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Part I

P R E L I M I N A R I E S





A B S T R A C T

In this thesis we show how it can be worthwhile to save the
Boundary Representation of polygons even if a Binary Space
Partitioning tree has been built. The reason being that one algo-
rithm (INC SET OP [5]), which rebuilds the relevant parts of the
scene, can in some cases run in O(n) time with a smaller con-
stant than another algorithm (MERGE [4]) that merges Binary
Space Partitioning trees. Not only can it run faster but in some
cases it builds smaller trees than the merging algorithm, which
has subroutines minimizing the resulting tree. INC SET OP

may build smaller trees because it cuts away irrelevant line seg-
ments, as it still operates on Boundary Representations. This
ability does however also mean that it has the risk of having to
build an entire structure from scratch, which has the expected
running time of O(n2 log n) for a tree of size O(n log n).
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Part II

C O N T E N T





1

I N T R O D U C T I O N

Having a binary partitioning of space is important in many
computational geometry problems such as collision detection,
visibility etc. Binary Space Partitioning allows us to use binary
search in space.

In this thesis we focus on polygons partitioning space and
enabling such polygons to become dynamic by combined them
with other polygons using binary operators, such as intersec-
tion and union. We show how two different algorithms for
resolving such operations can give different results and even
differ in asymptotic running time on certain scenes. One algo-
rithm [4] uses only Binary Space Partitioning trees (BSP-trees)
as input making the raw data, in form of a Boundary Repre-
sentation (BREP), obsolete. The other algorithm [5] still uses a
BREP of a polygon as one of its inputs. We argue that saving
the BREP in some cases can be beneficial, even if a BSP-tree has
been built. The reason for this being that the algorithm that
uses the BREP is able to outperform the merging algorithm not
only in speed but sometimes also in size of the resulting tree.

We present related work in Chapter 2. In Chapter 3 we go
through the theory for building BSP-trees as presented in [5].
Next we will compare a BSP-tree, built from a polygon, with a
regular set. Polygons can be represented as regular sets, which
means that the operations applied to regular sets can also be
applied to polygons and this is the basic idea behind merging
BSP-trees. We move on to describe, in further detail, the be-
havior and mechanics of the two algorithms as well as give an
analysis on the running time. We will also in this section de-
scribe how the structure of the scene can have an impact on the
running time for both algorithms.

In Chapter 4 we describe the implementation details for our
algorithms. We focus on details that are not described in the
theory as well as some optimisations for MERGE that are men-
tioned in [4]. In this chapter we will also describe any relevant
environment details that we used, such as compiler optimisa-
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introduction

tions as well as the usage of a machine ε in order to deal with
numerical instability.

In Chapter 5 we compare both algorithm through experi-
ments and discuss the difference in their output. We explain
how test data is generated and analyse the necessity of the sub-
routines of MERGE. After this we use special cases to illustrate
how the algorithms differ. Finally we will use larger test data
to show how the algorithms behave on different representations
of data as well as inputs demonstrating the worst case running
time of the algorithms.

In the last chapter we present our conclusion and talk about
ideas for future work.

Appendices A and B are found at the end of the thesis and
contain pseudo code for the algorithms used and additional
experimental results.
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2

R E L AT E D W O R K

Thibault and Naylor in 1987 developed a method for combining
polyhedra using binary operations [5]. This was done by hav-
ing a Binary Space Partitioning tree (BSP-tree) in which new
polyhedra could be inserted. A polyhedron would be repre-
sented as a Boundary Representation (BREP). A Binary Space
Partitioning is the partitioning of space using lines. Each of
these partitioning lines are nodes in the BSP-tree. A BREP is a
way to represent shapes by defining their boundary with lines
that have a direction. A more detailed explanation of these can
be found in 3.1 and 3.2.2. The algorithm INC SET OP, that they
developed, took as input a BSP-tree, a Binary Operation and a
BREP and output a BSP-tree. Depending on the operation, the
BREP is split by the lines already saved in the BSP-tree. As the
algorithm splits the BREP the now partitioned lines are recur-
sively split by the children of the root of the BSP-tree. When the
recursion reaches a leaf it will, depending on the operation, ei-
ther build a new BSP-tree from any line segments passed down
or simply return the leaf.

In [5] they also describe a way of building a BSP-tree from
a BREP, BUILD BSP. A line segment is picked and extended to
a line, which partitions the remaining line segments. If a line
segment is split, then a new segment is partitioned into both
sides. The splitting line represents a node in the BSP-tree and
its children will then be created from the recursion of the same
procedure in both the left and right side of the partitioning.
Finally when no lines exists in a side, an IN- or OUT-leaf is
made, depending on the orientation of the line segment in the
original BREP. A more detailed explanation of the building of
a BSP-tree can be seen in section 3.1.1.

In 2008 Lysenko et al. created an algorithm for doing binary
operations on two BSP-trees while also potentially making the
resulting BSP-tree smaller than that of contemporary merging
algorithms[4]. Their algorithm MERGE takes as input two BSP-
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related work

trees and output a BSP-tree. Their algorithm recursively tra-
verses the nodes of one BSP-tree and inserts in the leafs of this
BSP-tree. However, the insertion is done by recursing in the
other BSP-tree and then applying the binary operation on the
two leafs. It uses linear programming to refrain from doing
binary operations on regions that are disjoint. The linear pro-
gramming is a way to avoid the need of performing difficult
tree partitioning and polygon cutting used by other current
merging methods. Finally they use a subroutine, COLLAPSE,
that replaces mutually equal subtrees with pointers to already
existing subtrees.

A more detailed explanation and analysis of INC SET OP and
MERGE can be found in sections 3.2 and 3.3 respectively.

6



3

T H E O RY

3.1 binary space partitioning of polytypes

We want to represent polytypes with binary space partitioning
trees (BSP-tree). BSP-trees allows spatial information about a
scene to be accessed quickly. This is useful in rendering, such
as a front-to-back rendering from a viewpoint. As with all struc-
tures, a BSP-tree takes time to build and we want this building
time to enable faster operations on the structures than the data
itself allows. Specifically, we want the BSP-tree to enable us
in using binary operators between polytypes. The motivation
being that it will enable building more complex polygons by
combining smaller, simpler polygons with binary operators or
that animation of a scene is possible by inserting and removing
polygons. This theory section is restrained to 2 dimensional
examples and explanations since our implemented algorithms
also operates in the 2 dimensional space. In section 3.1.1 we ex-
plain how a polygon partitions space and how to build a BSP-
tree from these partitions. We will then go on to explain how a
BSP-tree can be merged with a boundary representation (BREP)
of a polygon, in section 3.2. And finally, given two BSP-trees we
show how to merge these trees given a binary operation, such
as UNION or INTERSECTION.

3.1.1 Binary Space Partitioning Trees

A BSP-tree is a recursive partitioning of a d-dimensional space.
As earlier mentioned we will only discuss the case of 2 dimen-
sions. A common strategy for building a BSP-tree is to use the
technique known as auto-partitioning: The input line segments
are extended to lines. These lines are called the partitioning
lines. A line segment from the input that intersects a partition-
ing line is split in two. This process is recursively applied in
each half of the space. Each partitioning line has an exterior
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and interior direction. The normal of a line segment points
towards the exterior. Having recursively partitioned with each
line segment, each node v in the BSP-tree represents a partition-
ing of the space R(v) as seen in Figure 1.

Figure 1.: In (a) we see the 2D space partitioned. (b) Shows the
BSP-tree created from the partition shown in (a).

Given a finished tree each leaf will correspond to an unpar-
titioned subspace. In figure 1, these leaves are labeled 1− 6 in
figure 1(a) and each represent the corresponding cell in figure
1(b).

For any line

L = (x1, x2)|a1x1 + a2xd + a3 = 0

The subspace will be partitioned into two halves;

L+ = (x1, x2)|a1x1 + a2x2 + a3 > 0

and
L− = (x1, x2)|a1x1 + a2x2 + a3 < 0

There exists now for each v a subspace R(v) and three sets
in this subspace. Consider the set R(v) ∩ L+

v , which is repre-
sented by the right subtree of v. In 2 dimensions this set is the
set of points on the normals side of the splitting line. On the
other side of the line is the set R(v)∩ L−v represented by the left
subtree of v. Finally we have R(v) ∩ Lv which is the line for v
and other lines laying on the line for v. Given any leaf we can
traverse up through the tree and the lines on the route from
the leaf to the root of the tree will define all the partitioning
lines that enclose this subspace. Not all of these subspaces will
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3.1 binary space partitioning of polytypes

be entirely enclosed, as an example see all the exterior regions
in figure 1. It is possible for an exterior region to not be en-
closed by partitioning lines, but interior regions will always be
enclosed by a solid and continuous border. To better illustrate
this we will describe these subspaces as regular sets in section
3.1.2.

Running time

The naive approach selects line segment from a list as they are
ordered. A bad permutation of these line segments can result
in a partitioning with a lot of splits, thus leading to a large
tree. To avoid such a bad permutation we randomize the input
list before building the BSP-tree. The time it takes to build a
BSP-tree depends on the size of the resulting tree which in turn
depends on the amount of cuts made while partitioning. We
start by analysing the amount of fragments generated by one
line, leading to the total number of fragments. From this we
analyse the expected time and space requirements for the algo-
rithm of building a BSP-tree.

Let si be a segment from the input. If another segment sj is to
be cut by the line l(si), extended from si, then some conditions
must hold. Firstly si must be selected before sj. Secondly l(si)
has to actually intersect sj. Thirdly no other line segment sk that
blocks the view of sj from si must have been selected between
si and sj. With this we define a distance function. The distance
function distsi(sj) is the number of segments intersected by l(si)
between si and the line segment sj.

distsi(sj) =


number of segments intersected
by l(si) in between si and sj if l(si) intersects sj
+∞ Otherwise

The probability that l(si) intersects sj is dependent on the
distance function distsi(sj), whics smaller when the distance
increases. As we already mentioned, si must come before sj
and sj must be selected before any of the segments that blocks
sj from si. We get the following inequality:

P[l(si) cuts sj] ≤
1

distsi(sj) + 2

, where +2 are the lines si and sj themselves. This is an
inequality because other extended lines can block l(si) from in-
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tersecting with sj. The expected total number of cuts generated
from selecting si as splitting line, is the sum of this inequality
for all other line segments:

E[# cuts made by si] ≤∑
j 6=i

1
distsi(sj) + 2

.

Because there are at most two segments with the same dis-
tance and the distance is increasing, then we get the following:

E[# cuts made by si] ≤∑
j 6=i

1
distsi(sj) + 2

≤ 2
n−2

∑
k=0

1
k + 2

≤ 2 ln n.

Having n segments, the total number of cuts generated by
all segments is at most 2n ln n. The total number of fragments
must be our starting segments added to these cuts: n + 2n ln n,
giving the bound O(n log n).

This bound on the expected number of fragments means that
we can determine an expected running time, as the running
time was dependent on the size of the output tree. The running
time is linear in the number of starting segments n and it will
get smaller at each recursive call, since we partition the space.
The number of recursive calls depends on how many segments
existing at each call, which again depends on the number of
cuts/generated segments. Meaning that the expected running
time is:

O(n · #generated segments)

Since the number of expected cuts generated by all n lines
is O(n log n), the expected number of recursive calls is also
bounded by O(n log n). This means that the expected running
time of building a BSP-tree of size O(n log n) is O(n2 log n) [3].
Although given n

2 vertical and horizontal lines, the building
time will in worst case be at least Ω(n2).

3.1.2 Regular Sets

The d-dimensional subspace can be described as a metric space.
We define a metric space like in [1] as (W, d) where W is the set
and d is a distance function for two points in W;
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3.1 binary space partitioning of polytypes

d : W x W → R

Each set has an interior, an exterior and a boundary. Before
looking further at the definitions of these, we define the neigh-
borhood of a point in a metric set as in [1].

Definition 3.1.1. In a metric space (W,d) a set X is a neighborhood
of a point x if there exists an open ball with centre x and radius r > 0,
such that

Br(x) = {w ∈W|d(w, x) < r}

is contained in X.

Simply put; if in 2D a circle with any radius larger than 0 is
drawn around x, then this circle must be entirely inside X for
X to the a neighborhood of X.

Returning to the subspace as a metric set and the description
of this set as interior, exterior and boundary. The exterior of a
set can be defined as the complement of the set. To Distinguish
interior points from boundary points we define the interior of
X, i(X), as the union of all interior points;

Definition 3.1.2. A point x of W is an interior point of a subset X
of W if X is a neighborhood of x.

Not all points contained in the set will be interior points of
the set, but all interior points will by definition be in the set.
All points in the set that do not fall under the interior point
definition can be defined as a boundary point. The boundary
of X, b(X), is the union of all boundary points defined as;

Definition 3.1.3. A point x of W is a boundary point of a subset X of
W if each neighborhood of x intersects both X and c(X), where c(X)
is the complement of X.

Figure 2 is an illustration of two such points.
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Figure 2.: A regular set with boundary point (green) and inte-
rior (red)

Limit points also exists for the set. Limit points can be both
in and not in the set, but all limit points of a set will be in the
set if the set is closed [1]. And since we are using the set theory
to describe polytypes we only use closed sets. For closed sets
limit points will be equal to boundary points.

Definition 3.1.4. A point x is a limit point of a subset X of a metric
space (W, d) if each neighborhood of x contains at least a point of X
different from x

Another restriction on a metric set is a regular set. A subset
X of a metric space (W, d), is a regular set if

X = k(X)

Where k is the closure of a set. The closure of a set is the
union of the boundary and the interior. The closure of a set is
a regularization, where the set is made similar to a solid model
with a well defined border between the set and its complement,
the border being included in the set.

