from one block B(i)

to the next block B(i+1). The rôle of B(i) is to store values in the range zero
to M (i) − 1, where M (i) = Fmax · 2|XH |+|XL|+1 and Fmax = 2t − 1, except

15

that M (k) = 2|B
(k)| if |B(k)| < t + 2. The value of block B(i) is Val(B(i)) =

Val(X
(i)
I X

(i)
L)+

2|X
(i)

L
|+1·



Fmax ·X(i)
H +X

(i)
F if X

(i)
F < Fmax ,

Fmax · (X(i)
H + 2`

(i)

) if X
(i)
F = Fmax ∧X(i)

I = 0 ∧ `(i) < |X(i)
H | ,

Fmax · (X(i)
H + 2|X

(i)

H
|) if X

(i)
F = Fmax ∧X(i)

I = 0 ∧ `(i) ≥ |X(i)
H | ,

Fmax · (X(i)
H − 2`

(i)

) + Fmax − 1 if X
(i)
F = Fmax ∧X(i)

I = 1 ∧ `(i) < |X(i)
H | ,

Fmax · (X(i)
H − 2|X

(i)

H
|) + Fmax − 1 if X

(i)
F = Fmax ∧X(i)

I = 1 ∧ `(i) ≥ |X(i)
H | ,

where Val(X
(i)
I X

(i)
L) = Val(X

(i)
L) if X

(i)
I = 0, and Val(X

(i)
I X

(i)
L) = 2|X

(i)

L
|+1 −

1− Val(X
(i)
L) if X

(i)
I = 1. If Val(B(i)) ≥M (i) or Val(B(i)) < 0, then we have a

delayed carry/borrow from B(i) to B(i+1).

Letting L =
∏k

i=1M
(i), the value of a counter X is

Val(X) =

 k∑
i=1

Val(B(i))

i−1∏
j=1

M (j)

 mod L .

We say that there is a critical overflow in block B(i) if (X
(i)
F = Fmax)∧(`(i) =

2|X
(i)

L
|−1). To handle the delayed carries/borrows, we maintain the following

invariants. The first invariant

∀i, 1 ≤ i ≤ k : `(i) > 2|X
(i)

L
|−1 ⇒ X

(i)
F 6= Fmax (1)

ensures that each block B(i) with a carry/borrow, i.e., X
(i)
F = Fmax, has `(i) ≤

2|X
(i)

L
|−1. The second invariant

∀i, j, 1 ≤ i < j ≤ k : (X
(i)
F = X

(j)
F = Fmax) ∧ (`(i) = 2|X

(i)

L
|−1) ∧ (`(j) = 2|X

(j)

L
|−1)

⇒ ∃p : (i < p < j) ∧ (X
(p)
F 6= Fmax)

(2)
guarantees that if there is a critical overflow in blocks B(i) and B(j), where i < j,
then there exists a block B(p), where i < p < j, such that there is no carry set

in the block B(p), i.e., X
(p)
F < Fmax. This invariant implies that if there is a

critical overflow in block B(i), then there is no critical overflow in block B(i+1).
The invariant (2) is inspired by a redundant standard binary counter (SBC)
from [2], where the “bits” can take values {0, 1, 2}.

We can check whether a block B(i) has a critical overflow by reading t + 1

bits in B(i), namely X
(i)
F and the most significant bit of X

(i)
L .

Addition and subtraction algorithm. Let Y be an m bit integer represented using
the above representation stored in k′ blocks. To add/subtract Y to/from X, we
read Y and the k′ first blocks B(1) . . . B(k′) of X, using O(m) bit reads. Let z =

Val(Y) +
∑k′

i=1 Val(B(i))
∏i−1

j=1M
(j) or z = Val(Y)−

∑k′

i=1 Val(B(i))
∏i−1

j=1M
(j)

when adding or subtracting Y , respectively. Let L′ =
∏k′

i=1M
(i). From the

16

definition of Val if follows that −2L′ ≤ z < 4L′. We first write z mod L′ to the
first k′ blocks of X, using O(m) bit writes, such that there is no carry in any
of these blocks. If 0 ≤ z < L′ we are done. Otherwise we have to increment
B(k′+1) at most three times or decrement B(k′+1) at most two times (each
increment/decrement of B(k′+1) corresponds to incrementing/decrementing X
by L′).

To perform an increment/decrement on B(k′+1), we first check the blocks
from B(k′+1) to B(k) to find the first block B(j) (with the lowest superscript)
among these blocks which has a critical overflow. If such a block B(j) exists, we
clear the carry/borrow by moving it out of the forbidden state by incrementing

or decrementing X
(j)
F , depending on if X

(j)
I is zero or one. If j < k, we then

perform an increment or decrement on block B(j+1), depending on if X
(j)
I is

zero or one. To increment B(j) we use the algorithm of Section 4, but where

we never change X
(j)
F if X

(j)
F = Fmax and `(j) ≥ |X(j)

H |. From (2), we know
that block B(j+1) did not have a critical overflow. Finally, we perform an
increment/decrement on B(k′+1) (as on B(j)). This ensures that the invariants
(1) and (2) are satisfied after the increment.

