
Estimating Frequencies and Finding Heavy
Hitters
Jonas Nicolai Hovmand, 2011 3884
Morten Houmøller Nygaard, 2011 4582

Master’s Thesis, Computer Science
June 2016
Main Supervisor: Gerth Stølting Brodal
Project Supervisor: Kasper Green Larsen

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY AU

ii

Abstract

In recent years, vast amounts of data has called for new models where it can be effi-
ciently handled. An example of such a model is the data stream model, where data
arrives in a continuous stream and algorithms are characterized by having fast process-
ing times without storing the data explicitly. The continuous stream can be thought of as
a continuous sequence of elements which leads to the interesting problems of estimating
the respective frequencies of each element and the problem of finding the most frequent
elements (heavy hitters).

In this thesis we analyze several algorithms solving these two problems in the Strict
Turnstile Model. For the problem of estimating frequencies we analyze the Count-Min
Sketch and Count-Median Sketch and for the problem of finding heavy hitters we analyze
solutions obtained from hierarchical structures using the sketches as black boxes. In
addition to the analyses we look at the lower bounds of the solutions and show that only
some of the algorithms are optimal in space usage, while none are optimal in update
time.

For both problems we experiment with different variations of the analyzed algo-
rithms and compare the results against each other. The most prominent findings of the
experiments are that all solutions are able to handle tens or even hundreds of thousands
of updates per second, while being able to provide good approximations, using only
small space. Furthermore, we find that a new variation of the hierarchical data structure
with constant-sized Count-Min Sketches is the fastest and most desirable solution, since
it does not suffer from the same disadvantages as the other solutions.

iii

iv

“As human beings, we perceive each instant of our life
through an array of sensory observations (visual, aural,
nervous, etc). However, over the course of our life, we
manage to abstract and store only part of the observa-
tions, and function adequately even if we can not recall
every detail of each instant of our lives. We are data
stream processing machines.”

— Shan Muthukrishnan [2828]

v

vi

Acknowledgments

We wish to express out sincere gratitude to our project supervisor Kasper Green Larsen.
He always took his time to answer our questions and he was a huge help in discussing
problems, solutions, and literature. Without his guidance we would have had a difficult
time, doing the work presented in this thesis.

A big thanks should also be addressed to Maria Arup, Kristian Frost, and Haakon
Nergaard for providing valuable feedback on the thesis.

Last but not least, we would like to thank Kasper Sacharias Roos Eenberg for meticu-
lously going through the thesis, questioning every second sentence, improving the qual-
ity while practicing his multi-coloring highlight/painting skills.

Jonas Nicolai Hovmand
Morten Houmøller Nygaard

Aarhus, Tuesday 14th June, 2016

vii

viii

Contents

1 Introduction1 Introduction 1
1.1 Background and related work1.1 Background and related work . 2
1.2 Overview1.2 Overview . 4

2 Preliminaries2 Preliminaries 5
2.1 Notation2.1 Notation . 5
2.2 Probabilistic Intuition2.2 Probabilistic Intuition . 5

2.2.1 Linearity of Expectation2.2.1 Linearity of Expectation . 6
2.2.2 Union Bound2.2.2 Union Bound . 6
2.2.3 Markov’s Inequality2.2.3 Markov’s Inequality . 6
2.2.4 Chebyshev’s Inequality2.2.4 Chebyshev’s Inequality . 7
2.2.5 Chernoff Bound2.2.5 Chernoff Bound . 7

2.3 Hash Functions2.3 Hash Functions . 8
2.3.1 c-universal2.3.1 c-universal . 8
2.3.2 k-wise Independence2.3.2 k-wise Independence . 9

2.4 Computational Models2.4 Computational Models . 10
2.4.1 Data Stream Models2.4.1 Data Stream Models . 10
2.4.2 Word-RAM Model2.4.2 Word-RAM Model . 11

3 Frequency Estimation3 Frequency Estimation 13
3.1 The Problem3.1 The Problem . 13
3.2 Sketches3.2 Sketches . 15
3.3 Count-Min Sketch3.3 Count-Min Sketch . 17

3.3.1 Point Query3.3.1 Point Query . 18
3.4 Count-Median Sketch3.4 Count-Median Sketch . 20

3.4.1 Point Query3.4.1 Point Query . 21
3.5 Summary3.5 Summary . 26

4 Heavy Hitters4 Heavy Hitters 27
4.1 The Problem4.1 The Problem . 28
4.2 Cash Register Model4.2 Cash Register Model . 29

4.2.1 Deterministic4.2.1 Deterministic . 29
4.2.2 Randomized4.2.2 Randomized . 30

ix

4.3 General Sketch Approach4.3 General Sketch Approach . 31
4.4 Hierarchical Count-Min Structure4.4 Hierarchical Count-Min Structure . 33
4.5 Hierarchical Count-Median Structure4.5 Hierarchical Count-Median Structure . 35
4.6 Hierarchical Constant-Min Structure4.6 Hierarchical Constant-Min Structure . 37
4.7 Summary4.7 Summary . 42

5 Lower Bounds5 Lower Bounds 43
5.1 Space Lower Bound for Approximate Heavy Hitters5.1 Space Lower Bound for Approximate Heavy Hitters 43
5.2 Space Lower Bound for Frequency Estimation5.2 Space Lower Bound for Frequency Estimation 46
5.3 Update Lower Bounds5.3 Update Lower Bounds . 48
5.4 Summary5.4 Summary . 50

6 Experiments6 Experiments 51
6.1 Implementation & Test Details6.1 Implementation & Test Details . 51

6.1.1 Implementation6.1.1 Implementation . 51
6.1.2 Setup6.1.2 Setup . 52
6.1.3 Measurements6.1.3 Measurements . 53
6.1.4 Zipfian Distribution6.1.4 Zipfian Distribution . 54

6.2 Sketches6.2 Sketches . 55
6.2.1 Theoretical bounds6.2.1 Theoretical bounds . 56
6.2.2 Equal Space6.2.2 Equal Space . 65
6.2.3 Summary6.2.3 Summary . 71

6.3 Heavy Hitters6.3 Heavy Hitters . 72
6.3.1 Count-Min Sketch & Count-Median Sketch6.3.1 Count-Min Sketch & Count-Median Sketch 74
6.3.2 Hierarchical Constant-Min Structure6.3.2 Hierarchical Constant-Min Structure 79
6.3.3 Cormode and Hadjieleftheriou6.3.3 Cormode and Hadjieleftheriou . 79
6.3.4 k-ary Hierarchical Structures6.3.4 k-ary Hierarchical Structures . 81
6.3.5 Data Distributions6.3.5 Data Distributions . 83
6.3.6 Space6.3.6 Space . 85
6.3.7 Summary6.3.7 Summary . 86

7 Conclusion7 Conclusion 89
7.1 Future Works7.1 Future Works . 90

GlossaryGlossary 93

List of TablesList of Tables 95

List of FiguresList of Figures 97

List of TheoremsList of Theorems 99

BibliographyBibliography 101

x

Chapter 1

Introduction

Once upon a time, in the darkest corner of a basement, a small router needed to keep
count of its most frequent visitors. The owner of the small router was running a fancy
website, which at points were under more load than the servers could manage. He
needed the small router to determine if and when someone was trying to do a Denial-
of-Service attack (DoS attackDoS attack) on his website. The small router handled millions of visits
every minute, but it did not have enough memory to keep count of even a small frac-
tion of the visitors. However, the small router’s owner did not give in. He had heard
about algorithms that were able to give good approximations of the most frequent vis-
itors while only using a tiny bit of memory. Such algorithms were said to solve the
approximate heavy hitters problem. Hence, the owner updated the software of the small
router with an approximate heavy hitters algorithm in order to find the most frequent
visitors. With the help of the new approximate heavy hitters algorithm, the small router
was now able to figure out who was generating the most traffic. Based on the findings of
the heavy hitters query from the small router, the owner of the fancy website could now
take measures to stop visitors from performing DoS attackDoS attacks that overloaded the servers.
The router, its owner, and the fancy website lived happily ever after.

In a sequence of elements, heavy hitters are the elements that occur most frequently,
for some definition of frequent. Consider a sequence of 100 elements and a frequency
fraction defined as 1/20 of the occurrences, then the heavy hitters are the elements with 5
or more occurrences in the sequence.

Generally, the heavy hitters problem is about counting numbers, but as the fairy tale
above implies, we can count other things than numbers. In fact, we can count many
different things by letting the elements represent what we want to count. It could be
numbers, but it could also be search queries, IP addresses, database updates etc. As
noted above, we also need to define what it means for an element to be frequent. The
above example with elements in a sequence defined it as a fraction of the number of
elements in the sequence. The fairy tale on the other hand, defined it as a fraction of the
total traffic volume.

In an attempt to study the heavy hitters problem, we will also study the problem of
determining the frequencies of elements. The heavy hitters problem is about knowing

1

which elements are frequent, but how do we determine the frequency of an element?
The problem of estimating frequencies of elements is called the frequency estimation
problem, and is used as a building block for a range of other problems including many
heavy hitters solutions.

Generally, frequency estimation solutions cannot be kept exactly for problems such
as the one presented in the fairy tale due to the amount of memory required to do so.
Consequently, they only provide approximations.

Consider a sequence of 100 elements with 20 unique elements. Now let 7 children
with 10 fingers each, count the occurrences of the unique elements. Using their fin-
gers only, will they be able to look through the sequence once and tell us how many
occurrences each of the unique elements had? The answer is probably no, but using
a frequency estimation algorithm, one would be able to provide an answer, not too far
from the actual frequencies.

Both problems are important in literature and has been studied extensively for many
years. In this thesis we seek to study the theoretical upper bounds for solutions to
both problems. Furthermore, we seek to compare the upper bounds with the theoretical
lower bounds in order to say if the solutions are optimal. Finally, we seek to study the
practical performance of the solutions, in order to determine which solutions are the
most applicable ones in practice.

1.1 Background and related work

Over the last decades, there has been an extensive increase in generated data and more
recently it has lead to new terms such as “Big Data” and “Data Stream”. These terms
heavily influence how we think, build, and manage many practical as well as theoretical
problems of Computer Science. While the former term is a broad notion for a lot of
problems handling extensive amounts of data, the latter is a specific form, where huge
amounts of data is seen as a stream or a sequence of data arriving at high rate.

For streams with data arriving at high rate, algorithms are needed which use as
little processing time as possible, in order to analyze and provide answers in real time.
Furthermore, such algorithms should only use a sublinear – preferably polylogarithmic
– amount of space in the whole data set, in order for it to be kept on machines such as
embedded environments, routers, servers and computers. Such structures are denoted
synopsis data structures by Gibbons and Matias [1616] and fits the description of a lot of
algorithms and data structures supporting the data stream model [2828].

Two problems which are a part of the data stream model are the problem of esti-
mating frequencies of elements and the problem of finding the most frequent elements
i.e. the heavy hitters problem, where the first problem usually provides a solution to the
latter.

Both problems have been studied extensively in literature, and can be traced all the
way back to the 1980’s [33, 1515], where an algorithm for finding the majority element
was proposed. A generalization of this problem, where all frequent elements for some
definition of frequent must be found, was also proposed in the same period [2626].

2

Building on the same ideas, the actual bounds of these algorithms were settled by
Demaine et al. [1313], Karp et al. [2020]. In the same period of time, other solutions solving
the same problem were suggested by Manku and Motwani [2323], Metwally et al. [2424] and
common for all were the fact that they had very similar behavior and bounds.

Common for all solutions above, was also that counters were kept for elements in
order to determine the frequencies and find the heavy hitters. Moreover, all algorithms
function in such a way that only positive increments of the estimates is possible, making
them all fail in a setting where increments and decrements of frequencies should be
possible. Algorithms having such constraints are said to support the Turnstile Model,
which is the data stream model, for which we wish to study solutions and provide
experiments in.

Usually, other algorithms in the form of sketches are needed, in such cases. Charikar
et al. [55] suggested the Count-Median Sketch which solves both the frequency estimation
and the heavy hitters problem with estimation error guarantees according to the L2-norm
of the data. A few years later, Cormode and Muthukrishnan [99] suggested a similar yet
different sketch, the Count-Min Sketch, which achieved solutions to the same problems,
but with estimation errors according to the L1-norm of the data.

Following the discovery of the Count-Min Sketch, a general misconception was made
in literature [99], that the Count-Min Sketch should be better in theory and practice than
the Count-Median Sketch, since the bounds of the two sketches differed in their original
state. Later, empirical studies of the sketches [77] suggested that they were in fact much
more comparable, if the bounds of the Count-Median Sketch were loosened.

Using sketches, the easiest solutions to the heavy hitters problem is to query all ele-
ments in the data set. Such a query will be slow whenever there exists a lot of elements
as is usually the case in the data stream model. Consequently, different solutions struc-
turing the data over a tree of sketches have been proposed in order to improve the query
time [77, 99, 1919]. Common for such solutions is that the improved query time is exchanged
for a log m factor for both space and update time, where m is the amount of unique
elements.

Recently a new algorithm proposed by Larsen et al. [2222], observed that such a tree
structure could be kept, where each level of the tree only maintained a constant sized
sketch. This removes the log m factor of both the space usage and update time, while the
query in general is improved in expectation. As far as we know, this new result has not
been experimented with before, which makes it of great interest to see how this solution
performs compared to the earlier solutions.

Comparing the known algorithms in practice is a good way to determine which al-
gorithms performs the best. Still, algorithms could exists which were much better, if the
upper bound of the best known algorithms do not match the lower bounds. For the ap-
proximate heavy hitters problem, Jowhari et al. [1818] showed a space lower bound. Using
this result, we will derive another lower bound for algorithms estimating frequencies in
the Turnstile Model. The update time of sketches supporting point queries and approxi-
mate L1 heavy hitters queries was studied by Larsen et al. [2121], where it was found that
no existing solution is tight for any of the problems. No lower bounds of the query time
on each of the problems were found in the literature, but for the heavy hitters problem a

3

natural lower bound comes from the amount of heavy hitters present in the data.
To summarize, this thesis seeks to investigate and study different solutions to the

frequency estimation and heavy hitters problems in the Strict Turnstile Model by analyzing
their theoretical bounds and experimenting with the solutions.

The theoretical presentation of the solutions will give an overview of the solutions
and a description of how they are constructed and compared. The experiments will show
how the solutions perform in practice by comparing them in relation to each other and
in relation to the theoretical bounds.

