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Preface

This PhD dissertation is based on seven papers in total among which four are
published as single author papers. One of these papers [72] is an extended
journal version of one of the other papers [69]. Two papers are submitted — a
single author paper and a paper with co-authors Josep Freixas, Xavier Molinero
and Maria Serna from the Polytechnic University of Catalonia, Barcelona —
and one paper with co-author Tasos Viglas, University of Sydney, is under
preparation. The following chronologically ordered list shows where the content
of the papers appear in the dissertation:

[70] M. Olsen
Communities in Large Networks: Identification and Ranking
Proc. Fourth Workshop on Algorithms and Models for the Web-Graph,
WAW 2006
Section 1.4 and Chapter 5

[69] M. Olsen
Nash Stability in Additively Separable Hedonic Games Is NP-Hard
Proc. The 3rd conference on Computability in FEurope, CiE 2007
Section 1.5 and Chapter 6

[71] M. Olsen
The Computational Complexity of Link Building
Proc. Computing and Combinatorics, 14th Annual International Conference,
COCOON 2008
Section 1.3, Section 2.1, Section 2.4.1, Section 3.1 and Section 4.1

[72] M. Olsen
Nash Stability in Additively Separable Hedonic Games and Community
Structures
Theory of Computing Systems, 2009 (Extended version of [69])
Section 1.5 and Chapter 6

[41] J. Freixas, X. Molinero, M. Olsen and M. Serna
On the Complexity of Problems on Simple Games
submitted
Section 1.6 and Chapter 7



[68] M. Olsen
Maximizing PageRank with new Backlinks
submitted
Section 1.3, Section 2.1, Section 2.3, Section 3.2 and Section 4.2.1

[73] M. Olsen and T. Viglas
MILP for Link Building (working title)
m preparation
Section 1.3, Section 2.1, Section 4.2.2, Section 4.2.3 and Section 4.3

There are parts of the dissertation that are not listed above and there are parts
listed more than once.
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Abstract

Google uses the PageRank algorithm to compute an estimate of the popular-
ity of each page based solely on the link structure of the web graph — these
estimates are the so-called PageRank values. A page will achieve one of the
top spots of a search result if it has a high PageRank value and matches the
search criteria for the actual Google search. For a given page t and k € Z* we
study the problem of computing k¥ new links pointing to ¢ — so-called backlinks
to t — producing the maximum increase in the PageRank value of t. The prob-
lem of obtaining optimal new backlinks in order to achieve good search engine
rankings is known as Link Building and this problem attracts much attention
from the Search Engine Optimization (SEO) industry. In this dissertation we
concentrate on the problem of identifying optimal new backlinks and refer to
this problem as the Link Building problem. We show that no FPTAS exists for
Link Building under the assumption NP#P and that Link Building is W[1]-
hard. On the more positive side we show how to solve the case with fixed k = 1
using time corresponding to a small and constant number of PageRank compu-
tations using a randomized scheme and we show that Link Building is a member
of the complexity class APX. We also show how to use Mixed Integer Linear
Programming to solve the problem for smaller graphs and values of k.

We show how the Link Building problem is related to the problem of de-
tecting community structures in networks. We present a community definition
justified by a formal analysis of a very simple model of the evolution of a directed
graph G(V, E) and show that the problem of deciding whether a community
C # V exists such that R C C for a given set of representatives R is NP
complete. In spite of the intractability result we show that a fast and simple
parameter free greedy approach performs well when detecting communities in
a crawl of the Danish part of the web graph.

We present results from a branch of game theory dealing with so-called
Hedonic Games and argue that community structures can be viewed as Nash
equilibriums for Hedonic Games and in this way we provide a link to the other
topics in the dissertation. To be more specific we show that computing Nash
equilibriums in Additively Separable Hedonic Games is NP-hard. Finally, we
present results from another branch of game theory concerning what is known
as Simple Games. For several properties we study the computational complexity
of deciding whether or not a given simple game has the property. Some of the
proof techniques used in this final part of the dissertation are used several other
places in the dissertation.
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2 Chapter 1. Introduction

The founders of Google introduced the PageRank algorithm [12, 76] that
computes an estimate of the popularity of each page based solely on the link
structure of the web graph — these estimates are the so-called PageRank values.
A page will achieve one of the top spots of a search result if it has a high Page-
Rank value and matches the search criteria for the actual Google search. The
PageRank algorithm — or variants of the algorithm — can be used to assign a
measure of popularity to the nodes in any directed graph. As an example it
can also be used to rank scientific journals and publications [11,22] based on
citation graphs.

For a company, it is extremely important that its web page appears at the
top — or close to the top — of results when potential customers do a Google
search. The problem of obtaining optimal new backlinks' in order to achieve
good search engine rankings is known as Link Building and this problem attracts
much attention from the Search Engine Optimization (SEO) industry. The
main focus of this dissertation is the Link Building problem but we also present
results on detection of community structures in networks and argue how this
field is related to Link Building. Moreover, we present results from a branch
of game theory concerning so-called Hedonic Games and establish a connection
from these results to community structures. Finally, we present results from
another branch of game theory — Simple Games — where the link to the other
material in the dissertation is common proof techniques.

This introductory chapter is organized as follows: In the next section, we
will describe the real world context of the Link Building problem. The main
objective of the dissertation is presented in Section 1.2. Sections 1.3 to 1.6
describe the related work and the headlines of the contribution of this disser-
tation. Section 1.7 gives an outline of the subsequent chapters presenting the
details of our contributions.

1.1 Search Engine Optimization (SEO)

The objective of Search Engine Optimization — abbreviated SEO — is to improve
the search engine visibility for a given web page or set of web pages. To put
it more simply: The objective is to make the page(s) appear among the first
search results when users query the search engines Yahoo, Google, etc. It is
actually possible to pay the search engines to make a link to your web page
appear on the page of search results for a given word in the query issued by the
user — this is referred to as paid placement. As an example, the page of search
results for a Google search contains so-called sponsored links where Google is
paid a fee each time a user clicks on the link — referred to as Pay Per Click
(PPC). The problem of settling the price of a sponsored link is a research topic
by its own. The page of search results also contains non sponsored links that
Google considers to be valuable links for the user — these links are referred to
as the organic results. SEQO is about achieving a top spot among the organic
results whereas designing a good strategy for paid placement is the objective of

1A backlink to a page t is a link pointing to ¢ from another page. To be more precise, a
backlink is an element in V' x {t} where G(V, E) is the directed graph under consideration.
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Figure 1.1: A directed graph with PageRank values to the right of or below the
nodes.

Search Engine Marketing (SEM).

Companies are predicted to spend almost 9 billion dollars on SEO in 2012 [74]
but many non professionals are also doing SEO in an attempt to improve the
search engine visibility of their web pages. A search on amazon.com on ”search
engine optimization” reveals a lot of SEO books (Examples [10,54,59,81]) and
there is — not surprisingly — also a lot of online material on the subject (some
of the major sites on the topic are www.seomoz.org, www.webmasterworld.com
and searchengineland.com). It seems that most of the books and the online
material offer practical SEO advice for a target audience consisting of web-
masters and SEO consultants assisting web masters. There are even several
well attended conferences for SEO professionals (Examples: searchmarketing-
expo.com, www.searchenginestrategies.com, and www.pubcon.com). Google
had a share of roughly 70% of all US search engine queries in April 2009 ac-
cording to www.hitwise.com. Google is by far the most popular search engine
so we will focus on Google — and especially the PageRank algorithm introduced
by the founders of Google — in this dissertation.

1.1.1 Ranking Factors

When Google ranks the web pages for a given query, Google considers what
is known as on page and off page factors. The on page factors for a page are
directly controlled by the owners of the page — basically the content of the page
— whereas the off page factors are not controlled or only indirectly controlled by
the owners of the page. An argument for emphasizing off page factors is that
the lack of control of these factors for the owners of a page makes it harder to
manipulate or ”spam” the rankings. Google is pretty secretive regarding the
semantics of the ranking mechanism used so re-engineering of the mechanism
is a research topic [9,37] and it is also a hot online topic.

The common assumption is that the PageRank algorithm [12,76] introduced
by the founders of Google plays a major role in the ranking mechanism (also
backed up by the re-engineering results in [9,37]). The PageRank algorithm
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considers only the link structure of the web graph and assigns a score to each
web page estimating the reputation of the page. The fundamental principle
behind the PageRank computation is that the reputation score of a page is
divided evenly among the outbound links of the page and distributed to the
targets of the outbound links meaning that the score of a page is the sum
of the scores "flowing” along the backlinks of the page. In other words, a
page is reputable if reputable pages link to it. As an example, a page with
1000 backlinks can be less reputable than a page with only one reputable page
linking to or ”voting” for it if the page voting for it receives a lot of votes from
other pages. The scores — or PageRank values — are thus recursively defined but
can easily and efficiently be computed with a simple iterative scheme even for
billions of pages with a minor adjustment to the ”flow model”: In the adjusted
model, a fixed fraction o < 1 of the reputation score is divided evenly among
the outlinks while a fraction of 1 — « of the reputation score is divided evenly
among all pages. Figure 1.1 shows a small example with a = 0.85 and the
PageRank values normalized so that the sum of the values are 1. Now let us
as an example see how the PageRank value of page 1 is related to the other
PageRank values where we let 7, denote the PageRank value of page u:

0.85m3 (1 —0.85)-1

2 + 10

It is possible to get a rough impression of the PageRank value of a page by
installing the Google toolbar in a browser. The toolbar displays a PageRank
number as an integer in the interval 0-10 when the page is visited — the exact
relation between the "real” PageRank value (a member of R) and the Page-
Rank value shown in the toolbar is kept as a secret by Google. We will present
a more formal treatment of the PageRank algorithm in Section 2.1 including
an introduction to the iterative scheme for computing the PageRank values.

A page will do well in the ranking if it is relevant considering the actual
query and reputable as illustrated by the following simplified identity:

w1 = 0.85m + =0.281

Relevance score 4+ Reputation score = Ranking score

The details of the Google ranking mechanism is also kept as a secret but the
general assumption is that obtaining a high PageRank value is very important
for a page that wants to do well in a Google ranking. Obtaining backlinks from
reputable pages can have a dramatic effect on the PageRank value of a page but
it may come as a surprise that adjusting the structure of the outbound links of
a page can increase the PageRank value of the page with roughly a factor 3.6
in the optimal case? [4] — so PageRank is actually partly an on page ranking
factor. Identifying optimal new backlinks — The Link Building Problem — is the
key problem for this dissertation.

1.1.2 Non-Academic Advice for Link Building

We will now briefly cover what seems to be the most dominant general advice
on Link Building presented in the literature and online material targeted at a

1
1—a2

2The precise factor is which is 3.6 for for the typical value a = 0.85.
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general audience. As mentioned above, the amount of SEO literature and SEO
online material is huge so the coverage is based on only a small fraction of the
material available: Books: [10,54,59,81], online articles: [36,50].

Identifying Good Backlinks

According to the literature and online material, the two dominant characteris-
tics for a link (u,t) with good ranking potential for ¢ are the following:

1. w is reputable

2. u and t are related

Some intuition backing up these advice could be the following: Being rec-
ommended by a highly ranked computer scientist is the best thing that can
happen for a computer scientist aiming for a top spot in the computer science
ranking. Getting a recommendation from an expert on a completely other field
is probably less valuable. You can also look at it in another way: Some of the
presumably many visitors of u will probably use the link (u,t) to visit ¢ which
would not be the case if u and t were not related. These are good arguments
that (u,t) is a link with good ranking potential for ¢ assuming a well-functioning
search engine. It is worth noting that (u,t) would be a good backlink for t even
in a world without search engines so the objective of Link Building is not solely
to obtain good search engine rankings but also to establish links to ¢ on pages
visited by many people that might be interested in visiting ¢.

Three more down to earth arguments offered in the literature and online
are the following looking at Google:

1. The PageRank value of w is relatively high and some of the PageRank
value will now "flow” to t resulting in a hopefully significant increase in
the PageRank value of t.

2. The link (u,t) will confirm that ¢ is a page dealing with the common
theme for u and ¢ increasing the relevance score for ¢ on the common
theme. Google will probably have more confidence in this confirmation
compared to information gained from on page factors.

3. There is maybe a risk that Google ignores or assigns a smaller weight to
the link (u,t) compared to the other links on w if v and ¢ are not related.

So how do you identify the links with the characteristics presented above?
A typical advice is to query the search engines using queries on the topic for t.
The pages in the top of the search results are the u’s to go for. More sophis-
ticated techniques use information on the web graph topology: You could go
for obtaining links from highly ranked u’s linking to your competitors [36] or
use commercial link analysis software [50]. As an example, the tool LinkScape
offers users the ability to ”Judge the quality of potential links” to their sites
according to the LinkScape homepage?.

3www.seomoz.org/linkscape
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How to Obtain Backlinks

The Link Building process consists of two steps: 1) Identify optimal backlinks
and 2) Obtain the backlinks identified. We will focus on the first step of the
process in this dissertation. The second step receives a lot of attention in the
literature and online which suggests that it is — at least in many cases — actually
possible to obtain given backlinks. Three backlink acquisition approaches for
obtaining (u,t) described online and in the literature [10] are the following:

e Link Exchange. Offer the owners of u that you will establish a link to
u in exchange (not necessarily with origin ¢). Maybe you can add some
content to t that is relevant and interesting for the visitors of u?

e Embedded Links. Create some good content (Applet, plain HTML, ...)
containing the link (u,t) and offer it for free to w.

e Buying Links. Maybe you can simply buy (u,t) from the owners of u.
There are even online services for buying/selling links with
www.textlinkbrokers.com as an example. It should be noted that Google
attempts to take counter measures to paid links as can be seen on the
blog? of Matt Cutts. Matt Cutts is the head of Google’s Web spam team.

1.1.3 White Hat and Black Hat SEO

One obvious way of attempting to "spam” the search engines is to build Link
Farms that are networks of artificial pages linking to real pages. Link farms are
created with the only purpose to improve the rankings of the real pages. In this
way, it is possible to obtain a lot of artificial backlinks but the search engines
try hard to detect and ignore the link farms. Detection of link farms and spam
pages is a computer science research topic [44,85]. Building link farms is one
of the techniques labeled as Black Hat SEO [61] as opposed to White Hat SEO
encompassing ”ethical” SEO techniques accepted by the search engines. This
dissertation is focusing on the identification of optimal backlinks (u,t) where
u is a real page. This problem is the equivalent in cyber space to the real
world problems of identifying optimal media for commercials for a company or
locating optimal spots for physical signs. Whether the Link Building problem
is related to white hat SEO or black hat SEO is left to the judgment of the
reader of this dissertation.

1.2 The Main Objective of the Dissertation

As we have seen up till now, the Link Building problem is seen by many peo-
ple as an important problem and there is even commercial link analysis tools
available. The purpose of this dissertation is to investigate the Link Building
problem and related problems from a computer science perspective. As an ex-
ample, we will analyze the computational complexity of the problem. As can
be seen from Section 1.1.2 locating related pages — or communities of pages —

4www.mattcutts.com/blog/text-links-and-pagerank
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on a specific topic is a problem related to Link Building so this problem will
also be considered in the dissertation. The work on communities led the author
of the dissertation to problems concerning so-called Hedonic Games and some
of the proof techniques showed also to be applicable for so-called Simple Games
— this dissertation also contains results from these branches of game theory.

In the four next sections, we will present related work and the headlines
for the contribution for each of the four main topics for this dissertation: Link
Building, Communities in Networks, Hedonic Games and Simple Games. We
will also explain in more detail how the topics are related. The details of the
contributions are covered in the subsequent chapters.

1.3 Link Building

Given any directed graph G(V, E) we can compute a PageRank value 7, for
every v € V. The details of the computation of 7, are presented in Chapter 2.
In this dissertation, we will primarily look at the PageRank values obtained
after adding a set of links E’ to G(V, E). We will let 7,(E’) denote the Page-
Rank value of v in G(V, E U E’). The argument E’ may be omitted if E’ is
clear from the context. We will now formally define the Link Building problem
where we assume that G is weighted but we will also consider the unweighted
case in this dissertation.

Definition 1.1 The LINK BUILDING problem:

e Instance: A triple (G,t, k) where G(V, E) is a weighted directed graph with
positive integer weights on the edges, t € V and k € 7.

e Solution: A set S C V' \ {t} with |S| = k mazimizing 7,(S x {t}).

The theoretical results in this dissertation are based on the original formu-
lation of the PageRank algorithm [12,76] but the PageRank semantics used by
Google has changed according to Matt Cutts [26]. Matt Cutts is not specific
in [26] but the link analysis used by Google might have been adjusted in order to
take counter measures against link spamming/link farms [44]. As mentioned in
Section 1.1.1, some fixed fraction of the PageRank score is distributed uniformly
on all pages following the classic formulation of PageRank and this distribution
might also have been changed in an attempt to personalize the PageRank com-
putation and make it topic sensitive [48]. Matt Cutts recently used what he
refers to as the ”classic PageRank” to explain the link analysis used by Google
which justifies using this model even though it is not a ”perfect analogy”, again
using the words of Matt Cutts [26].

In this dissertation we will typically try to maximize the PageRank value of
a node but we will also briefly consider the problem of achieving the maximum
improvement in the ranking of the node in which case we also have to take the
values of the competitors of the node into consideration.
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1.3.1 Related Work

We will now present work directly related to the Link Building problem. Langville
and Meyer [58] deal with the problem of updating PageRank efficiently without
starting from scratch. Avrachenkov and Litvak [4] study the effect on Page-
Rank if a given page establishes one or more links to other pages. Avrachenkov
and Litvak show that an optimal linking strategy for a page is to establish links
only to pages in the community of the page. When Avrachenkov and Litvak
speak about a web community they mean ”... a set of Web pages that a surfer
can reach from one to another in a relatively small number of steps”. It should
be stressed that Avrachenkov and Litvak look for optimal links in {t} x V for
a given page t where V' is the nodes in the directed graph under consideration
and that they conclude that ¢ “... cannot significantly manipulate its PageRank
value by changing its outgoing links”. Kerchove et al. [28] study the more gen-
eral problem of maximizing the sum of PageRank values for a set of pages T' by
adding links from 7" x V. In this dissertation, we will mainly look for optimal
links in V' x {t} which could cause a significant increase in the PageRank value
of t.

1.3.2 Contribution

We now summarize the contributions of the dissertation with respect to the Link
Building problem. We list references to chapters/sections and papers covering
the details in parentheses.

e We develop Theorem 2.1 expressing among other things how the topology
of the graph determines the PageRank potential for a set of new backlinks
to t (Section 2.3, [68]).

e Lower Bounds (Chapter 3)

— We consider the variant of the Link Building problem where the
objective is to maximize the minimum PageRank value for a given
set of nodes T' C V by adding k£ new links from V' x V. This problem
is shown to be NP-hard. The max—min formulation is admittedly
a bit artificial but the first results on intractability were obtained
using this model of the problem so we include these results in the
dissertation (Section 3.1, [71]).

— Compared to the max—min formulation we present stronger intractabil-
ity results for the more realistic formulation of the Link Building
problem from Definition 1.1. Based on Theorem 2.1 on the topology
influence we show that no FPTAS exists for this problem under the
assumption NP#P and we also show that this problem is W/[1]-hard.
We also consider the computational complexity of the variant of Link
Building where we are allowed to add or remove links with source t
besides adding k£ new backlinks to t and the variant where we for each
page p have a cost ¢(p) € ZT U {+oo} for obtaining the link (p,t)
and where the objective is to maximize the PageRank value of ¢ for
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a given budget B € ZT — the cost models the price or the difficulty
of obtaining (p,t) as discussed in Section 1.1.2 (Section 3.2, [68]).

e Upper Bounds (Chapter 4)

— We look at the simplest case of the problem where we want to find
one new optimal backlink for a given node ¢ — in other words, k£ = 1
is fized in Definition 1.1. We present a simple randomized algorithm
solving this case with a time complexity corresponding to a small
and constant number of PageRank computations as opposed to the
brute force approach using |V| PageRank computations computing
m in G(V, EU{(u,t)}) for every u € V. Results of experiments with
the algorithm on artificial computer generated graphs and a crawl of
the Danish part of the web graph are also reported (Section 4.1, [71]).

— We use Theorem 2.1 on the topology influence to characterize sets of
backlinks with a high PageRank potential for ¢ (Section 4.2.1, [68]).

— We analyze the naive Link Building approach where the solution is
the k u-nodes with the maximum values of m; in G(V, EU {(u,t)})
— the graph obtained after adding the link (u,t). Let 7} denote
the PageRank value of ¢ obtained by the naive approach and let 7}
denote the optimal value. Based on Theorem 2.1 we systematically
construct a graph with 7 ~ 13.87," proving that the naive approach
is indeed naive (Section 4.2.2, [73]).

— We prove that the unweighted case of LINK BUILDING is a member

of the complexity class APX by presenting a greedy polynomial time
algorithm guaranteeing 71; < ﬁ efelfrtG where ﬁ'tG denotes the Page-
Rank value of ¢ obtained by the greedy algorithm. The worst case
factor on the right hand side is roughly 5.7 for = 0.85 which is
considerably smaller than the factor obtained by the naive approach

for a specific graph (Section 4.2.3, [73])

— We show how to attack the Link Building problem by using Mixed
Integer Linear Programming (MILP). We present an integer linear
program solving the Link Building problem as defined by Defini-
tion 1.1 and we show how to construct an integer linear program
for solving the problem of ”beating” specific nodes in the ranking
induced by the PageRank values. We also show how to construct
an integer linear program for the problem of achieving the highest
improvement in the ranking for a given budget (Section 4.3, [73]).