A polyhedron is a regular set since the interior and boundary
is exactly the polyhedron. Were we to build a BSP-tree for any
polytype the boundary of the polyhedron would be stored in
the nodes of the tree and each leaf would represent a part of
the exterior or a part of the interior of the polyhedron. By con-
vention, all normals points away from the interior and with this
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3.2 set operations on bsp-trees and breps

we can label each leaf as IN or OUT. The union of all IN-cells
and the lines stored at the nodes on the route from such a leaf
to the root would be equal to the regular set of the polyhedron.
Since we can now say that a polyhedron is equal to a regular
set, we are able to use the set operations of a regular set on a
polygon.

3.1.3 Regular Operations

We have not defined the properties of regular sets as a non
variant for a BSP-tree that has been built from a polygon. We
would also like them to hold for any BSP-tree that is a product
of a binary operation between two polygons. For this reason
only the regularized set operations are possible, the intersection
of two regular sets, the union of two regular sets, subtracting
two regular sets and the complement of a regular set. Regular
sets are closed under these operations. These operations are
denoted by

∩∗,∪∗,−∗, and ∼∗

In order to evaluate these operations on regular sets we use
expression simplification in a geometric setting. But firstly con-
sider the complement ∼∗ S of a regular set S. The complement
is easily formed by complementing all cell values and changing
the direction of the normal for each boundary. Thus making the
interior the exterior and vice versa. Complementing a BSP-tree
is done by turning all IN-leaves into OUT-leaves and vice versa,
and swapping all left and right children.

As for the other operations, we want to utilise expression
simplification and to obtain that at least one operand is homo-
geneous. Given S1opS2 we simplify by partitioning the space
such that each region Ri is either in the exterior or interior of
both sets. Having a BSP-tree we are given such a partitioning
and we want to recursively traverse the tree, evaluating only
when one operand is a leaf. As an example; consider the oper-
ation S ∪∗ v, where v is an IN-leaf. This evaluates to IN, since
there is nothing in this cell not already in the interior. A more
detailed overview is found in table 1.

3.2 set operations on bsp-trees and breps

Now given a representation of a polygon as a BSP-tree and
a way to use binary operations on BSP-trees, we can begin dis-

13
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op Left Operand Right Operand Result

∪*

S IN IN
S OUT S

IN S IN
OUT S S

∩*

S IN S
S OUT OUT

IN S S
OUT S OUT

-*

S IN OUT
S OUT S

IN S ∼∗ S
OUT S OUT

Table 1.: Overview of the results from applying binary set oper-
ators

cussing how to combine polygons. We look at an algorithm that
incrementally resolves a binary operation between the current
BSP-tree and a new polygon - represented as a BREP (detailed
in 3.2.2). Given a BSP-tree we should be able to combine it with
a BREP as per the table in 3.1.3. An obvious advantage of this is
that when constructing a scene one does not have to construct
a complex BREP in order to represent a complex polygon, as
long as the correct building blocks exists. This also gives the
ability to animate a scene. Constructive Solid Geometry is an ex-
ample where you use simple building blocks to represent more
complex scenes and it is further discussed in 3.2.1.

3.2.1 Constructive Solid Geometry (CSG)

In [2, p. 557] a Constructive Solid Geometry (CSG) is described
as a representation, where simple primitives are combined by
means of Boolean set operations that are included directly in
the representation.

The primitives are stored at the leaves and the operators are
stored at the nodes. A combined object is then represented at
the root of a tree. Boolean operations, rotations and translations
can all be stored at the nodes. The order of left and right chil-
dren is taken into account since Boolean operators normally are
not commutative. An example of a CSG can be seen in figure
3, which also shows that a CSG is not unique since the same
object can be modelled in several ways.

14



3.2 set operations on bsp-trees and breps

Figure 3.: (a) shows a CSG, where (b) and (c) shows two differ-
ent ways to produce it. Figure taken from [2].

3.2.2 Boundary Representation (BREP)

A Boundary Representation is a method used to represent shapes
using the boundary of the shape. Any solid polygon can be rep-
resented by connecting line segments creating a split between
the interior and the exterior of the solid. Each of these seg-
ments will have a direction defined from a starting point and
an ending point. An example of a BREP can be seen in figure
4, where start points are red dots and ending points are arrow
heads. It is important that the starting point of line segment i
is the exact ending point of line segment i − 1. The final line
segment must end where the first line segment began, creating
an unbroken and solid path of straight lines.

Figure 4.: BREP of a trapezium.

This is in coherence with the idea of representing polygons
as regular sets. If each element has a direction is it possible to
say that the interior is opposite of the normals direction and
thus the definitions are equal.
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3.2.3 Binary Set Operators

As we saw in 3.1.3, we work with three binary set operators:

1. UNION: A ∪∗ B

2. INTERSECTION: A ∩∗ B

3. SUBTRACTION: A−∗ B

, here ∗ refers to the regular operator.

Instead of having three different operators, we take advan-
tage of the fact that the SUBTRACTION operator can be induced
from the INTERSECTION and COMPLEMENT operators:

A−∗ B⇔ A ∩∗ (∼∗ B)

This allows us to only have two binary operators and to have
only commutative operators. We have to do the translation
from using the SUBTRACTION operator to using the INTERSEC-

TION operator, before we for instance swap operands (more on
this in section 3.3.1). In 3.2.4, if our operator is SUBTRACTION,
we COMPLEMENT our BREP and change the operator to IN-

TERSECTION as the first step. SUBTRACTION is handled in a
similar way by MERGE described in more details in 3.1.3.

3.2.4 The Incremental Set Operation Algorithm

Given a BSP-tree and a BREP we want to be able to include this
BREP in the same BSP-tree, representing the resulting polygon.
This is, in INC SET OP, done by recursively traversing down
the BSP-tree. At each recursion we check if the current node is
a leaf or a node. If it is a leaf we use the table in 3.1.3, e.g. if we
are at an IN-leaf and the operation is UNION, then we simply
return an IN-leaf. However, if the result is not equal to a leaf,
then we must build a new BSP-tree of the line segments of the
BREP that are still relevant in this leaf. This is illustrated in
figure 5
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3.2 set operations on bsp-trees and breps

Figure 5.: Only the darker region is to replace the old OUT-leaf

In order for INC SET OP to know which lines to include in
the iterations, it will need to partition them with the current
partitioning line. If the recursion reaches a node, it partitions
the lines of the BREP with the partitioning line saved on the
node. After such a partitioning INC SET OP now goes through
each side of the partition recursively. If no line segment from
the BREP exists on one side of the partition, then this partition-
ing line must lie in the interior or the exterior of the BREP. This
is essential to the algorithm. If a set line segments from the
BREP are exclusively outside of interior of the BSP-tree, then
they can be ignored. A subroutine for determining this, the
In/Out Test, essentially tells INC SET OP to either ignore this
part, because the BREP doesn’t add anything new in this re-
gion, or replace with a new IN- or OUT-leaf because the BREP
actually contains this area.

In/Out Test

The In/Out test is used to determine if an empty area repre-
sents an IN-region or an OUT-region of the BREP. Because we
might not have any line segments lying coincident with our
splitting line L, we cannot just use the normals orientation of
those line segments. Instead, we have to look at the other side
and do some calculations in order to determine whether an
area is the interior or the exterior of the BREP. Without loss of
generality assume that our left region is empty.
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We start by finding the point b from our BREP in the non-
empty, that is closest to our splitting line Hv. We then pick
a point p that lies on our line represented by our node v and
our splitting line Hv. We now have two cases as illustrated in
Figure 6.

Figure 6.: (left)Closest point b is on the boundary of R(v).
(right) Closest point b is in the interior of R(v). Fig-
ure taken from [5].

If our point b lies on the boundary of R(v) an edge e to an-
other point in the interior of R(v) can be found. If we expand
the edge e to a line He, we can now determine if our empty left
region is representing an IN- or an OUT-region by comparing
with a point p on Hv in Figure 6. If the point p lies in the exte-
rior of He it means that the empty left region is an OUT-region
as e defines a left most edge of its polygon. Otherwise the
empty left side must be the interior of the polygon as e defines
a right most edge.

If our point b instead lies in the interior of R(v), b will now
be connected to two other points by edges e1 and e2. Again
we expand these edges to lines He1 and He2. If e1 ⊂ He2le f t and
e2 ⊂ He1le f t we have local convexity an the empty left region is
therefore an OUT-region. This situation can be seen in figure
7(right). If the line segments are instead in each others right
side, then local concavity exists and the empty left side must
be inside the polygon. This is illustrated in Figure 7(left).
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Figure 7.: (left)Left region is interior. (right) left region is exte-
rior

Running Time Analysis

Analysing the running time of INC SET OP is not easy as it de-
pends highly on how the lines of the two polygons intersect in
the scene. One possibility is that the entire BREP lies within
one leaf of the BSP-tree. This means that INC SET OP only has
to call BUILD BSP once, but this one call will be of the entire
BREP. The running time of this BUILD BSP call will depend
on the structure of the BREP. Furthermore, INC SET OP in this
case has to check for partitions h times, where h is the length of
the route from root to the containing leaf. Another possibility is
that the partitioning lines partition the BREP in such a way that
each leaf only contains a constant number of lines. This means
that each call to BUILD BSP is made with a constant number
of line segments. A single BUILD BSP run with constant line
segments can be made in constant time. This means that all
the parts of the tree are built in time linear in the number of
leaves. For a worst case scenario; consider a large convex poly-
gon and n vertical lines and n horizontal lines inside this poly-
gon. These lines can be connected in a way to form a polygon
but for the sake of the argument, consider only the vertical and
horizontal lines. If the lines are alternating in direction(parallel,
anti-parallel), this will create n

2 vertical and horizontal bars. We
let the operation used be INTERSECTION. All of these will now
have to be built in the single IN-leaf of the large convex poly-
gon. These bars will create n

2
2 squares, which will have to be

leaves in the resulting tree. Meaning that in the worst case sce-
nario the running time is at least Ω(n2).
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INC SET OP can be split into two phases; it must partition
the BREP with the partitioning lines in the BSP-tree and it
must build the remaining line segments (if there are any) in
the leaves. A BSP-tree with size 2V has V + 1 leaves and V
nodes. The algorithm will at most have V partitioning opera-
tions and V + 1 building operations. Note that depending on
the operation used when merging, the building part of the al-
gorithm takes place in only IN- or OUT-leaves.

When the line l(v) for node v partitions B line segments of
the BREP then the number of lines passed on to the children vr
and vl must be at most B. The time spent on partitioning the
BREP into the leaves will be worst case O(V · B). Combined
with the above, this means that if INC SET OP has the worst
case partitioning and the polygon that is partitioned is the grid
described above, then the total worst case running time will be
O(n3)

Given a partitioning of the BREP by all the lines of the BSP-
tree, then at most V + 1 builds must happen in the leaves. The
time that such a build can take is dependent on the partition-
ing. We know from the running time section of 3.1.1 that a tree
with size O(n log n) can be built in expected O(n2 log n) time.
Here O(n log n) is the expected number of fragments created
by n line segments. The time it takes to build the remaining
fragments depends not only on the number of fragments, but
also on their structure. It could be the case that each build is
done in constant time or it could be in the expected bound for
building n lines, O(n2 log n).

All in all the time spent in INC SET OP is entirely dependent
on the structure of the scene and not so much on the number of
lines. There is a possibility that this algorithm will run in linear
time, which we will see many times in the experiments. The
following case illustrates what can make it run so fast. At the
root node we partition the O(B) lines in such a way that O(B)
line segments are put in the right side and O(1) are put in the
left side. If the entire tree exists in the left side and the right
side just is an OUT-leaf (and we have intersection meaning that
these O(B) line segments are discarded), then the rest of the
partitioning will happen on O(1) line segments. This case is
visualized in Figure 8.
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Figure 8.: A case that makes INC SET OP run in linear time.

This leads to both O(V) time for all the partitioning, but also
O(V) time for all the build calls, leading to a total running time
of O(V) time.

3.3 merging of bsp-trees

Instead of using a BREP to represent a new polygon, then a BSP-
tree of the polygon could be used. Removing the BREP entirely
from the merging process allows an algorithm to ignore the
In/Out test as this has already been resolved by the building
of the second BSP-tree. MERGE does this by using linear pro-
gramming to determine if it is to continue the recursion, or if
the region is in fact infeasible because of the currently selected
splitting lines.

3.3.1 The Merging Algorithm

MERGE, [4]), like the one described in section 3.2.4, recursively
traverses one tree until it reaches a leaf. During this traversal
it maintains the two current trees, the operation and a stack
of partitioning lines. In each recursion some early termination
checks are done.
The first check is to determine, using linear programming, if
the current region is infeasible. If so, then the recursion stops
and an empty node is returned as the result. The parent node
is then replaced by the child that is not an empty node. Note
that if one child is empty then the other can not be. This is
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because the partitioning lines are added to the linear program
with directions and in the two children, the directions are oppo-
site each other. Such two lines define the entirety of R(v) and
both sub regions cannot be empty since we are partitioning a
non-empty region. The theory behind linear programming and
how it is relevant to this problem is described in further detail
in section 3.3.3.
The second early termination check is to if the leaf in the first
tree is irrelevant to the operation. IN-leaves with UNION as the
operator needs no recursion on the other tree. This happens in
two cases, where the trees are A and B.

1. The operator is UNION and A is an IN-leaf.

2. The operator is INTERSECTION and A is an OUT-leaf.

In the first case, where we have UNION, we always return an
IN-leaf. This is because, no matter what our B is, we will al-
ways end up with an IN-leaf. The other case is where we have
INTERSECTION as our operator. If A ever becomes an OUT-leaf,
we simply return an OUT-leaf. This is because intersection be-
tween an OUT-leaf and anything always becomes OUT.

If MERGE reaches a leaf in the first tree then it will start the
recursion for the second tree. The recursion in the second tree
will be as in the first tree, only here the stack of partitioning
lines contains lines from both trees. Note that the early termi-
nation check for infeasibility only occurs when traversing the
second tree as the lines in a BSP-tree will have a feasible so-
lution. If a leaf has been reached in the second tree, without
any early termination, then MERGE performs the operation on
these leaves.