We will further look at lower bounds for the problems, which enable us to look at
how close the theoretical bounds of the solutions are from the optimal bounds, and hence
stating if those solutions experimented with, could be optimized further.

1.2 Overview

This thesis is divided in a theoretical part and an practical part. Chapters 33, 44, and 55 are
theoretical followed by Chapter 6Chapter 6 with experiments.

In Chapter 2Chapter 2, a subset of necessary theoretical knowledge is presented. In Chapter 3Chapter 3,
we present the frequency estimation problem and algorithms that solve it. Then in
Chapter 4Chapter 4, we present the heavy hitters problem and how we can use frequency esti-
mation to form approximate heavy hitters solutions. In Chapter 5Chapter 5, we study the lower
bounds for the two problems and compare it with the bounds of the presented algo-
rithms.

In Chapter 6Chapter 6 we experiment with both frequency estimation and heavy hitters algo-
rithms. The experiments are compared with the theoretical bounds, in relation to each
other, and with related work.

Finally, we present our conclusions in Chapter 7Chapter 7.

4

Chapter 2

Preliminaries

Before going into depth with the subject of this thesis, some frequently used notation and
techniques will need to be explained. In the first section, we will explain some frequently
used notation. Next, we will describe and show some probabilistic tools used to analyze
randomized algorithms, followed by a short introduction to some special families of
hash functions. Finally, we will introduce the data stream models on which we do our
experiments and the word-RAM model, which is the model our analyses use.

2.1 Notation

To be able to write in a compact and clear way, we have chosen a few different notations
which will be used throughout the thesis.

Whenever we refer to the log, we implicitly mean the log2, except when the base of
the logarithm is explicitly stated.

We use two short-hand notations for sets, which are defined as follows:

[n]0 = {0, 1, . . . , n− 2, n− 1}
[n]1 = {1, 2, . . . , n− 1, n}

2.2 Probabilistic Intuition

In this section we will introduce probabilistic lemmas that are useful when analyzing
randomized algorithms.

Recall that the expected value of a real valued discrete random variable X taking
values from a set S, is

E [X] = ∑
x∈S

P [X = x] x

and the variance of X is

Var (X) = E
[
X2]−E [X]2 = σ2 .

5

2.2.1 Linearity of Expectation

One of the most central lemmas of probability theory is Linearity of Expectation. Linear-
ity of Expectation says that the expected value of a sum of random variables is equal to
the sum of the individual expectations.

Formally, it is defined as the following lemma.

Lemma 1 (Linearity of Expectation). Let X1, . . . , Xn be real valued discrete random variables
and let X = ∑i Xi be the sum of the random variables. Then

E [X] = E

[
∑

i
Xi

]
= ∑

i
E [Xi]

and there is no requirement of X1, . . . , Xn to be independent.

Linearity of Expectation is extremely useful in randomized algorithm analysis and
the fact that the variables do not need to be independent makes it even more useful and
widely applicable.

2.2.2 Union Bound

Another basic lemma is the Union Bound, which gives an upper bound on the probability
of certain events. This is done by stating that the probability of one or more events to
occur is no more than the probability of all of them to occur.

Lemma 2 (Union Bound). Let E1, . . . , En be events. Then

P

[⋃
i

Ei

]
≤∑

i
P [Ei]

and there is no requirement of E1, . . . , En to be independent.

Usually the Union Bound is used with bad events, seeking to bound the probability
of some undesired events to happen. Hence, if each bad event has a small probability of
occurring, then the sum of them will still be small, which is the intuition behind using
the Union Bound.

2.2.3 Markov’s Inequality

Markov’s Inequality bounds how often an event can happen based on the expected value.
This is done by bounding the frequency of events being off by a factor of t from the
expected.

Lemma 3 (Markov’s Inequality). Let X be a real valued non-negative discrete random variable,
it then holds for any t > 1 that P [X > t E [X]] < 1

t .

The inequality is especially useful in situations where one wishes to bound the prob-
ability of a deviation from the expected value of a random variable, with more than a
factor t.

6

2.2.4 Chebyshev’s Inequality

Chebyshev’s Inequality states that in any probability distribution most values are close
to the mean. It states that no more than ε−2 of the distribution’s values can be more than
ε standard deviations (σ) away from the mean.

It is more or less equivalent to Markov’s Inequality, except that Chebyshev’s Inequal-
ity gives a 2-sided bound.

Lemma 4 (Chebyshev’s Inequality). Let X1, . . . , Xn be random variables, the sum of all vari-
ables be X = ∑i Xi, the mean of the sum of all variables be µ = E [X], and the variance of the
sum of all variables be σ2 = Var (X). Then

P [|X− µ| ≥ tσ] ≤ 1
t2

for any t > 0.

In general, a lot of distributions can be bounded tighter than the bound from Cheby-
shev’s Inequality, but the advantage is that it works for all distributions.

2.2.5 Chernoff Bound

The Chernoff Bound, is able to give a tighter bound than the bounds provided by Cheby-
shev’s Inequality and Markov’s Inequality. The difference from those two is the require-
ment of all variables to be independent of each other.

Lemma 5 (Convenient Multiplicative Chernoff Bounds). Let X1, . . . , Xn be independent
random indicator variables, the sum of the variables X = ∑i Xi, and the mean of the sum of the
variables µ = E [X]. Then the convenient multiplicative form of the Chernoff Bound states that
for any 0 < δ < 1

P [X ≥ (1 + δ)µ] ≤ e−
δ2µ

3

P [X ≤ (1− δ)µ] ≤ e−
δ2µ

2

and for any δ ≥ 1

P [X ≥ (1 + δ)µ] ≤ e−
δµ
3

The above versions of the Chernoff Bound is quite loose, but often more convenient to
use, as they are simpler and hence easier to work with. To be able to give a tighter bound
we also use the multiplicative Chernoff Bound in its original form, as shown below.

Lemma 6 (Multiplicative Chernoff Bound). Let X1, . . . , Xn be independent random indicator
variables, the sum of the variables X = ∑i Xi, and the mean of the sum of the variables µ = E [X].
Then the multiplicative form of the Chernoff Bound states that for δ > 0

P [X > (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ

7

2.3 Hash Functions

In this section we will introduce and show some of the qualities of the different families
of hash functions used for randomized algorithms.

Generally, a hash function h is any function that can map data of arbitrary size into
data of a fixed sized. In situations where a hash function maps data from a larger
space into a much smaller space, they introduce a probability for two elements in the
data to collide with each other, due to the Pigeonhole PrinciplePigeonhole Principle. In such cases, it is
often convenient to bound the probability of a collision, since this is an unwanted but
inevitable feature of a hash function mapping to a smaller space.

There exists a lot of different hash functions and families of hash functions. Some
focus on being reliable and secure, which make them applicable in areas such as cryp-
tography, others merely focus on the guarantees in respect to collisions and are usually
much simpler than those used in cryptography.

Next we will present a few different families of hash functions. Formally we want to
map a universe U of arbitrary size into m bins i.e. perform a mapping h : U → [m]0.

2.3.1 c-universal

A c-universal family of hash functions are hash functions hi, which are chosen uniformly
at random from the family of hash functions H = {hi : U → [m]0}, upholding

∀x, y ∈ U, x 6= y : P
hi∈H

[hi(x) = hi(y)] ≤
c
m

That is, when choosing hi uniformly at random from H, one is guaranteed that when
applied to the hash function, the probability of a collision between two distinct elements
in the universe U is no more than c

m , for some constant c.
In practice, such families of hash functions are easy to generate and can be used

efficiently. In particular, one widely used family in both theory and practice is the family
described by Carter and Wegman [44], defined as

H = {h(x) = (((ax + b) mod p) mod m)}

for a ∈ [p− 1]1, b ∈ [p]0, and where p ≥ m is a prime.
This family of hash functions can be shown to be 1-universal i.e. collisions between

two distinct elements can be shown to only happen with probability m−1, when choosing
a and b uniformly at random.

Moreover, storing such a hash function only requires constant amount of space, since
the values of a and b can be stored in two words [2727].

In practice a faster family of hash functions is the multiply-add-shift family [1414],
which is still 1-universal, but for which no modulo operations are needed. Assuming m
is a power of two and γ is the bits in a machine word, choose a to be an odd positive
integer for which it hold that a < 2γ and b to be a non-negative integer with b < 2γ−M

8

where M = dlog me is the amount of bits used to represent m, the amount of bins. The
family is defined as

H = {h(x) = (((ax + b) mod 2γ)÷ 2γ−M)}

and is 1-universal. It can be implemented using only simple operations such as multipli-
cation, addition, shifting, and subtraction, which in a C-like language is written as

return (a * x+b) >> (γ−M) ;

where x is the element that should be hashed to a smaller universe.
A multiply-add-shift implementation will be extremely fast, since any use of such a

hash function will generally only require simple operations.

2.3.2 k-wise Independence

A k-wise independent family of hash functions are hash functions hi, which are chosen
uniformly at random from the family of hash functions H = {hi : U → [m]0}, having

P
hi∈H

[hi(x1) = a1 ∧ hi(x2) = a2 ∧ . . . ∧ hi(xk) = ak] ≤
1

mk

for any a1, . . . , ak ∈ [m]0, x1, . . . , xk ∈ U and xj 6= xl : j, l ∈ [k]1.
In other words, when choosing hi uniformly at random from H, one is guaranteed

that the probability of hashing k distinct elements in the universe U to k specific values
in [m]0 is at most m−k. That is, the probability of seeing a specific permutation a1, . . . , ak
when hashing k elements.

The family for k = 2 is frequently used and the in following we will describe it in
more detail.

Pair-wise Independence

Saying that a hash function is c-universal is a weaker guarantee than being k-wise inde-
pendent. In fact it follows straight from the definitions that a pair-wise (2-wise) indepen-
dent family of hash functions is also 1-universal, referred to as having strong universality,
since

P
hi∈H

[hi(x1) = a1 ∧ hi(x2) = a2] ≤
1

m2

for which choosing a1 = a2 can be analyzed using the Union BoundUnion Bound over all values of aj

P
hi∈H

[hi(x1) = hi(x2)] =
⋃

j∈[m]0

P
hi∈H

[
hi(x1) = aj ∧ hi(x2) = aj

]
≤

m−1

∑
j=0

P
hi∈H

[
hi(x1) = aj ∧ hi(x2) = aj

]
(Union BoundUnion Bound)

9

≤
m−1

∑
j=0

1
m2

=
1
m

Hence, we have shown that a hash function hi drawn uniformly at random from a pair-
wise independent family, is also 1-universal.

2.4 Computational Models

Computational models are a way of describing under which conditions a certain analysis
is performed. They can define how the algorithms are allowed to interact with the data,
or define a set of operations which are available for the algorithm to use.

This thesis uses three data stream models, which define how the input for the algo-
rithms is shaped, and the word-RAM model which is used when analyzing the algo-
rithms.

2.4.1 Data Stream Models

The data stream models, are models for which the algorithms must handle an input
stream, i.e. a sequence of inputs i1, i2, . . . arriving sequentially. The input stream is as
such an infinite sequence of inputs, but can also be viewed as a finite sequence of n
inputs [2828].

The input stream is generally not easy to reproduce, since the data arrives and is then
forgotten. Hence, several passes over the data becomes difficult, since the data in that
case must be stored. Instead, algorithms solving problems in the data stream models
using single passes are preferable, since the data of the whole stream is not necessarily
required to be stored.

In this thesis we will focus on two specific data stream models, namely the Cash
Register Model and the Turnstile Model. The difference between the two models lies in
the perception of what the input stream represents. Thinking of the inputs as tuples,
it = (sj, ct), containing an element, sj, and a value, ct, for j ∈ [m]1, t ∈ [n]1, both models
want to sum the values of the updates, vj = vj + ct.

The Cash Register Model constraints the value to be positive, ct ≥ 0. Handling inputs in
the Cash Register Model then becomes much like using a cash register, summing multiple
occurrences of element values to a counter over time.

The Turnstile Model is less strictly defined and lets ct be both positive and negative.
Handling inputs then becomes much the same job as the job of a turnstile on a busy train
station, that is, keeping tap of the people entering and leaving the station.

There is a special case of the Turnstile Model, called the Strict Turnstile Model, for which
the sum of the element counts are never allowed to be negative, vj ≥ 0 for all elements j.
In the general Turnstile Model the sums are allowed to be negative, and compared to the
Cash Register Model, where the update values are only allowed to be positive, the Strict

10

Turnstile Model allows the update values, cj, to be negative, as long as the sum of the
values for each element is not negative.

The different models have different applications in practice, but the Turnstile Model
can be thought of as more general than the Strict Turnstile Model which again is more
general than the Cash Register Model. As such one wishes to solve problems in the Turn-
stile Model, since they are then implicitly solved in the other models, but in practice it
is often more viable to solve it in a weaker model to provide better bounds and faster
algorithms for specific applications.

The important metrics of any algorithm in the data stream model, is the processing
time per input item, the space used to store the data structure, and the time needed to
compute the output function of the algorithm.

The general goal of algorithms in the data stream model [2828] is to have input process-
ing time, storage and computing time to be linearly – preferably poly-log – bounded by
the number of unique elements, m, or the input size, n.

2.4.2 Word-RAM Model

The word-RAM model of computation is based on the Random Access Machine (RAM)
which is an abstract machine. The RAM defines a set of simple operations which take
one unit of time per bit. The word-RAM model allows for operations on words of γ bits
in one unit of time.

The constant time operations include addition, subtraction, multiplication, compar-
isons, and jumps. Loops and subroutines are composed of multiple simple operations,
and these need to be evaluated in composition with the rest. As the model is machine
independent, it does not consider any cache or other differences in slow or fast memory
lookups, and it offers an infinite memory. It gives equal status for all memory reads and
writes, resulting in memory accesses in one unit of time.

We use the model when analyzing algorithms throughout this thesis. For algorithms
we want to count the number of operations, and using this simple model, we are able to
abstract the machine away and compare the different algorithms.

11

12

Chapter 3

Frequency Estimation

In this section, we will introduce and formally describe the problem of keeping count –
frequencies – of elements in the data stream models. We will look at how the problem
can be solved both exactly and approximately and will outline both deterministic and
randomized solutions.

A difference between the deterministic and randomized solutions is that the deter-
ministic solutions only work in the Cash Register Model, where only increments are al-
lowed. Whereas some of the randomized solutions work in the Turnstile Model, which
allows for increments and decrements.

