Approximating the Diameter of Large Graphs

Large Graphs
Large graphs arise naturally in many application domains, such as network analysis.

- Social Networks
- Yeast Protein Interaction Network

The Diameter of a Graph
The diameter is the length of the longest shortest path between any two nodes in a graph. For instance, in the graph below, diameter = 6.

Breadth-First Search Tree
- Height of a Breadth-First Search tree gives a 2-approximation to the diameter of the graph.
- Computing Breadth-First Search requires days for large graphs with billions of edges, even with the most efficient external memory algorithms.
- Need to approximate the diameter even faster than the Breadth-First Search traversal of the graph.
- We perform an empirical study to compare the running time and approximation quality of different algorithms.

Heuristics to Reduce Spanning Tree Diameter
- Assign random weights to the graph edges
- Compute a minimum spanning tree
- For each node, select an incident edge to the lowest depth node
- Selected edges form a new spanning tree
- Repeat the above iteration till some convergence threshold

Parallel Cluster Growing Algorithm
- Choose n/k random master nodes plus $O(n/k)$ deterministic ones (Euler tour)
- Grow clusters around master nodes in parallel (local BFS runs)
- Each node gets labelled with its cluster index and distance from its master after $O(k)$ phases
- Form a new graph G'
- Each node represents a non-empty cluster in the original graph
- Edge $(C(u), C(v))$ exists in G' if the edge (u, v) exists in G
- Edge weight: $\text{dist}(u', v') + 1 + \text{dist}(v, v')$, where u' and v' are master nodes in $C(u)$ and $C(v)$, respectively
- Compute single-source shortest paths from an arbitrary node in the smaller graph G'

References