1.4 Communities in Networks

We now turn to the field of identification of members of communities in net-
works. A community in a graph G(V, E) is a set of somewhat isolated nodes
linking heavily to each other — for example a set of pages in the web graph
related to a particular topic. The purpose of the techniques presented in this
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dissertation is not to partition the network into several communities. The pur-
pose is to isolate and rank the members of a single community C' given a set
R C C of representatives.

1.4.1 Relation to the other Topics

As we saw in Section 1.1.2, the objective of a Link Building campaign might be
to obtain backlinks to ¢ from highly ranked pages related to ¢ — in other words,
to obtain links from highly ranked pages in the community given by the repre-
sentative t. Please note that there might be several communities containing ¢
— as an example, the author of this dissertation is a computer scientist but he
is also a member of the local soccer club — so we would typically use several
hand-picked representatives to ”define” the community we are going for. In
Section 5.3, we report results on experiments where we have successfully iden-
tified and ranked Danish computer science sites and chess pages using only a
few representatives. It should be noted that information on the content of the
pages is only used in the process of hand-picking the representatives.

Another possible use for the community detection techniques is to use the
techniques in a preprocessing step for the MILP approach for Link Building as
explained in more detail in Section 4.3.

1.4.2 Related Work

Before the discussion of related work on communities we would like to introduce
some notation used in this dissertation. We define the relative attention that u
shows v as wy, = #Z;’()u) where m(u,v) is the multiplicity of link (u,v) in E.
If outdeg(u) = 0 then wy, = 0. For C C V we let wyc = Y ,cc Wue, i.e. the
attention that u shows the set of nodes C.

The detection of community structure in networks has been subject to a
great deal of research [60,67]. Newman and Girvan [67] present a class of divisive
algorithms for detecting community structures in networks. An algorithm in
this class iteratively removes the edge with the highest score of some betweenness
measure. The betweenness measure is recalculated after each edge removal. One
way of measuring the betweenness is to count the number of shortest paths that
runs through an edge. A so-called modularity measure is used to calculate the
quality of the current partition each time a new group of nodes is isolated by
the edge removal procedure.

Bagrow et al. [6] present a “local” method for detecting the community
given by a single representative. A breadth first search from the representative
stops when the number of edges connecting the visited nodes with un-visited
nodes drops in a special way and reports the visited nodes as a community.
Bagrow et al. repeat this procedure for each node and analyzes the overlap
of the communities in order to eliminate problems with what the authors call
“spill-over” of the breadth first search.

Formal definitions of communities are provided by Flake and different co-
authors in [38] and [39]. According to [38], a community in an undirected graph
with edges of unit capacity is a set of nodes C' such that for all v € C, v has at
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least as many edges connecting to nodes in C' as it does to nodes in C =V —C.
Using the notion of relative attention extended to undirected graphs, this is
Vo € C : wye > 3. Flake et al. show in [38] how to identify a community
containing a set of representatives as an s-t minimum cut in a graph with a
virtual source s and virtual sink . They show how the method can process
only the neighborhood of the representatives yielding a local method with time
complexity dependent on the size of the neighborhood. It is not possible for a
node within a distance of more than two from the representatives to join the
community for this “local” variant of their method.

The web graph is treated as a weighted undirected graph in [39] with an edge
between page ¢ and page j if and only if there is a link from page i to j or vice
versa. Edge {7,j} has weight w;; + wj; following our definitions of attention.
The graph is expanded with a virtual node t connected to all nodes with edges
with the same weight o and the community of page s is defined by means of an
s-t minimum cut. The members of such a community can be identified with a
maximum flow algorithm.

The definitions in [38] and [39] are not based on a model of the evolution
of a graph. It should also be noted that it seems impossible for a universally
popular member to be a member of a small community by the definitions in [3§]
and [39]. A relatively high in-degree of a member will prevent it from being on
the community side of a minimum cut. In fact, any member v of a relatively
small community in a relatively large network is risking being forced to leave
the community if v attracts some attention from non community members if the
community definition is based on minimum cuts and the graph is undirected.

Andersen et al. [1] and Andersen and Lang [3] have presented some very
interesting approaches to identifying communities containing specific nodes. In
both papers, random walks are used to identify the communities. The graphs
are assumed to be unweighted and undirected where this dissertation deals with
directed graphs. The results in [1] have recently been generalized to directed
graphs by Andersen et al. [2].

1.4.3 Contribution

The results related to detection and ranking of members of communities were
published by the author of this dissertation in [70]. The details can also be
found in Chapter 5 of this dissertation. The contribution on this topic can be
summarized as follows:

e We present a community definition justified by a formal analysis of a very
simple model of the evolution of a directed graph.

e The problem of deciding whether a community C' # V exists such that
R C C for a given set of representatives R is shown to be NP complete.

e In spite of the intractability result, we show that a fast and simple para-
meter free greedy approach performs well when detecting communities in
the Danish part of the web graph. The time complexity of the approach
is only dependent on the size of the found community and its immediate
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surroundings. Our method is "local” as the method in [6] but it does
not use breadth first searches. We also show how to use a computation-
ally inexpensive local variant of PageRank to rank the members of the
communities and compare the ranking with the PageRank for the total
graph.

1.5 Hedonic Games

We now turn our attention to Hedonic Games. The introduction to this branch
of game theory will be a little more formal compared to the preceding sections
in an attempt to clarify the concepts and contribution related to this topic.

In a Coalition Formation Game, a set of players splits up in coalitions so
that each player belongs to exactly one coalition. Each player prefers certain
partitions® of the players to other partitions. If all players are satisfied with the
partition in some formalized sense - or not able to move - the partition is said
to be stable. A stable partition is called an equilibrium. For an overview of the
field of Coalition Formation Games, we refer to the report [45] by Hajdukova.

A given notion of stability can have limitations in terms of computability.
For some types of games it might be impossible to effectively compute equilibri-
ums on a computing device under the assumption NP#P. If a real world system
is modeled using Coalition Formation Games and equilibriums with such limi-
tations you should not expect to be able to calculate the equilibriums using a
computer if the model is large. It is also an interesting question whether a real
system is able to find an equilibrium if a computer cannot find it effectively.
This is the motivation for analyzing the computational complexity for a given
notion of stability as also pointed out by Daskalakis and Papadimitriou in [27]
and Chen and Rudra in [21]. In this dissertation, we prove limitations for the
notion of Nash stability in Additively Separable Hedonic Games.

The players of a Hedonic Game form coalitions so that each player belongs
to exactly one coalition and the players only care about which other players
team up with them. In order to define the game, we specify for each player ¢
which coalitions player i prefers to be a member of:

Definition 1.2 A Hedonic Game is a pair (N, <) where N = {1,2,...,n} is
the set of players and = = (=<1, =<9,...,=,) is the preference profile specifying

for each player i € N a reflexive, complete and transitive preference relation =<;
on the set Ny ={S C N:ie S}.

In an additively separable Hedonic Game, we are given a function v; : N — R
for each player i € N where v;(j) is the payoff of player i for belonging to the
same coalition as player j:

Definition 1.3 A Hedonic Game (N, <) is additively separable if there exists
a utility function v; : N — R for each i € N such that

VS, T €N;:T =% S > vi(j) <> vilj) -

JET JjeS

5A partition of a set N is a collection of non empty disjoint subsets of N with union N.
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Changing the value v;(i) has no effect on =<; so we assume v;(i) = 0.

1.5.1 Stability Concepts

In this dissertation, we will focus on one type of stability: Nash stability. A
partition II of N is Nash stable if it is impossible to find a player p and a
coalition T" € TTU {0} such that p strictly prefers T'U {p} to the coalition of p
in II — in which case p would be better off by joining T

Definition 1.4 The partition II = {S1,Ss,..., Sk} of N is Nash stable if and

only if
Vi e N,VS, € TU{0} : Sk U{i} =i Su(d) . (1.1)

where Sti(i) denotes the set in the partition 11 that i belongs to.

We will briefly mention the three other main stability concepts for Hedonic
Games: individual stability, contractual individual stability and core stability.
A partition II is individually stable if it is impossible to find a player p and a
coalition T € ITU {0} such that 1) p is better off by joining 7" and 2) No player
in T would be worse off if p joined T'. A partition II is contractually individually
stable if we cannot find a player p and a coalition 7" € TTU {(}} satisfying 1) and
2) above and the following condition: 3) No player in Sp(p) would be worse off
if p left S(p). This shows that Nash stability implies individual stability and
that individual stability implies contractual individual stability.

The concepts of Nash stability and core stability are on the other hand
independent in the sense that none of the concepts imply the other one [45]. A
partition II is core stable if no X C N exists such that all players in X strictly
prefer X to their coalition in II. We refer to [45] for more details.

1.5.2 Relation to the other Topics

A community structure of a network is a partition of the nodes into commu-
nities. In other words, it is a partition of the nodes into groups so that there
are many connections between nodes belonging to the same group and few con-
nections between nodes belonging to different groups. We will link community
structures to equilibriums so that the limitations proven in this dissertation of
the stability concepts formally indicate that computing community structures
is hard.

1.5.3 Related Work

Sung and Dimitrov [82] show that the problem of deciding whether a given par-
tition is core stable in an Additively Separable Hedonic Game is co-NP com-
plete — the corresponding problem concerning Nash stability is clearly solvable
in polynomial time. Cechlarova and Hajdukova [16,17] study the problem of
computing core stable partitions in Hedonic Games where the players compare
the best (or worst) members in two coalitions when evaluating the coalitions.
Actually, different variants of core stability are considered by Cechlarova and
Hajdukova.



14 Chapter 1. Introduction

Ballester has shown in [7] that the problem of deciding whether a Nash stable
partition exists in a Hedonic Game with arbitrary preferences is NP-complete.
On the other hand, Bogomolnaia and Jackson show in [51] that a Nash stable
partition exists in every Additively Separable Hedonic Game with symmetric
preferences. The preferences are symmetric if Vi, j € N : v;(j) = v; (7). If vy is
the common value for v;(j) and v;(¢) in a symmetric game then Bogomolnaia
and Jackson show that any partition IT maximizing f(II) = > gy ZZ jes Vij 18
Nash stable.

Burani and Zwicker introduce the concept of descending separable prefer-
ences in [13]. Burani and Zwicker show that descending separable preferences
guarantees the existence of a Nash stable partition. They also show that de-
scending separable preferences do not imply and are not implied by additively
separable preferences.

As opposed to Newman and Girvan [67], a formal definition of a community
appears in [38] by Flake et al. as also mentioned in Section 1.4.2. Using the
terminology from coalition formation games, a community is a subset of players
C C N in an additively separable game with symmetric preferences such that
VieC: Zjec Vij > ZJEN_C v;j. In other words, each player in C' gets at least
half the total possible payoff by belonging to C'. Flake show with different co-
authors in [39] that the problem of deciding whether it is possible to partition
N into k communities is NP-complete. Such a partition is Nash stable but a
Nash stable partition is not necessarily a partition into communities. The proof
techniques used in this dissertation with respect to hedonic games are similar
to those used in [39].

1.5.4 Contribution

The results related to Hedonic Games were published by the author of this
dissertation in [69, 72] and the details appear in Chapter 6 of this dissertation
— [72] is a journal version of [69]. A significant difference between the two
versions is that [72] contains considerations relating community structures and
equilibriums of Hedonic Games.

e Compared to Ballester [7], we restrict our attention to Additively Sepa-
rable Hedonic Games and show that the problem of deciding whether a
Nash stable partition exists in such a game is NP-complete.

e We relate the field of detection of community structures to Nash stable
partitions in Additively Separable Hedonic Games and argue that com-
munity structures in networks can be viewed as Nash stable partitions.

e The link to community structures motivates looking at the computational
complexity of computing equilibriums in games with symmetric and po-
sitive preferences. We show that the problem of deciding whether a non-
trivial Nash stable partition exists in an Additively Separable Hedonic
Game with non-negative and symmetric preferences is NP-complete. This
result also applies to individually stable partitions since individually sta-
ble partitions are Nash stable and vice versa in such games.
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1.6 Simple Games

Simple games can be viewed as models of voting systems in which a single
alternative, such as a bill or an amendment, is pitted against the status quo.

Definition 1.5 A simple game T is a pair (N,W) in which N = {1,...,n}
for some positive integer n, and W is a collection of subsets of N that satisfies
N € W, 0 ¢ W, and the monotonicity property: S € W and S C R C N
implies R e W.

The members of W are the winning subsets/coalitions. The intuition is that
a set S is a winning coalition iff the bill or amendment passes when the players
in S are precisely the ones who vote for it. A simple game can be specified in
several ways as illustrated by the following examples:

e An explicit listing of W
e An explicit listing of the minimal elements of W

An explicit listing of the loosing subsets L = 2V \ W

An explicit listing of the maximal elements of L

A quota ¢ € RT and a weight function w : N — R such that S is winning
exactly when the sum of weights of S meets or exceeds q. A weighted game
is a simple game that can be specified by a quota and a set of weights —
it should be noted that the weighted games form a proper subset of the
simple games.

1.6.1 Relation to the other Topics

The proof techniques used to prove some of the intractability results for the
other topics of the dissertation are also used to prove intractability results
for weighted games. This was the reason that the author of the dissertation
joined Freixas, Molinero and Serna from Polytechnic University of Catalonia in
Barcelona on some work on computational complexity related to simple games.

1.6.2 Related Work and Contribution

There are several properties related to simple games. We have already seen
that a simple game can be weighted. Another example is that a simple game
can be decisive if VS € 2V : S € W < N\ S € L — exactly one of S or N\ S
is winning for every S C N. The main focus of the work on simple games is to
study the computational complexity of deciding whether or not a simple game
has a certain property. We obtain results for several properties combined with
the different ways of representing a simple game as listed above. The work on
simple games is only loosely connected to the Link Building problem so we refer
to Chapter 7 for a thorough coverage of the related work and contribution on
this topic. Chapter 7 is based on [41].
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1.7 Outline

Chapter 2 contains a deeper introduction to the Link Building problem and the
PageRank algorithm. Chapters 3 to 7 cover the contribution of the dissertation
in details. The lower and upper bounds for the Link Building problem are the
subjects of Chapters 3 and 4 respectively. Detection and ranking of community
members in networks is the theme of Chapter 5 and the results related to
Hedonic Games are presented in Chapter 6. Finally, Chapter 7 is devoted to
Simple games.

Chapters 3 and 4 are dependent upon Chapter 2. These are largely the
dependencies among the subsequent chapters so the reader of the dissertation
can safely skip one or more of them and concentrate on the chapters covering
topics which the reader finds interesting.
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Link Building and the PageRank Algorithm
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In this chapter, we will briefly present the mathematics behind the Page-
Rank algorithm. We will also present a theorem predicting the effect on the
PageRank vector of adding a set of new links pointing to the same page to
the directed graph under consideration. Finally, we will try to improve the
readers understanding of the subtleties of the PageRank algorithm and the
Link Building problem through examples.

2.1 Mathematical Background

This section gives the mathematical background for the PageRank algorithm.
We refer to [53] for more details on Finite Markov Chains in general and to
[57] for more details on the PageRank algorithm. All vectors throughout this
dissertation are column vectors.

Let G(V,E) denote a directed graph. We allow multiple occurrences of
(u,v) € FE in this dissertation implying a weighted version of the PageRank
algorithm as described in [11] but we will also present results for the unweighted
version where multiple links from one node to another count as one. We let
|V| =n and |E| = m. The nodes V' and links E could as an example represent
the pages and links in the web graph respectively. A random surfer visits the
nodes in V' according to the following rules: When visiting wu, the surfer picks
a link (u,v) € E uniformly at random and visits v. If u is a sink! then the
next node to visit is chosen uniformly at random from V. The sequence of
nodes visited by the random surfer is a Finite Markov Chain with state space

V and transition probability matrix P = {py, } given by py, = #:’gzu) where

m(u,v) is the multiplicity or weight of link (u,v) in E and outdeg(u) is the out
degree of u. If outdeg(u) = 0 then p,, = L.

Now we modify the behavior of the random surfer so that he behaves as de-
scribed above with probability o < 1 when visiting u but zaps with probability
1 — « to a node v chosen uniformly at random from V. Zapping is always done
with probability 1 — @ — even when visiting a sink. The sinks can be thought
of as linking to all nodes in the graph. Throughout this dissertation, we will
assume that « is a fixed constant and that o = 0.85, unless otherwise stated,
which is the value used in most of the initial experiments performed by the
founders of Google [76]. If E is the matrix with all 1’s then the transition prob-
ability matrix @ for the modified Markov Chain is given by @ = I_TO‘E + aP.
The powers w! Q! converge to the same probability distribution 77 for any ini-
tial probability distribution w on V' as i tends to infinity — implying 77'Q = ="
In fact, any Markov Chain with a transition probability matrix @ satisfying
that QY has no zero entries for some N has this convergence property [53].
Our @ matrix has no zero entries due to zapping so in this case, we can use
N = 1. The vector m = {m, }yev is known as the PageRank vector. Computing
w?' Q" can be done in time O((n+m)i) and according to [57] 50 - 100 iterations
provide a useful approximation for 7 for o = 0.85. T'wo interpretations of 7 are
the following:

1A sink is a node not linking to any node.
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e T, is the probability that a random surfer visits v after ¢ steps for large .

e T, can be seen as a measure of how reputable or popular v is. The identity
77'Q = n' shows that the PageRank values "flow” along the links as
described in Section 1.1.1 — a node is popular/reputable if it is pointed to
by popular/reputable nodes. There is only one probability distribution
satisfying 77Q = 7T if QN has no zero entries for some N [53] so it is
not possible to find another probability distribution satisfying the ”flow
conservation properties”. The PageRank vector 77 is referred to as the
unique stationary probability distribution for Q).

The matrix I — P is invertible where [ is the identity matrix, and entry
Zup in Z = (I —aP)~! is the expected number of visits — preceding the first
zapping event — to node v for a random surfer starting at node w [4,53]. If
u = v then the initial visit is also included in the count. The entries in Z
induce a sort of distance measure on the nodes in V: Two nodes u and v that
are ”close” to each other will have relatively large entries z,, and z,,. The
following identity expresses the connection between m and Z [4] where e is the
vector with all entries equal to 1 — the identity can be deduced from 77Q = 77
by using 7' E = €™

l="——el7 . (2.1)

As stated earlier, we will typically look at the PageRank vector for the graph
we obtain if we add a set of links E’ to G(V, E). We will let 7,(E’) denote the
PageRank value of v in G(V, E U E’). The argument E’' may be omitted if F’
is clear from the context.

2.1.1 List of Symbols

We now provide a list of the most important symbols used in this chapter and
Chapters 3 and 4. The list also contains brief explanations of the symbols and
the list is intended to be used for later reference.

G(V, E): The directed graph under consideration with n = |V| and m = |E|
where V' denotes the set of nodes/vertices and E denotes the directed
edges/links.

m(u,v)
outdeg(u)
multiplicity of link (u,v) in E and outdeg(u) is the out degree of u. If

outdeg(u) = 0 then p,, = % P contains transition probabilities modeling
the behavior of a random surfer that is not zapping.

P = {puvtuwvev: An n x n matrix with p,, = where m(u,v) is the

€ [0,1): A fixed constant known as the ”"damping factor” for the PageRank
computation. A random surfer zaps with probability 1 — « and goes to a
node in V' chosen uniformly at random. Unless otherwise stated, we will
assume « = 0.85 in this dissertation.
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Z = {zuwtuvev = (I — aP)™: An n xn matrix. 2, is the ezpected number of
visits to node v before zapping for a random surfer starting at node u. If
u = v then the initial visit counts. A sink can be thought of as linking to
all other nodes so 2z, > 1 if u is a sink.

FE: An n X n matrix with all 1’es.

Q= 1_TaE 4+ aP: An n x n matrix with transition probabilities for a random
surfer following a link with probability @ and zapping with probability
1—a.

m = {my }vev: The PageRank vector 7 is the unique probability distribution
satisfying 77Q = 77 so = is the stationary probability distribution for the
random surfer model. The connection to Z is expressed by the following
identity where e is a column vector will all 1’es:

r l-«

T = A
n

The PageRank value 7, is the probability for visiting v after 7 steps and
it is also the expected fraction of visits to v for large i regardless of the
starting node [53]. So regardless of the initial distribution w of the random
surfers, we will obtain a distribution close to m after a large number of
steps:

wl' QP — 7T for i — oo . (2.2)

If a = 0.85 we will obtain a good approximation even after 50-100 steps.
Using (2.2) is an efficient way to compute 7 and it is referred to as the
power method?.

7w (E"): 7,(E') is the PageRank value of v in G(V, EUE’) — the graph obtained
after adding the links E’ to G(V, E). The argument E’ may be omitted
if £’ is clear from the context.

Twt The symbol 7, appears for the first time in Section 4.2.3 and it is defined
as the probability for reaching node v before zapping for a random surfer
starting at node u. These are some useful identities expressing how 7,
and z,, are related [4]:

Zuy = TupZuy L U F U .

1
Zuu = 1— 1o,
e = z
t n tt Tut
uFt

Please note that r,, > 0 for all v if u is a sink.

2The power method is a well-known method from mathematics for computing dominant
eigenvectors and 77 is the unique dominant eigenvector for Q [56].
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2.2 The Link Exchange Example

We will try to increase the readers understanding of the PageRank algorithm
and its subtleties by means of examples. The examples will appear in this sec-
tion and Section 2.4. We will start by presenting a link exchange scheme having
a dramatic negative effect on the PageRank value for one of the participants
in the scheme. The scheme is a very simple scheme where two pages agree to
establish links to each other. The fact that such a scheme can be harmful for
one of the participants may come as a surprise — the SEQO literature mentioned
in Section 1.1.2 does not deal with such subtleties.