In [4] it is suggested to always insert in to the smallest tree.
However as we shall see in section 5.3.3 more caution has to be
taken when swapping. MERGE also performs collapse operations
while it is running. These operations create smaller trees with
pointers to equal subtrees instead of having equal subtrees ex-
isting more places in the tree. While these operations are not
needed for the correctness of the algorithm, it does however
lead to a performance boost. The next section provide more
information about the collapsing subroutine. Pseudo code for
MERGE can be found in Appendix A.
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3.3.2 Collapsing

One important subroutine of MERGE is to collapse the trees,
using COLLAPSE. The motivation being to create smaller trees
as the result of an operation. After a series of operations on BSP-
trees the trees may grow to be very large as each new splitting
line potentially creates n new line segments. Ideally we would
like pointers to identical trees as seen in Figure 9.

Figure 9.: A geometric space with a simple BSP-tree and finally
the collapse of this tree. Arrows indicate pointers to
similar subtrees.

For replacing subtrees with pointers to similar subtrees, a
comparison between trees is necessary. For this we define an
indexing function id on the set of all BSP-trees. Such that for
two trees A = {Ah, A+, A−} and B = {Bh, B+, B−}, Ah being
the subhyperplane, or splitting line, with A+ and A− being the
right and left subtrees, id[A] = id[B] iff

Ah = Bh , id[A−] = id[B−] and id[A+] = id[B+],

where equality between two leaves are handled by simply
comparing the type of leaves. This is not entirely enough to
compress trees, we need one more constraint

id[hi, B, B] = id[B].

This constraint enables the collapsing on more levels. This
constraint states that if a node has children with the same id,
then the id of the node is equal to that of the children. Effec-
tively this means that we can remove nodes that hold no infor-
mation. An example could be a node with two OUT-leaves as
children. Then this can be collapsed to simply being an OUT-
leaf.

To calculate the index of each subtree in the BSP-tree, we
traverse the tree bottom up. In order to avoid multiple tests we
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will utilize a visit map that will keep track of visited subtrees
by maintaining a map with a hashed version of the tree as key
and the actual tree as value. The hash of a tree is a 3-tuple of
integers

hash[IN] = (0, 1, 0)

hash[OUT] = (0, 2, 0)

hash[hi, B+, B−] = (i, id[B+], id[B−]),

where i denotes the i’th splitting line selected by BUILD BSP.

Initially we will will have visited no subtrees and the visit
map will be empty, but as it fills up with visited subtrees we
can compare the hashing of a subtree with those already visited
and replace the subtree with a pointer to that which has the
same hashing. This means that, if there is a collision in the
hashing then it is exactly because the two subtrees are equal
and they can be collapsed.

It is important to maintain the visit and id between subse-
quent calls. This will affect the running time as seen in subsec-
tion 3.3.2. In section 5.3.2 we will test the effects of collapsing
trees to see that it does in fact yield smaller trees without any
asymptotic increase to running time.

With this collapsing subroutine we are able to remove dupli-
cated sub tress, but it does not completely reduce the size of
the tree as it cannot remove sections of the tree that describes
infeasible regions. In order to avoid these dead regions as seen
in Figure 10 we, in subsection 3.3.3, look at the problem as a
feasibility test in linear programming. Here we use the linear
programming method as suggested in [3].
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Figure 10.: (left)A scene it’s two BSP-trees. (right) The BSP-
trees naively being merged without any feasibility
test. The four nodes BDAX represents an infeasible
area, which our feasibility test takes care of. Figure
taken from [4].

Analysis of the collapsing

COLLAPSE is not necessary for MERGE to return a correct BSP-
tree. However, it does yield smaller trees which saves memory
and ultimately leads to a performance boost.

Tree size
At the very least, our tree size is cut in half since all the leaf
nodes can be compressed to only two (one for the OUT-leaf and
one for the IN-leaf). All equal subtrees will also be compressed
as seen in Figure 9 and 11.

Figure 11.: A geometric space with a simple BSP-tree and fi-
nally the collapse of this tree. Arrows indicate point-
ers to similar subtrees.
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Running time
Since COLLAPSE only visits each node at most once, a single
run of the COLLAPSE will run in O(n) time, where n is the
number of nodes. We maintain the visit map and id throughout
subsequent calls and the algorithm returns immediately, if an
already collapsed tree is found. This means that the running
time amortizes over several calls to an optimal O(1) time. The
hashing function will never result in a collision between two
BSP-trees which do not represent the same set [4].

3.3.3 Linear Programming

In linear programming we search for a specific solution given
a set of linear constraints and an objective function. A linear
programming problem is typically given as follows:

Maximize c1x1 + c2x2 + · · ·+ cdxd

Subject to a1,1x1 + · · ·+ a1,dxd ≤ b1

a2,1x1 + · · ·+ a2,dxd ≤ b2

...
an,1x1 + · · ·+ an,dxd ≤ bn

.
Here ai, bi and ci are real numbers, d is the dimension of the

linear problem, n the number of constraints and the function
we wish to maximize is called the objective function.

In general the constraints can be seen as half-spaces in Rd

and in our 2D case these would be lines, where only points on
one side of the line satisfies the constraint. To satisfy all the
constraints a point must lie in the intersecting region of all the
lines. This region is called the feasible region. If no such region
exists, the linear program is called infeasible. Since the feasible
region is an infinite set of points, the objective function defines
which one point that maximizes the solution.

For the general linear programming problem, many algo-
rithms exists. One such algorithm is the Simplex Algorithm
which can be found in [3]. For a 2D problem this algorithm is
not very efficient. The idea for our algorithm in 2D is to add a
constraint one by one, check for feasibility and then maintain
the optimal solution for the succeeding problems.

Let H be the set of constraints to a linear problem given as
hyperplanes, where hi denotes the i’th constraint. Hi denotes
the set of the first i constraints. Ci denotes the feasible region

26



3.3 merging of bsp-trees

defined by the constraints in Hi. Let vi be the optimal point in
Ci.

When we add a new constraint, two things can happened:

Lemma 1. Let 1 ≤ i ≤ n, and let Ci and vi be defined as already
mentioned. We now have two cases:

1. vi−1 ∈ Ci

2. vi−1 /∈ Ci

Case1: vi is simply updated by vi = vi−1. If we are in case 2 either
Ci = ∅ or vi ∈ li, where li is the line bounding hi.

Proof. The optimal point, vi−1 before adding the constraint hi
also exists in the new region Ci after adding hi, since Ci =
Ci−1 ∩ hi. The point is also still optimal since Ci ⊆ Ci−1. And
thus vi = vi−1

Case 1 can be seen visually put in Figure 12. Here adding h5,
does not lead to an update of the optimal point vi.

Figure 12.: Adding constraint h5, which is not more strict. Fig-
ure taken from [3].

Case2: We add a more strict constraint and two things can
again happen. First of all the constraint can make the entire
linear program infeasible, so Ci = ∅. This is seen in Figure 13,
where adding h6 makes the entire problem infeasible.
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Figure 13.: Adding constraint h6, which causes the LP to be-
come infeasible

Let vi /∈ hi. Now, suppose for contradiction that Ci is not
empty and that vi is not on the line li for hi. Consider the line
segment from vi to vi−1. Clearly vi−1 ∈ Ci−1 and, since Ci is
a subset of Ci−1, then vi must also be in Ci−1. So since both
end points on the line segment vi → vi−1 are in Ci−1 and Ci−1
is convex from it’s constraints - then the line segment is also
inside Ci−1.

Since vi−1 is the optimal point in Ci−1 and an objective func-
tion fc is linear, then fc(p) must increase monotonically along
the line segment vi → vi−1 as p moves from vi to vi−1 since vi−1
was a better solution than vi, since vi is more restricted.

Now let q be the intersection between the line segment and
the line li. This intersection must exist since vi−1 /∈ hi and
vi ∈ Ci, meaning that vi−1 and vi are on different sides of li.

Since the line segment is inside Ci−1 then the point q must be
in Ci, meaning that it is potential optimal point. And since the
objective function increases on the line segment, then fc(q) >
fc(vi) which contradicts that vi is the optimal point in Ci. In-
stead the point q, on the line li, must be the optimal point.

Figure 14 illustrates this case, where h6 is a new, more strict
constraint.
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Figure 14.: Adding constraint h6, which is more strict. Figure
taken from [3].

Finding new optimal point

As we saw in the previous section, we have two cases of how
to update the new optimal point. Case 1, where the old point
exists in the new feasible region, is easy. Here we simply check
our new constraint up against our current optimal point and
check if it still satisfies all constraints. If we however reach
case two and we need to update the optimal point then another
approach is needed.

Since case 2 in Lemma 1 states that this new point has to lie
on the line li that specifies the new constraint hi, we have a 1D
linear program problem. If li is not vertical, we can parametrize
it by its x-coordinate. If li however is vertical, we can instead
use the y-coordinate. In the non-vertical case we would like to
find all the x-coordinates of the intersection points between li
and the lines defining h ∈ Hi. If no intersection point can be
found, i.e. the lines are parallel, either any point on li is satis-
fied by h or no point is. If all points are satisfied, we simply
ignore the constraint, since it does not provide any restrictions
to the new optimal point. If no points are satisfied a violation
is found and we can terminate the algorithm and report infea-
sible.

In the other case, where we have an intersection point, we
need to find out if that point defines a right bounding point,
ie. the constraint h has its feasible region to the left or if
it is a left bounding point. When adding a new intersection
point, we always keep track of the maximum left bounding
point and the minimum right bounding point, since they de-
fine the strictest constraint on either side. We define xle f t =
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max(xle f t, intersect(li, h)), xright = min(xright, intersect(li, h)) where
h ∈ Hi. The feasible region on li is found in the interval
[xle f t, xright]. An example is shown is Figure 15.

Figure 15.: The 1D problem, where [xle f t, xright] is still a feasible
region

If xle f t > xright at some point, we can report that the entire
LP problem is infeasible. This comes from the fact that the new
optimal point has to lie on the line li, but no point can be found
on this line that fulfills all the constraints in Hi. An example of
an infeasible 1D problem can be seen in Figure 16.

Figure 16.: The 1D problem, where [xle f t, xright] does not exists.

If all constraints has been added and xle f t < xright, then the
new optimal point is either xle f t or xright depending on the ob-
jective function.

Since we are not interested in a particular solution, but rather
if one exists, our objective function is arbitrarily picked so we
just have any point that satisfies the current constraints.
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Analysis of the Linear Program Solver

The worst case behaviour for our LP SOLVER is when we have
no early-out termination. With no early termination there is no
infeasibility and the solver has to run to completion. The worst
case scenario happens when a newly added constraint is a more
strict constraint (where we need to solve the 1D problem). Our
algorithm has to run through all constraints so LP SOLVER runs
in at least O(n) time. But for every constraint, we need to solve
the 1D problem, which takes O(i) time, since it checks all the

previous constraints. LP SOLVER takes
n

∑
i=1

O(i) = O(n2) time

in the worst case.

The problem with the naive incremental algorithm is that it
always adds the constraints in a deterministic fashion, making
it possible for a given configuration to always run in the worst
case O(n2) time, because we need to solve the 1D problem in
every iteration.

So how do we find the correct order to add the constraints?
- We choose a random ordering of the constraints. The run-
ning time now completely depends on the ordering that has
been chosen. So instead of analysing the running time of the
algorithm, we analyze the expected running time. If a random
permutation of the constraints can be done in O(n) time before
running the algorithm, we end up with an expected random-
ized running time for the entire algorithm of O(n).

Proof. The running time of the LP SOLVER must be the total
running time of solving the 1D problem for each constraint.
We know that a 1D problem for i constraints can be found in
O(i) time. As explained earlier there is a chance, when adding
a constraint, that we do not need to solve the problem in 1D
for this constraint. This happens when vi−1 ∈ hi, vi−1 being
the previous solution and hi being the newly added constraint.
This means that when adding a constraint, then it either takes
no time, since no new solution is needed to be found in the line
of this constraint or that O(i) time is spent searching for the 1D
solution. Let Xi be a random variable that indicates whether or
not the added constraint requires a new solution to be found.
We define Xi = 1 if vi−1 /∈ hi and Xi = 0 otherwise. Now, the
total time spent adding all {h1, h2 . . . hn} is
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n

∑
i=1

O(i) · Xi

In order to bound the expected value of this sum we use the
Linearity of expectation which says that the expected value of a
sum of random variables is the sum of the expected value of
those random variables. Even when the random variables are
dependent, the linearity holds. This means that the expected
time for solving all 1D linear programs is

E[
n

∑
i=1

O(i) · Xi] =
n

∑
i=1

O(i) · E[Xi]

To find the expected value of the random variable assume
that the algorithm has found vn to be the optimal solution. This
vn must lie in Cn and must be defined by at least two of the con-
straints. Removing the last added constraint hn the region must
be Cn−1. If vn is not a vertex in Cn−1 that is extreme in the di-
rection~c then adding constraint hn must have meant that a new
solution has been found at this step and that hn is one of the
lines defining vn. Since the constraints are added in random or-
der then hn is a random constraint from the set of n constraints.
And since the vertex vn is defined by at least two lines then the
probability of hn defining vn is at most 2

n . The probability is
largest when exactly two lines define vn. The same argument
hold for any complete subset {h1 . . . hi} of the n constraints.
And so the expected value of the random variable Xi is at most
2
i [3]. Now, with the expected value of Xi, we define the to-
tal expected running time of solving a linear program with n
constraints as

n

∑
i=1

O(i) · 2
i
= O(n)

3.3.4 Running Time Analysis for MERGE

Consider MERGE without COLLAPSE. If a resulting BSP-tree
from MERGE has n nodes and height h, we know that MERGE

must run in at least Ω(n) time, because it constructs its result
incrementally. If we then, after MERGE is done, collapse the
resulting BSP-tree it will have no impact on the total running
time of MERGE, because the collapsing can be done in O(n)
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time as well. Using COLLAPSE within MERGE will therefore
not affect the asymptotic running time. Consider now a set of
n vertical bars intersected by a set of n horisontal bars. This
creates n2 squares, meaning that the running time of MERGE is
at least Ω(n2) worst case. Here, the COLLAPSE subroutine will
also not affect the running time of MERGE asymptotically.