Randomized structures are very flexible and we will analyze a special kind of these,
called sketches. In common for all of the sketches we present, is that they work in the
Turnstile Model and can be used as a black box for a wide range of problems [1111] such
as monitoring of networks and databases, estimating frequency moments, and more. In
practice it could keep track of purchases for a store, or the frequency of traded stock
shares of a given day, and an innumerable list of other counting tasks.

3.1 The Problem

The problem of finding frequencies of elements, also referred to as the count tracking
problem [1111], is as such not a hard problem to grasp. The two primary functions that
every solution for the problem must have are Update(si, ct) and Query(si). At time
t ∈ [n]1 the input tuple (si, ct) is passed to the Update function, updating the count of
the given element si with the value ct, and the Query functions returns the frequency of
the given element.

More formally, the problem can be described as: Given a set of elements S = {s1, . . . , sm}
count the values of all elements si for i ∈ [m]1, where updates come from a stream of n
elements, such that at any time t ∈ [n]1 the current count of an element can be obtained.
Let Cj,t be a count, indicating with what an element sj should be updated with the value

13

ct at time t, formally defined as

Cj,t =

{
ct if sj = si

0 o.w.
for Updatet(si, ct)

for j ∈ [m]1. A query at time t can then be defined as the function ft(sj) = ∑t
k=1 Cj,k.

A simple algorithm to keep count of Cj,t will be to hold a counter for each of the
m different elements. Updates could then be carried out by updating the counter for a
given element and queries could be implemented by returning the count for the queried
element. Such a solution would solve the count tracking problem exactly and would be
trivial to implement in practice.

In the data stream model, and common for many streaming algorithms, the values
of m and n are usually factors larger than the available main memory and hence, the
trivial algorithm from above would have to store its counters in the much slower external
memory, since O (m) counters are stored. In such cases the slowdown from the need of
external memory is so significant that the algorithm will not be practical.

It is quite easy to show, and somewhat intuitive, that any solution solving the count
tracking problem exactly, has the same weakness as the trivial algorithm above, namely
a space usage depending on the number of elements i.e. Ω (m) space is needed. The
count tracking problem can be reduced to the simpler membership problem. Here, one
is to determine if an element y exists in the set S of m elements. To answer this ques-
tion exactly, the whole set S using Ω (m) words must be used as a consequence of the
Pigeonhole PrinciplePigeonhole Principle.

Even though the above states that no exact solution is possible without using linear
space in the amount of elements, several solutions still exists for a relaxed version of the
problem, where counts are allowed to differ up to some approximation factor, ε. Such
approximation solutions only use sublinear space in m or n, making the solutions much
more interesting in the streaming environment and in general as a black box.

Data structures enabling sublinear space are often referred to as synopsis data struc-
tures [1616].

Definition 1 (Synopsis data structure). A synopsis data structure is generally denoted as
a data structure that is substantially smaller than its base data set and having the following
advantages over its non-synopsis equivalents:

• Fast Processing: A synopsis data structure has a space usage so that the whole data struc-
ture can be kept in main memory – maybe even the cache – making updates and queries on
the data structure fast for even large values of m and n.

• Better System Performance: A synopsis data structure only uses a minor fraction of the
main memory, leaving space for other data structures, which makes a synopsis data struc-
ture very suitable as a black box.

• Small surrogate: A synopsis data structure can function as an approximate replacement of
the real data set, in cases where the data set is unavailable or too large to store and query
efficiently.

14

The low space usage of a synopsis data structure comes with a price. As described
above we are no longer able to answer the problem exactly, but instead fall back to
answering it approximately.

Generally the solutions to the approximate count tracking problem falls into two
categories. Either they solve the problem deterministically with some approximation
factor ε, or they solve the problem randomized, again with an approximation factor ε
and a failure probability δ. Here, the approximation factor defines the absolute error
allowed in the estimation of si, i.e. the error margin for which an estimate is accepted as
a good estimate of si. The failure probability δ defines with what probability an estimate
of si is bad, that is, the probability that the absolute error of an estimate of si is more
than the maximum error of a good estimate, defined using the approximation factor ε.

The most popular deterministic solutions include the Frequent algorithm often re-
ferred to as the Misra-Gries algorithm [2626, 1313, 2020], the Lossy Counting algorithm [2323], and
the Space Saving algorithm [2424]. They all use the same idea of tracking a subset of the
elements from the data stream and monitor the values of that subset, and they also only
support +1 updates, i.e. ct is assumed to be 1 for all updates. For problems where ct can
be greater than one, this can be handled by doing ct updates with the same element and
value one.

All of the above algorithms solves the approximate count tracking problem while
guaranteeing an error of no more than ε ∑n

t=1 ct from the true frequencies using O
(
ε−1)

space and O (1) for updating and querying elements [77]. Another common thing about
the algorithms is the fact that they do not support deletion of elements i.e. negative
values of ct. They all fall into the category of algorithms solving the approximate count
tracking problem in the Cash Register Model.

A lot of applications, such as keeping tab on queries for specific elements in databases,
need to be able to decrement the frequency of some elements if those are deleted from
the data set. Such applications require a solution to the approximate count tracking
problem in the Turnstile Model.

The most popular solutions for the problem in the Turnstile Model are sketches. These
are based on randomization by their usage of hash functions, which introduce a certain
failure probability, δ. More formally the two sketches presented in the following sections
are able to provide estimates for si at time t, for which it holds that the absolute error is
no more than ε ∑m

i=1 ft(si) or ε
√

∑m
i=1 ft(si)2 with high probability. Hence, the sketches

are able to bound the error margin according to the L1 or L2-norm of the provided data
set.

3.2 Sketches

To give a clear introduction to the notion of sketches, we change the formal definition of
the problem to be expressed in vectors. Let v be a vector with dimension m, where m is
the number of distinct elements in the stream. At time t the vector is v(t)ᵀ = [v1(t) =
ft(s1), . . . , vm(t) = ft(sm)], adopting the definition of the function ft(si) from above.
Initially the vector will be the zero vector of dimension m. Updates (si, ct) to the element

15

M × v = v̂

Fixed Sketch Matrix Data Vector Sketch Vector

Figure 3.1: The relationship between v and v̂ can be seen as a linear transformation of v
and a fixed sketch matrix M yielding the sketch vector v̂.

si is performed as vi(t) = vi(t− 1) + ct and ∀j 6= i : vj(t) = vj(t− 1).

As described earlier, representing v explicitly is infeasible in the data stream model
and instead we try to solve the problem of approximating v, yielding the approximate
sketch vector v̂.

The two different sketches that will be covered thoroughly later in this chapter, are
both categorized as linear sketches. A linear sketch is defined as a sketch that can be seen
as a linear transformation of the input data. Such a sketch comes with a certain set of
properties: An update to the sketch is handled independent of the state of the structure,
i.e. irrespective of updates in the past, and that implicitly work in the Turnstile Model.

Looking at an example e.g. if we were to model a vector of discrete frequencies
summarized by a histogram, then the sketch of this v̂ can be expressed as a linear trans-
formation of the vector v with a fixed sketch matrix M, as illustrated in Figure 3.1Figure 3.1 [66].
Any update to the vector v can be carried out by changing a single row in the vector v,
whereas v̂ can be found by multiplying the fixed sketch matrix M with the new repre-
sentation of the vector v.

In practice, the fixed sketch matrix M, used to make the linear transformation, would
require space greater than that required to store v. To handle this, most sketches instead
use hash functions to generate a linear transformation with a smaller memory footprint.

Since the sketch produced by the linear transformation only take up a small fraction
of the space needed to store v, the resulting vector v̂ naturally becomes an approximation
of the true vector v, which as for the counting solutions presented earlier, makes it
interesting to bound errors of an approximation according to some ε, 0 < ε ≤ 1.

Next, we will in detail describe two of the most common frequency based sketches,
namely the Count-Min Sketch and the Count-Median Sketch, both supporting point
queries for the estimated frequency v̂i of a specific element si.

16

h1(si)

h2(si)

h3(si)

h4(si)

hd(si)

+ct

+ct

+ct

+ct

+ct

w

d

Figure 3.2: The matrix V with b = 2, ε = 0.20 and δ = 0.05. Element si is updated with
the value ct. This is done by finding its corresponding column in each row of the matrix
using the hash functions.

3.3 Count-Min Sketch

The Count-Min Sketch [99] is a frequency based sketch, named after the two basic op-
erations: Counting elements and finding the minimum. Given the parameters ε and δ,
where ε is the approximation factor, and δ the probability of failure with respect to the
approximation factor, a sketch is generated, which returns the approximate frequency v̂i
when queried, for which it holds that for any i ∈ [m]1, v̂i is no more than ε ‖v‖1 larger
than vi with probability 1− δ. Here ‖v‖1 = ∑m

i=1 vi is the L1-norm of the true frequency
vector v.

The sketch uses a matrix V ∈ Rd×w where the amount of rows, d, will be called the
depth and the amount of columns, w, will be called the width. Initially all entries are
zeroed and the dimensions of the matrix are defined as w = db/εe and d =

⌈
logb δ−1⌉,

where the base of the logarithm, b, can be chosen freely for all b > 1.
The linear transformation is performed by choosing d hash functions h1, . . . , hd inde-

pendently, from a family of hash functions defined as hi : [m]1 → [w]1 for all i. In the
original paper [99], the hash functions are chosen from a pair-wise independent family,
however as will be shown in the analysis of the algorithm in Subsection 3.3.1Subsection 3.3.1, the re-
quirement can be loosened to hash functions from a c-universal family for some constant
c, by appropriately scaling w.

Each hash function is associated with a row in V. When an update is performed, the
matrix is updated once for each row in V, that is, if element si is updated with value
ct at time t, all entries V[j, hj(si)] += ct are updated for all j ∈ [d]1, making updates
in a specific row independent of updates to the other rows, by the independence of the
hash functions. This is illustrated in Figure 3.2Figure 3.2. The cost of such an update is only
related to the depth d of the matrix, where constant work is used for each row, since an
invocation of a hash function can generally be performed in O (1) time (see Section 2.3Section 2.3),
and updating a single entry in a row is also a constant operation, yielding O (d) time in
total.

The space used by the structure is the space occupied by the matrix V, that is w ∗ d

17

words and the space used for the d hash functions, which for a specific family of c-
universal hash functions are only a constant amount of memory per row [2727]. This will
be shown to be the optimal space usage of the problem in Chapter 5Chapter 5.

More generally, any family of c-universal hash functions could be used, while still
maintaining the same bounds for the data structure, as long as the hash function can be
stored in constant space and as long c is a constant.

As a final note about the Count-Min Sketch, it is argued in the original paper that
choosing b = e where e is the base of the natural logarithm, minimizes the space usage of
the sketch [99]. Choosing b = e changes the depth to d = O

(
ln δ−1), implies that the space

and update bounds changes to O
(
ε−1 ln δ−1) words and O

(
ln δ−1) time, respectively.

Several different types of queries can be performed on the Count-Min Sketch. The
most important query for the work of this thesis and the reason why the parameter w
and d are chosen as they are, is the point query Q (si) that returns the approximate
frequency v̂i of an element si.

3.3.1 Point Query

A point query Q (si) on the Count-Min Sketch, is defined as a query returning the es-
timated frequency v̂i of element si. How close the estimated frequency is to the true
frequency vi, is defined according to the approximation factor ε and the failure probabil-
ity δ.

A point query for element si is carried out by looking up all buckets v̂i,j = V[j, hj(si)]
for j ∈ [d]1. Since each row is build from a different hash function hj, the estimates in
each row are very likely to be different. Furthermore since we are in the Strict Turnstile
Model and updates are carried out by addition of the values ct, the error of each row is
one-sided, meaning that v̂i,j ≥ vi for all rows j. Hence, taking the minimum of all buckets
minj v̂i,j gives the closest estimate v̂i generated by the sketch.

In the following theorem we will bound the exact guarantees given by the Count-Min
Sketch for such a point query.

Theorem 1 (Count-Min Sketch point query guarantees). Using the Count-Min Sketch data
structure it holds for the estimated frequency v̂i, that

1. vi ≤ v̂i, and

2. with probability 1− δ : v̂i ≤ vi + ε ‖v‖1.

Proof. Let Ii,j,k indicate if a collision occurs when two distinct elements are applied to the
same hash function, for which

Ii,j,k =

{
1 if i 6= k ∧ hj(si) = hj(sk)

0 otherwise

for all i, j, k where i, k ∈ [m]1 and j ∈ [d]1.

18

The expected amount of collisions can be derived from the choice of the family of
hash functions. The probability of collision for a c-universal is by definition P

[
hj(si) = hj(sk)

]
≤

c
w for i 6= k. The expectation of Ii,j,k then becomes:

E
[
Ii,j,k
]
= P

[
hj(si) = hj(sk)

]
≤ c

w
(c-universalc-universal)

≤ c⌈
b
ε

⌉ (Substitute w)

≤ εc
b

Let Xi,j be the random variable Xi,j = ∑m
k=1 Ii,j,kvk for i ∈ [m]1, j ∈ [d]1, and from the

independent choices of the hash functions. Xi,j then expresses all the additional mass
contributed by other elements as a consequence of hash function collisions. Since vi is
non-negative per definition of the Strict Turnstile Model, it must also hold that Xi,j is non-
negative. By the construction of the array V of the Count-Min Sketch data structure, an
entry in the array is then V[j, hj(si)] = vi + Xi,j. This implies that item 1item 1 is true, since
v̂i = minj V[j, hj(si)] ≥ vi.