The link exchange scheme is shown in Figure 2.1 where the two nodes 1 and
11 with dashed links have agreed to link to each other. Node 1 is a popular node
and the probability for returning to node 1 before zapping for a random surfer
visiting node 1 is at its maximum prior to the link exchange. Node 11 is a ”low
life” node with a relatively big out degree. The dashed link to node 1 will only
attract a few "new” random surfers to node 1, but the probability for returning
to node 1 before zapping will decrease dramatically when node 1 establishes
the new link to node 11. A direct computation shows that 71 =~ 0.497m; — the
PageRank value of node 1 after the exchange is roughly half of the PageRank
value prior to the exchange. This example shows that modifying the outgoing
links on a page can have a negative effect on the PageRank value of the page
— in Section 2.4 we will see that a page can also benefit from adjusting the
structure of the outgoing links. The lack of memory for the random surfers is
in the opinion of the author of this dissertation the reason that some people
might find this example counter intuitive.

2.3 The Effect of Receiving Links

The main focus of this dissertation is the problem of computing an optimal
set of new links pointing to the same page as formalized in Definition 1.1.
Before presenting examples dealing with this problem, we will develop a theorem
expressing how the topology of the graph affects the PageRank potential for a
new set of backlinks for a page.

Avrachenkov and Litvak [4] study the effect on PageRank of adding new
links with the same origin to the web graph. Avrachenkov and Litvak establish a
theorem that expresses the new PageRank vector 7 by means of the “old” Page-
Rank vector 7 and the “old” version of Z. We present Theorem 2.1 showing the
effect of adding new links pointing to the same page. Without loss of generality,
we assume that each of the pages 2 to k + 1 establish a link to page 1. The
techniques used in the proof are similar to the techniques used in [4].

Theorem 2.1 shows how to express the increase (or decrease) in the Page-
Rank value for the page p as a product of two factors: Roughly, the first factor
concerns the PageRank values of the nodes involved and the second factor
¢ = M~'q concerns the ”distances” between the nodes involved in the update.

Theorem 2.1 Let each of the pages 2 to k + 1 create a link to page 1. If 7,
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(a) The graph before the link exchange. The graph consists of two com-
ponents.

0.009 0.009 0009 0009  0.009 0.009 0.009  0.009

(b) The dashed links indicate a link exchange scheme which is harmful
for node 1. Node 1 will obtain a PageRank value which is roughly the
half of the original value if the dashed links are added to the graph.

Figure 2.1: A Link Exchange example. The PageRank values are shown beside
the nodes.

denotes the updated PageRank value for page p for p € {1,...,n} then we have:
Tp = Tp + [ Mo M3 ... Tyl ]M_lq .

where M = {m;;} is a k x k matriz and q is a k-dimensional column vector
given by
Myj = O5kip1 + Zig1j41 — Q2141 -
¢ = az1p — Zit1p + Oit1p -
Here k; = outdeg(i) prior to the update and 6;5 =1 if i = j and 0 otherwise.

Proof. Let e; denote the n-dimensional column vector with a 1 at coordinate
1 and 0’es elsewhere and e denote the n-dimensional column vector with all
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D’es. Let b; denote the k-dimensional column vector with all 0’es except a 1 at
coordinate ¢. Let P denote the updated version of the matrix P. Then we have
P = P + Ap where

The corresponding change of I — aP is
(I —aP)— (I —aP)=—aAp .

We will use the Woodbury formula [47] to compute Z = (I — aP)~' — the
updated version of Z. In order to do this, we find matrices S, T and U with
dimensions n X k, k X k and k x n respectively such that

—aAp =STU .

We will use
k+1

S==) e, .
=2

k+1

1
_E : T
T — bl—lbi—l k,l + 1 .
=2

k+1
U= Zabi_l(e{ — efP) .
1=2

According to the Woodbury formula, we have the following
Z=72-7ZS(T'+UZS)"'UZ . (2.3)

Since (I — aP)Z =1, we have that «PZ = Z — I and consequently

k+1
UZ =Y bii(ae]Z—el(Z-1)) .
i=2
Now we can calculate UZS:

k+1k+1

UZS =Y bii(e] (Z—1) — ae] Z)e;b],
i=2 j=2

k+1 k+1

= Z Z bi—1(zij — 65 — szlj)byr—l :

i=2 j=2

The entry in row i and column j in the k x k matrix M =T~ +UZS is
mi; = 65 (kig1 + 1) + zig1j41 — 65 — @z

= 0ijkiv1 + ziv1j41 — Q2141 -
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Figure 2.2: Node 1 can gain a lot by obtaining the dashed link from node 2.

Now we multiply (2.3) with I_TaeT from the left and e, from the right. By using
(2.1), we get
Tp=mp— 1 SM'UZe, .

The ¢'th entry in the k-dimensional column vector ¢ = UZe, is
¢ = az1p — Zit1p + dit1p -
The ¢’th entry in the k-dimensional row vector —7T'S is it O

Theorem 2.1 shows that knowing the degrees and the entries of Z and 7 for p
and the nodes involved in the update is sufficient for calculating 7,. Informally,
the PageRank values and the degrees of all nodes involved and the ”distances”
between them is sufficient information to predict the effect of an update.

2.4 Introductory Examples of Link Building

We now present some examples of Link Building problems. In the first example
we will show that obtaining a link from an apparently unimportant node can
have a dramatic effect on the PageRank value especially if the link is obtained
in conjunction with links from important nodes. If node 1 only links to node 2
and node 2 is a sink as shown in Figure 2.2 then we might achieve 7; ~ ﬁm =
6.7m1 by adding the reverse link (2,1) and the PageRank value of node 2 will
increase with roughly the factor 1_1a2 = 3.6 (for a = 0.85). This can be seen
by using Theorem 2.1 in a graph with a big strongly connected component not
containing the nodes 1 and 2 such that z10 &= «a, 291 = 0, 211 = 1, 290 = 1 and
my = (1 + a)m (It can also be seen by using Proposition 2.1 in [4] — See (4.10)
in Section 4.2.3). Even in the case where node 1 is popular prior to the link
modification, node 1 (and node 2) will benefit a lot if node 1 obtains the link
(2,1). Obtaining the link (2,1) can more than triple the effect of a modification
so once again the lack of memory for the random surfers plays a major role.

2.4.1 The Hexagon Examples

We now present some examples of link building problems involving a small graph
where the nodes are organized as a hexagon connected with one link to a clique
consisting of two nodes as shown in Figure 2.3a. Our objective is to identify
new links pointing to node 1 maximizing 7; — the PageRank value for node 1



2.4. Introductory Examples of Link Building 25

(¢) Two optimal new links. (d) Two new links from the most popular
nodes prior to the modification.

Figure 2.3: Link Building examples. The PageRank values for the modified
graphs are shown besides the nodes.

after insertion of the links. We will use the unweighted version of PageRank in
these examples. Figure 2.3b shows an optimal new link if we only look for one
new link and Figure 2.3c shows an optimal set of two new links. The two most
popular nodes in the set {3, ..., 7} prior to the modification are the nodes 6 and
7. The examples show that adding links from the most popular nodes are not
necessarily the optimal solution — even in the case where the most popular nodes
have a low out degree. If we naively add the links (6,1) and (7,1) as shown
in Figure 2.3d then we get the identity 71 = m + 0.4827g + 0.59477 = 0.367
by using Theorem 2.1. The optimal new links are (4,1) and (6, 1) as shown in
Figure 2.3c with corresponding identity 71 = 7 + 0.66574 + 0.6657mg = 0.375.
The coefficients in this identity are high compared to the naive approach which
means that the price of the increase of 7 is relatively low. The problem with
the naive approach is that the topology of the network is ignored: the popular
pages 6 and 7 are only a few clicks away from page 1 (21 and z7; are high) and
page 7 is only one click away from page 6 (z¢7 is high). We will analyze the
characteristics of a "good” set of new backlinks more closely in Section 4.2.1.
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Figure 2.4: A directed graph where node 1 will gain a lot more by obtaining
links from the black nodes compared to obtaining links from the grey nodes

(assuming that all the grey and black nodes are solutions for the simple case
k=1)

2.4.2 Naive Link Building is Indeed Naive

In the final example in this chapter, we present a graph where the naive ap-
proach of choosing the k nodes with maximum values of 71 ({(u, 1)}) is shown to
produce a very poor solution to the Link Building problem — for this approach
we simply compute 71 in G(V, E U {(u,1)}) for each u and we choose the k
u-nodes producing the biggest values of 1. The details of the analysis and the
construction of the graph can be found in Section 4.2.2 and part of the graph
is shown in Figure 2.4 where the big arrows symbolize that the grey and black
nodes have other nodes linking to them such that 71 ({(u,1)}) is only slightly
bigger for the grey nodes compared to the black nodes. If node 1 obtains links
from all 3 black nodes, the PageRank value of node 1 will be roughly 6 times
bigger compared to the PageRank value node 1 will achieve if node 1 obtains
links from all 3 grey nodes. If the graph contains k grey nodes and k black
nodes, this factor will tend to roughly 14 as k tends to infinity. So naively
picking "strong” nodes for the simple case k =1 will lead to a PageRank value
for node 1 which is roughly ﬁ times the optimal value if the number of black
and grey nodes is big! The reason is that the grey nodes are strong candidates
for the case k = 1 because of the cycle that boosts the PageRank for the partic-
ipating nodes. Adding links from all the grey nodes will “ruin” the cycle. The
black nodes will, on the other hand, become stronger if they all link to node 1
in which case the random surfers will revisit node 1 many times.
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In this chapter we present intractability results for Link Building. In Sec-
tion 3.1 we consider the variant MAX-MIN PAGERANK where the goal is to
maximize the minimum PageRank value for a given set of nodes T' C V by
adding k£ new links from V x V. As mentioned in Section 1.3.2 then the first
intractability results were obtained using this model of the problem. We show
that MAX-MIN PAGERANK is NP-hard — this result was published in [71].

Section 3.2 starts with a brief introduction to the complexity classes PTAS,
FPTAS and W[1]. After the introduction we turn our attention to the more
realistic formulation of the Link Building problem presented as Definition 1.1
and prove stronger intractability results compared to the max—min formulation.
Using Theorem 2.1 we show that no FPTAS exists for LINK BUILDING under
the assumption NP#P and we also show that LINK BUILDING is W[1]-hard.
We also consider the computational complexity of the variant of Link Building
where we are allowed to add or remove links with source t besides adding k new
backlinks to t. Finally, we examine the variant where we for each page p have
a cost c(p) € Z* U {400} for obtaining the link (p,t) and where the objective
is to maximize the PageRank value of ¢ for a given budget B € Z". The cost
models the price or the difficulty of obtaining (p, t) as discussed in Section 1.1.2.
These results are presented in [68].

3.1 MAX-MIN PAGERANK is NP-hard

A natural question to ask for a set of pages T and numbers x and k is the
following: “Is it possible for all the pages in T to achieve a PageRank value
greater than z by adding k& new links anywhere in the web graph?”. This is
an informal way to phrase the decision version of the following optimization
problem:

Definition 3.1 MAX-MIN PAGERANK problem:

e Instance: A weighted directed graph G(V, E) with positive integer weights
on the edges, a subset of nodes T'C V and a number k € Z+.

e Solution: A set S C {(u,v) € VXV :u # v} with |S| = k mazimizing
HlinteT ﬁ't(S)

We allow multiple occurrences of (u,v) in S.

Please note that the solution to the MAX-MIN PAGERANK problem is a
set of edges as opposed to the LINK BUILDING problem from Definition 1.1
where the solution is a set of nodes. The MAX-MIN PAGERANK problem is
solvable in polynomial time if k is a fixed constant in which case we can simply
calculate 7(S) for all possible S. If k is part of the input then the problem is
NP-hard which is formally stated by the following theorem:

Theorem 3.1 MAX-MIN PAGERANK is NP-hard.
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Figure 3.1: A directed graph with weights indicating the number of occurrences
of the links.

Theorem 3.1 is proved by reduction from the NP-complete balanced version
of the PARTITION problem [43, page 223]. The rest of this section gives the
proof in detail.

In order to prove that MAX-MIN PAGERANK is NP-hard when k is part
of the input we need three lemmas concerning the graph in Figure 3.1 where
the weight of a link is the number of occurrences in E. The intuition behind the
lemmas and the proof is the following: The nodes A and B are identical twins
devoted to each other — the number of links x between them is big — and they
share the same view on the world by assigning the same weight w; to any other
node ¢ in the network. Suppose that you would like to maximize min(74,75)
with n new links. The best you can do is to add one new link from every node
in {1,...,n} to either A or B such that 74 = 7p. It turns out that we have
to split the friends of A and B in two groups of equal cardinality and weight
to achieve 74 = p and let one group link to A and the other group link to B.
Splitting the friends is a well known NP-complete problem [43, page 223].

In the following we let N = {1,...,n} and W = """ , w;. We will write
7ap(E') as a shorthand for 74 (E’) + 7p(E’). We will now formally introduce
the term sum-optimal and justify this definition in the two subsequent lemmas.

Definition 3.2 A set of links E' is called sum-optimal if
Vie N:(i,A) e 'V (i,B) € E' .

In Lemma 3.1 we show that we achieve the same value for 74 + 7g for all
sum-optimal sets of n links. In Lemma 3.2 we show that we will achieve a lower
value of 74 + 7 for any other set of links.

In Lemma 3.3 we show that we can achieve 74 = 7 for a sum-optimal set
of n links if and only if we can split the friends of A and B in two groups of
equal cardinality and weight. The three lemmas show that we can identify such
a potential split by maximizing min(7 4, 7p).

Lemma 3.1 Consider the graph in Figure 3.1. If Ef and E) denote two arbi-
trary sum-optimal sets of n links then we have the following:

Tap(E)) = Tap(E)) . (3.1)
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Proof. Let E' be an arbitrary sum-optimal set of n links. The only nodes that
link to the nodes in N are A and B and A and B both use a fraction of WM_/HC of
their links on N. Since no node in N is a sink and the sum of PageRank values

of the nodes in N is 1 — m45(E’) we have the following:

n w
1—7 EY=01-a)— T E' . 3.2
Fap(E) = (1 - @) =" + afan(F) 3.2
From (3.2) we obtain an expression for 745(E’) that proves (3.1):
_ 1-(1-a)7s
Tap(E) = ————p % .
I+ aw
O
Lemma 3.2 Let x satisfy the following inequality:
W (n +2)?
Wn+2)° W (3.3)
n(l —a)

If E' is an arbitrary sum-optimal set of n links and L is an arbitrary set of
links which is not sum-optimal then we have that

frAB(E/) > 7~TAB(L) . (3.4)

Proof. There has to be at least one node v € N that does not link to A and
does not link to B since L is not sum-optimal. A fraction of 1 — « of the Page-

Rank value of u is spread uniformly on all nodes. No matter whether w is a sink

or not then it will spread at least a fraction 25 of the remaining part of its

PageRank value to the other nodes in N. The PageRank value of u is greater

than 111_T% which enables us to establish the following inequality:
n l1-a n
1—7 L 1-—- . . .
wap(L) > ( a)n+2—|—0zn+2 —— (3.5)
From (3.3) we get ((1;0‘2))? > WL—l—x Now we use (3.2), (3.5) and T4p(F') < 1
to conclude that 1 — 74p(L) > 1 — 7ap(E’) that proves (3.4). O

Lemma 3.3 Let E' denote an arbitrary sum-optimal set of n links and let x
satisfy
w 2
LU S (3.6)
l-«

Let A ={i € N : (i,A) € E'}. The set A_ consists of the nodes in N
that link to A. We define Wa._ = > ;.4 wi. We also define B and Wp_
accordingly.

The following two statements are equivalent where E' is omitted as an ar-
gument for T4 and Tg:

1. Wa_ =Wp_A|A_|=|B_]| .
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2. TA=TpB .

Proof. Let m4_ and 7p_ denote the sum of PageRank values for the two sets
A, and B._ respectively. Following the same line of reasoning as used in the
proof of Lemma 3.1 we have the following:

l—« x

A= 2 +a7~TAH+a:1:—|—W7~TB (3.7)

g = 711:; +afp_ +a- fWﬁA (3.8)

Fa_ = \AH\;:LC; +a$ffx(m+ﬁ3) (3.9)

75 = |B_| 711:; + av‘gfi} (Fa+75) . (3.10)

1 = 2: Assume that Wy_ = Wp_ and |A_| = |B_| for a sum-optimal

set E’ consisting of n links. By using (3.9) and (3.10) we conclude that
Ta_ = 7p_. By solving (3.7) and (3.8) we get that 74 = 7.
2 = 1: Assume that 74 = 7 for a sum-optimal set E’ of n links. In

this case we can conclude that 74. = 7p_ by using (3.7) and (3.8). If
x > % — W then % > ozwlﬂ,. This means that the last term in
(3.9) and (3.10) are smaller than i;Jr‘; We conclude that |A_| = |B_| with
Wa._ = Wp_ as a consequence. O

We are now in a position to prove Theorem 3.1.

Proof. We show how to solve an instance of the balanced version of the PAR-
TITION problem [43, page 223] — which is known to be NP-complete — in
polynomial time if we are allowed to consult an oracle! for solutions to the
MAX-MIN PAGERANK problem.

For an instance of the balanced version of PARTITION we have a w; € Z*
for each ¢ € N. The question is whether a subset N’ C N exists such that
Dient Wi = 2 ien—n wi and [N'[ =[N — N'|.

In polynomial time we transform this instance into an instance of MAX-MIN

PAGERANK given by the graph G in Figure 3.1 with x = %E?jif, T ={A, B}

and k = n. We claim that the following two statements are equivalent:

1. N’ C N exists such that >,y w; = > oy wi and [N'| = [N — N'|.

2. The solution S to the MAX-MIN PAGERANK instance is a sum-optimal
set of links with W4_ = Wp_ and |A_| = |B_]|.

1=2: Let B/ = [N' x {A} U[(N — N’) x {B}]. According to Lemma 3.1
and Lemma 3.2 then 74p(E’) is at its maximum compared to any other set of
n new links. According to Lemma 3.3 we also have that 74(E') = 7p(E’).
This means that min(74(E"),7g(E’)) is at its maximum. The solution S to

! An oracle is a hypothetical computing device that can compute a solution in a single step
of computation.
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the MAX-MIN PAGERANK instance must match this value so S must be sum-
optimal (Lemma 3.2) with 74(S) = @p(S). According to Lemma 3.3 then
Wa_ =Wp_ and |A—| = |B_]| for S.

2= 1: Take N' = A_.

We can now solve the PARTITION instance by checking whether 2) is sat-
isfied in the solution of the MAX-MIN PAGERANK instance. The checking
procedure can be done in polynomial time. O

3.2 LINK BUILDING is W][1l]-hard and Allows no
FPTAS

Before presenting the intractability results for the LINK BUILDING problem
defined in Definition 1.1 we provide a brief introduction to the involved com-
plexity classes.

PTAS and FPTAS: Consider a maximization problem ”arg max, f(z)” with
solution z*. A FPTAS (Fully Polynomial Time Approximation Scheme) can
compute an z such that f(z) > (1 —€)f(z*) in time polynomial in 1 and the
size of the instance. Some NP-hard problems allow a FPTAS (for example the
Knapsack problem) and some do not. If there is no FPTAS for a problem there
is still a chance for a PTAS (Polynomial Time Approximation Scheme) where
we can obtain z in pollynomial time for any fized €. As an example an algorithm
with running time n< counts as a PTAS but not as an FPTAS for a problem
with instance size n.

FPT and W[1]: We will say that a problem with instance size n involving
a parameter k is fized parameter tractable if it can be solved in time f(k)n®
where f is some function and c¢ is independent of k. The class FPT contains
the decision problems with this property. We will write A < B if the problem A
can be reduced to the problem B preserving fixed parameter tractability in the
sense that B € FPT = A € FPT. Consider the problems VERTEX COVER
and INDEPENDENT SET where we have to decide whether a graph contains
a vertex cover? of size k or an independent set? of size k respectively. FPT is
contained in the complexity class W[1] = {P : P < INDEPENDENT SET}.
Even though VERTEX COVER is NP-complete it has been solved for large n
and k = 400 [19]. The reason is that VERTEX COVER € FPT with moderate
f and c. A corresponding breakthrough is believed to be impossible for INDE-
PENDENT SET since there is strong evidence in the literature that FPT#W[1]
so hardness for W[1] is accepted as evidence that a problem is fixed parameter
intractable. According to a recent paper [20] then the currently "best algo-
rithm” for INDEPENDENT SET runs in time O(n%72*) where the exponent

2A vertex cover is a subset of the nodes satisfying that every edge has at least one endpoint
in the set.
3A set of nodes in a graph is independent if no edge connects two of the nodes.
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of n increases dramatically with k. For more information on FPT and W[1] we
refer to [31].

We will show that LINK BUILDING is intractable by reduction from the
independent set problem restricted to undirected regular® graphs. This problem
is known to be NP-complete even for 3-regular graphs [32,43]. To be more
precise we will show that no FPTAS for LINK BUILDING exists under the
assumption NP#P. Intuitively we build a directed graph where all nodes in
the original graph have the same out degree and PageRank value and where
neighbors in the original graph will be very ”close” to each other — wrt. to the
Z-matrix — compared to non-neighbors. Obtaining a link to ¢ from u will only
have a significant negative effect on the PageRank values of the neighbors of
u 8o obtaining links from an independent set is preferable. In this way we can
solve the independent set problem by doing link building. We need a couple of
definitions to clarify matters:

Definition 3.3 The REGULAR INDEPENDENT SET problem:
e Instance: An undirected reqular graph H(Vy, Ef) and an integer k > 2.

o Question: Does H contain an independent set of size k?