If we look at the pseudo code for MERGE, we see that we
have a tree called Tright and a tree called Tle f t. Both of these
trees cannot be NULL, since they represent a partition of a non-
empty region. A partition of a non-empty region will lead to at
least a non-empty sub region in one of the sides. Because both
Tright and Tle f t cannot be NULL at the same time, MERGE is not
called more than twice as the size of the final tree, which is h.
This means that the number of calls to MERGE is Θ(n).

The number of constraints given to our LP SOLVER is at most
the height of our resulting tree. This is reached if no infeasibil-
ity is found before we reach the bottom. We can have fewer
constraints, but we cannot exceed the height of the tree and
hence the number of constraints is O(h). The time it takes to
run our feasibility test is then O(LP(h)). As we saw in section
3.3.3 the expected running time for our LP SOLVER was O(n)
time, meaning that in our case it would take O(h) time.

In total we end up with a running time of O(nh), but as we
will see in the optimization step of section 4.3.2, this time can
be further improved to a running time of O(n). It is done by
taking advantage of the fact that the constraints can be added
one by one, in an incremental behaviour. This ultimately leads
to a reduction of the cost, for testing the linear programming
feasibility, to a constant.
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4

I M P L E M E N TAT I O N

In this section we describe the algorithms implemented, the
subroutines needed for the algorithms along with the environ-
ment in which we implemented the algorithms. In section 4.1
we will discuss BUILD BSP, how to select a splitting line and the
structure of the BSP-tree. The algorithm is discussed in further
detail in [5], and pseudo code of our implementation can be
found in Appendix A. In section 4.2 we will go into the imple-
mentation of INC SET OP that merges a BSP-tree with a BREP.
A detailed description of this algorithm can also be found in
[5], along with pseudo code in Appendix A. Next, in section
4.3, we discuss MERGE that merges two BSP-trees. We focus
on the implementation of LP SOLVER, the usage of subroutines
along with optimisations in more detail than in the article [4].
As with the other algorithms we have written our own pseudo
code, that can be found in Appendix A. Finally in section 4.4 we
will discuss general implementation and environment details.

All code are implemented in C++11, using smart pointers.

4.1 building a bsp-tree

For building our BSP-trees we used the method from [5, p. 155].
The pseudo code can be found in Appendix A, where we as-
sume a random permutation has already been applied to the
line segments. It takes a heuristic for choosing a splitting line,
and a BREP in the form of oriented line segments to generate a
BSP-tree according to the splitting heuristic and the set of line
segments. The BREPs that we represent are solid representa-
tions, meaning that they do not have any gaps.

The orientation of the line segments can of course be repre-
sented in many ways, but our approach was to define a line
segment as two points and a normal, pointing towards the ex-
terior of our solid polygon.
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The pseudo code is quite vague in how to partition the line
segments in F with a splitting line H, but also how to even
choose the splitting line. A further discussion upon how to
chose a splitting line can be found in section 4.1.2.

4.1.1 Partitioning of Line Segments

When a splitting line has been found, we need to partition our
line segments in F into three lists; Fle f t, Fright and Fsame. We do
this by going through the line segments one by one and deter-
mining how to partition a specific line segment. This partition
leaves two cases, of which one is easy to handle and the other
needs a bit more tampering.

Because we work with oriented line segments, our splitting
line also need to have a direction. We did this by defining a line
from a normal and an origin, both being vectors. The origin
and normal are being used both to define the position of the
line, but also to define the direction because the normal again
is pointing towards the exterior of the polygon.

Case1 is where both end-points of a line segment lies entirely
on one side of the splitting line. In other words, the splitting
line does not cut the line segment. In this case we simply have
to determine on which side of the splitting line our points are.
Here we used the fact that we had a normal and an origin to
produce algorithm 2 seen in Appendix A.

Case2 is a bit more tricky, because we here have an end-point
on either side of the splitting line. We here extend our line seg-
ment to a line, and find the intersection point between those
two lines using the determinant. Depending on which point
are on which side of the splitting line, two new segments are
made. The first segment is between the start point of the line
segment, and the intersection point with the splitting line. The
second segment is between the same intersection point and the
endpoint of the line segment. The two new segments are then
put in Fle f t and Fright accordingly.

When the partitioning of the line segments are done, the rest
of the algorithm just continues recursively down in Fle f t and
Fright. Line segments that lie on the partitioning line is put in a
separate list Fsame, which is stored on the node v, where l(v) is
the partitioning line at node v.
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4.1.2 Selecting Splitting Lines

For selecting the splitting line when building a BSP-tree, we
use the method called auto partitioning. This means that the
splitting lines has to be an extension of the line segment given
by the BREP. To select what line to use, we used the idea from
2DRandomBSP(S) in [3] , where we pick a random line segment
each time. This does not give us a minimum tree, not even
expected, but tends to give a balanced tree with expected size
n + 2n ln n. A perfect balanced tree is a tree that has the mini-
mum possible maximum height for the leaf nodes. Because we
use auto partition the worst case depth, is when we have a con-
vex figure. Here everything will always be put in one side of
the tree and the other side will be either an OUT- or an IN-leaf.

An improvement here, could be to implement different heuris-
tics of what line segment to choose. It could for example be
worth finding the line segment that splits the fewest other line
segments. To greedily always pick the line segment with fewest
splits would however not be an solution to finding the optimal
size BSP-tree, since a choice earlier in the process affects the
cost later.

Another heuristic could be to find a segment that makes a
”good” split, that is a split where each side of the line contains
approximately the same number of segments. This heuristic
tends to create balanced trees when there is a possibility be-
cause each side of the recursion gets approximately the same
size subproblem. Since we are using the auto partition method,
where we simply extend the line segments into splitting lines, a
BSP-tree of a convex polygons cannot be made better by using
this heuristic. In this heuristic we also first need to find this
”good” split, which in worst case is a search through every line
each time. We have not been experimenting with this heuristic.

4.2 set operations on bsp-trees and breps

The INC SET OP is basically a complex version of BUILD BSP. It
uses many of the subroutines from BUILD BSP, such as the par-
titioning of line segments as seen in 4.1.1, but also BUILD BSP

itself. It does however also come with an extension in the form
of the In/Out test, which implementation details will be briefly
discussed in the next subsection.
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The pseudo code for INC SET OP can be found in Appendix
A.

4.2.1 In/Out Test

The implementation of the In/Out test is basically as described
in the theory. We start by finding the closest point b to our
splitting line. We then determine if b is on the boundary of
R(v) by going through the other points in the interior of R(v)
and see if they connect to b. If two connecting points exists then
both an e1 and an e2 edge must exist in R(v). Otherwise only
one edge e is found. After that we simply do the checks as in
theory, but instead of having a point p on our line, we simply
check that the whole line is on one or the other side of the edge
e.

4.3 merging of bsp-trees

In this section we describe the implementation details used in
the Improved Binary Space Partition merging. We start by talk-
ing about COLLAPSE and some implementation details related
to this subroutine. After this we discuss the implementation
details regarding the LP SOLVER.

4.3.1 Collapse

As we saw in section 3.3.2, a single run of COLLAPSE is done in
worst case linear time and the amortized time is O(1) because
we keep track of the trees seen between subsequent calls to
COLLAPSE.

In practice we did this by having three key factors. First of all
we had a count which was used as the id of unseen nodes. This
count was initialized with a 0 and when we met an unseen
node, we would set the id of that node equal to the current
count and increment the count.

Second of all we had an idMap that held a connection be-
tween a node and the id of that node.

Lastly we had the map visit, which was a map from a hashing
of a node to the actual node. This hashing of a node is a key
part of COLLAPSE since we, instead of having to compare two
whole trees, could just compare their hashing value; a 3-tuple
as seen in section 3.3.2.
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If we hash a node and look it up in the visit map, a match
will mean that a node with same splitting line and same subtree
is already found in the tree. This node can simply be returned.
The tree now only contain nodes that can be pointed to by sev-
eral other nodes, and thereby having more than one parent. We
do no longer have a binary tree, but instead a directed acyclic
graph. We can however still traverse it as usual if we start top
down. The pseudocode of COLLAPSE can be seen in Appendix
A.

4.3.2 Linear Program Solver

We’ve implemented a simple algorithm where we give a list of
constraints, to the solver (LP SOLVER) and it returns either true
or false (feasible/not-feasible).

In the case where no previous solution is given to the linear
program the solver starts by shuffling the vector of lines giving
a better expected running time. After that it will select a start-
ing line, on which a point will be selected. This point is used
as our initial solution point. Now, it iterates over the remain-
ing constraint lines and for each line li we solve the 1D linear
program, where we want to find the maximum left boundary
point le f tmax and the minimum right boundary point rightmin.
We do this by finding intersection points with all previous lines
one by one. For each intersection point between our new con-
straint li and a previous constraint defined by lj, we find out
whether it is a left boundary point or a right boundary point.
We then update le f tmax and rightmin. If le f tmax ever gets larger
than rightmin, we terminate with false. To find out whether we
have a left boundary point or a right boundary point we first
look at if our new line constraint li is vertical or not. If it is a
vertical constraint, we solve the 1D problem along the y-axis,
otherwise the x-axis. If the constraint is not vertical, we take
a point that is a little left (closer to 0 along x-axis) on our new
constraint line li. We then figure out if this new point is in the
feasible or infeasible region of the constraint hj defined by the
line lj. If that point is in the feasible area, the constraint must be
a right boundary bound and vice versa. A detailed description
of how LP SOLVER is optimised by using the previous solution
can be found in 4.3.2.

We know from subsection 3.3.3 that if no intersection point
can be found(the lines li and lj are parallel) either all points on
li are feasible, or no point is. To find out which case we are in,
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we pick an arbitrary point on li and checks if it is in the feasible
or infeasible region of hj defined by lj. If we are in the infeasible
region we simply terminate with false. Else we simply update
the current optimal point to be the arbitrary point chosen on li.

This leaves us with two early out conditions. 1) The lines
are parallel and the new point is in the infeasible area. 2) The
maximum left boundary point has a larger x/y (depending on
whether or not we have a vertical new constraint) than the min-
imum right boundary point. When all constraints have been
checked and no violation has been found, we simply return
true as in the constraints defines a feasible area.

The pseudo code for the LP SOLVER can be found in [3].

Optimisations for the Linear Program Solver

The algorithm LP SOLVER is in itself correct and optimised
enough for the purpose of this study, but we can make use
of the environment that we are in to make it faster.

Taking Advantage of Closed Polygons

A polygon has by definition a feasible region, the interior. If
LP SOLVER is run on a feasible set of lines, then it will run
in O(n2) time. This motivates us to never check for feasibil-
ity as long as the lines are from the same polygon. When
MERGE reaches a leaf in the first tree, A, it will swap it with
the second tree, B and begin traversing this tree. Because of
this, the first feasibility check is needed when B becomes a leaf,
right after the first swap. This assumption is also safe when
using the heuristic for swapping the trees when B is smaller. If
height(B) < height(A) then surely any subtree of B will also
satisfy this. Meaning that the swap of trees will only happen
when a leaf is reached or before any traversal. Were we to use
heuristics that swapped if B was larger than A, in height or to-
tal number of nodes, then the swap could occur at subtrees and
the assumption would not hold.

Figure 17 shows where the first feasibility test is run (red),
which lines are on the stack (grey) and the subsequent calls
(green) run in O(1) time.
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4.3 merging of bsp-trees

Figure 17.: Top: the traversal of nodes if no swap heuristic is
used. Bottom: the traversal of nodes if a swapping
heuristic that will swap with trees with lower height
is used.

Save Feasible Solution

The second optimisation that we implemented was to save the
solution for a linear program for the next problems. This is
safe because any subsequent calls to the solver will be with only
one new line to the previous set of lines. If we save the previous
solution then we can quickly determine if the new line is a more
strict constraint or not, and in the case where it is, find the new
solution on the new line. This means that instead of treating
each set of lines as a new problem, then we actually treat the
entire set of lines from both polygons as one big problem and
only solve it for one line at the time. This means that we instead
of using O(n) expected time at each recursive call in MERGE,
spent expected O(1) if there is a previous solution and expected
O(n) if there isn’t.

Looking at the two optimisations together, then the first call
to LP SOLVER will be when we reach a leaf in A, swap the trees
and insert the root of the new A on the stack. LP SOLVER will
spend O((h + 1)2) time if the root does not make the problem

41



implementation

infeasible, where h is the height from this leaf to the root. And
it will spend expected linear time if it is not feasible. In the
case of the problem still being feasible LP SOLVER continues
the recursion of the the new A tree and each call to LP SOLVER

will here only take expected O(1) time not depending on it
being feasible or not.

4.3.3 Reduction of Trees

It is possible that when we find an infeasible region that the sib-
ling of this infeasible is an OUT-leaf. This means that we over-
write their parent to be this OUT-leaf. If the sibling of the origi-
nal parent is also and OUT-leaf, then we will now have a node
with two children, both being an OUT-leaf. It is mentioned
how to handle this in [4] using COLLAPSE. We chose to handle
it outside of the collapsing subroutine by simply overwriting
the parent of the two OUT-leaves with an OUT-leaf. This is
correct because the line simply partitioned an OUT-region into
two, which is redundant information. The reverse case with
IN-leafs are treated in the same way.

4.4 environment

4.4.1 Data Types and Structures

When representing a BSP-tree we chose to have an implicit
structure of nodes. Each node has 3 pointers to other nodes.
One to the parent, the left and the right child. The root has a
null pointer as parent and leaves have null pointers as children.
We chose to have this implicit structure because it is easily mu-
table and when collapsing trees it enables us to destroy the bi-
nary properties of the tree, potentially having the same subtree
in several places, but all being the same place in memory. Each
node also has a type, where internal nodes all have the NODE
type and each leaf has either an IN or an OUT type. This en-
ables us to query if the current node is a leaf before accessing
any children. Finally each node has a vector of pointers to line
segments stored. These represent the line segments that are all
coincident and create the splitting line selected at this node.