Proving item 2item 2 requires further work. Observe that the expected collision mass for
i ∈ [m]1, j ∈ [d]1, and the constant c can be defined as:

E
[
Xi,j
]
= E

[
m

∑
k=1

Ii,j,kvk

]

=
m

∑
k=1

vkE
[
Ii,j,k
]

(Linearity of ExpectationLinearity of Expectation)

≤ εc
b

m

∑
k=1

vk (Substitute E
[
Ii,j,k
]
)

=
εc
b
‖v‖1 (3.1)

Using this, we can calculate the probability that v̂i > vi + ε ‖v‖1, i.e. the probability
that the estimate of the frequency is larger than the expected error bound introduced
by approximation. This is reasonably simple to do, since taking the minimum of all
the estimated frequencies for an element si from each of the rows, gives us the closest
estimate to the true frequency. For this estimate to fail (v̂i > vi + ε ‖v‖1) it must by
the definition of the minimum have failed for all rows. This is what is expressed in the
following:

P [v̂i > vi + ε ‖v‖1] = ∏
j

P
[
V[j, hj(si)] > vi + ε ‖v‖1

]
(3.2)

= ∏
j

P
[
vi + Xi,j > vi + ε ‖v‖1

]
(Substitute)

19

= ∏
j

P

[
Xi,j >

b
c

E
[
Xi,j
]]

(Substitute (3.13.1))

< ∏
j

c
b

(Markov’s InequalityMarkov’s Inequality)

= cdb−d ≤ cdδ

Note that the product of the probabilities from (3.23.2) is possible as the hash functions
hj are all independent of each other. If we rescale w with the constant c, that is w =

dbc/εe = O
(
ε−1), and redo the analysis in this theorem we end up removing the c

constant throughout the proof, giving us that P [v̂i ≤ vi + ε ‖v‖1] is 1− δ, which proves
item 2item 2.

A point query of the Count-Min Sketch data structure is guaranteed to answer within
a certain error range of the correct frequency with a certain probability while only using
d = O

(
logb δ−1) time answering the query, since a point query is simply carried out by a

hashing a value and visiting an index for each of the d rows and returning the estimated
frequency of the minimum one. Choosing b = e will consecquently change the time
bound of the query to O

(
ln δ−1).

3.4 Count-Median Sketch

The Count Sketch data structure Charikar et al. [55] also referred to as the Count-Median
Sketch has without doubt inspired the creation of the Count-Min Sketch, described in
Section 3.3Section 3.3. The data structures are similar and only differ in a few important points.

Given the parameters ε and δ, where ε bounds the fraction of error allowed for each
element, and δ the probability of failing to uphold this, a matrix V ∈ Rd×w with the rows
and columns denoted as the width and depth. Initially, all entries are zeroes and the
dimensions are defined as w = dk/ε2e and

d =

⌈
ln
(
δ−1)

1
6 −

1
3k

⌉
for some constant k > 2 determining the error probability of a specific bucket.

The sketch represented by V is then able to guarantee that for a point query Q (si)
an estimate of the frequency v̂i of an element si can be returned, such that the absolute
error of v̂i is no more than ε ‖v‖2 from the true frequency vi with probability 1− δ. Here

‖v‖2 =
√

∑m
i=1 v2

i is the L2-norm of the input data.
For each row j in V a pair of independent hash functions (hj, gj) are associated. Let

the hash functions h1, . . . , hd and g1, . . . , gd create the linear transformation of the input
vector v to its estimate v̂, defined as hj : [m]1 → [w]1 and gj [m]1 → {−1, 1}. It will
then suffice to draw the hash functions hj from a c-universal family using more or less
the same argument as in Theorem 1Theorem 1. That is, a c-universal hash function suffices as long
as w is scaled by the constant c, giving w = dkc/ε2e. For the gj hash functions, a tighter

20

h1(si)

h2(si)

h3(si)

h4(si)

hd(si)

+gct,1

+gct,2

+gct,3

+gct,4

+gct,d

w

d

Figure 3.3: The matrix V. Element si is updated with the value gct,j = gj(si) ct for each
of the j rows in V. This is done by finding its corresponding column in each row of the
matrix using the hash functions.

guarantee is needed for the family, namely that gj is chosen from a pair-wise independent
family (see Section 2.3Section 2.3).

At time t, when element si should be updated with value ct each row of V is updated
as follows: V[j, hj(si)] += gj(si) ct for all j ∈ [d]1. The updates of the rows will happen
independent of each other, because of the independence of the hash functions hj and gj.
In Figure 3.3Figure 3.3, an illustration of such an update is shown.

As for the Count-Min Sketch, the cost of the update is only dependent on the number
of rows in V. This comes from the fact that for each update two invocations of two hash
functions, a multiplication, and finally an addition is performed, yielding constant time
for each of the d rows, resulting in d = O

(
ln δ−1) running time.

The space used by the data structure is the size of the matrix

|V| = w d =

⌈
k
ε2

⌉ ⌈
ln
(
δ−1)

(1
6 −

1
3k)

⌉
= O

(
ε−2 ln δ−1

)
words to store the estimates and the amount of space used to store the hash functions,
which can be done in constant space [2727] for each of the d rows, adding an extra O (d)
words of space. This space usage is shown to be optimal in order to provide estimated
frequencies with errors according to the L2-norm in Chapter 5Chapter 5.

As for the Count-Min Sketch, the Count-Median Sketch can be queried in several
different but interesting ways. For the purpose of this thesis it suffices to present and
analyze the point query Q (si), which returns the approximated value v̂i for element si.

3.4.1 Point Query

For a point-query Q (si) of the Count-Median Sketch data structure, an approximate
value v̂i of the true frequency vi will be returned. Since the use of the sign in the update
leads to additions and subtractions of the true frequency, it is not possible to take the
minimum value over the rows of V. Instead of taking the minimum, we will show that
taking the median of the d estimated frequencies will suffice to provide the guarantees

21

stated earlier. To query for the estimated frequencies in the Count-Median Sketch, one
has to reverse the sign – the effect of multiplying the value from gj – that is applied when
performing an update.

In the lemma that follows, the expected error and variance of a specific bucket v̂i,j =
V[j, hj(si)] is found. These will lead to the theorem further below, stating the precise
bound for the Count-Median Sketch with respect to ε, δ and a constant k.

Lemma 7 (Count-Median Sketch expected bucket error). The expected error – where the
error is thought of as the mass contributed from colliding elements – in a bucket V[j, hj(si)] is 0,

while the variance of the same bucket is c‖v‖2
2

w .

Proof. Let Ii,j,k be the indicator variable indicating if a collision occurs for two distinct
elements when applied to the same hash function, defined as

Ii,j,k =

{
1 if i 6= k ∧ hj(si) = hj(sk)

0 otherwise.

for i, j, k | i, k ∈ [m]1 , j ∈ [d]1. The expected amount of collisions can then be derived
since hj is chosen from a c-universal family, which by definition has probability ≤ c/w for
two distinct elements to collide.

E
[
Ii,j,k
]
= P

[
hj(si) = hj(sk)

]
≤ c

w
(c-universalc-universal)

Let Xi,j = ∑m
k=1 Ii,j,kvkgj(sk) be the random variable describing the mass of all elements

that collide with si for hash function hj. Hence, we can associate Xi,j with the content of
a bucket, since we can rewrite V[j, hj(si)] = Xi,j + gj(si)vi.

If we expect over Xi,j we get the expected collision mass introduced in each bucket of
the sketch:

E
[
Xi,j
]
= E

[
m

∑
k=1

Ii,j,k vk gj(sk)

]

=
m

∑
k=1

(
E
[
Ii,j,k
]

vk E
[
gj(sk)

])
(Linearity of ExpectationLinearity of Expectation) (3.3)

=
c
w

m

∑
k=1

(
vk E

[
gj(sk)

])
(Substitute E

[
Ii,j,k
]
)

= 0 ∗ c
w

m

∑
k=1

vk (E
[
gj(sk)

]
=

1
2
∗ −1 +

1
2
∗ 1 = 0) (3.4)

= 0

In expectation, the error of each bucket is then canceled out due to the use of the gj hash
functions. Note that (3.33.3) comes from the fact that the hash functions gj and hj are inde-
pendent of each other, and (3.43.4) holds since gj is chosen from a pair-wise independent
family of hash functions.

22

Furthermore, one can expect over the variance of Xi,j, to see how much the estimated
error will variate from the expected value of Xi,j.

Var
(
Xi,j
)
= E

[
X2

i,j

]
−E

[
Xi,j
]2

= E
[

X2
i,j

]
− 0 (Substitute E

[
Xi,j
]
)

= E

(m

∑
k=1

Ii,j,k vk gj(sk)

)2


= E

[
m

∑
k=1

(
Ii,j,k vk gj(sk)

)2

+ ∑
k′ 6=k

Ii,j,k vk gj(sk) Ii,j,k′ vk′ gj(sk′)

]

= E

[
m

∑
k=1

(
Ii,j,kvkgj(sk)

)2

]
+ ∑

k′ 6=k
E
[
Ii,j,k Ii,j,k′

]
vk E

[
gj(sk)

]
vk′ E

[
gj(sk′)

] (3.5)

= E

[(
m

∑
k=1

I2
i,j,k v2

k gj(sk)
2

)]
(E
[
gj(sk)

]
= 0)

= E

[(
m

∑
k=1

I2
i,j,k v2

k

)]
(gj(sk)

2 = 12 ∨ (−1)2 = 1)

= E

[(
m

∑
k=1

Ii,j,k v2
k

)]
(Definition of Ii,j,k)

=
m

∑
k=1

(
E
[
Ii,j,k
]

v2
k
)

(Linearity of ExpectationLinearity of Expectation)

=
c
w

m

∑
k=1

v2
k (Substitute E

[
Ii,j,k
]
)

=
c ‖v‖2

2
w

Where (3.53.5) comes from Linearity of ExpectationLinearity of Expectation, the fact that hj and gj are chosen inde-
pendently of each other, and because gj is pair-wise independent.

From Lemma 7Lemma 7 we get that each bucket V[j, hj(si)] is expected to hold the value
vi gj(si) and not have a variance of more than c ‖v‖2

2/w from the expected value.
To actually be able to get a meaningful output of a query to a specific bucket, the sign

of a specific element has to be reversed. This will enable us to get the expected frequency

23

of every bucket along with the expected variance. Moreover, to bound the approximation
factor and failure probability of the entire query algorithm, the analysis has to take into
account, finding the median of all the d buckets associated with a specific element. In
the following theorem all of this will be handled.

Theorem 2 (Count-Median Sketch point query guarantees). Using the Count-Median Sketch
data structure it holds for the estimated frequency v̂i, that with probability 1− δ : |v̂i − vi| ≤
ε ‖v‖2 for depth d =

ln (δ−1)
(1

6−
1
3k)

= O
(
ln δ−1) and width w = ck

ε2 = O
(
ε−2).

Proof. We denote the output of the algorithm v̂i = medianjV[j, hj(si)]gj(si) and further
denote a specific bucket of a query v̂i,j = V[j, hj(si)]gj(si). First, lets compute the expec-
tation of the output of each bucket.

E
[
v̂i,j
]
= E

[
V[j, hj(si)]gj(si)

]
= E

[(
Xi,j + vigj(si)

)
gj(si)

]
(Substitute V[j, hj(si)])

= E
[
Xi,jgj(si) + vi

]
(gj(si)

2 = 1)

= E
[
Xi,j
]

E
[
gj(si)

]
+ vi (3.6)

= vi (Lemma 7Lemma 7)

where (3.63.6) comes from the fact that gj(si) is independent of the hash function hj(si) from
the Xi,j variable and furthermore because of it being independent of the choices of the
other sign hashes gj(sk) likewise defined in the Xi,j variable. Next, the variance of each
bucket can be calculated:

Var
(
v̂i,j
)
= E

[
v̂2

i,j

]
−E

[
v̂i,j
]2

= E
[
v̂2

i,j

]
− v2

i (Substitute E
[
v̂i,j
]
)

= E
[(

V[j, hj(si)]gj(si)
)2
]
− v2

i (Substitute v̂i,j)

= E
[((

Xi,j + vigj(si)
)

gj(si)
)2
]
− v2

i (Substitute V[j, hj(si)])

= E
[(

Xi,jgj(si) + vi
)2
]
− v2

i (gj(si)
2 = 1)

= E
[(

Xi,jgj(si)
)2

+ 2(Xi,jgj(si)vi) + v2
i

]
− v2

i

= E
[

X2
i,j + 2(Xi,jgj(si)vi) + v2

i

]
− v2

i

= E
[

X2
i,j

]
+ 2(E

[
Xi,j
]

E
[
gj(si)

]
vi) + v2

i − v2
i (hj(si), gj(si) are independent)

= E
[

X2
i,j

]
+ v2

i − v2
i (E

[
gj(si)

]
= 0)

=
c ‖v‖2

2
w

(Lemma 7Lemma 7)

24

The final step is to ensure that large deviations from the mean in any bucket, does
not happen very frequently. This can be done using Chebyshev’s InequalityChebyshev’s Inequality

P

|v̂i,j − vi| ≥ ε′

√
c ‖v‖2

2
w

 ≤ 1
ε′2
⇒ P

[
|v̂i,j − vi| ≥ ε′

√
c ‖v‖2√

w

]
≤ 1

ε′2

⇒ P
[
|v̂i,j − vi| ≥ ε ‖v‖2

]
≤ c

wε2 (ε′ =

√
w ε√
c

)

and choosing w = ck
ε2 gives that a bucket deviates from the mean with more than the

variance, with probability at most k−1.
Having bounded the error on each bucket of the sketch, we are able to bound the

whole sketch by bounding the probability over the median of all the buckets that are
associated with a frequency estimate v̂i. The median is the middle element in a sorted
set, hence for the median to have a large deviation from the mean, it most hold that d/2

of the buckets deviates with at least as much. Let Yi,j be an indicator variable indicating
if a bucket estimate v̂i,j is off by more than allowed, defined as

Yi,j =

{
1 if |v̂i,j − vi| > ε ‖v‖2

0 otherwise

Let Yi = ∑d
j=1 Yi,j be the total number of failed buckets over all rows, for element si. Since

we have j ∈ [d]1 and all of the d rows are independent of each other in the sketch, it must
hold that E [Yi] ≤ d/k using a Union BoundUnion Bound, which gives us:

P [|v̂i − vi| > ε ‖v‖2] ≤ P

[
Yi ≥

d
2

]
≤ P

[
Yi ≥

k
2

E [Yi]

]
(Substitution)

≤ P

[
Yi ≥

(
1 +

(
k
2
− 1
))

E [Yi]

]
(3.7)

≤ e−
(k

2−1)E[Yi]
3 (Chernoff Bound mult. formChernoff Bound mult. form)

≤ e−
(k

2−1) d
k

3

≤ e−(
d
6−

d
3k)

≤ e−d(1
6−

1
3k) (3.8)

Here (3.73.7) requires that k > 2, which is also required in (3.83.8). Choosing d =
ln (δ−1)
(1

6−
1
3k)

gives
us:

P [|v̂i − vi| > ε ‖v‖2] ≤ δ

which proves this theorem.