Definition 3.4 Let S* be a solution to the LINK BUILDING problem. A
FPTAS for the LINK BUILDING problem is an algorithm that given input
(G,t,k,e) computes a feasible solution S to the LINK BUILDING problem sat-
1sfying

(S x {t}) > (1 — e)m(S* x {t})

in time polynomial in % and the size of (G,t,k).
We will now formally state the first main theorem of this section:

Theorem 3.2 If NP#P then there is no FPTAS for LINK BUILDING.

Please note that the proof of Theorem 3.2 uses Lemma 3.4 presented after
the proof in an attempt to make the structure of the proof clear to the reader.
Proof.

We show how to solve an instance of the REGULAR INDEPENDENT SET
problem in polynomial time if we have a FPTAS to the LINK BUILDING
problem at our disposal.

Now let the regular graph H(Vy, Fy) and the number k € Z™T represent
an instance of the REGULAR INDEPENDENT SET problem and let d denote
the degree of all nodes in H. From H(Vy, Ef) we now construct the graph
G(Vg, Eg) shown in Figure 3.2 in polynomial time in the following way:

1. The nodes in G are all the nodes in H together with four new nodes 7, s,
t and w: Vg = Vg U {r,s,t,w}.

2. We add links (7, s) and (s,r) with multiplicity y where y satisfies (3.13)
in Lemma 3.4 below.

1A regular graph is a graph where all nodes have the same degree.
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Figure 3.2: The graph G(Vg, Eg).

3. For every node v € Vi we add a link (v, s) with multiplicity  — d where
x satisfies (3.12) in Lemma 3.4 below.

4. For every edge {u,v} € Ey we add two links (u,v) and (v,u) to Eg with
multiplicity 1.

5. Finally, we add links (¢, w) and (w,t) with multiplicity 1.

Let n = |V|. Now assume that H contains an independent set of size

k. From Lemma 3.4 below we conclude that any solution S* to the LINK

BUILDING problem must be independent and that a constant p exists such

that the following holds for any feasible solution S which is not an independent
set in H:

7(S x {t}) < (1 — pn™Ld k=) 7,(S* x {t}) . (3.11)

This shows that we can decide whether an independent set exists by acti-
vating our LINK BUILDING FPTAS with input (G,t, k,e = pn='d=%k~?) and
check whether the solution from the FPTAS is independent. Thus we can solve
the REGULAR INDEPENDENT SET problem in polynomial time using the
LINK BUILDING FPTAS implying NP=P. O

Lemma 3.4 Let S1 C Vg be an arbitrary independent set in H and let Sy C
Ve \{t} be an arbitrary set with |S1| = |Sa| = k. If x and y satisfy the following:

_2d%KP

=—7 . 12

X

n T — do
y>2(x+1)1_a<$_dak>—1. (3.13)
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then the following holds if So is not an independent set in H where p is a
positive constant only dependent on «:

7e(S1 x {t}) — 7 (So x {t}) > pn~td Sk . (3.14)

Proof. First we will deal with the case where Sy C Vi is a non-independent set
in H. In order to align the proof with Theorem 2.1 we will refer to ¢ as node 1
and refer to the nodes in S7 and S5 as nodes 2, 3, ..., k+ 1.

According to Theorem 2.1 we have the following:

77'1—7‘('1:[7'('2 T3 ... Tk4l ]M_lq . (315)
Let B = {b;;} be the k x k matrix defined by the following identities:

Zi+1541 ., . .
b, — Attir1 = 1 (3.17)
i1 I+ 1 .

Now we have
M=(x+1)(I+B) .

If b is an upper bound on the entries in B then it is not hard to show that
k*~1b% is an upper bound on the entries in B*:

0< B <k"'°E =k ' (kb)°E . (3.18)

For S; we can use the following upper bound:

_ 1 do\? 1 d? a?
b :E—I—l(l‘) 1—a2_<:173> <1—a2> (3.19)

da

T

) is the probability of following a link and staying in Vg

. . .. 2.
for a random surfer starting in V. Because S; is independent then (%‘3‘) is

an upper bound on the probability of reaching j from node ¢ without zapping.
We also use that 1 +o? +a* +ab +--- = ﬁ is an upper bound on z;;.
We also get an upper bound for Ss:

- 1 do 1 d o
- =« < (%) (=) . .
bz $+1<x>1—a2_<$2> <1—a2> (8:20)

For z = %; we have kb < 1 and hence we have the following:

Here we use that (

1
r+1

1
M~ = I-B+B*-B3+B'—...) =
z+1

o0
> (-1*B* . (321)
s=0

Now consider a probability distribution w on Vg with the same probability
mass for each entry corresponding to a node in V. All entries in w” Q? corre-
sponding to nodes in Vg will have the same probability mass for any 7 because
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H is regular. The limiting distribution 77 will also have this property. This
means that a number § exists such that:

[ T2 T3 ... T4l ] :ﬁeT . (3.22)
The vector ¢ is given by the following identity:

(07

= . 2
¢= T3¢ (3.23)
We now insert the results from (3.21), (3.22) and (3.23) in (3.15):
F—m = o i(—l)seTBse . (3.24)
(z+1)(1-a?) &

We will now use (3.18) to establish a lower bound of the factor Y22 (—1)%e? B
for S;:

O S S 7 1 1 l_) kf
;(—1) e'B%e > k(1 —bik — (bik)> — (b1k)> —---) =k (1 — m)

(3.25)

We will now develop an upper bound for Y 22 (—1)%e¢T B%e for Sy. There
are two nodes u and v in Sy such that (u,v), (v,u) € Eg. The probability of
reaching v for a random surfer starting at u — preceding the first zapping event

— is greater than 7

@5 -0 (3.26)

bUU7 buv 2

Now we can construct the desired upper bound:

i(—l)seTBse <k(1— %(buv ¥ bow) + (Bok)? + (Bak) + (Bok)® + ---) (3.27)
s=0

- 1 (bok)?
=k <1 - E(buv + bvu) + W)

By inserting the lower bound from (3.25) and the upper bound from (3.27)
in (3.24) we now conclude that

T (S1 x {t}) — m(S2 x {t}) =

of | (bak)? bik
k| —(buy + byu) — = — = 3.28
@+ 11— a?) (k;( o) ST T TS ke (3.28)
For x = 21d_2§23 we have that (b1k)? and (bok)? are both less than § which
implies the following where we also use (3.19), (3.20) and (3.26):
! (Bak)? bik
7 buv bvu - 7 - 7 -
fOu o) = T S T T R

(buw + bow) — 2(bok)? — 2b1k >

> =
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1 a d\? o 2, d? o?
2 () () w2 (5) (5 ) =
d? « 2 d? a?
-1,.-2 Y 3_of 2 2] =
e (o2 (5) (725) 0 -2 (5) () %)

We now use this inequality together with G > I_Ta and 2x > x+1 to replace
the lower bound in (3.28):

T (S1 x {t}) — m(S2 x {t}) =

21 — a?) 16" "2
ol —a) 4 _3 L 5 1,
2(1 — a?) BT

which shows that (3.14) holds.

Up till now we have shown that (3.14) holds if S; C Vp is an independent
set from H and So C Vj is not an independent set from H. In the remaining
part of the proof we will show that 7;(S1 x {t}) > 74(S2 x {t}) holds if S is any
subset of Vg and So C V5 \ {t} is a subset of Vi such that |S1| = |S2| = k and
So N {r,s,w} # 0 provided that y satisfies (3.13). Let ﬁt(l) denote 7(S1 x {t})
and let 7~Tt(2) denote 7(S2 x {t}).

We now compute the PageRank value 7, for v in G for any v € Vg. All
nodes in Vg have the same PageRank value in G as shown above:

l1-a do
Ty = — Ty
T

n

From this identity we get the following:

l—-a =x
Ty =

n x—do

Let 7, denote the new PageRank value for v € Vg if one or more nodes
establishes links to ¢. In this case the PageRank value of v can not increase
(Theorem 2.1):

Now we have that

-(2) L2 l—«a p_ 1% l-a = 9 @ l-a
e _oz(omt + n + ):E—I-l n :E—dOé+ y—|—1+ n
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which is equivalent to

a 1l—a =z « 11—«
k—1 2 3.29
+ ):E—I-l n x—da+ y—l—l+ n ( )

l—«o

(1— 042)7?,52) <a

We also have that

11— 1-— 1-
frﬁ”za<aﬁ§”+ O‘>+k0‘ ¢, =

n z+1 n n
which is equivalent to

l—« a l—-a 1—«

1-a)7V > a (3.30)

_|_
n r+1 n n

We just have to choose y such that the upper bound in (3.29) is smaller than
the lower bound in (3.30) — or such that the difference between the lower and
upper bound is positive:

a 11—« T o
— (k-1 -2
z+1 n <k (k )x—da> y+1

a 1—oa (x—dak «
= -2 >0
z+1 n r — da y+1

This holds if (3.13) holds. O

The REGULAR INDEPENDENT SET problem is W[1]-complete [14] so
we immediately get the second main theorem of this section because k is pre-
served and because the construction of G and the check of independence runs
in polynomial time in the reduction in the proof of Theorem 3.2:

Theorem 3.3 If W[1/#AFPT then LINK BUILDING is not fized parameter
tractable.

Theorem 3.3 also holds if we are allowed to add or delete links with source
t besides adding k new backlinks to ¢ because the link structure regarding links
with source ¢ is optimal in G according to [4].

In a real setting backlinks are obviously hard or even impossible to obtain
(see Section 1.1.2). We can model this by assigning a cost c¢(p) € Z* U {+o0}
to each page p for obtaining the link (p,t). We can now slightly change the
Link Building problem so the objective is to maximize 7; for a given budget
B € ZT — the total cost of the links obtained should not exceed B. This is a
generalization of the original problem from Definition 1.1 where we have B = k
and c(p) = 1 so the intractability results also hold for this formulation — with
B as the parameter. The results even hold for this variant in the unweighted
PageRank model where multiple links from one page to another is treated as
one: we just have to replace r and s in Figure 3.2 with a clique of x — d nodes
and let all nodes in Vg link to all nodes in the clique. The budget should be
k, all the nodes in the clique should have cost +co and all other nodes should
have cost 1.
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In this chapter we look at the Link Building problem from the more pos-
itive side compared to the preceding chapter. In Section 4.1 we show how to
solve the Link Building problem from Definition 1.1 with fized k = 1 with a
simple randomized algorithm using time corresponding to a small and constant
number of PageRank computations. Results of experiments with the algorithm
on artificial computer generated graphs and a crawl of the Danish part of the
web graph are also reported. These results were published by the author of this
dissertation in [71].

We present a greedy polynomial time algorithm for the unweighted case of
Link Building in Section 4.2 computing a set of & new backlinks to ¢ with a
corresponding value of 7; within a constant factor from the optimal value. In
other words we prove that this variant of LINK BUILDING is a member of the
complexity class APX. Based on Theorem 2.1 we also show how to construct a
graph with a poor performance for the naive Link Building approach choosing
the k u-nodes with the maximum values of m; in G(V, E U {(u,t)}). These
results are obtained recently together with Tasos Viglas, University of Sydney,
and are to appear in [73].

In Section 4.3 we show how to attack the Link Building problem by using
Mixed Integer Linear Programming (MILP). The work on the MILP approach
is also recent and it is also joint work with Tasos Viglas [73].

4.1 An Efficient Algorithm for the Simplest Case

We now turn to the simplest variant of the Link Building problem where the
objective is to pick one link pointing to a given page t in order to achieve the
maximum increase in the PageRank value for ¢. This problem can be solved by
brute force in polynomial time using n PageRank computations by computing
m in G(V, EU{(u,t)}) for every u € V. Our randomized algorithm ”eliminates”
the n-factor in the time complexity. The main message is that if we have the
machinery capable of calculating the PageRank vector for the network then we
can also solve the simple Link Building problem.

If page j # t establishes a link to ¢ then we have the following according to
Theorem 2.1 (and Theorem 3.1 in [4] — the theorems are equivalent for k = 1):

QzZi — th

7Tt:7Tt+7Tjkj+ij (41)

—azy

The central idea for the Link Building algorithm is to avoid an expensive
matrix inversion and only calculate the entries of Z playing a role in (4.1) for
all j # t. We approximate zy, z;; and zj; for all j # t by performing two calcu-
lations where each calculation has a running time comparable to one PageRank
computation. The diagonal elements z;; are approximated by a randomized
scheme tracking a random surfer. When we have obtained approximations of
all relevant entries of Z then we can calculate (4.1) in constant time for any

given page j.
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4.1.1 Approximating Rows and Columns of Z
We will use the following expression for Z [53]:

—+00

Z=(I-aP)"' =) (aP)" . (4.2)

1=0

In order to get row ¢ from Z we multiply (4.2) with e] from the left where e;
is a vector with a 1 at coordinate ¢t and 0’s elsewhere:

“+oo
el 7 = Z el'(aP) =el +el'aP + (el aP)aP +--- . (4.3)
i=0

Equation (4.3) shows how to approzimate row t in Z with a simple iterative
scheme using the fact that each term in (4.3) is a row vector obtained by
multiplying a P with the previous term from the left. We simply track a group
of random surfers starting at page t and count the number of hits they produce
on other pages preceding the first zapping event.

The elements appearing in a term are non negative and the sum of the
elements in the ith term is a’~! which can be shown by using the fact that
Pe = e where e is the vector with all 1’s so the iterative scheme converges
quickly for a = 0.85. The iterative scheme has roughly the same running
time as the power method for calculating PageRank and 50-100 iterations gives
adequate precision for approximating the fraction in (4.1) since z;; > 1 for all j.

By multiplying (4.2) with e; from the right we obtain an iterative scheme for
calculating the first column in Z with similar arguments for the convergence.

4.1.2 Approximating the Diagonal of 7

Now we only have to find a way to approximate z;; for j # t. In order to do
this we will keep track of a single random surfer. Each time the surfer decides
not to follow a link the surfer changes identity and continues surfing from a
new page — we chose the new page to start from by adding 1 (cyclically) to the
previous start page. For each page p we record the identity of the surfer who
made the most recent visit, the total number of visits to p and the number of
different surfers who have visited p. The total number of visits divided by the
number of different surfers will most likely be close to z, if the number of visits
is large.
If Z,,, denotes the stochastic variable denoting the number of visits on page
p for a random surfer starting at page p prior to the first zapping event then
we have the following [53]:
Var(Zy) = 212710 — Zpp = Zpp(2pp — 1) - (4.4)
where Var(-) denotes the variance. Since we will obtain the highest value of
Zpp if all the nodes pointed to by p had only one link back to p then we have

that )
zpp§1+oz2+oz4—|—-~:1_7az. (4.5)
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Combining (4.4) and (4.5) we have that Var(Z,,) = O(1) so according to The
Central Limit Theorem we roughly need a constant number of visits per node of
the random surfer to achieve a certain level of certainty of our approximation
of zpp.

Our main interest is to calculate z,, for pages with high values of 7, — luckily
17y is the expected number of visits to page p if the random surfer visits ¢ pages
for large ¢ [53] so our approximation of z,, tends to be more precise for pages
with high values of m,. We also note that it is easy to parallelize the algorithm
described above simply by tracking several random surfers in parallel.

4.1.3 Experiments

Experiments with the algorithm were carried out on artificial computer gener-
ated graphs and on a crawl of the Danish part of the web graph. Running the
algorithm on a subgraph of the web graph might seem to be a bad idea but if the
subgraph is a community it actually makes sense as suggested by the discussion
in Section 1.1.2. In this case we are trying to find optimal link modifications
only involving our direct competitors. Locating the community in question by
cutting away irrelevant nodes seems to be a reasonable preprocessing step for
the algorithm.

Experiments on Artificial Graphs

The algorithm was tested on 10 computer generated graphs each with 500 nodes
numbered from 1 to 500 and 5000 links with multiplicity 1 inserted totally at
random. For each graph G(V,FE) and for each v € V such that (v,1) ¢ E
we computed 71({(v,1)}). The new PageRank value 7; of node 1 was com-
puted in two ways: 1) by the algorithm described in this section and 2) by the
power method. We used 50 terms when calculating the rows and columns of
the Z-matrix and 50 moves per edge for the random surfer when calculating
the diagonal of Z. For the PageRank power method computation we used 50
iterations. For all graphs and all v the relative difference of the two values of
71 was less than 0.1%.

Experiments on the Web Graph

Experiments were also carried out on a crawl from Spring 2005 of the Danish
part of the web graph with approximately 9.2 million pages and 160 millions
links. For each page v in the crawl we used the algorithm to compute the new
PageRank value for www.daimi.au.dk — the homepage of the Department of
Computer Science at Aarhus University, Denmark — obtained after adding a
link from v to www.daimi.au.dk. The list of potential new PageRank values
was sorted in decreasing order.

The PageRank vector and the row and column of Z corresponding to
www.daimi.au.dk was calculated using 50 iterations/terms and the diagonal of
Z was computed using 300 moves of the random surfer per edge. The com-
putation took a few hours on standard PC’s using no effort on optimization.
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The links were stored on a file that was read for each iteration/term in the
computation of the PageRank vector and the rows and columns of Z.

As can be seen from Equation (4.1) then the diagonal element of Z plays
an important role for a potential source with a low out degree. As an example
we will look at the pages www.kmdkv.dk/kdk.htm and news.sunsite.dk which
we will denote as page a and b respectively in the following. The pages a and b
are ranked 22 and 23 respectively in the crawl with 7, only approximately 3.5%
bigger than m,. Page a has out degree 2 and page b has out degree 1 so based
on the information on 7,, 7, and the out degrees it would seem reasonable for
www.daimi.au.dk to go for a link from page b because of the difference on the
out degrees. The results from the experiment show that it is a better idea to go
for a link from page a: If we obtain a link to www.daimi.au.dk from page a we
will achieve a PageRank value approximately 32% bigger than if we obtain a
link from page b. The reason is that zp, is relatively big producing a relatively
big denominator in the fraction in (4.1).

4.2 LINK BUILDING € APX

4.2.1 Ideal Sets of New Backlinks

We will now briefly sketch how Theorem 2.1 can be used to characterize an ideal
set of sources for new links to ¢ under the assumption that the minimum out
degree d in the graph is sufficiently big. More work has to be done to analyze
the general case. We will use the notation from Theorem 2.1 where the matrix
M = {m;;} is defined and we will also refer to ¢ as node 1. Let D = {d;;} be
a matrix with d;; = my; and d;; = 0 if 7 # j and now let B be a matrix such
that b; = 0 and b;; = ZZZ if ¢ # j. The matrices are constructed such that

M = (I + B)D. It is not hard to show that b;; = O(d~2), so for d sufficiently
big we have that (I + B)~! ~ I — B and thus we have the following:

T — 7= [ Ty T3 . Thal ]M_lq% [ Ty W3 ... Th4l ]D_I(I—B)q

(4.6)

Negative entries can only appear in I — B in (4.6) so the entries are relatively
high in [ Ty Mg ... Thil ] D', I — B and ¢ for an ideal set S of sources:

1. Any node w in S satisfies at least one of the following two conditions:

(a) w is relatively popular compared to its out degree or

(b) u has a low out degree and is within a short distance from t (2, is
big)

2. The nodes belong to different communities (zy, is small for u,v € S)

3. The distances from the nodes to t are long (zy; is small for u € )

The entries in [ Ty M3 ... Wi ]D‘l are high if la is satisfied. High
entries in [ — B are assured by 1b and 2 and high entries in g are assured by 3. It
is tempting to focus on la but it is important to notice that a node satisfying 1b
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Naive(G,t, k)
S:=10
forallu € V'\ {t} do
yi= 7w, 1)})
S = SU{(u,y)}
Sort S on the y-values in descending order
Report the first coordinates of the first k elements in S as the solution

Figure 4.1: Pseudo code for a naive approach.

will have a corresponding column in I — B amplifying the contribution to 71 of all
the other nodes. If ¢ only links to a sink s then we might achieve a significant
increase in 7; by adding the reverse link (s,t) as we saw in Section 2.4 — so
greedily picking only nodes satisfying la is not always wise.

4.2.2 Analysis of a Naive Approach

We will now analyze the algorithm naively assuming additivity for the process
of adding backlinks from the nodes in S to t. The underlying false assumption
is that the left hand sides of (4.7) and (4.8) below are identical — on the right
hand sides of (4.7) and (4.8) we are using the terms from Theorem 2.1:

S @m{wt))) —m)=[m m ... mp | D g (4.7)

u€esS

(S x{t})—m=[m 7 ... Th1 | DY I+B) Y4 (4.8)

The naive algorithm shown in Figure 4.1 picks the k u-nodes with maxi-
mum values of 7;({(u,t)}). The interesting question is how much the topology
expressed by B rocks the boat. The first thing we can observe is that the as-
sumption of additivity is OK if the minimum out-degree of the nodes is big in
which case we have that B ~ 0. We will also have B ~ 0 if z;, ~ 0 for u € S
and z,, ~ 0 for u,v € S with u # v. We will restrict our analysis to sets of
nodes satisfying Bq = Aq for some X\ € R. If this is the case then we have that
(I+B) g~ l%\q and thus we have the following:

s SR 00)) — ) = 7S X (1) 49)

The strategy for the analysis is to construct a graph with two sets of nodes
with almost similar values of ) o7 ({(u,t)}) but with extreme values of .
In the following we will let 7}¥ denote the value of 7; obtained by the naive
approach and let 7} denote the optimal value. We will show how to construct a
directed graph with 7} ~ 13.87}" for o = 0.85 showing that the naive approach
is indeed naive. For the analysis of the construction we will write a =~ b if we
for any € > 0 can construct the graph such that |a —b| < e. A part of our graph
is shown in Figure 4.2. The graph is parameterized by k£ and it contains k grey
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Figure 4.2: A directed graph where t will gain a lot more by obtaining links from

the black nodes compared to obtaining links from the grey nodes (assuming that
all the grey nodes and black nodes are solutions for the simple case k = 1)

nodes with out degree 1 linking to each other in a cycle and k black sinks. The
node t has out degree k and links to all the sinks. The big arrows symbolize that
the k£ nodes in the cycle and the k sinks have other nodes linking to them such
that 7;({(u,t)}) is slightly smaller for the sinks compared to the cycle nodes.
We can make 7¢({(u,t)}) for the sinks come arbitrarily close to 7 ({(u,t)}) for
the cycle nodes by adjusting the number of nodes linking to the sinks and cycle
nodes respectively. We will also add a very big strongly connected component
to our graph that is isolated from the part of the graph shown in Figure 4.2
with nodes with a small value of 7 ({(u,t)}).