Line segments are simply 2 vectors denoting the start and
end point of the line segment and a normal. The normal is cal-
culated from the start and end points so they are easily flipped
by switching the end and start point. We’ve implemented a vec-
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tor type where the usual operators, ·,+,− etc. are overwritten
by the corresponding vector operations. For each line segment
a line can be created on the form y = a · x + b. Horizontal and
vertical lines are handled by special cases.

4.4.2 Numerical Instability

Because we worked with double precision, some care had to
be taken. The lack of exact precision, would for instance some
times lead us to be unable to correctly determine if a point was
on a line or just very close to it. To work with this numerical
instability we chose to use a machine epsilon. This means that
we do not work with absolute precision, but do allow some
slack as seen in the following:

isEqual(a,b){

if(abs(a-b) < EPSILON)

return true;

}

Here the size of ε determines how much slack we allow. The
value of ε was something that we adjusted along the way, so
that errors were minimized.

4.4.3 Smart Pointers

We chose to implement smart pointers while implementing the
different algorithms. They enable us to have a pseudo garbage
collector that deletes pointers as soon as they are not used any-
more. This means that we do not have to worry about mem-
ory leaks when testing our algorithms on larger input. And
when recursing into trees, creating new, flipped line segments
at each recursion and overwriting children it is hard to keep in
mind what to delete and what not to delete. We did encounter
problems with memory leaks as we started implementing the
algorithms as we used standard C++ pointers, and switching
to smart pointers fixed that problem. This is of course only
a problem because we used C++ to implement the algorithms
and because we were not able to manually control the memory
correctly. We figured that the overhead of creating smart point-
ers outweighed the downside of running the algorithms inside
the java virtual machine. We also preferred C++ because it is a
fast, type strong language and because we are able to illustrate
scenes using OpenGL.
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4.4.4 Compiler Optimisation

When using linear programming to determine feasibility in MERGE,
a lot of the computational power is used to compute intersec-
tions between lines. As the amount of lines can get very large,
then it is important that this computation is as effective as pos-
sible. The biggest issue in this intersection computation is the
division when calculating the determinant. This can be opti-
mised to multiplying with the inverse, but instead of manually
optimising all the important computations, we use the O2 com-
piler optimisations for the C++ compiler. These optimisations
will compile any arithmetic to be as optimal as possible. We
chose to use O2 optimisation as we could sometimes see small
decreases in speed when using the O3 flag.

4.4.5 Visualisation

For illustrating our polygons we parse our line segments to 2D
vertices for OpenGL, they are drawn using the libraries GLFW
and GLEW. For debugging, we printed the trees out using a
textual printer.
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5

E X P E R I M E N T S & A N A LY S I S

In this chapter we will show our results of running experiments
on different inputs, given our implementation of INC SET OP

(BSPT× BREP→ BSPT) and MERGE(BSPT× BSPT → BSPT).
We will in this chapter analyse the running time of the algo-
rithms and the height and the size of the resulting tree.

Because of COLLAPSE, that is described in section 3.3.2, the
tree size needs to be calculated in a special way. COLLAPSE

will make a BSP-tree into a Directed Acyclic Graph (DAG), so
to count the size of the tree we go down through the tree and
count unique pointer addresses to memory. This means that if
a node v is being pointed to by several parent nodes, it will only
be counted once. By calculating the tree size in this fashion we
are also able to give the size of a normal uncollapsed BSP-tree,
as every address of a node in such a tree will be unique. We
are not adding the leaves to the size of the tree, so the size of a
tree will be the total number of unique nodes.

The height of a tree is measured by comparing all routes
from the leaves to the root and the longest route is the height
of a tree.

The running time is the time it takes to do the actual merging
operation. If it a nested operation, i.e. multiple polygons being
merged, then we measure the accumulated time of the merging
operations. We want to examine the difference between using
MERGE on two BSP-trees and INC SET OP on the same poly-
gons represented as a BSP-tree and a BREP. The time used for
building the BSP-trees is therefore not included in the running
time.

All above measurements are compared to the number of seg-
ments in the total scene, meaning in all polygons to be merged.
To calculate this we simply accumulate the size of the BREPs to
be merged. Note that two scenes with the same amount of line
segments can produce very different results, as building the
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BSP-tree and both of the algorithms for combining polygons
are dependent on the structure of the scene.

5.1 computer specifications

All the tests are run on a PC running Ubuntu 14.10. The PC
has 3.7 GiB of RAM and the processor is an Intel Core i3 CPU
M 330 @ 2.13GHz x 4.

5.2 generating test data

For testing the algorithms we chose to use simple polygons,
with the exception of parallel lines. A simple polygon is a
closed polygon with no self intersecting lines and well defined
edge between interior and exterior. A simple polygon has to
be drawn without lifting the pencil, so a donut-form is for in-
stance not allowed. Such a shape can however be represented
as a small circular polygon subtracted from a larger circular
polygon. Since our results from the two algorithms will always
be BSP-trees, which can represent a polygons with holes, we
will allow such results. The reasoning behind choosing simple
polygons as input is the equality between simple polygons and
regular sets as explained in section 3.1.2. Having only simple
polygons and using only regular set operations (∩∗,∪∗,−∗), we
ensure that the resulting tree is also a polygon. This invariant
can be broken when using ∩∗ or −∗ if the operation separates
the result into two separate simple polygons. To avoid this we
never create a scene in which this would happen.

All of the polygons created can be transformed using the
transformation matrix to give better flexibility when creating a
scene. Given a point (x, y) it can be rotated, scaled and trans-
lated according to the following matricesx

y
1

 ·
 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1


x

y
1

 ·
Sx 0 0

0 Sy 0
0 0 1


x

y
1

 ·
 1 0 0

0 1 0
∆x ∆y 1



46



5.2 generating test data

5.2.1 Convex Polygons

For creating convex polygons we had special case generation
for triangles and squares. In order to generate a random con-
vex polygon we, given a center coordinate, generated n ran-
dom points on the circle with radius r from this center point.
The random points on the circle are generated within a angu-
lar range depending on the number of points to be generated.
As an example; if there are to be four points on the circle then
each point is generated within four separated angles of 1

2 π ra-
dians. We did this in order to create a convex polygon with a
large interior. As a special case we also made a generator that
produces n vertical or horizontal lines. The first two lines will
have normals pointing away from the space between them, so
will the third and forth line and so on. This means that n

2 IN-
sections are created in every other spacing. Examples of convex
polygons as well as squares and lines are illustrated in Figure
18.

(a) (b) (c)

Figure 18.: Convex polygons where (a) is squares, (b) is a ran-
dom convex polygon and (c) is multiple horizontal
and vertical lines.

5.2.2 Random Polygons

In order to generate a random polygon we define an x-range
and an y-range within which we generate n points according to
a uniformly random distribution. Having these points we sort
them on the x-coordinate and find the maximum and minimum.
Between the maximum and minimum we draw a line and parti-
tion the points into those above the line and those below. These
two partitions are then connected, in the upper from lowest x-
coordinate to highest x-coordinate and reverse in the lower. The
two partitions are then connected using the minimum and the
maximum points. Having sorted the two partitions we ensure
that there are no overlapping lines in either partition. Since
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we connect through points that are between the partitions, then
these lines will also not intersect anything. This gives us a ran-
dom polygon. If the range is small and the number of points
to be generated is large, then the upper and lower partitions
will consists of lines that are close to vertical. Generally these
polygons contain a lot of jaggies or spikes, which we will analyse
the consequences of in section 5.4.1. To simulate these jaggies
created by random polygons we also made a polygon generator
that could generate n jaggies on the side of a rectangle. These
figures are illustrated in Figure 19.

(a) (b) (c)

Figure 19.: A random polygon is shown in (a) and simulations
of the jaggies, both few (b) and many (c).

5.2.3 Sierpinski Curve as a Polygon

We also created a generator for very dense polygons. For this
we used the Sierpinski Curve which is a fractal of a line. Given
a line with length l and an order i, then the Sierpinski algorithm
creates a fractal of this line. For each order the line is divided
in three recursively. Within these divisions the smaller lines are
turned 60 degrees alternating clockwise and counter-clockwise.
Figure 20 are squares where the edges have been made into a
Sierpinski curve of increasing order.

(a) Order 1 (b) Order 2 (c) Order 3

Figure 20.: Different orders of the Sierpinski curve.
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These polygons create n very dense regions. The problem
with these polygons is that they give rise to numerical instabili-
ties, see section 4.4.2. We handled this by adjusting the ε in our
double comparator for the scene. It was, however, not always
possible to find an ε that would not lead to errors, so the scene
would have to be changed a bit until no errors occurred. The
numerical errors arise because of the many line segments that
lie on the same splitting line.

5.3 subroutine usage

In this section we will analyse and discuss the subroutines
LP SOLVER, COLLAPSE and SWAP used by MERGE and try rea-
soning about how often they should be used. In our tests we
did not implement a heuristic for swapping. Instead we simply
set MERGE to swap the arguments or not. The reasoning be-
hind this is that it would affect the running time of MERGE as
we would have to measure the size of the tree. Alternatively we
could, at each node, have maintained the size of its subtree. We
wanted to test the scenes with swapping enabled and disabled,
so we simply ran the tests twice, swapping manually.

5.3.1 Linear Programming

In this section we will look at the impacts of using LP SOLVER

in MERGE. We will show how tree dimensions and running
time is affected by the Linear Program Solver. We will try to
justify, why we always have LP SOLVER turned on in all other
experiments. The trade-off between having it on or off is that
MERGE might miss out on some early-out terminations com-
pared to the extra time it takes to do LP SOLVER. The theory
behind the Linear Program Solver, can be found in section 3.3.3.

The Scene

The scene used for this experiment is less than 10 random sim-
ply polygons, with between 3 and 10 edges each. Each polygon
have the same origin point, meaning we could use INTERSEC-

TION without having to worry about ending up with a simple
OUT-leaf as output.
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Results

The first thing we measured was the size of the resulting tree
and the maximum height of the tree. The result of this mea-
surement is shown in figure 21.

Figure 21.: Dimensions with and without linear feasibility
solver on random input.

The results obviously shows that more edges from the input
also leads to a bigger tree. The results also show a difference
in size and height with LP SOLVER enabled or disabled. All
measure points where LP SOLVER was enabled are lower than
where LP SOLVER was disabled.

The other thing we measured was the running time of the
same experiments. Here again an obvious fact can be induced -
larger input leads to longer running time. The results also show,
as seen in figure 22, that a clear time advantage is coming from
enabling LP SOLVER. When LP SOLVER was off(blue) the time
it took to make the merge operations was drastically longer
than when it was on(red).
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Figure 22.: Running time with and without linear feasibility
solver on random input.

Analysis

Because our experiments with LP SOLVER uses random input,
it says something about the expected case. When looking at the
theory from section 3.3.3, but also the running time analysis
of MERGE in section 3.3.4 it is clear that our results are in line
with the theory. We see a clear running time optimization when
having LP SOLVER turned on. This of course comes from the
fact that the recursion can be early terminated, combined with
optimizations made to our LP solver, as seen in section 4.3.2.
That our tree also gets smaller comes from the fact that infea-
sible regions are left out of the resulting tree. An example of
this can be seen in figure 10, where LP is disabled. The region
defined by nodes BDAX is actually infeasible. With LP SOLVER

enabled the resulting tree would only consist of CDXYZ. In the
pseudo code, it again comes from the fact that R is infeasible
and we then return NULL. This leads to a smaller tree, when
we return either Tle f t or Tright.

We only ran the LP SOLVER on random data, which we have
shown here. Whether or not the LP SOLVER is still useful for
different input is not something that we have experimented
with. If a scene would have no infeasible regions then enabling
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LP SOLVER would mean that for every IN- or OUT-leaf there
would be a call to LP SOLVER. The stack of lines in each of
these calls would always produce a feasible problem and the
running time for each of these calls would be O(n2). After
these calls LP SOLVER would run in constant time as it has a
previous solution. Consider now the structure of such a scene
and let the operation be INTERSECTION. For everything to be
infeasible the two polygons would have to be exactly equal. For
the UNION operation the second polygon would have to be the
complement. We do not produce such scenes and for any other
scene, infeasible regions are to be expected.

With the results we have, we cannot justify that we should
not be using LP SOLVER. It simply has no disadvantages, and
it only gets better time wise as the input size increases. Even
though our experiment with the LP SOLVER are using random-
ized input and therefore only says something about the ex-
pected case, we will be running the remainder of our experi-
ments, where many also uses random polygons, with our LP SOLVER

turned on.

5.3.2 Collapsing

COLLAPSE is applied to the return value of any subtree. It is
important for the running time of MERGE that this subroutine
is not leading to too much of an overhead. As explained in
further detail in 3.3.2 the tree is collapsed by replacing similar
subtrees with a pointer in all but one case. This makes the tree
noticeably smaller in memory. MERGE on a collapsed tree still
has to traverse into all subtrees uniquely as the splitting lines
on the stack will be different for each subtree. In this test we
want to justify the use of collapse on each and every return
value. We are interested in the effect in just one merging step
and not several chained operations. If the running time has not
changed in a drastic way, but the trees are smaller, then there is
no reason to not use collapse in chained operations. This will
make the final output smaller in memory and there is a chance
of simply creating pointers to similar subtrees leading to even
further memory saving and also faster collapsing.

The Scene

We create two random simple polygons with 3 to 40 edges and
find the INTERSECTION of these polygons. The INTERSECTION
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exists as the polygons have the same origin point. The INTER-

SECTION of that scene is then computed with and without us-
ing collapse.

Results

First we look at the dimensions of the resulting tree. It should
be noted that the leaves are not counted in the size of a tree as
the leaves are always collapsed to only being one IN- and one
OUT-leaf.

Figure 23.: Dimensions with and without collapse on random
input.