25

The point query has a running time proportional to the depth of the sketch. As for
the update procedure of Count-Median Sketch, two invocations of a hash function, a
multiplication, and an addition is required at each row. All these operations are constant
and add up to O (d) time. Furthermore the median of the d estimates must be found,
which can be done in linear O (d) time [22], yielding a total of O (d) = O

(
ln δ−1) running

time for the point query overall.

3.5 Summary

Wrapping up, we have visited the problem of count tracking, formally defined the prob-
lem, and stated it in two different models namely the Cash Register Model and Turnstile
Model.

Generally, in the data stream model it is not possible to solve the problem exactly in
acceptable time and with a practical space consumption. For the approximate version
of the same problem in the Cash Register Model many deterministic and randomized
algorithms have been proposed, which solves the problem using small space and fast
queries.

In the Turnstile Model fewer solutions exist. Two of those have been thoroughly intro-
duced and analyzed, namely the Count-Min and Count-Median Sketches.

We have shown that the Count-Min Sketch uses O
(
ε−1 ln δ−1) words of space to

provide a data structure where both updates and queries have a cost of O
(
ln δ−1) time.

The Count-Min Sketch gives an L1-norm guarantee according to the input data where
frequency estimates v̂i in the sketch is within an additive factor of ε ‖v‖1 of the true
frequency vi with probability 1− δ. Moreover, the guarantee is one-sided because v̂i ≥ vi.

The Count-Median Sketch provides a better guarantee, since it guarantees that v̂i
is within an additive factor of ε ‖v‖2 of the true frequency vi with probability 1 − δ.
This guarantee is significantly stronger in most cases as ‖v‖2 ≤ ‖v‖1. The cost of this
guarantee is significantly larger, since the Count-Median Sketch requires O

(
ε−2 ln δ−1)

words of space to support updates and queries in the same time as Count-Min Sketch.
As such, the sketches can be hard to compare since they for most cases provide dif-

ferent error guarantees. However, we will still try to do experiments with both structures
in Section 6.2Section 6.2. In the same section, we will show a proof which states that the Count-Min
Sketch and Count-Median Sketch is in fact comparable provided the same amount of
space.

As neither of the sketches is dependent on m or n, they both serve as good theoretical
synopsis data structures. Generally, such structures are applicable in many situations,
one of which is the approximate heavy hitters problem in the Turnstile Model. This prob-
lem uses a solution to the count tracking problem in the Turnstile Model as a black box in
order to solve the heavy hitters problem, hence both sketches are interesting for such a
problem.

26

Chapter 4

Heavy Hitters

In this chapter, we describe the problem of finding heavy hitters in the data stream
model, also known in the literature as the problem of finding the most popular items,
frequent items, hot items, elephants, and iceberg queries.

Different solutions to the problem of finding heavy hitters are used in a wide range
of problems, such as finding IP addresses by some metric, e.g. packet size at AT&T [1212],
indexing web searches at Google [2929], or finding hot items in relational databases to only
name a few. Hence, it is an important matter to reason and experiment with solutions to
the problem in order to support such applications with the best possible solutions.

The problem is usually specified in relation to a norm of the input data, which defines
what it means to be frequent. This is usually according a threshold factor φ of either the
L1 or L2-norm of the input data. The wide specification of the problem and the fact
that it is stated in the data stream model naturally provides a lot of different algorithms,
solving the problem according to the Cash Register Model, the Strict Turnstile Model, the
general Turnstile Model, or multiple of them.

While solutions in the Cash Register Model have been widely studied, fewer solutions
exist in the Turnstile Model. The main focus of this thesis will be on solving the appropri-
ate L1 heavy hitters problem in the Strict Turnstile Model. The problem in this model is of
great interest, since a lot of different applications need to be able to both insert and delete
elements, while having the constraint that frequencies in general never become negative.
We do not touch the problem for the general Turnstile Model, but solutions to the general
problem has been provided in the literature using ideas such as Group Testing [77, 1010]
and cluster-preserving clustering [2222].

In the following section we will introduce and formally describe the problem and its
variants. Then we will go into detail of how to solve the approximate L1 heavy hitters
problem in the Cash Register Model. In the remaining sections we will return to the Strict
Turnstile Model, starting with a general description of a hierarchical structure and then
detailed descriptions of different algorithms using the hierarchical structure to solve the
approximate L1 heavy hitters problem.

27

4.1 The Problem

Finding heavy hitters in a data stream, is the problem of finding those elements that
appear most frequently, for some definition of “frequent” that depends on the norm of
the input data.

More formally for a data stream of size n with m unique elements, updates are tuples
(si, ct) where i ∈ [m]1 and ct ∈ R is the update value, at time t ∈ [n]1. The task is to keep
count of the updates of the set of elements S = {s1, . . . , sm} by storing the frequencies
of the elements as a vector v(t)ᵀ = [v1(t) = ft(s1), . . . , vm(t) = ft(sm)] where ft(si) is
defined as a function determining the frequency at any time t of an element si.

An update from time t− 1 to time t is then carried out by changing a single index in
the vector, namely vi(t) = vi(t− 1) + ct, while the rest of the indices stay the same i.e.
∀j 6= i, j ∈ [m]1 : vj(t) = vj(t− 1).

The goal is to find all elements, for which it holds that their frequency vi(t) ≥ φ ‖v(t)‖
where 0 < φ ≤ 1 is a parameter determining the fraction of the norm, for which an
element is said to be frequent. In short, we are trying to find elements which are classified
as heavy hitters by having a frequency vi(t) ≥ φ ‖v(t)‖.

An algorithm solving such a problem needs to support the following two operations:
Update(si, ct) and Query(). The Update operation will modify some auxiliary data
structure in order to support the Query operation in returning all elements which are
heavy hitters.

The exact solution to the problem could be solved by storing a counter for each
unique element si and return those elements that exceed the φ ‖v(t)‖ threshold. This
solution is the same as using the exact frequency algorithm mentioned in Section 3.1Section 3.1 as
a black box, to find the heavy hitters. Thus, finding the exact heavy hitters is the task
of passing through the data stream once, and query every single element in the exact
frequency algorithm.

The problem with an exact counting solution in practice, is that n and m in the data
stream often are of such size that keeping count of for example m elements would exceed
the amount of internal memory available, forcing one to use external memory such as
hard disks, which would invoke a tremendous slowdown.

Ideally, one would wish to support the heavy hitters problem as stated above, but
using sublinear space in the amount of unique elements m in the data stream. Exactly
solving the heavy hitters problem can be proven to require at least linear space in m, as
shown below.

Consider the set of elements S = {s1, . . . , sm} and an initial data stream of n = m
elements where each of the elements si ∈ S appears in the stream exactly once. Now add
φ ‖v(t)‖ − 1 of the same element sj for j ∈ [l]1, l > m to the data stream. At time t, if
sj /∈ S then sj is not a heavy hitter since its frequency must be φ ‖v(t)‖ − 1. On the other
hand if sj ∈ S then its frequency must be φ ‖v(t)‖, making it a heavy hitter. This example
can be seen as the Membership Problem i.e. is sj a member of the set S? To answer such
a question Ω (m) space must be used as a consequence of the Pigeonhole PrinciplePigeonhole Principle.

For any algorithm to guarantee that only the elements si with frequency vi ≥ φ ‖v(t)‖
are output, at least Ω (m) space must be used since any less would result in either some

28

of the heavy hitters not being returned or some non-heavy hitter elements to be included
in the resulting set.

As the heavy hitters problem cannot be solved exactly without using linear space,
other approaches need to be taken when going sublinear as is the case for algorithms in
the data stream model. Weakening the constraints of the definition by allowing a small
error enables approximation of the solution. Such approximations can use less space as
the exact solution is not required.

In an approximation setting, one still seeks to guarantee that the algorithm finds all
heavy hitters, that is all elements si with frequency φ ‖v(t)‖ and above, but also limits
the number of other – non-heavy hitter elements – to be returned.

Limiting other elements is done by defining the guarantee on the basis of not includ-
ing elements with a frequency less than an approximation factor ε. That is, for ε < φ
no elements with a frequency less than (φ− ε) ‖v(t)‖ is returned with high probability,
1− δ. The approximation factor ε, then represents the allowed absolute error of the es-
timated frequency of any specific element si and δ the probability of failing to uphold
this.

For such an approximation several algorithms that achieve these requirements have
been proposed using sublinear space in the amount of unique elements. Common for
most of these algorithms are that they use frequency estimation algorithms (Chapter 3Chapter 3)
as a black box to enable the approximation guarantees.

The following sections will cover different solutions to the approximate heavy hitters
problem. First in the Cash Register Model and then three different algorithms in the Strict
Turnstile Model, each obtaining different space usages, update, and query times.

4.2 Cash Register Model

In the Cash Register Model the solution to the approximate heavy hitters problem is gen-
erally easier than in the Turnstile Model. This is due to the fact that only increments are
allowed in the Cash Register Model.

The constraint of only having positive insertions is extremely powerful, since in gen-
eral one only has to store the amount of potential heavy hitter candidates ≈ φ−1 at any
time. This allows for less space usage and better running times for both update and
queries.

The main focus of this thesis is on the Strict Turnstile Model and thus, this section
only briefly mentions deterministic and randomized solutions for the approximate L1
heavy hitters problem in the Cash Register Model. As a consequence, the solutions and
requirements of the solutions will only be touched upon briefly, which implies that any
deeper understanding of the algorithms must be obtained from the references.

4.2.1 Deterministic

In the Cash Register Model, deterministic algorithms exist, which guarantee that all heavy
hitters are returned and no elements sj with frequency vj(t) < (φ− ε) ‖v(t)‖1 is returned.

29

These are basically the same deterministic solutions as mentioned in Section 3.1Section 3.1 i.e. the
Frequent algorithm also known as the Misra-Gries algorithm [2626], the Lossy Counting
algorithm [2323], and the Space Saving algorithm [2424], to mention a few.

What all of the algorithms above use is that the frequency of an element si at time t ≤
n, will always be below or equal to the frequency at time n when the stream ends. Hence,
they all hold only a subset of size ε−1 of the highest frequency elements at any time t
and at time n return those elements in the subset for which their estimated frequency
v̂j(n) ≥ (φ− ε) ‖v(n)‖1. Such solutions will only require O

(
ε−1) words of space while

updates are performed in O (1) time and queries in O
(
ε−1) time.

4.2.2 Randomized

Randomized solutions also exist for the Cash Register Model. One such solution uses the
Count-Min Sketch as a black box. What is observed in Cormode and Muthukrishnan [99]
is the fact that updates only ever increase the estimated frequency v̂i in a sketch and more
generally the L1-norm. As such, whenever an estimate exceeds the heavy hitter threshold
it must be due to it being a heavy hitter or because the sketch has overestimated the
frequency. Note that the L1-norm that is part of the threshold, can be maintained at all
times since it is simply the sum of all updated values.

For all updates to the sketch, one checks the estimated frequency to see if it exceeds
the threshold. If so, the value is put into a Min HeapMin Heap containing all potential heavy
hitters. Furthermore the minimum element of the Min HeapMin Heap is checked if still being
larger than the threshold, if not a Delete-MinDelete-Min operation is performed.

When a heavy hitters query is performed the Min HeapMin Heap can be scanned and all el-
ements si having an estimated value v̂i(t) ≥ φ ‖v(t)‖1 are returned as heavy hitters.
Properly scaling the failure probability provided to the sketch: δ = log ‖v(t)‖1

δ′ ensures
that with probability 1 − δ′, no elements sj with frequency vj(t) < (φ − ε) ‖v(t)‖1 is
output.

This heavy hitters algorithm uses O
(
ε−1 log (‖v(t)‖1/δ′)

)
words of space, supporting

updates in O (log (‖v(t)‖1/δ′)) time and queries in O
(
φ−1) time.

Compared to the Turnstile Model, the L1-norm and estimated frequencies of elements
are never decreased. If decrements was supported, then decreasing an element’s fre-
quency would also imply a decrease of the L1-norm. For the randomized solution above,
such a change could cause that elements not currently stored in the heap, would become
heavy hitters. Such elements would not be detectable in other ways than scanning all m
elements, making the use of the heap irrelevant. Hence, for a Count-Min Sketch to solve
the approximate L1 heavy hitters problem in the Strict Turnstile Model, one could simply
maintain the same sketch as for the randomized solution, but sacrifice the query time,
which would become O (m).

To obtain better query times another structuring of the estimates is needed to support
the strict or general Turnstile Model with an acceptable query time, while still maintaining
update time and space usage close to the randomized solution presented in this section.

30

x = 0 x = 1

x = 0 x = 1 x = 2 x = 3

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7

i

i

i

i

x = 0 x = m− 1

y = log m− 1

y = log m− 2

y = log m− 3

y = 0

Figure 4.1: Illustration of the [m]1 unique elements split into dyadic ranges, such that for
each level y a sketch is held over |x| buckets. Here the i’th element is shown through the
hierarchy.

4.3 General Sketch Approach

This section describes some of the common ideas for sketch based approximate heavy
hitters solutions in the Strict Turnstile Model. These ideas are used in the next sections
where specific sketches are combined with the outlines of this section to get different
approximate heavy hitters algorithms.

The sketch based solutions mentioned in the following sections all use the concept
of dyadic ranges to create a hierarchical data structure that enables faster heavy hitters
queries. Dyadic ranges are a way of dividing the data into several levels, each having the
data separated into an increasing number of ranges. In our case, the ranges is split over
the unique elements in the stream m and provide range sums of the frequencies of the
elements in those ranges.

The dyadic ranges for elements in [m]1 are defined as the sets of all ranges from
[x2y + 1 . . . (x + 1)2y] for all y ∈ [log m]0, x ∈N0, and (x + 1)2y ≤ m.

The idea of the dyadic ranges can also, and will in the remainder of this thesis, be
referenced to as a tree. The analogy of a tree is where each y defines a new level with
y = 0 being the level with the leafs and the height of the tree being log m. The x values of
a level are then seen as nodes. The nodes of a level is then indirectly connected with the
nodes covering the same range at a level below. See Figure 4.1Figure 4.1 for visual confirmation of
this analogy.