The naive algorithm chooses the k grey cycle nodes and the graph is con-
structed such that the B-matrix corresponding to the grey nodes has relatively
big entries. A major reason for the popularity of the grey nodes is the cycle —
and this cycle is suffering a lot of damage if all the grey nodes decide to link to
t. It is also worth noting that zy will only increase marginally if the grey nodes
link to t. For a grey node w we have the following:

e 2y, ~ 0 due to the big isolated strongly connected component.

o 2, =0

1

k

® Zuu = T—a

e If S denotes the grey nodes then Zjes\{u} Zuj = 1% — Zuu = ﬁ -

o k

11—«
e ¢ = azye where e is a column vector with all 1’es

We now consult the definition of B from Section 4.2.1 and Theorem 2.1 and get
the following:

1 1 1 1—ak 1

= (e - )5 —

Bg ~ —
q (1—a 1—ak 1+

11—« k4

Setting A\ = (11__01‘; - 1)ﬁ we have the following:
1

14+ XM

(I+B) g~ q
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The optimal solution is the k black sinks with negative entries with a rela-
tively big absolute value in the B-matrix. If the black nodes decide to link to ¢
they will all benefit from the change of the link structure. For a black node u
we have the following — in all cases due to the big isolated strongly connected
component:

o iy N

=Q

o 2, ~0

e Zyu~1

e 2, ~ 0 for a black node v # u

® ( ~ azye where e is a column vector with all 1’es

In this case we have:

1 k—1 kE—1
Bq~ s (—a?)——q=—a’——q
1—2 k k
Setting Ao = —a? kk—_al2 we have the following:
(T+B) g —
177 + >\2q

If we assume that 7; is much smaller compared to 7" (we can make the

ratio 7 arbitrarily small) then we use (4.9) and get the following:

t
T m-m 14k
N T AN —m T 1+ N
The ratio is 3.83 for k = 2, 8.45 for kK = 5, 11.42 for £k = 10 and the limit as

k tends to infinity 5 #=% is 13.81 (for a = 0.85).

4.2.3 Proof of APX Membership

Now consider the algorithm consisting of k steps where we at each step adds
a backlink to ¢ producing the maximum increase in ;r—ttt — the pseudo code of
the algorithm is shown in Figure 4.3. This algorithm is a polynomial time
algorithm producing a solution to the unweighted Link Building problem with
a corresponding value within a constant factor from the optimal value as stated
by the following theorem so the unweighted variant of LINK BUILDING is a

member of the complexity class APX.

Theorem 4.1 If we let ¢ and 2§ denote the values obtained by the greedy al-
gorithm in Figure 4.3 for the unweighted case of LINK BUILDING with optimal
value } then we have the following

WO it Lo e ey L
t = tz;"t e/ = e

where e = 2.71828 ... and z}; is the value of zy corresponding to mf.
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Greedy (G, t, k)
S:=10
repeat k times
Let u be a node with maximum value of 7t in G(V, E'U {(u,t)})
S:=SuU{u}
E:=FEU{(u,t)}
Report S as the solution

Figure 4.3: Pseudo code for the greedy approach.

Proof. Proposition 2.1 in [4] by Avrachenkov and Litvak states the following

1«
™= — ztt(1+§nt), (4.10)
3

where r;; is the probability that a random surfer starting at ¢ reaches ¢ before
zapping. This means that the algorithm in Figure 4.3 greedily adds backlinks to
t in an attempt to maximize the probability of reaching node ¢ before zapping for
a surfer dropped at a node chosen uniformly at random. We show in Lemma 4.1
below that r;; in the graph obtained by adding links from X C V to t is a
submodular function of X — informally this means that adding the link (u,t)
early in the process produces a higher increase of r; compared to adding the
link later. We also show in Lemma 4.2 below that r;; is not decreasing after
adding (u,t) which is intuitively clear. We now conclude from (4.10) that o
is a submodular and nondecreasing function since g—; is a sum of submodular
and nondecreasing terms.

When we greedily maximize a nonnegative nondecreasing submodular func-
tion we will always obtain a solution within a fraction 1 — % from the optimal
according to [65] by Nemhauser et al.. We now have that:

G *
m U 1
== (1--).
Rt At €
Finally, we use that 2§ and 2z}, are numbers between 1 and ﬁg O

For a = 0.85 this gives an upper bound of 7’:—3 of approximately 5.7 which is
£

much better compared to the performance of the naive approach on the graph
from Section 4.2.2. [t must be stressed that this upper bound is considerably
smaller if zy is close to the optimal value prior to the modification — if zy can
not be improved then the upper bound is %5 = 1.58. It may be the case that
we obtain a bigger value of m; by greedily maximizing m; instead of ;r—ttt but
7t (X x {t}) is not a submodular function of X so we can not use the approach
above to analyze this situation. To see that (X x {t}) is not submodular
we just have to observe that adding the link (2,1) from Figure 2.2 late in the
process will produce a higher increase in m; compared to adding the link early

in the process.



48 Chapter 4. Upper Bounds for Link Building

Proof of Submodularity and Monotonicity of r;

Let f;(X) denote the value of 7 in G(V, E U (X x {t})) — the graph obtained
after adding links from all nodes in X to t.

Lemma 4.1 f; is submodular for everyi € V.

Proof. Let fI'(X) denote the probability of reaching ¢ from ¢ without zapping
in 7 steps or less in G(V, E U (X x {t})). We will show by induction in r that
fI is submodular. We shall show the following for arbitrary A C B and z= ¢ B:

fi(BU{a}) = fi(B) < fi(AU{z}) - fi(4) (4.11)

e Induction basis r = 1. It is not hard to show that the two sides of (4.11)
are equal for r = 1.

e Induction step. If you want to reach ¢ in r + 1 steps or less you have to
follow one of the links to your neighbors and reach ¢ in r steps or less
from the neighbor:

f[H(X) - outdO;g(i) Zf;(X) (4.12)

where j : ¢ — j denotes the nodes that ¢ links to — this set includes ¢
if ¢+ € X. The out degree of 7 is also dependent on X. If ¢ is a sink
in G(V,E U (X x {t})) then we can use (4.12) with outdeg(i) = n and
j:1— j =V — as explained in Section 2.1 then the sinks can be thought
of as linking to all nodes in the graph. Please also note that f;(X) = 1.

We will now show that the following holds for every ¢ € V assuming
that (4.11) holds for every i € V:

FHBUEh - B S FT AR - ) @)

— i € A: The set j : i — j and outdeg(i) are the same for all four
terms in (4.13). We use (4.12) and the induction hypothesis to see
that (4.13) holds.

—1€B\A:

« ¢ is a sink in G(V, E): The left hand side of (4.13) is 0 while the
right hand side is positive or 0 according to Lemma 4.2 below.

% 1 is not a sink in G(V, E): In this case j : i — j includes t on the
left hand side of (4.13) but not on the right hand side — the only
difference between the two sets — and outdeg(i) is one bigger on
the left hand side. We now use (4.12), the induction hypothesis
and VX : ff(X)=1.

— ¢ = x: We rearrange (4.13) such that the two terms including x are
the only terms on the left hand side. We now use the same approach
as for the case i € B\ A.

— 1€V \ (BU{z}): As the case i € A.
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Finally, we use lim, . f](X) = fi(X) to prove that (4.11) holds for f;. O

Lemma 4.2 f; is nondecreasing for everyi € V.
Proof. We shall prove the following by induction in r for x ¢ B:
f1(BU{a}) = f1(B) (4.14)
e Induction basis r = 1.

— ¢ = x: The left hand side is ﬁeg(m)
degree of x and the right hand side is at most & (if = is a sink in
G(V,E)).

— 1 # x: The two sides are the same.

where outdeg(z) is the new out

e Induction step. Now assume that (4.14) holds for r and all i € V. We
will show that the following holds:

B U{a}) = £77(B) (4.15)

—i=ua:
% 4 is a sink in G(V, E): The left hand side of (4.15) is o and the
right hand side is smaller than a.
% 7 is not a sink in G(V, E): We use (4.12) in (4.15) and obtain
simple averages on both sides with bigger numbers on the left
hand side due to the induction hypothesis.

— i # x: Again we can obtain averages where the numbers are bigger
on the left hand side due to the induction hypothesis.

Once again we use lim, . f/(X) = fi(X) to conclude that (4.14) holds for
fi- m

4.3 MILP for Link Building

In this section we will show how to formulate the Link Building problem as
a Mixed Integer Linear Program (MILP). Actually, we will construct a MILP
solving the following more general problem:

Definition 4.1 The MARKOV CHAIN MODIFICATION problem:

o Instance: A quadruple (P,P',C,k) where P = {p;;} and P' = {p|;} are
n X n transition probability matrices for Markov chains, C C {1...n} and
k € ZT. We assume that we obtain a matriz with a unique stationary
probability distribution if we replace any set of k rows from P with indices
in C with the corresponding rows in P’.
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Maximize 7 subject to
1. VjeV: T = ziEV mipij + ZiEC Wixi(p;'j _pij)
2. Yy mi=1
3. ZiEC Tr; = k

Figure 4.4: A Quadratic program for Link Building.

Maximize 7 subject to
LVjeVim =) ey Tipij + Xicc %Py — Pij)
D ey i =1
YiccTi=k
Vie(C:z <z
VieC:z <m
VieC:z;>m+x;—1

SNl o

Figure 4.5: A MILP for Link Building.

e Solution: A set S C C with |S| = k such that 71 is mazimized where 71 is
the first element in the stationary probability distribution for the matriz
obtained by replacing the rows in P specified by S with the corresponding
rows in P’

For the Markov Chain Modification Problem we have an alternative set of
transition probabilities for each state and we are allowed to change the transition
probabilities for k states in the candidate set C. The objective is to maximize a
given element in the stationary probability distribution. The LINK BUILDING
problem from Definition 1.1 is a special case of this problem — also in the
unweighted case.

4.3.1 MILP Specification

It is straightforward to formulate the MARKOV CHAIN MODIFICATION
problem as the quadratic program shown in Figure 4.4 using the following
variables:

e A binary variable x; € {0,1} for every node i € C: x; =1< i€ S.

e A variable m; for every node ¢ € V: m; > 0. The ¢’th element in the
stationary probability distribution.

We now transform the quadratic program into the linear program shown in
Figure 4.5 by introducing a new variable z; > 0 for ¢ € C replacing the quadratic
term m;x;.

4.3.2 MILP Experiments

We have conducted preliminary experiments solving the LINK BUILDING
problem using our linear program. We have solved the problem for varying
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a=x b=05-x

c=X d=05-x

Figure 4.6: Our variant of the R-MAT algorithm recursively puts an entry in the
sub-matrices of the adjacency matrix with the probabilities shown above. The
distribution of PageRank values gets more "skew” as z € [0.25;0.5) increases.
If x = 0.25 then the entry is placed uniformly at random.

n, m and k on synthetic graphs generated by the R-MAT algorithm introduced
by Chakrabarti et al. [18]. The number of nodes in a graph constructed by
the R-MAT algorithm is a power of 2 and the construction is controlled by
the parameters a,b,c,d > 0 with a + b+ ¢+ d = 1. The construction process
starts with a graph with no edges such that the adjacency matrix! for the graph
contains all 0’es. Now we randomly choose one of the four sub-matrices of the
adjacency matrix shown in Figure 4.6 with probabilities a, b, ¢ and d respec-
tively. The chosen matrix is divided into four new matrices and the process is
repeated recursively until we reach a simple cell in which case we place a 1 in
the cell. This process is repeated once per link.

Directly citing Chakrabarti et al. they ”... illustrate experimentally that
several, diverse real graphs can be well approximated by an R-MAT model
with the appropriate choice of parameters” [18]. We choose parameters a = z,
b=05—2x,¢c=xand d = 05—z for x € [0.25;0.5). By varying = we are
now able to adjust the structure of the graph and examine how the structure
affects the run time of the linear program. If x increases then the nodes in the
left half of the matrices will obtain a higher probability of other nodes linking
to them and the ”skewness” of the PageRank distribution will increase.

All experiments are done on an Intel® Core™i7 CPU 920 2.67GHz (quad
core) with 6Gb RAM running Linux, using a commercial version of
AMPL/CPLEX. All our graphs are unweighted and we use m = 4n links.
For each node we set up a link? to another node chosen uniformly at random

'Entry 4, j in the adjacency matrix is 1 if (4,5) € E and 0 otherwise.
2The linear program in Figure 4.5 is capable of handling sinks but this was not the case
for an earlier and significantly different version of the linear program.
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and the remaining 3n links are placed using the procedure described above.
In all experiments we solve the LINK BUILDING problem for ¢t = & where
we assume that the nodes are numbered from 1 to n and as usual we use
a = 0.85. For each data point we generate 5 random graphs® and average
over their running time. In our first experiment we have x = 0.45 and k = 4
for all our graphs and we vary n € {128,256,512,1024, 2048, 4096,8192}. The
running time of the linear program is shown in Figure 4.7a as a function of n.
In our second experiment we keep z = 0.45 and n = 1024 fixed and runs the
program for k € {2,3,4,5,6,7,8,9,10}. Figure 4.7b depicts the run time as a
function of k. In our third and final experiment we keep n = 256 and k = 4
fixed and vary x € {0.25,0.30,0.35,0.40,0.45}. The running times in the third
experiment varied a lot for the 5 graphs for each z. The graph in Figure 4.7¢c
shows the run time as a function of the R-MAT parameter a = x. The linear
program seems capable of handling graphs with several thousands nodes for
moderate k if the in-degree and thus the PageRank distribution is ”skew”.
It does not seem practically possible to handle graphs that have a random
nature. In Section 3.2 we saw how to reduce the REGULAR INDEPENDENT
SET problem to the LINK BUILDING problem where all relevant nodes in the
LINK BUILDING instances involved had identical PageRank values so maybe
the LINK BUILDING problem gets ”easier” if we assume a certain level of
7skewness” on the distribution of the PageRank values? It should be noted
that the PageRank distribution appears to be "skew” for the web graph [§].

4.3.3 Other MILP Variants

We now show how we can change the linear program from Figure 4.5 in order
to achieve other objectives than obtaining the maximum value of w7 which has
been the main focus up till now in this dissertation. As an example we will
consider the natural problem of matching or beating a specific set of nodes
L C V in the ranking induced by the PageRank vector for a minimum price —
we assume that every new backlink has a fixed price as we assumed in the final
comments in Section 3.2. It is straightforward to change the linear program
from Figure 4.5 in order to solve this problem: The objective must now be to
minimize the price and constraint 3. must be replaced by Vi € L : 71 > 7.

As an example we will revisit the Hexagon examples from Section 2.4.1 in
Figure 4.8 and use our linear program to compute the cheapest set of backlinks
for node 5 that would make node 5 rank at least as high as the other nodes in
the cycle L = {2,3,4,5,6,7}. We will assume that the price of a link (u,v) is
proportional to mde’;w where 7, as usual denotes the PageRank value of u
prior to the modification. It seems reasonable that u estimates the value of the
link to be proportional to m if u only knows 7, and outdeg(u). Adding
the link (6,5) turns out to be the cheapest modification that would make node
5 rank higher than the other nodes in the cycle as shown in Figure 4.8b. This
is a ”value for money” update since zz5 will improve considerably and node 7

3The measure of the running time for n = 8192 in our first experiment is only based on
one graph.
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will be substantially hurt. Figure 4.8¢c shows the cheapest modification bringing
node 5 to the top of the ranking.

Another obvious problem that would be interesting to consider is the prob-
lem of achieving the highest improvement in the ranking for a given budget
(once again we assume that each link has a fixed price). This problem can
also easily be modeled by adjusting the linear program. We just have to add a
"budget constraint” and change the objective into ”Maximize )y, r;” where
r; € {0,1} is a new binary variable that only can be 1 if 71 > ;. As an example
we can add the constraint Vie V :r; <14+ 1 — 7.

4.3.4 Reducing the Size of the MILP Instances

At this point the reader of the dissertation might rightfully be worried about the
running time of the linear programs introduced in this section. In Section 1.1.2
we presented arguments for the point of view that obtaining backlinks from
related nodes is preferable. As we shall see in the next chapter then it is in
some cases possible efficiently to identify members of communities in the web
graph — a community is a relatively isolated part of the web graph consisting
of related nodes. Langville and Meyer [58] and Chien et al. [23] present a
method for reducing the size of the Markov Chain dramatically by modeling all
states/nodes that are not a member of the community as a single state/node.
We can now use the reduced Markov Chain to compute an approzimation of the
PageRank values in the community following an update of the link structure
of the community. This suggests that it is sensible and practically possible —
at least in some cases — to reduce the size of the MILP instances dramatically
by focusing on nodes related to node 1. We can maybe reduce the running
time even further by reducing the candidate set C' for the MARKOV CHAIN
MODIFICATION problem so C only contains nodes ”satisfying” la and 1b
from the analysis of ideal sets of backlinks in Section 4.2.1. Another possibility
is to let C' be the set of nodes that are willing to sell links pointing to node 1
(see Section 1.1.2). More work has to be done in order to analyze this approach.
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Figure 4.7: The graphs depict the running time in seconds for our linear pro-
gram solving the Link Building problem for ¢ = 5. The number of links is 4n
in all graphs.
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(a) The original graph.

(b) Node 5 matches all nodes in (c) Node 5 tops the ranking if the links
{2,3,4,6,7} in the ranking if the link (6,5), (7,5) and (2,5) are added to the
(6,5) is added to the graph. This is the graph .

cheapest way for node 5 to achieve this
position in the ranking.

Figure 4.8: The PageRank values for the modified graphs are shown besides the
nodes.
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We now present the details of the contribution of this dissertation with
respect to detection of members of communities in networks. These results
were published by the author of this dissertation in [70].

As in the preceding chapters we will let G(V, E) denote a directed graph
where multiple occurrences of (u,v) € E is allowed. We will call (u,v) € E a
link on u and say that u links to v etc. A link could for example represent a
link from site u to site v in the web graph or a reference in a paper written
by u to a paper written by v. We define the relative attention that u shows
vV as Wyy = #ﬁ’;&) where m(u,v) is the multiplicity of link (u,v) in E. If
outdeg(u) = 0 then wy, = 0. For C C V we let wyc = Y co Wue, i-e. the
attention that u shows the set of nodes C. In the following we will let C' denote
the complement V — C of C.

We present a community definition justified by a formal analysis of a very
simple model of the evolution of a directed graph. We show that the problem of
deciding whether a community C' # V exists such that R C C for a given set of
representatives R is NP-complete. Nevertheless, we show that a fast and simple
parameter free greedy approach performs well when detecting communities in
the Danish part of the web graph. The time complexity of the approach is only
dependent on the size of the found community and its immediate surroundings.
Our method is “local” as the method in [6] but it does not use breadth first
searches. We also show how to use a computationally inexpensive local vari-
ant of the PageRank algorithm to rank the members of the communities and
compare the ranking with the PageRank values for the total graph.

These are two possible applications of the algorithms presented in this chap-
ter:

e Consider the following scenario: A user interested in Computer Science
visits some sites on this subject. A piece of software running in the back-
ground finds that the Computer Science sites are similar by analyzing the
content of the sites. It uses the Computer Science sites as the set R and
reports a community C' containing R with the sites ranked by our ranking
algorithm. A real world example in Section 5.3.2 documents that this list
could be very useful to the user!

e The community found can be used to reduce the size of the MILP instance
for the Link Building problem as explained in Section 4.3.4.

In Section 5.1 the community definition and the greedy approach for identi-
fying community members are presented. The ranking algorithm is introduced
in Section 5.2 and the experiments are reported in Section 5.3.

5.1 Locating Communities

5.1.1 Community Definition

The intuition behind our community definition is that every community member
shows more attention to the community than any non member:
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Definition 5.1 A community is a set C C V such that
VUGC,VUGC_':wuczva .

Consider the following process: Assume the existence of a set C' C V and
numbers p; and ps with 0 < p; < ps < 1 such that the following holds: Every
time a node u € C links to another node it will link to a member in C with
probability ps. Every time a node v € C establishes a link it will link to a
member in C' with probability p;. Each member of V' establishes exactly ¢
links independently of all other links established.

The number ps can be smaller than % which means that the members of
C' does not necessarily predominantly link to other members of C' as supposed
in [38].

Definition 5.1 is justified by the following theorem:

Theorem 5.1 Consider the process defined above and let n = |V|. If
v = (1 - 5—;) /lnz—f then:

~ e1—1\ P24
PNVueC,VoeC:wye > wye)>1—n <7> . (5.1)
Proof. Let X,c denote the number of links established by z linking to members
in C. Let po = po - q denote the expected value for X, if u € C. The expected
value for X,¢ for v € Cis 1 = p1 - q.
We will establish an upper bound for the probability of the event in (5.1)
not happening:
PEuecC,wel: Xyo < Xye) <

PEucC : Xye<7VIWEC: Xyo >7) <
’C‘-P(Xuc<T)+‘é"P(XUc>T) . (5.2)

where u and v are generic elements in C' and C' respectively. This upper bound
holds for any value of 7. The strategy of the proof is to find a 7 such that the
factors P(Xyuc < 7) and P(X,c > 7) have a low common upper bound.