As figure 23 shows, then the height of the tree does not
change (shown in yellow and green). The size of the tree is mea-
sured by counting the number of unique memory addresses in
the tree and this number is clearly smaller for the collapsed
trees (blue) than the trees that are not collapsed (red). We do
however, in some cases, have the same size.

The second part of this experiment was to see if COLLAPSE

made a large impact on the running time of the algorithm.
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Figure 24.: Running time with and without collapse on random
input.

Figure 24 for the running time of MERGE, shows that in most
cases MERGE with COLLAPSE enabled is slower, in some cases
the running time is the same and there are even some cases
where MERGE is faster with COLLAPSE enabled. Which case is
better does not seem to be connected to the input size. This sug-
gest that the result is more related to the structure of the input
scene more than it is to the size of the input. The clustering of
the data points into two (around 10 ms and around 1 ms) is not
something that we are able to explain. It could be something
about the resulting trees actually being equal even though the
amount of edges in the scene are different. This could come
from a lot of irrelevant edges that does not contribute to the
resulting BSP-tree.

Analysis

It makes sense that the height of the tree does not decrease as
we measure the height by traversing from the root to all leaves
and find the longest route. This number does not take into con-
sideration if the leaf is only a pointer or not. The reasoning be-
hind this way of measuring the height is that MERGE traverses
down in the same way.
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In most of the test runs, the size of the tree decrease when
we use COLLAPSE. The decrease is never extreme and always
within ∼ 20%. This is supporting the theory that it is only
smaller subtrees that are collapsed. When two or more similar
subtrees exists, then they must have the same splitting line as
the root and the same nodes as left and right children. This is
not something happening many places. Since it is not always
possible to find similar subtrees then the size of the tree should
not always decrease. But even if the size of the nodes is the
same, then the number of leaves will still have been reduced
to two unique addresses. Meaning that the memory usage will
always be smaller and at least be halved.

The running time of MERGE should not be dominated by
the running time of COLLAPSE. The running time of MERGE

is expected to run in O(n) time and COLLAPSE runs in O(n),
and when saving the visit maps for subsequent calls it will run
in amortized constant time (as seen in 3.3.2). This means that
only the overhead and the constant of the running time for COL-

LAPSE should affect the total running time of MERGE. The total
running time will only expected run in linear time, and if this
happens then clearly figure 24 states that COLLAPSE will not
affect the running time as much as the input structure and the
splitting line selection will.

So even though COLLAPSE does not give an optimal reduc-
tion of the subtree and can only be used for labeled scenes,
where lines that are split maintain the same label then the run-
ning time will not asymptotically affect the running time of
MERGE. It will in the very worst case only reduce the memory
usage by half when reducing the number of unique leaves to
two. For all coming experiments we will enable COLLAPSE.

5.3.3 Heuristics for Swapping

The result of merging two BSP-trees should always represent
the same IN-regions. However, it is not guaranteed that the
trees will be the same or even that the time taken to create
them is the same. In Lysenko et. al ([4]) it is suggested to use
the heuristic of always merging into the shortest tree. We ar-
gue that this is not always the case and one should be careful
with using this heuristic. In this section we will not show any
experiments, rather explain and analyse the consequences of
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swapping the arguments in MERGE.

Consider as an example figure 25, where a chain of merg-
ing operations have already happened. Three convex polygons
have been merged using UNION to produce the binary space
partitioning illustrated by the five IN-regions denoted 1 to 5

and the ten OUT-regions, all labeled OUT. Given a new BSP-
tree, the blue triangle, we now want to UNION the grey polygon
with this.

Figure 25.: Regions in two BSP-trees that are to be merged.

Firstly consider the first argument to be the grey polygon.
This is against the heuristic suggested in [4]. MERGE will want
to recurse to the OUT-regions of the grey polygon and poten-
tially insert new IN-regions of the blue polygon. As the illus-
tration shows, only one OUT-region intersects the IN-region
shown in blue. All other OUT-regions are non-intersecting with
this IN-region. When merging polygons, four scenarios are pos-
sible:
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1. Two IN-regions overlap

2. Two OUT-regions overlap

3. An A.IN-region overlaps a B.OUT-region

4. An A.OUT-region overlaps a B.IN-region

Given UNION we are not interested in A’s IN-regions. When
reaching such a leaf in the tree, MERGE simply returns this leaf
as a result. If the leaf in A is an OUT-region we will need to
recurse on the second tree to either report infeasibility, if the
two regions are non-intersecting, or to perform a leaf operation.
The worst case, in running time, is when we perform leaf op-
erations, because it means a full traversal of one tree and then
the other. The best case is when we do not have to traverse the
second tree. Using LP SOLVER it is possible that the traversal
of the second tree is cut short.

Now consider again figure 25. We will have to do leaf oper-
ations for all the intersecting OUT-regions. But the only place
where we will do a leaf operation between an OUT-region in
A and an IN-region in B is the upper right OUT-region. None
of the other OUT-regions of A intersects the blue triangle. Did
we swap the arguments, then consider the OUT-region created
by the bottom line of the triangle. In this leaf we would have
to recurse down the BSP-tree of the grey polygon and do leaf
operations for each of the five IN-regions.

So to summarise, having the grey polygon as the first argu-
ment means one leaf operation between an OUT-region in A
and an IN-region in B. All other leaf operations are between two
OUT-regions. The overlapping OUT-regions will not change
when swapping the two BSP-trees, but the number of IN-regions
inside an OUT-region is now five instead of one. In general ta-
ble 2 shows the scenarios when merging BSP-trees.
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A B
UNION

IN IN
A is IN, so no recursion
in B is needed

IN OUT
A is IN, so no recursion
in B is needed

OUT OUT

MERGE in B
until infeasebility is reached
or the leaf operation
returns OUT

OUT IN
This will never be infeasible,
so the recursion continues in B
until the leaf operation

INTERSECTION

IN IN
This will never be infeasible,
so the recursion continues in B
until the leaf operation

IN OUT
MERGE recurses in B
until infeasibility is reached
or the leaf operation returns OUT

OUT OUT
A is OUT, so no recursion
in B is needed

OUT IN
A is OUT, so no recursion
in B is needed

Table 2.: Scenarios when merging.

The table does not show the total number of IN or OUT
leaves, but rather the consequence of two regions overlapping.
Looking again at figure 25 then having the grey polygon as A
means that there are five IN-OUT overlaps and one OUT-IN
overlap. Swapping the polygons will also swap these cases.
The table tells us that swapping can have a more drastic effect
on the running time when using UNION as a best case scenario
becomes a worst case scenario and vice versa. For INTERSEC-

TION SWAP will swap a best case scenario for a scenario where
early termination is possible.

5.4 special case studies

In this section we experiment with how MERGE and INC SET OP

handles special cases. These special cases produce very differ-
ent results for the size of the resulting trees as well as having a
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large impact on the running time of the algorithms. In the first
test we examine how MERGE can sometimes produce a much
larger tree than the tree created from using INC SET OP. In the
second test we see how MERGE is much faster at reporting an
empty region, than INC SET OP is.

5.4.1 Storing Redundant Line Segments

In our testing and development of the algorithms, we found
that often the size of the resulting tree coming from MERGE

would be much larger than the tree which INC SET OP pro-
duced. This would sometimes happen even if the region they
described was fairly simple and sometimes even convex. This
means that MERGE has a major disadvantage at certain input
types. If it happens in a chain of merge operations, then the
resulting tree will become larger for each merge, and the next
recursion will have to traverse more nodes. We found that this
occurred when one or more polygons in the scene had many
jaggies or spikes.

The Scene

To give a better understanding of what happens in these cases
we produced simple scenes with a convex polygon and a jagged
polygon as seen in figure 26a and figure 26b. For both of these
scenes we found the INTERSECTION, UNION and SUBTRAC-

TION (where the convex polygon was the first argument).

(a) An image of the scene with jag-
gies outside the convex figure.
The green lines indicate direc-
tion of normals (pointing to-
wards exterior)

(b) An image of the scene with jag-
gies inside the convex figure.
The green lines indicate direc-
tion of normals (pointing to-
wards exterior)

Figure 26.
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Results

Running the two scenes with all three operations gave us six
different output trees for each algorithm. The table shows us
that the main difference in size occurs when the jaggies are
outward pointing and we are calculating the INTERSECTION,
when the jaggies point inward and we take the UNION and fi-
nally when the jaggies are outward and we subtract the jagged
polygon from the convex polygon. There is also a difference in
size in the other three cases, albeit smaller.

Size Height Size Height
INTERSECTION Jagged Rev. Jagged
Inc. Op. 7 8 Inc. Op. 10 10

Merge 9 10 Merge 12 10

UNION

Inc. Op. 10 9 Inc. Op. 7 6

Merge 11 10 Merge 11 7

SUBTRACTION

Inc. Op. 7 8 Inc. Op. 10 10

Merge 9 10 Merge 12 10

Table 3.: Dimensions for trees built.

Analysis

To explain what happens in the above scenes consider Figure
27. The partitioning lines for the jagged polygon are shown as
dotted lines and the different regions are denoted either IN or
OUT. The darker area is the INTERSECTION between the two
polygons.
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Figure 27.: Figure showing the underlying regions of the jagged
figure, highlighting the problem with MERGE com-
bined with jagged.

Notice in the figure above that the IN-regions of the jagged
polygon all intersect the single IN-region of the convex polygon.
This in short means that when running MERGE, it has to merge
this IN-region with each of the four from the jagged polygon.
This creates four new IN-regions denoted by the bolder black
lines in Figure 27. Note that it does not cut the line segments.
The resulting tree of this operation is therefore multiple sub
trees inserted in the tree for the convex polygon - one for each
new IN-region. The reason that this problem does not occur
in INC SET OP is that it does not consider the jagged polygon
as a binary space partition, but as a BREP. Because of this it is
able to cut the new lines from the jagged polygon and only rep-
resent the new IN-region using only the original tree and the
three extra lines needed to close off the darker IN-region. The
exact same applies when we have the reversed scene, where
the jaggies are inside the convex polygon and UNION is used
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as the operation. Here INC SET OP is able to represent a much
smaller tree, where MERGE also represents the extra redundant
in-regions.

To further show this problem we produced a scene where the
jagged polygon had many jaggies and therefore would produce
a very large number of IN-regions. An example of such a seen
can be seen in 28.

Figure 28.: An image of the scene with 200 jaggies outside the
convex figure. The green lines indicate direction of
normals (pointing towards exterior).

We increased the number of jaggies while using INTERSEC-

TION and UNION of the polygons. According to table 3 we
should not see a difference in UNION, but the difference in IN-

TERSECTION should grow as the number of jaggies does.
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Figure 29.: Dimensions with increasing number of jaggies us-
ing INTERSECTION.

The graph for the INTERSECTION supports the above state-
ments and the results produced from the small scenes. The size
of the merged tree (yellow) grows as the number of jaggies in-
creases, whereas the size of the old tree stays the same. The
height of the two trees stays the same. The reason for the grow-
ing size is because of the many new IN-regions. The reason
that the height doesn’t change can be found in the structure
of this new tree. Imagine, like in figure 27, that the overlap-
ping region is split up into many small convex regions. When
inserting all these regions, they must all be inserted in the sub-
tree that is the left child of the node with the line of the convex
polygon that is intersecting the jagged tree. This is because they
are all on the opposite side of the normal for this line. When
selecting the root of this tree there is a high probability that it
will be close to the middle of the intersecting region, splitting
all the new IN-regions in half. And as this probability contin-
ues a very balanced tree is produced to describe the IN-regions.

Consider again figure 27. If we are not interested in find-
ing the INTERSECTION, but rather the UNION of the two poly-
gons, then this region cannot be expressed as only one region.
INC SET OP also has to include the jaggies, as it will have to
build a new subtree for each of these. This is also what we see
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when looking at the results of this in figure 30. Here the dimen-
sions of the two polygons are close to being the same for equal
input.

Figure 30.: Dimensions with increasing number of jaggies us-
ing UNION.

Having very jagged polygons can be very damaging on the
size of the tree produced by MERGE, but this can also happen
for INC SET OP. It all depends on the structure of the input.
The problem being that, when it happens to only MERGE it
is because MERGE includes a lot of redundant information to
express a simple IN-region. What should be a single IN-region
is actually split into many IN-regions and this can produce even
more problems with chained operations. Here each extra IN-
or OUT-leaf means that the algorithm has to create recursive
calls all the way down to even more leaves. Depending on the
operation, this could mean that it has to merge with the other
tree for each IN leaf. This is not something that we found a
way to solve and we believe it to be one of the reasons for why
MERGE can be slower than INC SET OP.

5.4.2 Empty Intersection

In this section we will show a special strong side about MERGE,
which shows in practice. We show how MERGE can compute
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the resulting tree in O(n) time with a very small constant, where
INC SET OP also does it in O(n) time, but with a much larger
constant.

The Scene

The scene consist of one large convex polygon(The shape does
not matter as long as it covers all internal shapes entirely), and
n smaller polygons inside this large convex polygon. The n
smaller polygons are distributed randomly inside a square that
is contained within the large convex polygon. The scene can be
seen in figure 31.

Figure 31.: Empty INTERSECTION scene.

The idea is now that we use INTERSECTION on this scene,
starting with the large convex polygon and one of the smaller
polygons. We then use the resulting BSP-tree from this opera-
tion and make another INTERSECTION on the next small poly-
gon. As we can see in the scene image, not all polygons share
a region. This means that we ultimately end up with an OUT-
leaf, because we end up intersecting two disjoint polygons, rep-
resented with their BSP-trees. When we first have an OUT-leaf
intersecting with anything, we always end up with an OUT-leaf
again.

65



experiments & analysis

Results

The results of running this experiments with increasing n poly-
gons inside the convex polygon can be seen in figure 32. The fig-
ure shows an logarithmic scale, with a linear regression made
to INC SET OP.

Figure 32.: Empty INTERSECTION running time, with increas-
ing number of segments. Data is presented on a
logarithmic scale.