For the heavy hitters problem a black box is associated with each of the log m levels
of the dyadic ranges. For our case, this is in the form of a synopsis data structure
(Definition 1Definition 1) solving the frequency estimation problem, such as the Count-Min Sketch
or Count-Median Sketch. The synopsis structures are used to make decisions on how to
proceed when querying for heavy hitters, by holding information about the frequencies
of the x ranges for each level of the tree. Since the x’s on each level cover a certain range
of the elements in the universe, the synopsis data structures provide an estimated range

31

x = 0 x = 1

x = 0 x = 1 x = 2 x = 3

0 1 2 3 4 5 6 7

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7

0 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031
x = 0 x = m− 1

y = log m− 1

y = log m− 2

y = log m− 3

y = 0

Figure 4.2: Example query of the hierarchical data structure to find the heavy hitters.
An arrow represents a range that should be checked further. The solid (green) arrows
represents heavy paths which should be followed in order to find all the heavy hitters.
The dashed (red) arrows represent light paths, which – at some point – should be detected
and stopped.

sum of the frequencies of the elements in that range.
Updates are performed for each of the synopsis data structures from the top of the

tree to the leafs. Each sketch is updated with a frequency value ct ∈ R associated with
the x value of the dyadic range as the element. That is, replacing the element identifier
i with the x that covers the specific element at each level. This is shown in Figure 4.1Figure 4.1,
where i is associated with x = 0 on level y = log m− 1 and x = 1 on the next level, and
so forth on the following levels.

When the structure is queried, we use the fact that the frequencies provided by the
synopsis data structures for each x range, describe the sum of the frequencies of all
elements covered by that range. The sum can then be compared to the heavy hitter
threshold and if the sum is above the threshold, then that range is investigated on the
level below, with a decreased y and new x ranges containing more concentrated sums.
Such a query in the dyadic ranges can be done recursively using a parallel binary search
or in an iterative stack-based approach.

An example of such a query is shown in Figure 4.2Figure 4.2 where the arrows represent paths
that need to be further investigated. The solid (green) arrows indicate a path with heavy
hitters and the dashed (red) arrows indicate paths without heavy hitters. The paths
without heavy hitters are necessary to investigate as the sums of the elements below are
above the threshold but should be stopped as the ranges are further divided implying a
lower range sum. The nodes that the arrows come from, can be described as heavy nodes
whereas nodes with no outgoing arrows are light nodes.

The concept of heavy and light nodes are used to describe the mass/frequency of the
nodes. For each node in the tree of dyadic ranges, a heavy node is defined as a node for
which its mass exceeds the heavy hitter threshold of φ ‖v‖1. All other nodes are defined

32

as light nodes.
The nodes of the tree each cover a range of elements in the universe, with the mass

being the sum of the frequencies of the covered elements. For higher levels in the tree
the frequencies are sums of the level below, resulting in increasing values as the level
increases. This ensures that all heavy elements in the leafs are connected through other
heavy internal nodes, all the way to the root. Likewise, the path from the root to a heavy
leaf node – an element – is called a heavy path. This notion of heavy and light nodes will
be used to explain some of the algorithms in the following sections.

As a consequence of the log m levels with synopsis data structures, the space usage
of the hierarchical data structure will be in the order of log m times the space of such a
synopsis data structure. Any update will have to update each of the log m levels. This
will take time log m times the update time of the synopsis data structure.

Finally the query will have to traverse all log m levels where an upper bound of φ−1

queries – assuming not too many erroneous paths are followed – are performed on each
level, since this is the upper bound of the amount of heavy hitters. This upper bound
holds, since the range sums of the frequency vector are only divided into more nodes,
this does not change the L1-norm of the vector and hence, no more than φ−1 elements
have a mass of more than φ ‖v‖1 on each level. The time of such a query will hence be
O (log m/φ) times the time to perform a point query in the synopsis data structure.

Instead of having a binary tree of dyadic ranges, any branching factor k ≤ m of the
tree could in general be chosen, as long as the ranges covering each level are chosen
according to k instead of the dyadic power of two. Such a change would imply that
the update time of the tree would be improved to logk m times the update time of the
synopsis data structure, while a trade-off would have to be made according to the query
time, due to the branching factor resulting in extra nodes to check. The space would
generally also benefit from an increasing branching factor.

In practice, for a hierarchical data structure as described above, one would substitute
the synopsis data structures with exact counts for the first l − 1 levels of the tree, where
the l’th level is the level where an exact count consumes more memory than the synopsis
data structure. Doing this would improve the guarantees of the queries since the traversal
will be determined on exact range sums instead of estimates. Furthermore, a point query
to the exact structure would generally be faster than one to a synopsis data structure.

In the next 3 sections, different sketches and uses of them will be presented to ac-
tually allow for finding approximate heavy hitters within the guarantees presented in
Section 4.1Section 4.1, and using the hierarchical data structure presented in this section.

4.4 Hierarchical Count-Min Structure

A solution to the approximate L1 heavy hitters problem in the Strict Turnstile Model, can
be created using the Count-Min Sketch [99] from Section 3.3Section 3.3 as the synopsis data structure
for the hierarchical data structure from Section 4.3Section 4.3.

The L1 guarantee comes from the estimated frequency provided by a Count-Min
Sketch according to the L1-norm. Such a solution would in general provide very good

33

space, update and query bounds, which will be close to those stated earlier for the
randomized solution in the Cash Register Model, as should be clear from the following
theorem.

Theorem 3 (Hierarchical Count-Min Sketch structure bounds). Using O
(

ε−1 log log m
δ′φ log m

)
words of space, updates on the hierarchical data structure can be carried out in O

(
log log m

δ′φ log m
)

time, and approximate L1 heavy hitters queries in O
(

log log m
δ′φ log m

)
time, where

1. element si is output if vi ≥ φ ‖v‖1, and

2. with probability 1− δ′, no element si with frequency vi < (φ− ε) ‖v‖1 is output

with a branching factor of the hierarchical data structure of k = 2.

Proof. As the underlying Count-Min Sketches never underestimate the frequencies by
Theorem 1Theorem 1, (11.)(11.) is trivially satisfied for the last sketch of the dyadic ranges. For the
intermediate sketches, the estimated frequencies are the sums of the frequencies of the
elements spanned by the range, which likewise will not underestimate. Thus, all sketches
satisfy (11.)(11.) enabling us to follow the heavy paths in the hierarchical data structure.

The number of queries performed on the dyadic ranges in each of the log m levels, is
bounded by the maximum amount of true heavy hitters on each level. Since the L1-norm
of a vector does not change on each level, this is at most φ−1 queries for each of the
log m levels. Due to the branching factor, at most a factor of k = 2 more point queries
are carried out and when all estimates of those queries are correct with high probability,
there is a total of 2 log m

φ point queries.
Let E be the set of failed events Ei over the point queries above. For an event to fail it

must hold that the estimated frequencies of the events is v̂i > vi + ε ‖v‖1. The probability
of failure for any of the 2 log m

φ point queries, can be expressed using the Union BoundUnion Bound.

P [E] = P


2 log m

φ⋃
i=1

Ei


≤

2 log m
φ

∑
i=1

P [v̂i > vi + ε ‖v‖1] (Union BoundUnion Bound)

≤
2 log m

φ

∑
i=1

δ

=
2 log m

φ
δ

Hence, scaling δ for all sketches of the tree to δ′φ
2 log m , gives us (22.)(22.).

The space usage, update time, and query time then follows directly, since a Count-
Min Sketch with failure probability δ is associated with each of the log m levels.

34

The binary tree of Theorem 3Theorem 3 can generally be changed to a k-ary tree. Such a change
would improve the update time to O

(
log k logk m

δ′φ logk m
)

by trading off the query time,

which would become O
(

k log k logk m
δ′φ logk m

)
. The space of the structure would likewise

be improved to O
(

ε−1 log k logk m
δ′φ logk m

)
words.

4.5 Hierarchical Count-Median Structure

This section describes how the approximate L1 heavy hitters problem is solved using the
Count-Median Sketch [55] from Section 3.4Section 3.4 as the synopsis data structure for the hierar-
chical data structure in Section 4.3Section 4.3.

The Count-Median Sketch provides its estimates with guarantees according to the L2-
norm, which for all distributions is at least as good, and for many significantly stronger
than for the L1-norm, since

√
‖v‖1 ≤ ‖v‖2 ≤ ‖v‖1. As a consequence it is quite easy to

use the Count-Median Sketch as we used the Count-Min Sketch in Section 4.4Section 4.4 to have an
algorithm that finds approximate L1 heavy hitters with very good error guarantees for
each of the estimates.

To use the Count-Median Sketch a minor tweak must be made to fit the definition of
an approximate L1 heavy hitters algorithm. Since the Count-Median Sketch has a two-
sided error (Theorem 2Theorem 2) i.e. it both underestimates and overestimates its frequencies,
and thus, we must adjust the threshold for which an L1 heavy hitters is expected, such
that all true heavy hitters are always found. This and the analysis of the algorithm is
carried out in the following Theorem 4Theorem 4.

Theorem 4 (Hierarchical Count-Median Sketch structure bounds). An approximate L1

heavy hitters solution using Count-Median Sketches, uses O
(

ε−2 ln log m
(φ−ε)δ′ log m

)
words of

space, such that updates and queries on the hierarchical data structure can be carried out in
O
(

ln log m
(φ−ε)δ′ log m

)
time and such that approximate L1 heavy hitters queries report:

1. element si for which vi ≥ φ ‖v‖1, and

2. with probability 1− δ′, no element si with frequency vi < φ ‖v‖1 − 2ε ‖v‖2

with a branching factor of the hierarchical data structure of k = 2.

Proof. Because of the two-sided error of the Count-Median Sketch, the threshold used
to compare frequencies from the sketches needs to be adjusted. Such an adjustment is
needed to compensate for underestimated frequencies, in order to support (11.)(11.).

Assume that element si with true frequency vi is a heavy hitters, then vi ≥ φ ‖v‖1
and it holds that

|v̂i − vi| ≤ ε ‖v‖2 ⇒ φ ‖v‖1 − ε ‖v‖2 ≤ v̂i ≤ φ ‖v‖1 + ε ‖v‖2

with probability 1 − δ our estimated frequency is at most ε ‖v‖2 less than the actual
frequency. This implies that some heavy hitters will only be reported with probability
1− δ, which does not satisfy the approximate L1 heavy hitters definition.

35

Changing the threshold for our sketch queries to φ ‖v‖1− ε ‖v‖2 makes the definition
hold up to a constant factor since all elements with true frequency vi > φ ‖v‖1 will be
reported, while no elements with true frequency vi < φ ‖v‖1 − 2ε ‖v‖2 ≤ (φ− 2ε) ‖v‖1
will be reported with probability 1− δ.

The change of the threshold when querying the tree enables us to use more or less
the same arguments as in Theorem 3Theorem 3 to prove the theorem with only a few adjustments.

The estimations of the dyadic ranges now have errors according to the L2-norm. Since
the L2-norm of different dyadic ranges of the same vector generally differs, the guarantee
is generally different for each level of the tree. However, this is not a problem, since the
L2-norm of any of the dyadic ranges never exceeds the L1-norm. Hence, all estimates
are generally stronger than those provided by the Count-Min Sketch. By adjusting the
threshold from above according to the L2-norm of the dyadic range of a given level in
the tree we get the exact guarantees of the theorem. Thus, we can still use the fact that
if all queries does not fail, at most 2 log m

φ queries are carried out through the traversal of
the tree.

But the above misses a detail. A change in the threshold requires a rescaling of δ, as
the upper bound on the number of heavy hitters changes when the threshold changes.
Now, at most 1

φ−ε heavy hitters exist at each level, which means that the amount of
nodes visited on each level of the hierarchical data structure is at most two times that,
i.e. 2

φ−ε . Since there are log m levels where we perform at most that many point queries,
we need to rescale the δ of all the sketches and by the same Union BoundUnion Bound argument as
in Theorem 3Theorem 3 this gives us δ = (φ−ε)δ′

2 log m .
We have shown (22.)(22.) as no elements with true frequency vi < (φ − 2ε) ‖v‖1 will be

returned in the resulting set with probability 1− δ′.

In practice, the L2-norm of each of the levels in the tree will be hard to compute
and one could instead choose the new threshold to be (φ− ε) ‖v‖1 which increases the
amount of false positives for most distributions, but would be an approximate L1 heavy
hitters solution up to a constant factor. Empirical studies [66, 77] have shown, though,
that the adjustment of the threshold generally is not needed in order to provide as good
results as the solution from Theorem 3Theorem 3 in practice.

Compared to the previous section, this structure uses more space than the algorithm
using Count-Min Sketches. The difference in space is because of the width where a
Count-Min Sketch has a width of O

(
ε−1) compared to O

(
ε−2) of the Count-Median

Sketch.
Such a difference in size will in practice make the Count-Min Sketch preferable since

it will use less space than the Count-Median Sketch. In the experiments presented in
Chapter 6Chapter 6 we will present a way to cope with this difference in space and error guaran-
tees.

As with the solution using the Count-Min Sketch, this solution can also be changed
to a k-ary tree instead of the binary presented above. Such a change will again provide a
better space usage and update time by trading off with a worse query time.

As a final note, it was proven in Kane et al. [1919], that the Count-Median Sketch and the

36

hierarchical data structure can be used to solve any approximate heavy hitters problem
for norm 0 < p ≤ 2.

4.6 Hierarchical Constant-Min Structure

This section will describe a similar but slightly different approach than the Hierarchi-
cal Count-Min Structure from Section 4.4Section 4.4. The data structure is from Larsen et al. [2222]
and it also solves the approximate L1 heavy hitters problem in the Strict Turnstile Model.
The Count-Min Sketch is still used as a black box structure internally, but the analysis
is changed from providing worst case guarantees for space, updates and queries to ex-
pected guarantees for queries, while maintaining worst case guarantees for space and
updates.

The previous sections looked at the desired heavy hitters guarantee and then scaled
the failure probability of the sketches to match these guarantees. This algorithm will
instead choose a constant failure probability δ = 1/4 for all internal sketches in the tree.

A constant probability of failure for each point query at each level of the hierarchical
structure should produce more unwanted paths, since nodes in the tree will have a
tendency to have a too heavily overestimated frequency. As a consequence, more nodes
have to be queried in the tree.

Such unwanted paths may lead all the way down to the leafs, which requires a Count-
Min Sketch with a stronger guarantee, than the constant ones, at the leaf level. Such a
sketch is constructed by appropriately scaling the Count-Min Sketch according to the
expected amount of queries performed on the leaf level. Thus, one is able to discard the
wrong paths and incorrect reporting. The final scaled sketch will be kept externally from
the tree, but we will reference to it as the bottom sketch. In Theorem 5Theorem 5 below, d is the
depth of the internal sketches, d′ is equal to the depth of the bottom scaled Count-Min
Sketch, m is the amount of unique elements in the vector v and δ = 1/4 is a constant used
to calculate d, the depth of each of the internal sketches in the tree.