We will use two Chernoff bounds and produce upper bounds on the factors
— 2

in (5.2) assuming 7 = o P2y for v € (%’ 1):

v\ H2
P(Xuc < p2) < e7H2 <e—> . (5.3)

Py THL o7 "
pP1 2 Y 2
P <ch > ]27;“) < e <,,_f ) g (’ﬂ> <%> . (5.4)
P iV p2 Y

Now we will find a necessary and sufficient condition for these upper bounds to

be identical:
YH2
e H2 — gTH1 <&> RN
b2

n
—p2 = —p1 +ypeln— <
b2
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7:(1_11)/11112 .

D2 b1
The upper bounds in (5.3) and (5.4) are identical for this value of v which is

easily shown to satisfy v € (*Z—;, 1). We will put the common value (ejy—;l)w in

(5.2):

B e'y—l p29q
P(EIuEC,EI’uEC:XuC<ch)§n< o )
O

Theorem 5.1 shows that real communities with po > p; probably will obey
Definition 5.1 in a large network where the number of links from each node is
logarithmically lower bounded as pointed out by the following corollary:

Corollary 5.1 For fixed p1 and ps with p1 < po there exists a constant k > 0
such that

P(Vu € C,Yv € C :wye > wye) =1 for n— oo .
for q =k -logn.

Before addressing computability issues a couple of remarks on our com-
munity definition are in place. First of all there might be several communities
containing a given set of representatives so picking the representatives might re-
quire several attempts. The experiments in Section 5.3.1 deal with the problem
of choosing representatives. Secondly the union C' = C U Cs of two commu-
nities C7 and Cs is not necessarily a community. For example there might be
a node v € C with w,c = 1 and a node u € C with w,c < 1 in which case C
would not be a community since w,c < wyco. Communities in the “real world”
seem to share these properties with our formal communities.

5.1.2 Intractability

We will now formally define the problem of deciding whether a non trivial
community exists for a given set of representatives R:

Definition 5.2 The COMMUNITY problem:
e Instance: A directed graph G(V,E) and a set of nodes R C V.

e Question: Does a community C # V according to Definition 5.1 exist
such that RC C?

If we had an effective algorithm locating a non trivial community if at least
one such community existed then we also could solve COMMUNITY effectively
but even solving COMMUNITY effectively seems hard according to the follow-
ing theorem:

Theorem 5.2 COMMUNITY is NP-complete.
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Figure 5.1: A non trivial community C' with r € C exists if and only it is
possible to divide the set A in two parts with the same size. Each link is
labeled with its multiplicity.

Proof. We can check in polynomial time whether C is a community containing
R by calculating w,c for all z € V thus COMMUNITY is in NP.

We will transform an instance of the NP-complete problem PARTITION [43,
page 223] into an equivalent instance of COMMUNITY in polynomial time.
This means that we can solve the NP-complete problem PARTITION in poly-
nomial time if we can solve COMMUNITY in polynomial time thus COMMU-
NITY is NP-complete since it is a member of NP. The rest of the proof contains
the details of the transformation.

An instance of PARTITION is a finite set A = {a1,a9,...,a,} and a size
s(a;) € Z* for each a; € A. The question is whether a subset A’ C A exists
such that 3, 4 s(a) = § where S is the sum of the sizes of all elements in A?
We will transform this instance into the instance of COMMUNITY given by a
directed graph G(V, E) with n + 2 nodes and R = {r} where r is one of the
nodes in G. The graph G is constructed in the following way:

We will start with two nodes r and y. For each a; € A we will make a node
with two links (a;,r) and (a;,y) with multiplicity 1 and two links (r,a;) and
(y, a;) with multiplicity s(a;). The resulting network is shown on Figure 5.1.

Now we will prove that G contains a non trivial community C containing R
if and only if A exists.

o If A’ exists then C' = {r} U A’ is a non trivial community containing r
since wyc = % forallz e V.

e Now assume that C'is a non trivial community containing r. If C' contains
y then C also contains all the a’s since w,c = 1 if {r,y} C C. Since C is
a non trivial community we have y ¢ C. Now set A’ = C N A.
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— If Y ,ear s(a) < 5 then w,c < & but there is at least one a ¢ C with
Weo = % contradicting that C' is a community.

— 1Y cas(a) > g then wyc > % but there is at least one a € C with
Weo = % - yet another contradiction.

We can conclude that 37, 4 s(a) = 5.

|

The network in Figure 5.1 might be illustrative when comparing the defi-
nitions of a community in this chapter and in [39]. If A’ C A exists such that
Yoaea s(a) = Y ,ca_a s(a) then C = {r} U A" will not be a community by
the definition in [39] for any value of « (see Section 1.4.2).

5.1.3 A Greedy Approach

Despite the computational intractability experiments show that it is possible
to find communities in the Danish part of the web graph with a simple greedy
approach. We will present the results of the experiments in Section 5.3.

The approach starts with C = R. It then moves one element from C to C at
a time choosing the element v € C with the highest value of w,c. After moving
v to C it updates w,¢ for all z linking to v and checks whether the current C
satisfies Definition 5.1. The approach can be effectively implemented using two
priority queues containing the elements in C' and the elements in C' linking to
C respectively using w,c as the key for z. The C-queue is a min-queue and the
C-queue is a max-queue. It is possible to find the next element to move and
to decide if C' is a community by inspecting the first elements in the queues as
can be seen from the pseudo code of the approach shown in Figure 5.2.

The time complexity of the approach is O((nc+m¢) log ne) where n. is the
number of elements in the union of the found community C' and the set of nodes
linking to C' and m¢ is the number of links between elements in C' plus the
number of links to C' from C - multiple occurrences of (u,v) € E only counts as
one link. The argument for the complexity is that less than no elements have
to move between the two queues and that m¢ update-priority operations are
performed on the two queues containing no more than ng elements. We are
assuming that finding one node x linking to v can be done in constant time.

Some of the representatives might have no links, so we do not consider the
attention shown by the representatives to C when we check whether C satisfies
our definition of a community for the experiments in this chapter. To be more
specific we check whether

YueC—RYveC:wye > wye -

5.2 Ranking the Members

The PageRank algorithm can be viewed as a vote among all pages yielding a
global measure of popularity. We will turn this into a vote among the relevant
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Greedy(G, R)
C-queue := ()
C-queue := ()
forall r € R do
forall x € V — R linking to r do
if © € C-queue then
increase the priority of z with w,.,.
else
insert « in the C-queue with priority wg,
while |C-queue| < minimum size or min(C-queue) < max(C-queue) do
move the element v with maximum priority from the C-queue to the C-queue
forall x € V — R linking to v do
if © € C-queue or z € C-queue then
increase the priority of z with wy,
else
insert = in the C-queue with priority wg,
Report R U C-queue as a community

Figure 5.2: Pseudo code for the greedy approach. Details for handling an empty
C-queue or an empty C-queue in the while-loop have been omitted for clarity.

pages that are the pages in C. The experiments carried out produce what we
believe to be very valuable rankings which support the validity of the mathe-
matical models behind the rankings. We will adjust the random surfer model
explained in Section 2.1 in the following way — the modification is simpler than
but similar to the state lumping approach in [58] but the objective is to obtain
a ranking strengthening the position of ”locally popular” nodes:

A visitor to a community member i € C' is assumed to have the following
behavior:

e With probability given by some number « he decides to follow a link
from 4. As usual we use o = 0.85. In this case there are two alternatives:

— He decides to visit another member j of C'. The probability that j
gets a visit in this way is o - w;;.

— He follows a link to a non member v. Assuming a low upper bound
on wyc it is not likely that the visitor will use a link to go back to C.
Thus we treat this case as a jump to another member of C' chosen
uniformly at random.

e With probability 1—« he decides to jump to another place without follow-
ing a link which is treated as a jump to a member in C' chosen uniformly
at random.

A visitor to ¢ € C' will visit j € C with probability

l—a ol —wyqe) 1—a-wpg
Pi = ey G g = e e g
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Like PageRank the ranking of the members is based on the unique station-
ary probability distribution of the Markov chain given by the transition matrix
P = {pij}ijec. An iterative calculation of w? - P* will converge to the
stationary distribution in a few iterations where w is an arbitrary initial prob-
ability distribution. For details on convergence rates etc. we refer to the work
of Langyville and Meyer [56].

5.3 Experimental Work

For an online version of the results of the experiments please visit the home
page of the author: www.cs.au.dk/~mo/. Besides the results reported in this
chapter you can also find results from experiments with the s-t minimum cut
approach from [39].

5.3.1 Identification of Community Members in Artificial Graphs

Inspired by Newman et al. [67] we test the greedy approach on some random
computer generated graphs with known community structure. The graphs con-
tain 128 nodes divided into four groups with 32 nodes each with nodes 1 - 32
in the first group, 33 - 64 in the next group etc. We will denote the first of
the four groups as group 1. For each pair of nodes u and v either two links -
(u,v) and (v, u) - or none are added to the graph. The pairs of links are placed
independently at random such that the expected number of links from a node to
nodes in the same group is 9 and the expected number of links to nodes outside
the group is 7.

For 10 graphs the greedy approach reported the first community found con-
taining at least 32 members with node number 1 as the single representative.
The average size of the community found was 64.3 and the average number of
nodes from group 1 in the community found was 28.9. If we use nodes 1 to 5 as
representatives instead the corresponding numbers are 39.3 and 31.3 and if we
use nodes 1 to 10 as representatives the numbers are 32.4 and 31.2. These ad-
mittedly few experiments suggest that the greedy approach can actually identify
members of communities if the number of representatives is sufficient.

5.3.2 Identification and Ranking of Danish Computer Science
Sites

Now we will demonstrate that the greedy approach is able to identify commu-
nities in the web graph using only a few representatives. A crawl of the Danish
part of the web graph from April 2005 was used as the basis for the web experi-
ments. In the first experiment conducted on the crawl V' consists of the 180468
sites in the crawl where a link from site u to v is represented by (u,v) € E.

The objective of the experiment was to identify and rank Danish Computer
Science sites. The following four sites were used as representatives:

e www.itu.dk, IT University of Copenhagen
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Table 5.1: The Top 20 of two communities of Danish Computer Science sites.
Representatives are written with bold font. The numbers after a site is the
“global” ranking in the dk domain.

556 members 1460 members
1 | www.daimi.au.dk 267 www.au.dk 109
2 | www.diku.dk 655 www.sdu.dk 108
3 | www.itu.dk 918 www.daimi.au.dk 267
4 | www.cs.auc.dk 1022 www.hum.au.dk 221
5 | www.brics.dk 1132 www.diku.dk 655
6 | www.imm.dtu.dk 1124 www.ifa.au.dk 681
7 | www.dina.kvl.dk 1153 www.itu.dk 918
8 | www.agrsci.dk 1219 www.ruc.dk 945
9 | www.foejo.dk 1504 www.phys.au.dk 1051
10 | www.darcof.dk 2113 www.brics.dk 1132
11 | www.it-c.dk 2313 www.cs.auc.dk 1022
12 | www.dina.dk 2169 www.dina.kvl.dk 1153
13 | www.cs.aau.dk 2010 www.imm.dtu.dk 1124
14 | rapwap.razor.dk 4585 www.agrsci.dk 1219
15 | imv.au.dk 2121 www.kvinfo.dk 1122
16 | razor.dk 2990 www.foejo.dk 1504
17 | www.imada.sdu.dk 2998 | www.bsd-dk.dk 1895
18 | www.plbio.kvl.dk 3543 www.humaniora.sdu.dk 1826
19 | www.math.ku.dk 2634 www.imv.au.dk 2121
20 | mahjong.dk 3813 www.statsbiblioteket.dk 867

e www.cs.auc.dk, Department of Computer Science, University of Aal-
borg

e www.imm.dtu.dk, Department of Informatics and Mathematical Mod-
eling, Technical University of Denmark

e www.imada.sdu.dk, Department of Mathematics and Computer Sci-
ence, University of Southern Denmark

The sites of the Departments of Computer Science for the two biggest universi-
ties in Denmark, www.diku.dk and www.daimi.au.dk, were not included in
the set of representatives. These sites represent the universities in Copenhagen
and Aarhus respectively.

The greedy approach found several communities. The Top 20 ranking of
two communities with 556 and 1460 sites respectively are shown in Table 5.1
which also shows the ranking produced by a PageRank calculation on the dk
domain. Members of both communities use more than 15-16 % of their links to
other members and non members use less than 15-16 % on members.

The Top 20 lists contain mainly academic sites and the smaller community
seems to be dominated by sites related to Computer Science. The ranking
seems to reflect the “sizes” of the corresponding real world entities. It is worth
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noting that www.daimi.au.dk and www.diku.dk are ranked 1 and 2 in the
smaller community. The site ranked 5 in the smaller community represents
BRICS, Basic Research in Computer Science, which is an international PhD
school within the areas of computer and information sciences, hosted by the
Universities of Aarhus and Aalborg.

The larger community seems to be a more general academic community with
the sites for University of Aarhus and University of Southern Denmark ranked
1 and 2 respectively. The larger community obviously contains the smaller
community by the nature of the greedy approach.

The local ranking seems to reflect the global ranking with a few exceptions.
The site rapwap.razor.dk is popular among the relevant sites but seems not to
be that popular overall. The person behind rapwap.razor.dk has pages in Top
5 on Google searches' for Danish pages on “cygwin” and “php” which justifies
rapwap.razor.dk’s place on the Top 20 list of Danish Computer Science sites.

5.3.3 Identification and Ranking of Danish Chess Pages

We also carried out an experiment at the page level in order to rank Danish
Chess pages using one representative only: www.dsu.dk, the homepage for the
Danish Chess Federation. For this experiment V consisted of all pages up
to three inter site links away from the representative where the links were
considered unoriented. V contains approximately 330.000 pages. The weight
Wy 18 the fraction of inter site links on page u linking to page v.

The greedy approach located a community with 471 members. All members
use at least 1.4 % of their inter site links on members and non members use less
than 1.4 % on members. This means that only heavily linked non members link
to the pages in the community and if they do they only link to the community
with a few links. The Top 20 for this experiment — using the ranking from
Section 5.2 — is shown in Table 5.2.

The page ranked 2 in the Top 20 is a page for a chess tournament held
in Denmark in 2003 with several grandmasters competing. The pages ranked
13 and 20 are pages (at that time) for the Danish and Scandinavian Chess
championships respectively. Several of the subdivisions of the Danish Chess
Federation (4, 7, 9, 19) are represented on the Top 20 and the page ranked 6
provides access to a database of more than 40.000 Chess games2. Most of the
rest of the pages on the Top 20 are Chess Club pages. All in all the Top 20
seems useful from a Danish chess players point of view.

For comparison we searched Google? for Danish pages containing the word
“skak” — the Danish word for chess. Several of the sites with pages in the
Top 20 from Table 5.2 are also present in the Google search result but the
latter seems targeted at a broader chess audience. The Google Top 20 contains
for example several pages dealing with online chess and chess programs. The
Top 20 from Table 5.2 seems to be targeted at a dedicated Danish chess player
being a member of a chess club.

!The searches were carried out on January 23 2007.
2 Appear to have moved to http://dsu9604.dsu.dk/partier/danbase.htm.
3The searches were carried out on April 12 2007.
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Table 5.2: The top 20 of a community of 471 Danish chess pages found with
the homepage of the Danish Chess Federation as a representative (written with
bold font). The Danish word for chess is “skak”.

1. | www.dsu.dk

2. | www.sis-mh-masters.dk

3. | dsus.dk

4. | www.8hk.dk

5. | www.dsus.dk

6. | www.dsu.dk/partier/danbase.htm
7. | www.vikingskak.dk/4hk

8. | www.sk1968.dk

9. | www.4hk.dk

10. | www.skovlundeskakklub.dk

11. | www.vikingskak.dk

12. | www.alssundskak.dk

13. | www.skak-dm.dk

14. | www.frederikssundskakklub.dk
15. | www.birkeskak.dk

16. | homel3.inet.tele.dk /dianalun

17. | www.rpiil.dk /nvf

18. | www.enpassant.dk/chess/index.html
19. | www.4hk.dk/index.htm

20. | www.skak-nm.dk
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This chapter contains the details of the results related to Hedonic Games.
The results were published by the author of this dissertation in [69,72] where [72]
is a journal version of [69] containing considerations relating the results to
community structures in networks.

For a formal introduction to Additively Separable Hedonic Games and the
related stability concepts we refer to Section 1.5 which also includes a discus-
sion of related work. In Section 6.1 we provide an example of an Additively
Separable Hedonic Game in an attempt to ease the understanding of the for-
mal definitions. In Section 6.2 we show that the problem of deciding whether a
Nash stable partition exists in an Additively Separable Hedonic Game is NP-
complete. In Section 6.3 we relate the field of detection of community structures
to Nash stable partitions in Additively Separable Hedonic Games and argue that
community structures in networks can be viewed as Nash stable partitions. This
motivates looking at the computational complexity of computing equilibriums
in games with symmetric and positive preferences which is the subject of Sec-
tion 6.4. In this section we show that the problem of deciding whether a non
trivial Nash stable partition exists in an Additively Separable Hedonic Game
with non-negative and symmetric preferences is NP-complete. This result also
applies to individually stable partitions since individually stable partitions are
Nash stable and vice versa in such games.

6.1 The buffalo-parasite-game
We will now present an example of an Additively Separable Hedonic Game. We

will use biological terminology metaphorically to ease the understanding for the
game. The game does not represent a serious attempt to model a biological

system.
Assume that there are two buffaloes b; and by in an area with n waterholes
wy, wa, ..., w,. Each waterhole w; has a capacity c(w;) specifying how much

water a buffalo can drink from that hole per year. There are also two parasites
p1 and ps in the area. The only possible host for p; is by and b; must drink a lot
of water if p; is sitting on its back. The same goes for ps and by. Now assume
that b; and by are enemies and that a buffalo must drink water corresponding
to half the total capacity C of the waterholes if it is the host of a parasite. This
system can be viewed as an Additively Separable Hedonic Game depicted as a
weighted directed graph in Figure 6.1 where the weight of edge (,7) is v;(j) -
if there is no edge (i,j) then v;(j) = 0. We have added two edges (b1,b2) and
(b2, b1) with capacity —C' — 1 to model that b; and by are enemies. Please note
that the waterholes are also players in the game. The waterholes do not care
which coalitions they belong to.

A partition II of the players is not Nash stable if b; is not the host of p; —
in this case p; would be strictly better off by joining Str(by). This fact can be
expressed more formally: Sti(b1) U{p1} >p, Su(p1) if Su(p1) # Su(b1). In this
game a Nash stable partition of the players exists if and only if we can split the
waterholes in two groups with the same capacity. We will formally show and
use this fact in the next section.
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-C-1

-C-1

Figure 6.1: An example of an Additively Separable Hedonic Game: The buffalo-
parasite-game.

6.2 Restricting to Additively Separable Games

In this section we restrict our attention to Additively Separable Hedonic Games
compared to Ballester [7]. Compared to Bogomolnaia and Jackson [51], we also
allow asymmetric preferences. Informally we show that things are complicated
even when looking at Additively Separable Hedonic Games. With an intuitively
clear proof based on the buffalo-parasite-game from Section 6.1 we show that the
problem of deciding whether a Nash stable partition exists in a Hedonic Game
remains NP-complete when restricting to additively separable preferences. We
will now formally define the problem:

Definition 6.1 The ASH-NASH problem:

e Instance: A set N = {1,2,...,n} and a function v; : N — R such that
v; (i) =0 for each i € N.

e Question: Does a partition I of N exist such that

Vie NS, eTTU{0}: > wi(i) = Y. w(i) ?  (6.1)

JEST(7) JjESKU{i}
We are going to prove that this problem is intractable.

Theorem 6.1 ASH-NASH is NP-complete.
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Proof. 1t is easy to check in polynomial time that II is a partition satisfying
(6.1) thus ASH-NASH is in NP.

We will transform an instance of the NP-complete problem PARTITION [43]
into an instance of ASH-NASH in polynomial time such that the answers to
the questions posed in the two instances are identical - if such a transformation
exists we will write PARTITION o ASH-NASH following the notation in [43].
This means that we can solve the NP-complete problem PARTITION in poly-
nomial time if we can solve ASH-NASH in polynomial time thus ASH-NASH
is NP-complete since it is a member of NP. The rest of the proof explains the
details of the transformation.

An instance! of PARTITION is a finite set W = {wy,ws,...,w,} and a
capacity c(w) € Z™ for each w € W. The question is whether a subset W/ Cc W
exists such that >_, .y c(w) = § where C =3, c(w).

Now suppose we are given an instance of PARTITION. The PARTITION
instance is transformed into the buffalo-parasite-game from Section 6.1 in linear
time. All we have to do to translate this as an ASH-NASH instance is to perform
a simple numbering of the players in the game.

Now we only have to show that a Nash stable partition of the game in
Figure 6.1 exists if and only if W' exists. This can be seen from the following
argument:

e The partition IT = {{by, p1 } UW’ {ba, p2} UW — W'} is Nash stable if W’

exists.

e Now assume that a Nash stable partition II exists and define W; =
St(b1) N W and Wy = Sp(by) N W. The set Sp(b;) must contain p;.
Due to the stability we can conclude that )y, c(w) > % - otherwise
b1 would be better off by its own. By a symmetric argument we have
> wew, c(w) > % The two nodes by and by are not in the same coali-
tion so the two sets W; and Wy are disjoint, so we can conclude that
Y wew, (W) =D e, c(w) = §. We can take W’ = W or W' = Wh.

|

6.3 Community Structures as Nash Stable Partitions

In this section we relate community structures in networks and Nash stable
partitions in Additively Separable Hedonic Games. It seems natural to define
a community structure of N as a partition II of N such that for any C € II we
have that all members of C' feel more related to the members of C compared
to any other set in the partition. This is just a less formal way of stating (1.1)
— the property defining a Nash stable partition in a Hedonic Game.