Analysis. The number of bit reads required to find the block with the critical
overflow is O(tk); and the number of bit reads required to increment a block
or to move it out of a forbidden state is O(t + log n). Thus the overall read
complexity is O(m+ tk + log n). We modify at most two blocks in addition to
the first k′ blocks; and in those two blocks, we only modify a constant number
of bits. Thus the overall write complexity is O(m). Since the space efficiency
of each block is at least 1 − 1/2t, the total space efficiency of an n bit integer
representation is at least (1 − 1/2t)k. Since k ≤ log n, we have the following
theorem.

Theorem 9. There exists a representation of integers that, with n bits and
space efficiency at least (1 − 1/2t)logn, supports adding/subtracting an m bit
integer using O(m+ t log n) bit reads and O(m) bit writes.

Setting t = 1 and t = log log n implies the following two corollaries.

Corollary 1. There exists a representation of integers that, with n bits and
space efficiency at least Ω(1/n), supports adding/subtracting an m bit integer
using O(m+ log n) bit reads and O(m) bit writes.

Corollary 2. There exists a representation of integers that, with n bits and
space efficiency Θ(1), supports adding/subtracting an m bit integer using O(m+
log n log log n) bit reads and O(m) bit writes.

6. Conclusions

We have shown that a space-optimal counter of dimension n can be incre-
mented and decremented by reading strictly less than n bits in the worst-case.

17

For an integer in the range [0, . . . , 2n − 1] represented using exactly n bits,
our (n, n − 1, 3)-scheme reads n − 1 bits and writes 3 bits to perform incre-
ment/decrement operations. One open problem is to improve the upper bound
of n−1 reads for such space-optimal counters. Fredman [4] has shown that per-
forming an increment using BRGC requires n bits to be read in the worst-case
but the same is not known for all Gray codes.

For the case of redundant counters, we have improved the earlier results
by implementing increment operations using counters with space-efficiency ar-
bitrarily close to one which write only one bit with low read-complexity. We
have obtained representations which support increment and decrement opera-
tions with fewer number of bits read and written in the worst-case and showed
trade-offs between the number of bits read and written in the worst-case and
also between the number of bits read in the average-case and the worst-case.
Finally we have also improved the space complexity of integer representations
that support addition and subtraction.

[1] Prosenjit Bose, Paz Carmi, Dana Jansens, Anil Maheshwari, Pat Morin,
and Michiel H. M. Smid. Improved methods for generating quasi-Gray
codes. In Proceedings of the 12th Scandinavian Symposium and Workshops
on Algorithm Theory, volume 6139 of Lecture Notes in Computer Science,
pages 224–235. Springer-Verlag, 2010.

[2] Michael J. Clancy and Donald E. Knuth. A programming and problem-
solving seminar. Technical Report Technical Report STAN-CS-77-606,
Computer Science Department, Stanford University, 1977.

[3] Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. Dy-
namic word problems. J. ACM, 44(2):257–271, 1997.

[4] Michael L. Fredman. Observations on the complexity of generating quasi-
Gray codes. SIAM Journal on Computing, 7(2):134–146, 1978.

[5] Frank Gray. Pulse code communications. U.S. Patent (2632058), 1953.

[6] Dana Jansens. Improved methods for generating quasi-Gray codes. Mas-
ter’s thesis, School of Computer Science, Carleton University, April 2010.

[7] Dana Jansens, Prosenjit Bose, Paz Carmi, Anil Maheshwari, Pat Morin,
and Michiel H. M. Smid. Improved methods for generating quasi-Gray
codes. CoRR, abs/1010.0905, 2010.

[8] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle
2: Generating All Tuples and Permutations (Art of Computer Program-
ming). Addison-Wesley Professional, 2005.

[9] Peter Bro Miltersen. The bit probe complexity measure revisited. In Pro-
ceedings of the 10th Annual Symposium on Theoretical Aspects of Computer
Science, volume 665 of Lecture Notes in Computer Science, pages 662–671.
Springer-Verlag, 1993.

18

[10] Marvin Lee Minsky and Seymour Papert. Perceptrons. MIT Press, Cam-
bridge Mass., 1969.

[11] M. Ziaur Rahman and J. Ian Munro. Integer representation and counting
in the bit probe model. Algorithmica, 56(1):105–127, 2010.

[12] Carla Savage. A survey of combinatorial Gray codes. SIAM Review, 39:605–
629, 1996.

[13] Andrew Chi-Chih Yao. Should tables be sorted? J. ACM, 28:615–628,
July 1981.

19