As we can see in the graph, MERGE is very efficient compared
to INC SET OP. MERGE is already from the very beginning very
fast compared to INC SET OP. As we increase the input size to
over 1000 line segments, the difference really becomes apparent.
INC SET OP continues in its linear fashion and so does MERGE,
but MERGE has a much lower constant resulting in a drastic
performance boost in practice.

Analysis

To understand what makes MERGE so fast, we need to look at
the second base case of MERGE seen in section 3.3.1. When
MERGE intersects two disjoint polygons, it will end up with an
OUT-leaf. When we then next time have the OUT-leaf as our
first argument to MERGE, the second base case is hit. Because
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A is a leaf, we swap our arguments A and B. After that we
check the following:

• The operator is INTERSECTION and B is an OUT-leaf.

Because we hit this case, we simply end up returning an OUT-
leaf, without having to look at the other tree at all. This leads to
very fast constant work for each MERGE call, leading to the re-
sulting linear time for all INTERSECTION operations with very
small constant.

INC SET OP also has constant work at each operation, but
here it needs to do a little more work. The first operation be-
tween the large polygon and a small polygon goes well, result-
ing in a BSP-tree that is larger than the original BSP-tree repre-
senting the large polygon. However when we reach a BREP that
is disjoint from the polygon from last iteration, we will fail ev-
ery In/Out test, resulting in a smaller tree only containing out
leaves. When it then next time runs down, it will always just
return out leaves, when meeting out leaves and always failing
the In/Out test. The In/Out test is explained in section 3.2.4.
As we can see in table 4, the first table shows the resulting trees
after one operation. After more than one operation the result-
ing tree actually stays constant in size and depth. This sup-
ports the claim that each operation is done in constant time for
both MERGE and INC SET OP after that point. The efficiency
of MERGE comes from the fact that each of these constant time
operations, in practice, is faster.

Inc. Op. Merge
Size 8 0

Depth 9 1

Inc. Op. Merge
Size 52 44

Depth 18 18

Table 4.: Tree size after (top) one iteration and (bottom) itera-
tions thereafter.

5.5 data representation experiments

In the following subsections we look at different types of scenes
and the results coming from the different ways of representing
the data. At first we will look at a very dense scene, where
we have a very large polygon made from a Sierpinski fractal.
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We then make operations on smaller polygons. Next a scene
with only two polygons of increasing size is investigated. We
measure the running time of the two algorithms, MERGE and
INC SET OP, as the size of the two polygons increase. Lastly we
look at the CSG way of building a scene from simple elements.
In this scene a lot of small polygons will form a more complex
polygon using nested UNION operations.

5.5.1 Dense Scene

As already mentioned, this experiment with few operations. A
large and very dense polygon is used as the first BSP-tree so
that the scene will already be split into many small cells.

The Scene

The scene consist of a large polygon made from a septagon
with a Sierpinski arrowhead curve of order 5 on each edge.
This polygon is a large closed polygon which consists of many
small regions. The two small polygons are either convex or
simple polygons each with between 10 and 20 edges. In this ex-
periment we use INTERSECTION and UNION as operations. The
Sierpinski is always the BSP-tree argument given to INC SET OP.
In MERGE we run the tests with and without swapping the ar-
guments.

An example of the scene can be seen in figure 33.

Results

The results of running the experiment can be found in table 5.
MERGE always produces a smaller tree, when running INTER-

SECTION, but INC SET OP is almost always faster than merging.
It is also always the case that MERGE is faster when swapping
the arguments, but UNION with MERGE produces smaller trees
when not swapping the arguments.

Analysis

Because both INC SET OP and MERGE has a BSP-tree represen-
tation of the Sierpinski polygon, both algorithms will have prob-
lems with many small regions as described in section 5.4.1. This
means that the size of the trees should be at about the same size
in the INTERSECTION case, but because of COLLAPSE and the
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Using Swap
INTERSECTION simple + convex 2 simple 2 convex
edges 1741 1735 1736

Inc. Op. size 135 89.67 543.67

height 25 22.67 21.33

time 2.33 18.33 2.33

Merge size 63.33 31.33 475

height 38 12.33 36.33

time 14.33 4.33 105

UNION

edges 1740 1739 1738

Inc. Op. size 1292 1587 1190

height 22 25 23

time 3 10.67 2.33

Merge size 1322 1806 1208

height 29 30 31

time 164 168.67 115.67

Not using Swap
INTERSECTION simple + convex 2 simple 2 convex
edges 1734 1733 1736

Inc. Op. size 206.67 170.33 547.67

height 22.33 22 23

time 1.33 2.67 1.33

Merge size 143.67 154.33 529

height 21.33 26 25.33

time 108 113.67 313.33

UNION

edges 1733 1735 1736

Inc. Op. size 1249 1607 1151

height 24 25 22

time 18 1.33 2

Merge size 1175 1613 1112

height 26 28 24

time 275.33 238 276

Table 5.: Results from merging larger polygons
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Figure 33.: Dense scene

linear program solver in MERGE, this algorithm will produce
smaller trees as seen in the results.

Because of the many regions, INC SET OP will split the other
polygons up in constant amount of line segments for each cell,
which it can then build in constant time. This is what makes
INC SET OP run in linear time and even faster than MERGE

because it has a smaller constant.

In this particular scene it is valuable to swap the input pa-
rameters for MERGE. It affects both the running time, but also
the tree size when inserting the large Sierpinski polygon into
the smaller polygons. The reason for this, must be that we get a
better structure of the scene, with better overlapping regions as
described in table 2. If we also choose to swap the arguments
for INC SET OP, then it would be very slow and actually slower
than MERGE. INC SET OP would have to build the entire Sier-
pinski tree (UNION case) or at least a part of it(INTERSECTION)
which contains enough line segments for the building process
to not take constant time.
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5.5.2 Two Random Polygons

In this experiment we are looking at two random polygons of
increasing size. We are here focusing on the running time of
the two algorithms.

The Scene

In the scene we have two random polygons of increasing size.
The polygons are created in the fashion described in section
5.2.2. The operation used was INTERSECTION. As the amount
of edges for each polygon is increased, so is the bounding box
for the polygon in order to lessen the amount of pseudo parallel
lines.

Results

The result of running this experiment with increasing size ran-
dom polygons can be found in figure 34.

Figure 34.: Graph showing running time of running both algo-
rithms with two random polygons of increasing size
with INTERSECTION.

Both algorithms here run in a linear time, with MERGE hav-
ing the biggest constant and thereby being the slower one.
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Analysis

We have many small regions, because of the extremely thin tri-
angles of the random polygons and this is something INC SET OP

can benefit from. This will spread the line segments out into
many regions, making a single region containing constant line
segments. This will make INC SET OP run in constant time, an
as we can see even faster than MERGE. This constant can come
from mainly the simpleness of INC SET OP. In INC SET OP we
basically just have an extension to BUILD BSP with an In/Out
test. MERGE has a lot more subroutines which, with a subopti-
mal implementation, could lead to a larger constant.

5.5.3 Modular Scene

In the experiments in this section, we look at many operations,
but with small polygons. We examine the creation of a complex
polygon by using many smaller polygons. We also look at an-
other scene where we have one large convex polygon that has
few edges where we subtract a lot of small polygons, creating a
resulting polygon like the original big polygon, just with many
holes in it. We do not look at INTERSECTION here, because it
is hard to create a scene where the many polygons will all have
an intersecting area. Because SUBTRACTION is implemented as
complementing the second tree and then INTERSECTION, one
could argue that the SUBTRACTION scene also represents IN-

TERSECTION. We also investigate how swapping of the argu-
ments can affect size and running time of MERGE.

The Scene

The first scene that we have is the scene where we UNION many
small polygons. We start by having one simply polygon down
in the left corner of our scene, and then we simply add a new
polygon by creating a new random simple polygon and then
translating it to its new position. The new position is chosen so
it overlaps the top right corner of the current rightmost polygon.
In this way we create a closed chain of polygons perfect for
UNION.

An example of the scene can be seen in figure 35.
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Figure 35.: Modular scene with UNION

The second scene we have is the scene used with SUBTRAC-

TION. In this scene we have one large convex polygon, and an
increasing number of smaller polygons. These polygons are
places randomly around the scene. If a polygon is places com-
pletely outside of the large convex polygon, then it simply wont
contribute to an altering of the resulting polygon.

However, some care does need to be exercised when placing
these random polygons. The placement of the polygons could
lead to a disjoint resulting polygon, because a number of poly-
gons could cut chunks of the original convex polygon away. To
avoid this issue, we made the convex polygon large, the smaller
polygons small and kept the amount of small polygons within
some limit. We also repeatedly manually looked at the scene to
ensure that we had a valid scene.

An example of the modular scene with SUBTRACTION can
be seen in figure 36.
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Figure 36.: Modular scene with SUBTRACTION.

Results

We ran the two experiments with increasing sizes of the the
scene by increasing the amount of polygons. We also ran the
experiments with and without swapping the input arguments
to MERGE. In the UNION scene this mean that we either inserted
a new small polygon into the chain or reverse. Not that the
swapping of arguments in merge takes place after A −∗ B is
transformed to A ∩∗ B meaning that swapping the arguments
does not change the outcome of the algorithm.

The results of running these experiments can be found in
table 6.
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SUBTRACTION Using swap
Edges 646 979 1309

Inc. Op. size 541.33 1091 1404.67

height 32.33 34 35.67

time 47.33 81.33 109

Merge size 2572 5094 7613

height 40.33 42.67 48

time 6338.33 20313.7 42755.7
UNION

Edges 666 967 1300

Inc. Op. size 702.33 1224.67 1598.67

height 87.33 114.67 157.33

time 226 421 730.33

Merge size 1275.67 1777.33 2502.67

height 55.67 47.67 51.67

time 3602 8478.33 15883.7
SUBTRACTION Not using swap
Edges 646 979 1309

Inc. Op. size 544.33 1096.67 1402

height 31.67 34.67 35.33

time 57.33 96.33 115

Merge size 586.67 1133.67 1478.33

height 35 40.67 38.67

time 2732 7498 13548.3
UNION

Edges 666 967 1300

Inc. Op. size 711.67 1216.33 1621

height 88.67 115.33 150

time 218.33 521 715.67

Merge size 836.67 1138.67 1566.67

height 54.33 60.33 96.67

time 3695.67 7753 15050.3

Table 6.: Results from merging many smaller polygons.

The results from this experiment show that swapping the in-
put arguments can have a big effect on both the running time,
but also the resulting tree size when using MERGE. For the SUB-

TRACTION scene it affects both the running time and the size
of the tree. In the UNION scene only the tree size is affected.
The results also show that, when not using swap, MERGE pro-
duces a resulting tree at almost the same size as INC SET OP.
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The results does however also show that INC SET OP is always
faster than MERGE at running these experiments.

Analysis

Swapping the arguments in the SUBTRACTION case is clearly
not beneficial. The explanation can be found in table 2. When
we subtract a small polygon it actually is the polygon with in-
verse normals intersected with the larger polygon. This means
that the small polygon represents IN-regions in the entire scene
except inside the polygon. In the SUBTRACTION scene the
IN-region INTERSECTION with OUT-regions are all the cases
where other holes exists in the complementary exterior of the
current hole. In all these overlapping regions the algorithm
either terminates from infeasibility or continues to a leaf op-
eration. If we however swap the input arguments we get the
reversed case. Here we will have a lot of OUT-regions intersect-
ing the big IN-regions from the new polygon. This is the best
case when the operation is INTERSECTION.

As for the UNION scene; when not swapping we insert the
IN-region of the small polygon a few places in the BSP-tree of
the larger chained polygon. If we swap we have to insert the
IN-regions of the large chained polygon that overlaps the OUT
leaves of the new small polygon into these OUT-leaves. That the
running time is about the same when swapping and not swap-
ping can come from the fact that there might be around the
same amount of IN-regions overlapping OUT-regions, swapped
or not. So the small polygon’s OUT-regions overlap about as
many IN-regions from the chained polygon as the small poly-
gons one IN-region overlaps with the chained polygons OUT-
regions.

5.6 size and operations experiments

In this section we examine how the algorithms behave on a
random number of randomly sized polygons as well as a large
number of horizontal and vertical line segments. Note that our
random polygons are made using our random generator and
that as the size of such a polygon increases, so does the proba-
bility of having almost vertical lines and very narrow triangles
as IN-cells. In the first experiment we compare the algorithms
on n random polygons and compare the running time. The
next experiment will be merging an increasing number of ran-
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domly sized squares and finally we examine how INC SET OP

behaves when having to build all of a worst case BREP.

5.6.1 Random Number of Operations and Random Size

This test is a test of how the algorithms behave on increasingly
large random input data. We want to examine how this af-
fects the constant in the asymptotically linear running time of
MERGE, with both SWAP enabled and disabled. Another reason
for this test is to see if the running time of INC SET OP remains
linear on random data.

The Scene

We create the same scene for both the INTERSECTION and UNION

operations. With the same origin n polygons are generated with
a random number of edges. As each of these polygons have the
same origin and they all have the same bound on their size,
then an INTERSECTION will with high probability exist. For
UNION they will not be disjoint in the space, so it makes sense
to UNION them. Below are two examples of how the scenes
could look for these tests. As for SUBTRACTION we simply
generate a large convex polygon and many small polygons uni-
formly distributed in the space. This has the potential to create
illegal output, a separated polygon, so we keep the number of
small polygons low, so that it will not happen.

Figure 37.: A scene of size 387 where INTERSECTION is ap-
plied.
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Notice how it, in the above example, is hard to see any com-
mon area for the polygons. But even if it does not exist, then it
is still valid input as the result off all operations would be an
OUT-leaf.

Figure 38.: A scene of size 103 where UNION is applied.

Results

We measured both the running time of the algorithms as well
as the dimensions of the resulting tree. These results can be
seen in figure 39, 40 and 41.