Suppose we are given a set N and a number v;; € RT U {0} for each pair of
nodes {i,7} in N modeling the strength of the connection between i and j. As
an example we could be given an undirected and unweighted graph G(N, F) and

The objects constituting an instance in [43] are renamed to match the game from Sec-
tion 6.1
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let v;; = 1if {i,j} € E and 0 otherwise. If we adopt the definition above of a
community structure then we essentially have an Additively Separable Hedonic
Game with non-negative and symmetric preferences with community structures
appearing as Nash stable partitions. That community structures appear in this
way seems to be a reasonable assumption based on visual inspection of the
communities identified by Newman and Girvan in [67].

If for example the members of IV form a clique where all the connections have
identical strength then the trivial partition II = {N} is the only Nash stable
partition. In this case there would not be any non trivial community structure
which sounds intuitively reasonable. On the other hand, let us assume that two
disjoint communities S and T of players exist as defined in [38] (the definition
is presented in Section 1.4.2). If we collapse these communities to two players
s and t then we can effectively calculate the s-t minimum cut in the underlying
graph for the game. This cut defines a non trivial Nash stable partition. As
noted in Section 1.5.3 then a partition of communities following the definition
in [38] would certainly be a community structure — but the converse is not
always true. The definition of a community structure suggested above can thus
be seen as a sort of generalization of the definition of a community in [38].

We will denote a non trivial Nash stable partition as an inefficient equilib-
rium — if the numbers v;; are seen as payoffs then it is optimal for all members
of the network to cooperate. In the next section we will prove that inefficient
equilibriums generally are hard to compute. To be more specific we will prove
that the problem of deciding whether they exist is NP-complete. This result
formally indicates that computing community structures is a hard job.

6.4 Non-negative and Symmetric Preferences

As in the proof of Theorem 6.1 we need a known NP-complete problem in the
proof of the theorem of this section. The “base” problem of the proof in this
section is the FQUAL CARDINALITY PARTITION problem:

Definition 6.2 The FQUAL CARDINALITY PARTITION problem:

o Instance: A finite set W = {wy,ws,...,w,} and a capacity c(w) € Z*
for each w e W

e Question: Does a non trivial partition {W7y,... , Wy} of W exist such that
(Wil = [W;| and e, c(w) = Zwewj c(w) for all1 <i,5 <k?

EQUAL CARDINALITY PARTITION is closely related to the balanced
version of PARTITION where we are looking for a set W/ C W such that
Swew c(w) = § and [W'| = @ The balanced version of PARTITION is
known to be NP-complete [43]. An instance of the balanced version of PARTI-
TTON is transformed into an equivalent instance of EQUAL CARDINALITY
PARTITION by adding two more elements to the set W - both with capacity
C + 1. This shows that EQUAL CARDINALITY PARTITION is NP-complete
since it is easily seen to belong to NP.
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O 2c(w;)+C
g

Figure 6.2: A part of a game with positive and symmetric preferences.

We will now formally define the problem of deciding whether a non trivial
Nash stable partition exists in an Additively Separable Hedonic Game with
non-negative and symmetric preferences:

Definition 6.3 The INEFFICIENT EQUILIBRIUM problem:

o Instance: A set N ={1,2,...,n} and a function v; : N — RTU{0} such
that vi(i) = 0 for each i € N and v;(j) = vj(i) for eachi,j € N.

e Question: Does a non trivial partition 11 of N exist such that

Vie NS, e TTU{0}: > wi(i) = Y. wil)) ?

J€ST(3) JESLU{i}
Theorem 6.2 INEFFICIENT EQUILIBRIUM is NP-complete.

Proof.

We will show that EQUAL CARDINALITY PARTITION « INEFFICIENT
EQUILIBRIUM. By the same line of reasoning as in the proof of Theorem 6.1
we conclude that INEFFICIENT EQUILIBRIUM is NP-complete since INEF-
FICIENT EQUILIBRIUM is easily seen to belong to NP.

We will now show how to transform an instance of EQUAL CARDINALITY
PARTITION into an equivalent instance of INEFFICIENT EQUILIBRIUM. All
the members of W are players in the instance of INEFFICIENT EQUILIBRIUM
and the payoff for w; and w; for cooperating is c(w;) + c(w;) + C. For each
player w; we also add a player z;. Player z; only gets a strictly positive payoff by
cooperating with w; - in this case the payoff is 2¢(w;) + C. Figure 6.2 depicts a
part of the INEFFICIENT EQUILIBRIUM instance as an undirected weighted
graph. The members of W are fully connected but z; is only connected to w;
in the graph.

We will now prove that the two instances are equivalent:

e Suppose that we have a non trivial Nash stable partition II of the players
in Figure 6.2. For S € II we define W, = S N W. The player z;
cooperates with w; - otherwise II would not be stable. The total payoff
of w; € Wy is [Wi[(C + c(wi)) + > ew, c(w).

— |[Wi| = |W;|: If [W;] < |Wj| then all the players in W; would be
strictly better off by joining W;. This contradicts that II is stable.
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— ZwEWi c(w) = Zwewj c(w): Now assume ZwEWi c(w) < Zwewj c(w).
Once again the players in W; would be strictly better off by joining
W; since |W;| = |Wj|. Yet another contradiction.

e Suppose that we have a non trivial partition of W into sets with equal
cardinality and capacity. For a set W; in this partition let S; be the union
of W; and the corresponding z-members. The set of S;’s is easily seen to
be a non trivial Nash stable partition of the game in Figure 6.2.
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The details of the results on Simple Games are presented in this chapter.
The work on Simple Games is joint work with Josep Freixas, Xavier Molinero
and Maria Serna from the Polytechnic University of Catalonia, Barcelona, Spain
and the results can also be found in [41].

Simple game theory is a very dynamic and expanding field. Taylor and
Zwicker [84] pointed out that “few structures arise in more contexts and lend
themselves to more diverse interpretations than do simple games”. Indeed,
simple games cover voting systems in which a single alternative, such as a bill
or an amendment, is pitted against the status quo. In these systems, each voter
responds with a vote of “yea” or “nay”. A simple game or a yes—no voting
system is a set of rules that specifies exactly which collections of “yea” votes
yield passage of the issue at hand — each of these collections of “yea” voters
forms a winning coalition.

Democratic societies and international organizations use a wide variety of
complex rules to reach decisions. Examples, where it is not always easy to
understand the consequences of the way voting is done, include the Electoral
College to elect the President of the United States, the United Nations Security
Council, the governance structure of the World Bank, the International Mone-
tary Fund, the European Union Council of Ministers, the national governments
of many countries, the councils in several counties, and the system to elect
the major in cities or villages of many countries. Another source of examples
comes from economic enterprises whose owners are shareholders of the society
and divide profits or losses proportionally to the numbers of stocks they posses,
but make decisions by voting according to a pre-defined rule (i.e., an absolute
majority rule or a qualified majority rule).

There are several alternative ways to introduce a simple game; the most
natural is by giving the list of winning coalitions, then the complementary set is
the set of losing coalitions and the simple game is fully described. A considerable
reduction in introducing a simple game can be obtained by considering only the
list of minimal winning coalitions, i.e. winning coalitions which are minimal by
the inclusion operation. Coalitions containing minimal winning coalitions are
also winning. Analogously, one may present a simple game by using either the
set of losing coalitions or the set of maximal losing coalitions.

We are interested in performing a complexity analysis of problems on simple
games, in the case that the number of players is large, as pointed out in [33], from
a computational point of view, the key issues relating to coalitional games are,
first, how such games should be represented (since the obvious representation is
exponentially large in the number of players); and second, the extent to which
cooperative solution concepts can be efficiently computed. We undertake here
the task of looking into these issues.

Previous results have focused on problems where the input is a subclass of
the class of simple games, the so called weighted games. A way to describe
a weighted game is to assign a (positive) real number weight to each voter,
and declare a coalition to be winning precisely when its total weight meets or
exceeds some predetermined quota. Not every simple game is weighted but
every simple game can be decomposed as an intersection of some weighted
games. Work with the complexity of problems on weighted games dates back
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to [79], where Prasad and Kelly provide NP-completeness results on determining
properties of weighted voting games. For instance, they show that computing
standard political power indices, such as absolute Banzhaf, Banzhaf-Coleman
and Shapley-Shubik, are all NP-hard problems. More recent work is related
with the notion of dimension considered by Taylor and Zwicker [83,84]. The
dimension of a simple game is the minimum number of weighted games whose
intersection coincides with the game. The computational effort to weigh up
the dimension of a simple game, given as the intersection of d weighted games,
was determined by Deineko and Woeginger [30]: computing the dimension of
a simple game is a NP-hard problem. More results on solution concepts for
weighted games can be found in [24,25,29,33,34,62,63]. There also exist works
related to economics [5,35,46, 86].

Our first objective is to fix some natural game representations. After doing
so, as usual, we analyze the complexity of transforming one representation into
another and the complexity of the problem of recognizing simple games. Our
second aim is to classify the complexity of testing whether a simple game is
of a special type. Apart from weighted games there are some other subclasses
of simple games which are very significant in the literature of voting systems.
Strongness, properness, decisiveness and homogeneity are, among others, desir-
able properties to be fulfilled for a simple game. Our results are summarized in
Tables 7.1 and 7.2.

Input — || (N, W) | (N,L) | (N,W™) | (N, L)
Output |
(N, W) EXP EXP EXP
(N, L) EXP - EXP EXP
(N, ™) P P - EXP
(N, LM) P P EXP -

Table 7.1: Complexity of changing the representation form of a simple game.

Input — H (N, W) ‘ (N, ™) ‘ (N, L) ‘ (N, LM) ‘ (q;w) ‘
IsSIMPLE P P P P —
IsSTRONG P co-NPC P P co-NPC
ISPROPER P P P co-NPC | co-NPC
ISWEIGHTED P P P P —
ISHOMOGENEOUS P ? P ? ?
IsDECISIVE P ? P ? co-NPC
ISMAJORITY P ? P ? co-NPC

Table 7.2: Our results on the complexity of problems on simple games.

Table 7.1 shows the complexity of passing from a given form to another one.
All explicit forms are represented by a pair (IV,C) in which N = {1,...,n} for
some positive integer n, and C' is the set of winning, minimal winning, losing
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or maximal losing coalitions. Note that it is possible to pass from winning and
losing coalitions to minimal winning and maximal losing coalitions in polyno-
mial time, but the other swaps require exponential time. On the other hand,
given a game in a specific form, Table 7.2 shows the complexity of determining
whether it is simple, strong, proper, weighted, homogeneous, decisive or major-
ity. Here (q;w) denotes an integer representation of a weighted game where ¢
is the quota and w are the weights. Observe that there are some problems that
still remain open.

Finally, we refer the reader to Papadimitriou [77] for the definitions of the
complexity classes P, NP, co-NP, and their subclasses of complete problems
NPC and co-NPC.

7.1 Recognizing simple games

We start stating some basic definitions on simple games (we refer the interested
reader to [84] for a thorough presentation).

Simple games can be viewed as models of voting systems in which a single
alternative, such as a bill or an amendment, is pitted against the status quo.

Definition 7.1 A simple game T is a pair (N,W) in which N = {1,...,n}
for some positive integer n, and W is a collection of subsets of N that satisfies
N € W, 0 ¢ W, and the monotonicity property: S € W and S C R C N
implies R e W.

Any set of voters is called a coalition, the set N is called the grand coalition,
and the empty set 0 is called the null coalition. Members of N are called players
or voters, and the subsets of IV that are in W are called winning coalitions. The
intuition here is that a set S is a winning coalition iff the bill or amendment
passes when the players in S are precisely the ones who vote for it. A subset
of N that is not in W is called a losing coalition. The collection of losing
coalitions is denoted by L. The set of minimal winning coalitions (mazximal
losing coalitions) is denoted by W™ (LM), where a minimal winning coalition
(a maximal losing coalition) is a winning (losing) coalition all of whose proper
subsets (supersets) are losing (winning). Because of monotonicity, any simple
game is completely determined by its set of minimal winning coalitions. A voter
iisnullif ¢ ¢ S for all S € W™,

From a computational point of view a simple game can be given under
different representations. In this chapter we essentially consider the following
options:

e Explicit or Extensive winning form: the game is given as (N, W) by provid-
ing a listing of the collection of subsets W.

e Explicit or Extensive minimal winning form: the game is given as (N, W™)
by providing a listing of the family W™. Observe that this form requires
less space than the explicit winning form whenever W # {N}.
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When we consider descriptions of a game in terms of winning coalitions
in this chapter, we also consider the corresponding representations for losing
coalitions, replacing minimal by maximal. Thus, in addition we also consider
the explicit or extensive losing, and explicit or extensive maximal losing forms.

We analyze first the computational complexity of obtaining a representation
of a game in a given form when a representation in another form is given.

Theorem 7.1 Given a simple game:

i. passing from the explicit winning (losing) form to the explicit minimal
winning and mazimal losing (mazimal losing and minimal winning) form
can be done in polynomial time.

it. passing from the explicit minimal winning (maximal losing) form to the
explicit winning (losing) form requires exponential time.

iti. passing from the explicit minimal winning (mazimal losing) form to the
explicit mazimal losing (minimal winning) form requires exponential time.

iv. passing from the explicit minimal winning (mazximal losing) form to the
explicit losing (winning) form requires exponential time.

v. passing from the explicit winning (losing) form to the explicit losing (win-
ning) form requires exponential time.

This theorem gives us all the results presented in Table 7.1. The polyno-
mial time results are obtained from simple properties of monotonic sets. For
the exponential time transformations we provide examples in which the size of
the representation increases exponentially. The transformations are similar to
the ones used to show that computing a CNF! from a given DNF? requires
exponential time. The difference relies in that now instead of transforming the
same formula we have to get a different maximal normal form for a formula and
its negation.

Before proving Theorem 7.1 in detail, we introduce some notation and def-
initions together with some preliminary technical results.

Given a family of subsets C' of a set N, C denotes the closure of C' under
C, and C the closure of C' under D.

Definition 7.2 A subset C of a set N is closed under C (2) if C = C (C).

The following lemma is proved in [77].

Lemma 7.1 Given a family of subsets C' of a set N, we can check whether it
1s closed under C or D in polynomial time.

'A Boolean formula is in Congjunctive Normal Form (CNF) if it is a conjunction of dis-
junction of literals.

2A Boolean formula is in Disjunctive Normal Form (DNF) if it is a standardization (or
normalization) of a logical formula which is a disjunction of conjunction of literals.
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Lemma 7.2 Given a family of subsets C' of a set N, the families C' and C™
can be obtained in polynomial time.

Proof. Observe that, for any set S in C' we have to check whether there is a
subset (superset) of S that forms part of C', and keep those S that do not have
this property. Therefore, the complete computation can be done in polynomial
time on the input length of C. O

Now we define the minimal and maximal subset families.

Definition 7.3 Given a family of subsets C of a set N, we say that it is min-
imal if C =C".

Definition 7.4 Given a family of subsets C' of a set N, we say that it is maz-
imal if C = CM.

As a consequence of Lemma 7.2 we have the following corollary.

Corollary 7.1 Given a family of subsets C' of a set N, we can check whether
1t 1s mazimal or minimal in polynomial time.

The proof of Theorem 7.1 is split into five lemmata. We start with our first
result for simple games given in explicit winning or losing form.

Lemma 7.3 Given a simple game T in explicit winning (or losing) form, the
representation of T' in explicit minimal winning or mazimal losing (mazimal
losing or minimal winning) form can be obtained in polynomial time.

Proof. Given a simple game I' = (N, W), consider the set

IN|
R= U W_;
i=1

where W_; = {S'\ {i} : i € S € W}. Observe that all the sets in R\ W are
losing coalitions, R\ W C L. We claim that (R\ W)™ = LM . We are going to
prove that in two steps:

o (R\W)M C LM: Now suppose that T € (R\ W)™ and that T ¢ LM,
Consequently we have that T' € L and that T'U {i} € W for some i € N.
We also have that T' C U for some U € L. Due to the monotonicity we
conclude that UU{i} € W. This means that U € R\ W which contradicts
that 7" is maximal in R\ W.

o LM C (R\W)M: We will show this inclusion in two steps:

i. IMCR\W: If T € LM then TU {i} € W for any i ¢ T. Thus T
can be obtained from a winning coalition (T'U{i}) from removing an
element (7). This means that ' € R\ W since T is a losing coalition.

ii. Maximal elements in a set will also be maximal in any subset they
appear in. From L™ C R\W C L we conclude that L™ C (R\W)M.
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For the cost of the algorithm, observe that, given (N, W), the set R has car-
dinality at most | N|-|W¥|, and thus R can be obtained in polynomial time. Using
Lemma 7.2, from W and R\ W, we can compute W™ and L™ in polynomial
time.

Analogously, when the game is given by the family of losing coalitions a
symmetric argument provides the proof for explicit maximal losing or minimal
winning form. O

Now we focus on simple games given in explicit minimal winning or explicit
maximal losing form.

Lemma 7.4 Given a simple game T in explicit minimal winning (mazximal
losing) form, computing the representation of T' in explicit winning (losing)
form requires exponential time.

Proof. The following two examples show that the size of the computed family
can be exponential in the size of the given one. Therefore, any algorithm that
solves the problem requires exponential time.

Consider N = {1,...,n}, then:

i. The simple game defined by W™ = [Ji;{{i}} has W = {T'C N : T # (}}.
Therefore, |IW™| =n and |[W| = 2" — 1.

ii. The simple game defined by LM = {T'C N :|T| =n—1} has L = {T C
N}. Therefore, [LM| =n and |L| = 2" — 1.

Lemma 7.5 Given a simple game I' in explicit minimal winning (maximal los-
ing) form, computing the representation of I' in explicit mazimal losing (mini-
mal winning) form requires exponential time.

Proof. In a similar way as we did in the previous Lemma, we show two examples
in which the size of the computed family can be exponential in the size of the
given one.

Consider N = {1,...,2n} and coalitions S; = {2i—1,2i}, foralli =1,...,n.
Then,

i. The simple game defined by W™ = [JI_,{S;} has
IM={TCN:|TNS;|=1foralli=1,...,n}.
Therefore, |W™| = n and |LM| = 2",
ii. The simple game defined by
Wm={TCN:|TnS;|=1foralli=1,...,n}

has LM = Ui, {N \ Si}. Therefore, W] = 2" and |L| = n.
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As a consequence of Lemmata 7.3 and 7.5 we have Corollary 7.2.

Corollary 7.2 Given a simple game T in explicit minimal winning (mazximal
losing) form, computing the representation of T' in explicit losing (winning)
form requires exponential time.

The remaining cases of Theorem 7.1 are again computationally hard.

Lemma 7.6 Given a simple game T in explicit winning (losing) form, comput-
ing the representation of T' in explicit losing (winning) form requires exponential
time.

Proof. We present two examples where the size of the computed family is expo-
nential in the size of the given one. Let (N, W) be the game, where W = {N},
then [W| =1 and |L| = 2N — 1. Similarly, let (N, W) be the game, where
L = {0}, then |W| =2l — 1 and |L| = 1. O

Lemmata (7.3)-(7.6) make up Theorem 7.1.

The next step is to analyze the computational complexity of the following
recognition problems:

Name: ISSIMPLEE

Input: (N,C)
Question: Is (N,C) a correct explicit representation of a simple
game?

We have in total four different problems depending on the input description:
winning, minimal winning, losing and maximal losing. However, the recognition
problem becomes polynomial time solvable in all these cases.

Theorem 7.2 The ISSIMPLEE problem belongs to P for any explicit form F:
winning, minimal winning, losing, or maximal losing.

Proof. The proof follows from the fact that given a family of subsets C' of a set
N, the families of minimal or maximal sets of its closure can be obtained in
polynomial time. It is a direct consequence of Lemmata 7.1 and 7.2 and Corol-
lary 7.1, stating that whether the family is monotonic® or minimal/maximal
can be tested in polynomial time. O

Observe that, as the recognition problem can be solved in polynomial time,
we can use any of the proposed representations in the complexity analysis to
follow.

3We say that a family of sets is monotonic iff it satisfies the monotonicity property.
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7.2 Problems on simple games

In this section we consider a set of decision problems related to properties that
define some special types of simple games (again we refer the reader to [84]). In
general we will state a property P for simple games and consider the associated
decision problem which has the form:

Name: IsP
Input: A simple game I’
Question: Does T satisfy property P?

Further considerations on the complexity of such problems will be stated in
terms of the input representation.

7.2.1 Recognizing strong and proper games

Now we study the complexity of determining if a given simple game (in explicit
form) is strong, weak, proper or improper.

Definition 7.5 A simple game (N, W) is strong if S ¢ W implies N\S € W.
A simple game that is not strong is called weak.

Intuitively speaking, if a game is weak it has to few winning coalitions, be-
cause adding sufficiently many winning coalitions would make the game strong.
Note that the addition of winning coalitions can never destroy strongness.

Definition 7.6 A simple game (N, W) is proper if S € W implies N\ S ¢ W.
A simple game that is not proper is called improper.

An improper game has to many winning coalitions, in the sense that deleting
sufficiently many winning coalitions would make the game proper. Note that
the deletion of winning coalitions can never destroy properness.

When a game is both proper and strong, a coalition wins iff its complement
loses. Therefore, in this case we have |W| = |L| = 2"~ 1.