Theorem 5 (Hierarchical Constant-Min Structure bounds). Choosing δ to be a constant, δ =
1/4, for all internal sketches imply that the depth of each sketch becomes constant and gives a data
structure that solves the approximate L1 heavy hitters problem using O

(
ε−1 log m + ε−1 d′

)
words of space, where updates on the hierarchical structure can be carried out in O (log m + d′)
time and approximate heavy hitters queries can be performed, where

1. All elements si with frequency vi ≥ φ ‖v‖1 are output, and

2. with probability 1− δ′, no element si with frequency vi < (φ− ε) ‖v‖1 is output

using expected O
(
log (m) φ−1 + d′

)
time. Where d′ = O

(
log
(
δ′−1φ−1)) denotes the depth of

the bottom sketch and the branching factor of the hierarchical data structure is k = 2.

Proof. The analysis is split in two. First, we will analyze the expected amount of work
necessary in the hierarchical data structure and secondly, we will analyze the additional
work introduced by the extra sketch on the leaf level.

37

To bound the expected amount of work performed in the hierarchical data structure,
one needs to bound the amount of visited nodes i.e. sketch queries performed over the
whole structure.

Since the tree of dyadic ranges is built such that a higher level of the tree contains the
mass of the lower levels (Section 4.3Section 4.3), we are guaranteed that all heavy nodes are visited,
performing the exact same traversal as the one in Section 4.4Section 4.4. By the definition of true
heavy hitters there can exist at most φ−1 such nodes at each level – since the L1-norm of
the dyadic ranges stay the same – giving at most log (m) φ−1 heavy nodes.

The crucial point is to bound the amount of light nodes visited when the sketches on
each level allow errors with probability δ = 1/4, that is, we will show that the visits to
the heavy nodes will pay for the visits to the light ones.

We define the distance of the nearest heavy ancestor of a node j – nha(j) – to be the
amount of upwards traversals in the tree to find a heavy ancestor node, which implies for
any node j that 1 ≤ nha(j) < log m.

Let Ii,j define an indicator variable, describing whether a node i is visited when
having its nearest heavy ancestor j levels above, for 1 ≤ i ≤ 2m− 1 and 1 ≤ j ≤ log m− 1.

Ii,j =

{
1 if node i is visited and nha(i) = j
0 o.w.

To bound the expectation of Ii,j we note that the probability of the sketch on each level
to overestimate a light node is δ = 1/4. We further note that each level of the tree is
independent by the definition of the dyadic ranges, and for a node i to be visited it
must hold that all ancestors of i have been visited. As a consequence the probability of
visiting node i is the product of the probability of visiting its nearest heavy ancestor, and
the probability of visiting each of the light nodes on the path to the heavy ancestor. We
therefore get

E
[
Ii,j
]
≤ 1 ∗∏

j−1
δ = δnha(i)−1 =

1
4

nha(i)−1
.

Let Yi be the random indicator variable indicating if a node 1 ≤ i ≤ 2m − 1 is visited
in the hierarchical data structure and let Y = ∑2m−1

i=1 Yi = ∑i Yi. Since there exists at
most φ−1 queries of heavy nodes on each of the log m levels in the whole structure and
queries on light implies that such a node must have a heavy ancestor, we can bound the
probability of reaching any node i by looking at the depth of node i in the tree.

E [Y] = E

[
∑

i
Yi

]
= ∑

i
E [Yi] (Linearity of ExpectationLinearity of Expectation)

=
log m−1

∑
j=1

∑
{i|nha(i)=j}

E
[
Ii,j
]

(Redefinition of above)

38

≤
log m−1

∑
j=1

∑
{i|nha(i)=j}

δj−1 (Substitution)

≤
log m−1

∑
j=1

log m
φ

2jδj−1 (4.1)

=
log m

φ

log m−1

∑
j=1

2jδj−1

=
2 log m

φ

log m−1

∑
j=1

2j−1 1
4

j−1 (
Using the constant δ =

1
4

)

=
2 log m

φ

log m−1

∑
j=1

1
2

j−1

= O
(

log m
φ

)
where (4.14.1) comes from the fact that a node has 2j descendants j levels below it and that
the maximum number of heavy hitters at a level is φ−1 for all log m levels. The last step
comes from the geometric series

log m−1

∑
j=1

1
2

j−1
≤

∞

∑
j=0

1
2

j
= 2

and obtains a bound on the expected number of visited nodes when performing a heavy
hitters query.

The second part of the analysis is to bound the time used on the extra Count-Min
Sketch when all heavy hitter candidates are found. The extra sketch is needed since
we at the final level of the tree will have introduced some extra candidates due to the
constant error probability of all internal sketches in the tree.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031

nha(i)− 1 levels

#light ≤ 2nha(i)Leaf level

#heavy ≤ 1
φ

i

...

Figure 4.3: Illustration showing the line of thought from the point of view of leaf i, when
arguing for the amount of candidates of a Hierarchical Constant-Min Structure’s bottom
sketch. The illustration shows the limits on the number of heavy and light nodes at the
nearest ancestor level and the leaf level, respectively.

39

To bound the amount of candidates at the leaf level, we reuse some of the ideas from
the analysis of the query above. Figure 4.3Figure 4.3 shows a depiction of the line of thought.
Consider a specific light leaf node i. For i to be a leaf candidate it must hold that all
ancestor nodes of i have had estimated frequencies above the heavy hitter threshold,
and nha(i) − 1 of these are light nodes by the definition of the nearest heavy ancestor.
Furthermore, there can be at most φ−1 of such heavy ancestors that are nha(i) levels above
the leaf candidates and each of these can contribute with at most 2nha(i) leaf queries, since
this is an upper bound on the amount of leafs in a subtree rooted at such a heavy node.

Compared to the analysis of the queries over the whole tree, the analysis of queries
in the bottom sketch is fixed to the leaf level. This removes the log m factor, as there can
be only one level for which any leaf candidate i can have nha(j) to a heavy node j in the
tree. This also explains (4.24.2) of the equation below.

Let Xi be an indicator variable stating whether node i is a leaf candidate for i =
{m, . . . 2m− 1} i.e. for i being a leaf node. Let X = ∑2m−1

i=m Xi = ∑i Xi. We can then expect
over the amount of queries performed on the bottom sketch by looking at the expectation
of leaf candidates.

E [X] = E

[
∑

i
Xi

]
= ∑

i
E [Xi] (Linearity of ExpectationLinearity of Expectation)

=
log m−1

∑
j=1

∑
i∈{m,...,2m−1}:nha(i)=j

E
[
Ii,j
]

(Redefinition of above)

=
log m−1

∑
j=1

∑
i∈{m,...,2m−1}:nha(i)=j

δj−1 (Substitution)

≤
log m−1

∑
j=1

1
φ

2jδj−1 (4.2)

=
1
φ

log m−1

∑
j=1

δj−12j

=
2
φ

log m−1

∑
j=1

δj−12j−1

=
2
φ

log m−1

∑
j=1

1
4

j−1
2j−1

(
δ =

1
4

)
=

4
φ

where the last step comes from the same geometric series as above.

40

From the expectation of X we get that the expected number of nodes visited in the
leaf level are 4

φ . Still, the actual amount of nodes can be much higher, since this is only
in expectation. By Markov’s Inequality we can bound the amount of nodes visited with
good probability.

P [X > tE [X]] <
1
t
⇒ P

[
X >

4t
φ

]
<

1
t

⇒ P

[
X >

8
δ′φ

]
<

δ′

2

(
t =

2
δ′

)
Hence, by Markov’s Inequality we get that the probability of having more than 8

δ′φ leaf

nodes to query is less than δ′

2 .
Next, we can bound the probability of having even a single estimation error in the

bottom sketch, conditioned on the fact that no more than 8
δ′φ queries is performed.

Let A be the event that X ≤ tE [X] and let B be the event that one or more estimation
errors occur in the final sketch when A is upheld. We can then calculate the probability
of B by doing a Union BoundUnion Bound over the maximal amount of queries with good probability
conditioned from A.

P [B|A] =

8
δ′φ⋃

i=1

P [v̂i > vi + ε ‖v‖1]

≤
8

δ′φ

∑
i=1

P [v̂i > vi + ε ‖v‖1]

≤
8

δ′φ

∑
i=1

δ

=
8δ

δ′φ

=
δ′

2

(
δ =

(δ′)2φ

16

)
By scaling δ of the bottom sketch to (δ′)2φ

16 we add more rows to the sketch and get that
with probability δ′

2 none of the point queries on the sketch will fail.
The final thing to do is to bound the overall probability of a bad estimate to occur in

the bottom sketch. Here we assume that if more than 8
δ′φ queries are performed on the

bottom sketch, it will always fail. The probability of a bad estimate can then be stated as
the probability of having more than 8

δ′φ nodes to query at the leaf level or the probability
of the sketch to fail, when at most 8

δ′φ queries are performed.

P [¬A ∪ (B ∩ A)] = P [¬A] + P [B|A]P [A] ≤ δ′

2
+

δ′

2

(
1− δ′

2

)
≤ δ′

41

We then end up with a bottom sketch having depth d′ = log 16
(δ′)2φ

, which with probability
1− δ′ provides successful estimates of all the queries performed on it. This guarantees
that with probability 1− δ′, no elements si with estimates vi < (φ− ε) ‖v‖1 is present in
the resulting set of heavy hitters, which proves this theorem.

The space usage, update and query times then follow directly from the bottom sketch
size O

(
ε−1 d′

)
and the hierarchical data structure size O

(
ε−1 log m

)
.

Hence, we get an algorithm providing approximate L1 heavy hitters with better space
usage, update time, and expected query time compared to the algorithms described in
the previous two sections. What is just as fortunate, is the fact that the algorithm only
hides small constants in the big-O notation and as a consequence should perform well
in practice.

The only downside to this solution is the fact that changing the branching factor k for
the hierarchical data structure does not imply the same trade-offs as is present for the
earlier algorithms. This is due to the fact that the constant δ must be scaled appropriately
according to k in order for the algorithm to remain true.

4.7 Summary

This chapter mentioned how different deterministic and randomized algorithms solve
the approximate L1 heavy hitters problem in the Cash Register Model.

It was then shown and proved how the L1 heavy hitters problem can be approxi-
mated in the Strict Turnstile Model using a hierarchical data structure and sketches solv-
ing the frequency estimation problem. Generally, such solutions have fast queries with
the trade-off of having to store and update log m sketches. The Hierarchical Constant-
Min Structure recently introduced in literature [2222], was also analyzed and shown to be
faster than earlier solutions using Count-Min Sketches and Count-Median Sketches, by
removing a log m factor. It will be interesting to see how this structure compares to other
data structures in practice.

Another interesting aspect of all the algorithms and data structures introduced in
this section is how their bounds compare to the lower bounds. This comparison will be
investigated next, in Chapter 5Chapter 5.

42

Chapter 5

Lower Bounds

In the following sections we present and prove space and update lower bounds for the
approximate L1 heavy hitters problem and the frequency estimation problem in the Strict
Turnstile Model.

First, we prove a space lower bound for the problem of finding approximate heavy
hitters. This lower bound is compared with the solutions presented in this thesis.

Next, we prove a space lower bound for the problem of frequency estimation using
sketch data structures supporting point queries. Again, we will compare the space lower
bound with the bounds of the previously presented algorithms.

Finally, we will present an update lower bound for the approximate L1 heavy hitters
problem and the frequency estimation problem supporting point queries. These lower
bounds are also compared to the upper bounds of the presented algorithms.

5.1 Space Lower Bound for Approximate Heavy Hitters

The space lower bound of the heavy hitters problem follows from the augmented index-
ing problem. The augmented indexing problem is defined as a game as follows: Let l
and k be positive integers. The first player, Alice, is given a symbol y ∈ [k]l0, while the
second player, Bob, is given an integer i ∈ [l]0 and symbols yj for all j < i. The purpose
of the game is for Bob to output the value of yi when only receiving a single message
from Alice. An important note here is that Alice has no knowledge of the integer i, Bob
received.

We need the following lemma from Jowhari et al. [1818], Miltersen et al. [2525] to show
the heavy hitters lower bound.

Lemma 8 (Augmented indexing problem bound). In any one-way protocol in the joint ran-
dom source model with success probability at least 1− δ > 3

2k , Alice must send a message of size
Ω ((1− δ)l log k).

Here the joint random source model states that all random choices are done with
a public random string, known by all parties, and independent of the input. In the

43

following situation, this is equivalent to both parties using the same random seed for the
hash functions.

Using the above lemma and reducing the augmented indexing problem to the heavy
hitters problem, we are able to play the above game in such a way that a space lower
bound on the heavy hitters problem can be shown.

Theorem 6 (Heavy hitters space lower bound). Let p ∈ {1, 2} define the Lp-norm and
φ ∈ (0, 1/2) define the threshold parameter. Any one-pass heavy hitters algorithm in the Strict
Turnstile Model must use Ω

(
φ−p log2 m

)
bits of space where m defines the amount of elements

used to form the frequency vector x, and the heavy hitters algorithm is guaranteed to only have a
constant failure probability.

Proof. Alice and Bob want to solve the augmented indexing problem. Alice is given the
values y0, . . . , ys−1 ∈

[
2t]

0, while Bob is given an integer i ∈ [s]0 and yj for all j < i. In
order for both to solve the problem, they will reduce the problem to the heavy hitters
problem.

They now construct the vectors u and v as follows: for b = (1 − (2φ)p)−
1
p , Alice

creates the vector u, such that u consists of s concatenated blocks of size 2t where the
yk’th index of the k’th block is equal to

⌈
bs−k⌉ for k ∈ [s]0 and all other values in the block

are 0. As a consequence, the dimension of the vector u is dim(u) = s2t. Bob creates the
vector v in the exact same way, except that the last s − i blocks are set to 0 such that
dim(v) = dim(u) = s2t. This is done since yi, . . . , ys−1 are unknown to Bob.

To solve the augmented indexing problem, Alice and Bob then uses a heavy hitters
algorithm for the vector x = u− v, which implies that the heavy hitters algorithm must
solve the problem in the Turnstile Model. More specifically it solves the problem in the
Strict Turnstile Model, since x is a valid vector in this model due to b > 1.