Figure 39.: Running time
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Figure 40.: Size

Figure 41.: Height

The running time for MERGE is clearly linear with and with-
out swapping the arguments. The running time for INC SET OP

is low, compared to MERGE and it seems to be running in lin-
ear time as well. The size of the tree is decreasing with more
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edges while the height of the MERGE result grows linearly in
the amount of lines. The results for when running with UNION

can be found in figure 42, 43 and 44.

Figure 42.: Running time

Figure 43.: Size
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Figure 44.: Height

The running time for MERGE when the operation is UNION

seems to be faster when swapping the arguments. All running
times, like in the INTERSECTION case, looks to be linear. There
is a noticeable increase in running time for the last measure-
ment, which is visible in both algorithms. As the tests are run
on the same input, then the structure of the scene could simply
result in a larger running time in general.

The results for when the operation is SUBTRACTION can be
found in Appendix B.

Analysis

Looking at the running time graph for the INTERSECTION case,
it is clear that all algorithms run in linear time. The difference in
running time between swapping and not is constant and the ex-
tra time spent could be because of MERGE not having as many
early termination instances in the feasibility case. According to
the jagged special case, INC SET OP should perform much bet-
ter in size and running time, if it can build each IN-region in
constant time. This is especially visible in the height of the tree,
which doesn’t increase as we insert more and more random
polygons into the scene.

When finding the UNION of the random polygons it seems
that swapping makes the MERGE slower, which is probably
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caused by a better ratio of best to worst cases than when swap-
ping - see the section about swapping 5.3.3. Again the jagged
scenario causes the tress to become bigger for MERGE than
those of INC SET OP. It is interesting to note that the size of the
tree when swapping is much larger than when not swapping,
which we believe to be because the algorithm, when swapping,
has to insert the many jaggies outside of the smaller random
polygon, whereas when not swapping the number of regions
that are actually outside the bigger polygon will be smaller if
not non existing.

5.6.2 Parallel Lines in Form of Many Squares

In this section we will experiment with many parallel lines. The
lines will be inserted only one square at the time, so the input
for any operation will be the previous result and a square.

The Scene

To create the scenes for the UNION operation, we first create
a big square and then, with some offset, n randomly sized
squares. An example can be seen in Figure 45. This is also
the scene used for SUBTRACTION.

Figure 45.: UNION Square Scene.
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For the INTERSECTION we created a large containing square
as well, but we did not offset the n-squares inside. This means
that the intersection will be the smallest square visible in the
lower left corner in Figure 46.

Figure 46.: INTERSECTION square scene.

Results

The results for the INTERSECTION of squares can be found in
Figure 47. The tendency line for MERGE is, when not swap-
ping, linear. But when swapping the polygons the tendency
line resembles a power function more.

In Figure 48 are the results from UNION. It is clear that here,
MERGE is linear both with and without swapping. The constant
factor is, however, much lower when not swapping.
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Figure 47.: Running time of intersecting squares scene with in-
creasing edges. Shown with and without swapping
the inputs

Figure 48.: Running time of using UNION on the squares scene
with increasing edges. Shown with and without
swapping the inputs.
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5.6 size and operations experiments

The results for SUBTRACTION are similar to those of UNION

and can be found in Appendix B.

Analysis

The first thing to notice in the INTERSECTION scene is the dif-
ference in running time for MERGE. Swapping or not makes
the difference between O(n) and O(n2) running time. We ex-
pect that the reason for the O(n2) running time is that when
having an intersection of squares, then the BSP-tree for this
scene will resemble a grid. Having the grid as the right argu-
ment in an INTERSECTION means that MERGE has to do leaf
operations for each of the IN-regions in the pseudo grid that
are within the IN-region of the new square. Not having the
BSP-trees swapped for the operations has the effect that only
the one IN-region in the pseudo grid performs leaf operations
with the one IN-region in the new square. This is in coherence
with our explanation of the dangers of swapping in 5.3.3 and
the theory for the worst case running time for MERGE. In this
scene INC SET OP seems to be running in linear time. This is
because the only time INC SET OP will build anything is when
the new square is inserted within the current intersection. In
any other case the INC SET OP will cut the new square out and
not spend any time building.

In the scene where we wish to find the UNION of the many
squares, swapping also yields a slower running time. Unlike
the INTERSECTION scene it does not result in a squared run-
ning time. To explain this, consider having performed n op-
erations and a new square is to be inserted. If this square is
the first argument, meaning that we have swapped, then for
each of it’s OUT-regions it will have to search for IN-regions in
the more complex tree. This tree does not resemble a grid like
in the INTERSECTION case, as only convex squares are added
on the border of the current UNION of polygons, which is why
we don’t have worst case running time. There are still a lot
of unnecessary leaf operations between OUT-regions and IN-
regions. If we had not swapped these would be overlapping as
IN-regions and OUT-regions which requires no further recur-
sion in the second tree.
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5.6.3 Operations on Parallel Lines

In these experiments we wanted to test the behavior of the al-
gorithms when the input was not restricted to be polygons, but
simply vertical or horizontal lines. In the first test the BREPs
are n vertical lines and n horizontal lines. In the second test
we created a convex polygon that surrounds n

2 vertical and n
2

horizontal lines.

The Scene

The first scene (figure 49) was generated simply by creating the
lines. Strictly speaking none of the BREPs are polygons, but the
space is still binary partitioned. The green lines in the scene are
the normals of the line and each spacing between lines where
there is an orthogonal green line is an OUT-region.

Figure 49.: n vertical lines intersected with n horizontal lines.

The second scene was the same as above but the lines were
put in the same BREP and then a convex polygon was created
as a bounding polygon for the intersections of the lines. This
scene is only run on INC SET OP.

86



5.6 size and operations experiments

Figure 50.: A convex polygon intersected with vertical lines and
horizontal lines.

Results

In figure 51 the running time of the first scene is displayed.
MERGE runs in O(n2) time and INC SET OP runs in linear time.
There seems to be a bump in the graph around input sizes of
1000 line segment, but as the rest of the point seem to lie almost
perfectly on the line, then we assume that these outlier points
must be measurement uncertainty or the computer having to
do extra jobs.

In figure 52 and 53 two very different results are shown. Both
are for the second scene, but in the first we, as in all previous
tests, used auto partitioning when selecting the splitting line
in BUILD BSP. In the second graph we simply selected the line
from the head of the list of line segments. We interpret the
running times as being O(n2) and O(n3) respectively.
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Figure 51.: Running time of line scene with increasing edges.
Shown with and without swapping the inputs.

Figure 52.: Running time when using auto partition.
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Figure 53.: Running time when using naive splitting line selec-
tion.

Analysis

The scene in figure 49 is the exact case described as worst case
scenario in [4] for MERGE, where the worst case running time
is at least Ω(n2). So it makes sense that the running time is
O(n2). As for INC SET OP, it seems to be running in linear time.
Leaving out MERGE and running this scene for much larger
input also suggests a linear running time for INC SET OP, see
figure 56 in Appendix B. This suggests that for each of the n
horizontal bars created, it builds the intersecting vertical bars
in constant time. Figure 52 and 53 does however show that
INC SET OP not always runs in linear time. If the scene forces
it to build more than a constant amount of lines in a leaf, then
the running time is bound by this building time. We know that
BUILD BSP spends O(n · #total cuts) time when building a BSP-
tree. In these cases the total number of cuts is dependent on the
selection of splitting lines. If the line segments, in figure 50, are
selected in a bad way, then n2 cuts will be created giving a total
running time of O(n3) for the building process alone. If the line
segments however are chosen in random order, only expected
n cuts are made and thereby O(n2) running time, explained the
results from figure 52 and 53.
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C O N C L U S I O N

In this thesis we found that it is possible for INC SET OP to
run in linear time. With our implementations it is even faster
than MERGE, if the input structure allows it. During our exper-
iments we found that the running time of INC SET OP is very
input dependent. This is because it basically is an extension of
BUILD BSP. This, in turn, is also what gives it the potential to be
faster than MERGE. MERGE is less dependent on the structure
of the scene as the partitioning lines will not split more lines.
But if a BSP-tree is built on a bad scene, MERGE will still suffer.
A case of this is when the BSP-tree resembles a grid or when
the scene forces MERGE to include redundant lines, which it
cannot handle and therefore create larger trees. INC SET OP is
better at cutting away these redundant lines which results in
smaller trees. If the BSP-tree splits the BREP into small sections
where only a constant amount are to be included in the result-
ing BSP-tree, then INC SET OP will run very fast. If all lines are
relevant then MERGE will create the smallest trees of the two al-
gorithms. In our tests we did not include the huge decrease in
size from collapsing all leaves, but this is of course something
that should be taken into account when looking at MERGE as a
whole.

We can also conclude that INC SET OP is not always linear.
We showed that if the worst case scenario for BUILD BSP is put
inside a convex polygon, then the running time for INC SET OP

was bounded by this running time. This suggests that if the
building process of INC SET OP is anything but constant in
each leaf or that it is linear in a constant amount of leaves,
then it is much slower than the expected O(n) running time
of MERGE.

Our experiments suggest that if you have a BREP of a poly-
gon then it can be useful to store that information. In almost all
of our cases INC SET OP was superior to MERGE. The MERGE

algorithm does however run in linear time and can produce
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smaller trees than INC SET OP if no redundant lines are repre-
sented in the resulting BSP-tree. If the only information that
exists is BSP-trees, making INC SET OP impossible to use, then
MERGE is a competent algorithm as it runs in linear time and
uses subroutines that will always make the resulting tree smaller,
at least in the number of leaves.

6.1 future work

A clear improvement to the work done in this thesis would
be to also implement the work in higher dimensions than two.
Here BSP-tree representations are important to have, as a lot
of graphical computations are made on these instead of on the
actual scene. It would be exciting to see if the INC SET OP

could outperform MERGE in in higher dimensions as well.
Further work would also be trying out other Linear Program-

ming algorithms than the one we used. Since we used a basic
algorithm, a more sophisticated LP algorithm implementation
could lead to a performance boost in practice. An investigation
into whether or not it could be possible to reduce the size of
trees by eliminating the redundant lines stored by MERGE in
the scene containing jaggies, would also be interesting.

In general it would be interesting to see just how much we
could improve the results by optimizing the code in MERGE. It
could be the case that smart pointers was not the best way to
deal with memory and that a more manual pointer handling
would be more efficient. In our work we did not focus heavily
on optimizing our code so a decrease in running time for all
the algorithms could be found.
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A
A P P E N D I X A : A L G O R I T H M S

Algorithm 1 BUILD BSP(Set-of-linesegments F)
Data: Set-of-linesegments F
Result: BspNode root
choose splitting line H that embeds a line segment of F
BspNode node = new BspNode(H)
partition line segments of F with H into Fright, Fle f t, Fsame
node.addSegment(Fsame)
if Fle f t.isEmpty() then

node.left = ”in”
else

node.left = BUILD BSP(Fle f t)
end
if Fright.isEmpty() then

node.right = ”out”
else

node.right = BUILD BSP(Fright)
end
return node;

Algorithm 2 getDirectionOfPoint(Point p)
Data: Point p
Result: int (< 0 left ‖ > 0 right ‖ 0 on line)
double m = normal.getX()
double n = normal.getY()

double a = origin.getX()
double b = origin.getY()

double x = point.getX()
double y = point.getY()

return m · (x− a) + n · (y− b)

97



appendix a : algorithms

Algorithm 3 INC SET OP(Operation OP ; BspNode v ; Set-of-
linesegments B)
Data: Operation OP ; BspNode v ; Set-of-linesegments B
Result: BspNode mergedTree
if v is a leaf then

if OP = ∪∗ then
if v = IN then

return v;
else

return BUILD BSP(B);
end

end
if OP = ∩∗ then

if v = IN then
return BUILD BSP(B);

else
return v;

end
end

else
partition line segments of B with Hv into Bright, Ble f t, Bsame

if Ble f t is empty then
status = Test InOut(Hv, Bsame, Bright;
if OP = ∪∗ then

if status = IN then
(* Overriding old v.left*)
v.left = new IN-leaf;

else
(* do nothing about exterior in union*)

end
end
if OP = ∩∗ then

if status = IN then
(* do nothing about interior in intersection*)

else
(* Overriding old v.left*)
v.left = new OUT-leaf;

end
end

else
v.left = INC SET OP(OP, v.le f t, Ble f t);

end
if Bright is empty then

(* Similar to Ble f t is empty*)
else

v.right = INC SET OP(OP, v.right, Bright);
end
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Algorithm 4 MERGE(BspNode A,B ; Operation OP ;
Stack<SplittingLines> R)
Data: BspNode A,B ; Operation OP ; Stack<SplittingLines> R
Result: BspNode mergedAndCollapsedNode
if R is infeasible then

return NULL;
else if A and B are leaves then

return COLLAPSE(A OP B);
else if A is a leaf or heuristic swap(A,B) then

swap(A,B);
end
if IN OP B = OUT OP B then

return COLLAPSE(IN OP B);
end
R.push(Ah)
Tright = MERGE(Aright, B, OP, R);
r.pop();
R.push(AC

h )
Tle f t = MERGE(Ale f t, B, OP, R);
r.pop();
if Tright = NULL then

return Tle f t;
else if Tle f t = NULL then

return Tright;
end
Node mergedNode = Node(Ah, Tright, Tle f t);
return COLLAPSE(mergedNode);
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Algorithm 5 COLLAPSE(BspNode root)
Data: BspNode root
Result: BspNode collapsedTree
if id[root] is set then

return root;
end
if root is not leaf then

root = node(rootsplitline, COLLAPSE(rootright), COL-

LAPSE(rootle f t));
if id[rootright] = id[rootle f t] then

return rootright;
end

end
if hash[root] ∈ visit then

return visit[hash[root]];
end
id[root] = count;
count++;
visit[hash[root]] = root;
return root;
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A P P E N D I X B : F U RT H E R R E S U LT S

Figure 54.: Running time of substracting random polygons.
Shown with and without swap.
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Figure 55.: Running time of subtracting squares scene with in-
creasing edges. Shown with and without swapping
the inputs

Figure 56.: Running time for intersection of lines, larger input
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