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ABSTRACT
Summary: tqDist is a software package for computing the triplet
and quartet distances between general rooted or unrooted trees,
respectively. The program is based on algorithms with running time
O(n logn) for the triplet distance calculation and O(d ·n logn) for the
quartet distance calculation, where n is the number of leaves in the
trees and d is the degree of the tree with minimum degree. These are
currently the fastest algorithms both in theory and in practice.
Availability and Implementation: tqDist can be installed on Win-
dows, Linux and Mac OS X. Doing this will install a set of command-
line tools together with a Python module and an R package for
scripting in Python or R. The software package is freely available
under the GNU LGPL licence at http://birc.au.dk/software/tqDist.
Contact: cstorm@birc.au.dk

1 INTRODUCTION
Using trees to represent evolutionary relationships is a wide-
spread technique in many scientific fields, in particular in bio-
logy, where trees are used to represent relationships between spe-
cies or between genes in a gene family (Semple and Steel, 2003);
but trees are also used for example in linguistics, where
trees may be used to describe the evolution of related lan-
guages (Gray et al., 2009; Walker et al., 2012), and in archeology
where trees have been used to represent how copies of ancient
manuscripts have changed over time (Buneman, 1971). A common
goal in all of these fields is to reconstruct the true tree from obse-
rved data. However, depending on both the available data and the
reconstruction method, the inferred trees may differ.

In such cases, tree distances are often used as a formal way to
quantify the differences and to determine if two trees are more simi-
lar than would be expected by chance. The triplet distance (intro-
duced as the triples distance in Critchlow et al. (1996)) and quartet
distance (Estabrook et al., 1985) enumerate all subsets of leaves of
size three and four, respectively, and count how often the topology
induced by the three or four leaves agree in the two trees. The tri-
plet distance is intended for rooted trees, where the triplet topology
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is the smallest informative subtree (for unrooted trees all sub-trees
with three leaves have the same topology), while the quartet dista-
nce is intended for unrooted trees where the quartet topology is
the smallest informative subtree. The fastest known algorithms for
computing the triplet and quartet distances have time complexity
O(n logn) for both distances on binary trees with n leaves and
complexity O(n logn) for the triplet distance and O(d · n logn)
for the quartet distance on general trees, where d is the minimum
degree of the two trees, and the degree of a tree is the maximum
degree of a node in the tree (Holt et al., 2014; Brodal et al., 2013).

In this applications note we present an efficient and easy-to-
use implementation of these algorithms and show that this is the
fastest implementation available for computing the triplet and quar-
tet distances. A detailed description of the algorithms and their
implementation is given in Brodal et al. (2013) and Holt et al.
(2014).

2 ALGORITHM
In this section we briefly describe the triplet distance algorithm. The quartet
distance algorithm is somewhat more involved but it also builds on the ideas
presented here.

For general trees, a triplet can either be resolved (the induced topology of
the triplet is a binary tree) or unresolved (the induced topology is a trifurca-
tion). Thus, given a triplet and two trees, T1 and T2, the triplet can be either
resolved in both trees, unresolved in both trees or resolved in one and unre-
solved in the other. If it is resolved in both trees, the induced topologies may
agree or disagree in the two trees. In the unresolved-unresolved case they
always agree, and in the resolved-unresolved case they always disagree. For
binary trees the induced topologies are always resolved.

Our algorithm computes the number of triplet topology differences impli-
citly by computing the number of shared triplet topologies and subtracting it
from the total number of triplets,

(n
3

)
. The number of shared triplet topolo-

gies can, according to the classification above, be computed as the number
of triplets that are unresolved in both trees plus the number of triplets that
are both resolved and induce the same topology in both trees. The first of
these numbers can be computed in O(n) time using a simple dynamic pro-
gramming algorithm. To compute the number of triplets that are resolved
and induce the same topology in both trees, we associate every triplet to
a unique node in T1 and then, in a recursive traversal of T1, count how

c© Oxford University Press 2014. 1



Sand et al.

many of the triplets associated to each node in T1 induce the same topo-
logy in T2. Using the smaller-half trick to traverse T1 and a balanced
binary tree data structure called a hierarchical decomposition tree to count
in T2 (Brodal et al., 2013), this is done in O(n logn) time. Hence in total
our algorithm runs in O(n logn) time.

3 IMPLEMENTATION
tqDist is an implementation of the algorithm described above together
with the corresponding quartet distance algorithm. The software package is
carefully implemented in C++ and interfaces for scripting in Python (via the
module pyTQDist) and in R (via the package rtqdist) are also provided.
The software package can be installed easily using precompiled installers or
using CMake on Windows, OS X and Linux, and the source is furthermore
freely available for installation on any platform supporting CMake, make
and any standard C++ compiler.

The software package includes four executables: triplet_distance,
quartet_distance, pairs_triplet_distance and pairs_
quartet_distance. The first two both take two files, each containing
a single tree in Newick format, as input and outputs the distance between the
two trees. The last two executables take two files, each containing the same
number of trees in Newick format, as input and outputs a list of numbers
where the ith number is the distance between the two trees on line i in the
two files. Similar functions (tripletDistance, quartetDistance,
pairsTripletDistance and pairsQuartetDistance) are provi-
ded in pyTQDist and rtqdist. The following short code snippet shows
how the python module may be used:

from pyTQDist import *

td = tripletDistance("tree1.new", "tree2.new")
print "triplet distance:", td

ptd = pairsTripletDistance("trees.new")
print "list of distances:", ptd

4 PERFORMANCE
Figure 1 illustrates how the running time of our implementation of
the new O(d · n logn) time quartet distance algorithm compares to
the running times of the previously fastest algorithms: the O(n2.688)
time algorithm by Nielsen et al. (2011) for general trees and the
O(n log2 n) time algorithm by Brodal et al. (2004) for binary trees
and implemented in qDist (Mailund and Pedersen, 2004). It is
evident that our new implementation is fastest for almost all practi-
cal purposes, being up to 80 times faster for binary trees with up
to 10,000 species and up to 25 times faster for trees with degree
d = 128 and up to 10,000 species.
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(a) Quartet distance running time on binary trees.
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(b) Quartet distance running time for trees of degree 128.

Fig. 1: Running time results for the quartet distance calculations on
binary and non-binary unrooted trees
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