A related concept with the properness and strongness is the dualityness.

Definition 7.7 Given a simple game (N, W), its dual game is (N, W*), where
SeW* ifand only if N\ S ¢ W.

That is, winning coalitions in the dual game are just the “blocking” coali-
tions in the original game. Thus, (N, W) is proper iff (N, W™) is strong, and
(N, W) is strong iff (N, W*) is proper.

Theorem 7.3 The ISSTRONG problem, when the input game is given in ex-
plicit losing or maximal losing form, and the ISPROPER problem, when the
game 1is given in explicit winning or minimal winning form, can be solved in
polynomial time.
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Proof.

To prove this result we provide an adequate formalization of the strong and
proper properties in terms of simple properties of the set of minimal winning
or maximal losing coalitions respectively. Those properties can be checked in
polynomial time when the games are given in the specified forms.

First observe that, given a family of subsets F', we can check, for any set in
F, whether its complement is not in £’ in polynomial time. Therefore, taking
into account the definitions, we have that the ISSTRONG problem, when the
input is given in explicit losing form, and the ISPROPER problem, when the
input is given in explicit winning form, are polynomial time solvable.

Thus, taking into account that

e A simple game is weak iff
JSCN:SeL ANN\SelL
which is equivalent to
3SCN:3L, Ly e LM :SCLi A N\SC Ly

The last assertion is equivalent to the fact that there are two maximal
losing coalitions L1 and L9 such that L1 U Ly = N.

e A simple game is improper iff
ASCN:SeW ANN\SeWw
which is equivalent to
ASCN:IW,Wo e Wm: W, CS AN Wy CN\S.

This last assertion is equivalent to the fact that there are two minimal
winning coalitions W7 and W5 such that Wy, N Wy = 0.

Observe that, given a family of subsets F', checking whether any one of the two
conditions hold can be done in polynomial time. Thus the theorem holds also
when the set of maximal losing (or minimal winning) coalitions is given. O

As a consequence of Theorems 7.1 and 7.3 we have:

Corollary 7.3 The ISSTRONG problem, when the input game is given in ex-
plicit winning form, and the ISPROPER problem, when the game is given in
explicit losing form, can be solved in polynomial time.

Our next result states the complexity of the ISSTRONG problem when the
game is given in the remaining form.

Theorem 7.4 The ISSTRONG problem is co-NP-complete when the input game
is given in explicit minimal winning form.



7.2. Problems on simple games 87

Proof. The membership proof follows from an adequate formalization. To prove
hardness we consider the set splitting problem which asks whether it is possible
to partition N into two subsets P and N \ P such that no subset in a given
collection C' is entirely contained in either P or N \ P. It is known that the
problem is NP-complete [43]. We provide a polynomial time reduction from set
splitting to the ISWEAK problem. In other words we have to decide whether
P C N exists such that

VSeC:SZPASZN\P (7.1)

We transform a set splitting instance (N, C') into the simple game in explicit
minimal winning form (N, C™). This transformation can be computed in poly-
nomial time according to Lemma 7.2. We will now show that (N, ) has a set
splitting iff (IV,C™) is a weak game:

e Now assume that P C N satisfying (7.1) exists. This means that P and
N\ P are losing coalitions in the game (N,C™).

e Let P and N \ P be losing coalitions in the game (N,C™). As a con-
sequence we have that S ¢ P and S € N\ P for any S € C™. This
implies that S € P and S € N \ P holds for any S € C since any set in
C contains a set in C™.

a

Finally we prove a similar complexity result for the remaining version of the
ISPROPER problem.

Theorem 7.5 The ISPROPER problem is co-NP-complete when the input game
is given in extensive maximal losing form.

Proof. The hardness of the ISPROPER problem is obtained by using duality and
providing a polynomial time reduction from the ISSTRONG problem.

From Definition 7.6, a game is improper if and only if there exists a coalition
S C N such that neither S nor N \ S is contained in a member of L™. For a
given coalition S we can easily perform this check in polynomial time. Therefore
the problem ISIMPROPER belongs to NP, and the problem ISPROPER belongs
to co-NP.

To complete the proof we provide a reduction from the ISSTRONG problem
for games given in extensive minimal winning form. First observe that, if a
family C of subsets of N is minimal then the family {N\L : L € C'} is maximal.
Given a game I' = (N, W), in minimal winning form, let us consider its dual
game IV = (N,{N \ L : L € W™}) given in maximal losing form. Of course I"/
can be obtained from I' in polynomial time. Thus I' is weak iff

ASCN:Se L) A N\Se Ll
which is equivalent to

JSCN:N\SeW) A Sew(I
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iff T/ is improper.
Thus, the ISPROPER problem belongs to co-NP and it is co-NP-hard — in
other words it is co-NP-complete. O

7.2.2 Recognizing weighted games

In this subsection we study the complexity of determining if a given simple
game (in explicit form) is weighted, homogeneous, majority or decisive.

Definition 7.8 A simple game (N,W) is weighted if there exist a “quota”
g € R and a “weight function” w : N — R such that each coalition S is
winning exactly when the sum of weights of S meets or exceeds q.

Weighted games are probably the most important kind of simple games.
Any specific example of a weight function w and quota ¢ is said to realize G
as a weighted game. A particular realization of a weighted game is denoted
(q; w1, ..., wy), or briefly (¢;w). By w(S) we denote ), g w;.

Observe also that, from the monotonicity property, it is obvious that a
simple game (N, W) is weighted iff there exist a “quota” q € R and a “weight
function” w : N — R such that

w(S)>q VSew™
w(S) < q vV SerLM

Theorem 7.6 The ISWEIGHTED problem can be solved in polynomial time
when the input game is given in explicit winning, losing, minimal winning and
mazimal losing forms.

Proof. A simple polynomial time reduction from the ISWEIGHTED problem to
the Linear Programming problem, which is known to be solvable in polynomial
time [52,55], gives the result for the cases of explicit winning and explicit losing
forms.

Taking into account Lemma 7.2, in both cases we can obtain W™ and LM
in polynomial time. Once this is done we can write, again in polynomial time,
the following Linear Programming instance II:

min g

subject to  w(S) > ¢ it Sewm
w(S) <gq if S e LM
0<w; foralll <i<n

As (N,W) is weighted iff II has a solution, the proposed construction is a
polynomial time reduction.

For the minimal winning form we provide a reduction to the threshold func-
tion problem for monotonic DNF formula which is known to be polynomial
time solvable [49, 78]. For the maximal losing form we make use of duality
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and provide a reduction to the problem when the input is described in minimal
winning form.

Given (N,W™), we are going to prove that we can decide in polynomial
time whether a simple game is weighted.

For C' C N we let z¢ € {0,1}" denote the vector with the i’th coordinate
equal to 1 if and only if ¢ € C'. In polynomial time we transform W™ into the
Boolean function ®yym given by the DNF formula:

Pyym () = \/ (Nies®;)
Sewm

By construction we have the following:

Oym(zc) =1 < C is winning in the game given by (N, W™) (7.2)

Note that ®ym is a threshold function if and only if the game given by
(N, W™) is weighted:

e only if (=): Assume that ®pm is a threshold function. Let w € R™ be
the weights and ¢ € R the threshold value. Thus we have that

Pym(zo) =1 (w,zc) > q

where (-,-) denotes the usual inner product. By using (7.2) we conclude
that the game given by (N, W™) is weighted.

e if («<): Now assume that the game given by (N, W™) is weighted and
that (q; w) is a realization of the game. In this case we have the following:

C'is winning in the game given by (N,W™) & (w,z¢) > ¢
Again we use (7.2) and conclude that ®yym is a threshold function.

The Boolean function ®ym is monotonic (i.e. positive) so according to
the papers [49,78] (pages 211 and 59, respectively) we can in polynomial time
decide whether ®ym is a threshold function. Consequently we can also decide
in polynomial time whether the game given by (N, W™) is weighted.

On the other hand, we can prove a similar result given (N, L™) just taking
into account that a game I' is weighted iff its dual game I" is weighted. Then,
we can use the technique from the proof of Theorem 7.5. O

It is important to remark that it is known that “a simple game is weighted iff
it is trade robust iff it is invariant-trade robust” [33,40,84]. Thus, according to
Theorem 7.6, checking whether a simple game is trade robust or invariant-trade
robust can be done in polynomial time.

Corollary 7.4 The ISTRADEROBUST and the ISINVARIANTTRADEROBUST prob-
lem can be solved in polynomial time when the input game is given in explicit
winning, minimal winning, losing or mazximal losing form.
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7.2.3 Recognizing homogeneous, decisive and majority games

In this section we define the homogeneous, decisive and majority games and,
afterwards, we analyze the complexity of the ISHOMOGENEOUS, ISDECISIVE
and ISMAJORITY problems.

Definition 7.9 A weighted game (N, W) is homogeneous if there exist a real-
ization (q;w) such that ¢ = w(S) for all S € W™.

That is, a weighted game is homogeneous iff the sum of the weights of any
minimal winning coalition is equal to the quota.

Theorem 7.7 The ISHOMOGENEOUS problem can be solved in polynomial time
when the input game is given in explicit winning or losing form.

Proof. The polynomial time reduction from the ISHOMOGENEOUS problem to
the Linear Programming problem, is done in the same way as in the proof of
Theorem 7.6, but considering the instance II" obtained by replacing w(S) > ¢,
in the first set of inequalities of II, by w(S) = ¢. It is immediate to see that
(N, W) is homogeneous iff II' has a solution. This modification provides the
proof of Theorem 7.7. O

Now we introduce the remaining subclasses of simple games.

Definition 7.10 A simple game is decisive (or self-dual, or constant sum) if
it is proper and strong. A simple game is indecisive if it is not decisive.

Note that the decisiveness is related with the dualityness. As we said before,
(N, W) is proper iff (N,W*) is strong, and (N, W) is strong iff (N,W™*) is
proper. As a consequence, we have that a simple game (N, W) is decisive iff
W = W*. On the other hand, W is closed under C or D iff W* is closed under
C or D, respectively.

In the seminal work on game theory by von Neumann and Morgenstern [66]
only decisive simple games were considered. Nowadays, many governmental
institutions make their decisions through voting rules that are in fact decisive
games. If abstention is not allowed (see [42] for voting games with abstention)
ties are not possible in decisive games.

Another interesting subclass of simple games are the so—called majority
games:

Definition 7.11 A simple game is a majority game if it is weighted and deci-
stve.

Observe that, although a simple game can fail to be proper and fail to be
strong, this cannot happen with weighted games (the proof appears in [84]).

Proposition 7.1 Any weighted game is either proper or strong.
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From Proposition 7.1, it follows that there are three kind of weighted games:
proper but not strong, strong but not proper, and both strong and proper.

From Theorem 7.6 and taking into account that decisive games are charac-
terized by having 2"~ winning coalitions, we have the following result.

Theorem 7.8 The ISMAJORITY and the ISDECISIVE problems can be solved
i polynomial time when the input game is given in explicit winning or losing
form.

Proof. Given a monotonic simple game (N,W), we can check whether it is
strong and proper by checking |[W| = 2"t and S € W = N\ S ¢ W in
polynomial time. We check (N, L) in a similar way. Furthermore, under both
forms, we can check in addition whether the game is weighted in polynomial
time using Theorem 7.6. O

7.3 Problems on weighted games

In this section we consider weighted games which are described by an integer
realization (q;w). Observe that it is well-known that any weighted game ad-
mits an integer realization (see for instance [15]), that is, a weight function with
nonnegative integer values, and a positive integer as quota. Integer realizations
naturally arise; just consider the seats distributed among political parties in
any voting system. In consequence we assume an integer realization as repre-
sentation of a weighted game. We analyze the complexity of problems of the
type:

Name: IsP
Input: An integer realization (q;w) of a weighted game T
Question: Does T satisfy P?

We are interested in such problems associated to the properties of being
strong, proper, homogeneous, and majority*. Observe that for weighted games
majority and decisive are just the same property, so we consider only the ma-
jority games.

From now on some of the proofs are based on reductions from the NP-
complete problem PARTITION [43], which is defined as:

Name: PARTITION
Input: n integer values, z1,...,Ty,
Question: Is there 5 C {1,...,n} for which };cq @ =05 3.

Observe that, for any instance of the PARTITION problem in which the sum
of the n input numbers is odd, the answer must be NO.

“Note that the definition of majority weighted games given in [30] is equivalent to our
definition of weighted games.



92 Chapter 7. Simple Games

Theorem 7.9 The ISSTRONG, ISPROPER and ISMAJORITY (here, equivalent
to ISDECISIVE) problems, when the input is described by an integer realization
of a weighted game (q;w), are co-NP-complete.

Proof. From the definitions of strong, proper and majority games, it is straight-
forward to show that the three problems belong to co-NP.

Observe that the weighted game with integer representation (2;1,1,1) is
proper and strong, and thus decisive.

We transform an instance x = (z1,...,xy) of the PARTITION problem into
a realization of a weighted game according to the following schema

(@) (¢(x);x2)  when x1 + -+ + x, is even,
x) =
(2;1,1,1) otherwise.

The function f can be computed in polynomial time provided ¢ does, and we
will use a different g for each problem.

Nevertheless, independently of ¢, when 1 + -+ 4+ x,, is odd, x is a NO
input for partition, but f(z) is a YES instance of ISSTRONG, ISPROPER, and
IsMAJORITY, and thus a NO instance of the complementary problems.

Therefore, we have to take care only of the case in which x1+- - - +x,, is even.
Assume that this is the case and let s = (14 -+ +2,)/2 and N = {1,...,n}.
We will provide the proof that f reduces PARTITION to the complementary
problem.

a) ISSTRONG problem.
For the case of strong games, taking ¢(z) = s+ 1, we have:

o If there is a S C N such that } ;cgx; = s, then 3,55 x; = s, thus both
S and N\ S are losing coalitions and f(z) is weak.

e Now assume that S and N \ S are both losing coalitions in f(x) If
Y icsTi < sthen ) ,.gx; > s+ 1, which contradicts that N\ S is losing.
Thus we have that ) ;. gz = Zigs x; = 8, and there exists a partition
of x.

Therefore, f is a polytime reduction from PARTITION to ISWEAK

b) ISPROPER problem.

For the case of proper games we take q(x) = s. Then, if there is a S C N
such that } ;cqxi = s, then 3 ,5q2; = s, thus both S and N \ S are winning
coalitions and f(x) is improper. When f(x) is improper

HSQNizl‘iZS/\ZJL'Z’ZS,

i€s i¢S

and thus ) ;g 2; = s. Thus, we have a polytime reduction from PARTITION to
ISIMPROPER.

¢) ISMAJORITY problem.
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For the case of majority games we take again g(x) = s. Observe that f(x)
cannot be weak, as in such a case there must be some S C N for which,

in<s/\2$i<s,

i€s i¢S

contradicting the fact that s = (x1 + --- + x,)/2. Therefore, the game is not
majority iff it is improper, and the claim follows. O

Before finishing this section we introduce the following related problem:

Name: ISHOMOGENEOUSREALIZATION
Input: An integer realization (q;w) of a weighted game T
Question: Is (¢; w) a homogeneous realization?

Given the weights w, Rosenmiiller [80] solves the problem of computing all ¢
such that (¢;w) is a homogeneous realization. Although in [80] the analysis on
the complexity is omitted, it is easy to check that the dynamic programming
algorithm given in Section 3 of [80] runs in polynomial time. Thus, given
an integer realization (¢;w) it can be checked whether it is a homogeneous
realization in polynomial time.

Theorem 7.10 The ISHOMOGENEOUSREALIZATION problem can be solved in
polynomial time.

Note that, given an integer realization (q; w) of a weighted game, we cannot
yet check whether this game is homogeneous, only whether a given realization
is a homogeneous one. We want to remark that the previous result does not
imply that the ISHOMOGENEOUS problem belongs to NP. Consider the problem

Name: ISANOTHERREALIZATION
Input: Two integer realizations (¢;w) and (¢’;w’).
Question: Is (¢';w’) another realization of the game (g, w)?

In [34] it is shown that the ISANOTHERREALIZATION problem is co-NP-complete:
it is easy to see that (x1,...,x,) is a no instance of PARTITION if and only if
(s + 1;x) is another realization of (s;x).

7.4 Succinct representations

We finish the analysis of simple games introducing a natural succinct represen-
tation of families of sets by means of Boolean formula. A Boolean formula ®
on n variables provides a compact description of a family of subsets C' of a set
N with n elements in the following way: we associate to each truth assignment
x = (x1,...,2,) the set A, = {i | &; = 1}. Therefore ® describes the family
of subsets {A; | ®(z) = 1} in a compact way. In consequence we consider the
following succinct representations
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e Succinct winning form: the game is given by (N, ®) where ® is a Boolean
formula on |N| variables providing a compact description of the sets in
W.

e Succinct minimal winning form: the game is given by (N, ®) but now &
describes the family W™. Observe again that this form might require less
space than the previous one whenever W # {N}.

In addition we consider the succinct losing and maximal losing forms. Our first
objective again is to analyze the complexity of the recognition problem.

Name: ISSIMPLES

Input: (N, ®)
Question: Is (IV,®) a correct succinct representation of a simple
game?

As it happened with ISSIMPLEE problem, we have in total four different
problems depending on the input description: winning, minimal winning, losing
and maximal losing.

Unfortunately we can show that the recognition problem is hard in all the
proposed succinct forms thus forbidding a posterior use of such representations.

Theorem 7.11 The ISSIMPLES problem is co-NP-complete for any succinct
form F: winning or losing, and co-NP-hard for any succinct form F: minimal
winning or maximal losing.

Proof. Observe that, from the Definition 7.1 of the monotonicity property, a
set W(L) is not monotonic iff there are two sets S; and Sy such that S; C S
but S; € W and So ¢ W (S1 ¢ L and Sy € L). When the game is given in
succinct winning or losing form, these tests can be done by guessing two truth
assignments 1 and z9 and checking that z1 < 2, Py (x1) = 1 and $y(z2) =0
(®r(z1) = 0 and @1 (x2) = 1). Both properties can be checked in polynomial
time once S7 and Sy are given. Thus the problems belong to co-NP.

A Boolean formula is monotonic if for any pair of truth assignments x,y,
such that x < y in canonical order (i.e., x; < y; for all i), we have that
®(x) < ®(y) (assuming that false < true). The latter problem (i.e., to know
whether a Boolean formula is monotonic or not) is co-NP-complete (even for
DNF formulas) [64]. Consider the following reduction: Given a boolean formula
® on n variables we construct ® on n + 2 variables as follows

1 a=0=1
' (afz) =<0 a=03=0
O(z) a#p

Now we have that ® is monotonic iff ® is monotonic. Furthermore we have
that @’ is monotonic iff (N, ®’) is a simple game in the explicit winning form
since ®'(1") = 1 and ®’(0™) = 0. This shows that IsSimpleS for the explicit
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winning form is co-NP-complete. Observe that (N, ®r) is an explicit loosing
representation of a simple game iff (N, —®r) is an explicit winning represen-
tation of a simple game. Then the IsSimpleS for the explicit loosing form is
co-NP-complete.

Recall now that the SAT problem asks whether a given Boolean formula has
a satisfying assignment. SAT is a well known NP-complete problem. Consider
the following reduction: Given a boolean formula ¢ on n variables we construct
¢ for minimal winning forms on n + 2 variables as follows

1, fa=pg=1and z=1"
B(af) = 0, ifa=pg=1and xz # 1"
) e@), ita#p

0, ifa=p8=0

We have that ¢ does not have satisfying assignment iff ® describes a non
empty minimal winning set. Similarly for maximal losing forms, now we should
consider

0, fa=pg=1

Baps) ]9 a0
0, ifa=0=0and z # 0"
1, ifa=pg=0and z=0"

Thus the minimal winning and the maximal losing problems are co-NP-hard.
O

Observe that in the case that ® represents W™ (LM) we have to check on
one side that the represented set is minimal (maximal) and second that the
formula has a satisfying assignment different from 0”. This places the problem
in the class DP [77]. The exact classification of those problems remains open.

7.5 Open Problems on Simple Games

As this is the first time in which problems on simple games are analyzed there
are still many interesting open question as there are many other interesting
properties on simple games. With respect to the unclassified problems on Ta-
ble 7.2 we conjecture the following;:

Conjecture 7.1 The ISDECISIVE problem is co-NP-complete when the input
game is given in explicit minimal winning or mazximal losing form.

Conjecture 7.2 The ISMAJORITY problem is co-NP-complete when the input
game is given in explicit minimal winning or mazximal losing form.

We would also like to remark that our study can be enlarged by considering
new explicit forms to present a simple game. For example, blocking coalitions
and minimal blocking coalitions provide an alternative way to fully describe a
simple game. Precisely, a blocking coalition wins whenever its complementary
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loses. From the point of view of succinct representations, there are other pro-
posals for representing a simple game, which make use of Boolean functions
or weighted representations. For example the multilinear extension of a sim-
ple game [75], succinct representations [64], or the intersection of a collection
of weighted games [30]. It will be of interest to perform a similar complexity
analysis on such representations.

Interestingly enough, we have shown in Theorem 7.6 that we can decide
in polynomial time whether a simple game is weighted. This result opens the
possibility of analyzing the complexity of problems on weighted games described
in a explicit form. In particular, as weighted games are games with dimension
1, our results imply that we can decide in polynomial time whether a simple
game has dimension 1. Recall that the results in [30] show that computing the
dimension of a simple game is NP-hard. The latter result is obtained when
the game is described as the intersection of some weighted games. It will be of
interest to determine whether the dimension of a simple game given in explicit
form can be computed in polynomial time. The same questions can also be
formulated for other parameters and solution concepts on simple games.
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