First, Alice performs updates using the heavy hitters algorithm to bring the initial
zero vector x ∈ Zm to x = u. Then, she sends the final memory content to Bob enabling
him to use the same random seeds for the hash functions and maintain a copy of the
memory content. Bob performs another round of updates by subtracting the vector v
from u, that is, he brings x = u to x = u− v. Finally, Bob performs a heavy hitters query
on x giving him the set of heavy hitters Q from where he returns the value z ∈

[
2t]

0 if
the smallest index in Q is equal to (i− 1)2t + z.

If an error does not occur in the heavy hitters algorithm, then z = yi. This is because
the first (i− 1)2t entries of x zeroes due to the subtraction of the vectors. The only entries
with values are (k− 1)2t + yk for i ≤ k < s where the index calculated from k = i is the
minimum one. We must show that our heavy hitters algorithm will find this element by
showing,

⌈
bs−i⌉ ≥ φ ‖x‖p, that the value of the elements is greater than the threshold of

the algorithm.

φp ‖x‖p
p = φp

s−1

∑
j=i

⌈
bs−j

⌉p

< (2φ)p
s−1

∑
j=i

(bs−j)p (∀a ≥ 1 : dae < 2a)

44

= (2φ)p
s−i

∑
j=0

(bj)p

= (2φ)p 1− bp(s−i+1)

1− bp (b 6= 1)

= (2φ)p bp(s−i+1) − 1
bp − 1

= bp(s−i) (2φb)p

bp − 1
− (2φ)p

bp − 1

= bp(s−i) − 1
bp − 1

((2φ)p = − 1
bp + 1)

< bp(s−i) (bp > 1)

Now taking the pth root gives us
⌈
bs−i⌉ > φ ‖x‖p, which proves that the augmented

indexing problem can be solved if the approximate Lp heavy hitters algorithm is correct.
Choosing s = d(2φ)−p log me and t = dlog m/2e gives for a large enough m, that the

dimension of x is covered by m i.e. s2t < m and the weights of each element xi remains
less than m. For a heavy hitters algorithm with failure probability δ < 1

2 , Lemma 8Lemma 8 will

provide a lower bound on the communication protocol of Ω (st) = Ω
(

φ−p log2 m
)

. This
proves the theorem, since the size of the message sent from Alice to Bob is the same as
the memory size of the heavy hitters algorithm.

From Theorem 6Theorem 6 we get a space lower bound on algorithms solving the heavy hitters
problem in the Strict Turnstile Model. The lower bound is expressed using the threshold
parameter φ but generally, φ can be replaced with the approximation factor ε when ε is
chosen to be a constant factor less than φ. This is due to the definition of the approximate
heavy hitters problem in Section 4.1Section 4.1, which states that with probability 1− δ, no elements
with frequency vi < (φ− ε) ‖v‖p are returned for ε < φ and all elements with frequency
vi ≥ φ ‖v‖p are returned. We are hence able to compare the lower bound with solutions
studied in this thesis.

First, lets go back to the sketches from Chapter 3Chapter 3. Assuming that the Lp-norm for
p ∈ {1, 2} can be generated or approximated using no more space than the Count-
Min Sketch or the Count-Median Sketch, both sketches use optimal space for depth
d = C log m, where C > 1 is a constant to guarantee |v̂i − vi| ≤ ε ‖v‖p for all i ∈ [m]1.
That is, all estimates are not worse than the approximation factor times the Lp-norm with

failure probability δ = m−(C−1) = O
(

1
poly(m)

)
. On the other hand, the query time would

be bad since all elements in [m]1 would have to be queried to figure out if they are heavy
hitters.

To cope with the query time the data structures in Chapter 4Chapter 4 were introduced for the
approximate L1 heavy hitters problem. Both solutions from Section 4.4Section 4.4 and Section 4.5Section 4.5
introduce an extra log m factor to the space and update time of the algorithm, since
a sketch must be maintained over log m levels. Hence, the solution using Count-Min

45

Sketches only becomes sub-optimal in space, while the solution using Count-Median
Sketch is even worse due to the width of those sketches. The solution from Section 4.6Section 4.6
with constant work for each of the log m levels is optimal in space and furthermore
provides a good update and expected query time.

In the next section we will make further use of Theorem 6Theorem 6 to prove a lower bound on
sketches supporting point queries.

5.2 Space Lower Bound for Frequency Estimation

For the approximate heavy hitters problem Theorem 6Theorem 6 shows a space lower bound of
Ω
(

φ−p log2 m
)
= Ω

(
ε−p log2 m

)
bits or Ω (ε−p log m) words, when ε is chosen to be a

constant smaller than φ. Using this theorem we are able to lower bound the amount of
space required for a sketch supporting point queries.

Theorem 7 (Sketch space lower bound). Let p ∈ {1, 2} and δ be the failure probability of a
sketch. Since a space lower bound exists for the approximate Lp heavy hitters problem in the Strict
Turnstile Model on Ω (ε−p log m) words with error probability δ′ = 1/poly(m) < 1/2, a space
lower bound exists on sketch data structures supporting point queries in the Strict Turnstile
Model on Ω

(
ε−p log δ−1) words.

Proof. Let V1, . . . , Vt be t independent sketches supporting point queries with failure
probability δ, each using S space. Further, let v̂i(j) be the estimate of element si from Vj.

To solve the approximate Lp heavy hitters problem over a stream of m unique el-
ements, let all t sketches run on a stream such that the weights of each element are
bounded by m. We can then solve the problem by querying all si in all of the sketches
and take the median of the estimates: medianj v̂i(j) for i ∈ [m]1 , j ∈ [t]1. This will imply
that we return all elements with frequency vi ≥ φ ‖v‖p and no elements with frequency
vi < (φ− ε) ‖v‖p with probability 1− δ′, as will be shown next.

Let Yi,j be an indicator variable, indicating whether a specific query to a specific
sketch failed, defined as:

Yi,j =

{
1 if |v̂i(j)− vi| > ε ‖v‖p

0 otherwise
, Yi = ∑

j∈[t]1

Yi,j = ∑
j

Yi,j

It then follows directly from Linearity of ExpectationLinearity of Expectation and the Union BoundUnion Bound over all t
sketches that E [Yi] = tδ. Since we take the median of the estimated frequencies returned
by the t sketches, at least

⌈ t
2

⌉
of them must fail in order for the heavy hitters query to

fail.

P
[
|medianj v̂i(j)− vi| > ε ‖v‖p

]
≤ P

[
Yi >

⌈
t
2

⌉
− 1
]

≈ P

[
Yi >

δ−1

2
E [Yi]

]
(Substitution)

46

= P

[
Yi >

(
1 +

(
δ−1

2
− 1
))

E [Yi]

]

<

 e
δ−1

2 −1(
δ−1

2

) δ−1
2


E[Yi]

(Chernoff BoundChernoff Bound)

<

 e
δ−1

2(
δ−1

2

) δ−1
2


E[Yi] e

δ−1
2 −1 ≥ 1∧

(
δ−1

2

) δ−1
2

≥ 1



=

 1(
δ−1

2e

) δ−1
2


E[Yi]

= e− ln
(

δ−1
2e

)
δ−1

2 E[Yi]

= e− ln
(

δ−1
2e

)
t
2 (Substitute E [Yi])

= e−(ln δ−1−ln (2e)) t
2

< e−(
t
2 ln δ−1−t)

= e−
(

ln m
2 −

ln m
ln δ−1

) (
t =

log m
log δ−1 =

ln m
ln δ−1

)
= e− ln m

(
1
2−

1
ln δ−1

)

=
1

m
(

1
2−

1
ln δ−1

)
= O

(
1

poly(m)

)
Hence, for an appropriate choice of δ and t = log m/log δ−1 sketches, the error probability
on any of the m estimates is at most O

(
1

poly(m)

)
.

Looking at the space used to support the heavy hitters query, we use t sketches each
with S space. Since we know the space lower bound of the approximate Lp heavy hitters
problem in the Strict Turnstile Model we can set up an equation stating the minimal space
usage of a point query.

tS ≥ ε−p log m⇒ S ≥ ε−p log m
t

⇒ S ≥ ε−p log m
log m

log δ−1

⇒ S ≥ ε−p log δ−1

47

To solve the approximate heavy hitters problem using sketches that support point
queries, it requires the sketches to use Ω

(
ε−p log δ−1) words of space.

Having proved the space lower bound for sketches supporting point queries with
norm guarantees for both the L1 and L2-norm, we are able to compare it with the sketches
presented in Chapter 3Chapter 3.

The Count-Min Sketch uses space O
(
ε−1 log δ−1) words to support queries for which

estimates are no worse than v̂i ≤ vi + ε ‖v‖1 with probability at least 1− δ. This clearly
matches the terms of the lower bound from above and we can hence conclude that the
Count-Min Sketch provides estimates with an error according to the L1-norm in optimal
space.

The Count-Median Sketch uses O
(
ε−2 log δ−1) words to support queries for which

estimates are no worse than |v̂i − vi| ≤ ε ‖v‖2 with probability at least 1− δ. This again
matches the lower bound, as the Count-Median Sketch provides estimates with an error
according to the L2-norm in optimal space.

It is then easy to conclude that space-wise the sketches presented and analyzed in
Chapter 3Chapter 3 are as good as they get for randomized structures. When it comes to the
update times of the same sketches the bounds are not near as exciting, as we will see in
the next section.

5.3 Update Lower Bounds

The first non-trivial update time lower bounds for randomized streaming algorithms
in the Turnstile Model was provided in Larsen et al. [2121]. In their work, only a certain
restricted class of randomized streaming algorithms, namely those that are non-adaptive
could be bounded. The definition of a non-adaptive randomized streaming algorithm is:

Definition 2 (Non-adaptive Randomized Streaming Algorithm). A non-adaptive random-
ized streaming algorithm, is an algorithm where

• it may toss random coins before processing any elements of the stream, and

• the words read from and written to memory are completely determined by the index of the
updated element and the initially tossed coins, on any update operation.

Such constraints imply that memory must not be read or written to based on the
current state of the memory, but only according to the coins and the index.

Comparing the above definition to the sketches, a hash function chosen indepen-
dently from any desired hash family can emulate these coins, enabling the update algo-
rithm to find some specific words of memory to update using only the hash function and
the index of the element to update.

This makes the non-adaptive restriction fit exactly with all of the Turnstile Model algo-
rithms presented earlier. Hence, we can compare the update times of all those algorithms
with the update time lower bound of the following theorems (Theorem 8Theorem 8 and Theorem 9Theorem 9)
from Larsen et al. [2121].

48

Theorem 8 (Point Query update lower bound). Any randomized non-adaptive streaming
algorithm for point query must have worst case update time

tu = Ω

 log δ−1√
log (m) log

(
eS
tu

)


where S is the space of the algorithm.

Both the Count-Min Sketch and the Count-Median Sketch are non-adaptive and sup-
port point queries. Comparing the update times for both sketches of O (d) = O

(
log δ−1)

with the lower bound from Theorem 8Theorem 8, we get that the update times of the sketches are
only near-optimal. A gap still exists in the form of the denominator of the lower bound,
which is not captured by any of the sketches. The extra gap seems hard to reach in
the word-RAM model, especially while maintaining the space optimality we proved in
Section 5.2Section 5.2.

Theorem 9 (Heavy hitters update lower bound). Any randomized non-adaptive streaming
algorithm for L1 heavy hitters must have worst case update time

tu = Ω

min


√√√√ log δ−1

log
(

eS
tu

) ,
log δ−1√

log (tu) log
(

eS
tu

)



where S is the space of the algorithm.

Using either of the sketches from Chapter 3Chapter 3 with depth d = C log m for C > 1 ensures
that all m point queries succeed within the allowed error guarantee with probability
1 − O

(
1

poly(n)

)
, while supporting updates in O (log m) time. Such an update time is

generally good, but still off by a factor, compared to the lower bound from Theorem 9Theorem 9.
The algorithms from Chapter 4Chapter 4 using the hierarchical data structure and the sketches

as black boxes are, in order to improve the query time, a factor of log m worse in update
time, which makes their update time even further from optimal.

The final algorithm in Chapter 4Chapter 4 traded faster update speed for expected query time,
to support updates in O (log m) time, making it comparable with the sketch solutions
again. The upside to this algorithm compared to simply using a sketch, was the im-
provement in (expected) query time, using the same space as the sketches.

Generally, it seems hard to achieve optimal update time for the approximate L1 heavy
hitters problem without trading away the space usage. Such a trade is not necessarily
wanted as several of the solutions presented are actually optimal in space.

To the knowledge of the authors of this thesis, no better algorithms for the approxi-
mate L1 heavy hitters problem in the Strict Turnstile Model are known in the word-RAM
model, and a gap thus exists between what is known and what should be possible to
achieve, with respect to the update time of the algorithms.

49

5.4 Summary

In this chapter, we have compared the Strict Turnstile Model algorithms and data struc-
tures analyzed in earlier chapters according to the space and update lower bounds.

To solve the frequency estimation problem, the Count-Min Sketch and Count-Median
Sketch both use optimal space but only have near-optimal update time.

Using the sketches to solve the heavy hitters problem, again gives optimal space, fast
update time, but a bad query time due to the need for querying all elements.

The query time is improved by using the Hierarchical Count-Min Structure or the
Hierarchical Count-Median Structurebut at the cost of an extra log m factor in update
time and space usage. This makes the update time even further from optimal, while the
space becomes a log factor from optimal.

The recent discovery of the Hierarchical Constant-Min Structure, deals with this
trade-off and enables a structure with good expected query time, fast update time and
optimal space usage.

Generally, it seems like there is a relation between space and update times, where im-
proving one would hurt the other. Still, the Hierarchical Constant-Min Structure seems
to be able to find a good trade-off, where the expected query times are improved signif-
icantly as well.

50

Chapter 6

Experiments

In this chapter we will describe and present experiments, which will test the Strict Turn-
stile Model algorithms and data structures described in Chapter 3Chapter 3 and Chapter 4Chapter 4. The
experiments will mainly focus on testing the precision, space usage and running time of
the algorithms in order to compare the theoretical parameters and bounds in practice.

In Section 6.1Section 6.1, we will present some general information about the testing environ-
ment, the test setup, the implementations of the different data structures, and the input
data used for testing.

In Section 6.2Section 6.2, we will perform a range of experiments on the sketches mentioned in
Chapter 3Chapter 3 and try to argue that the Count-Min Sketch and the Count-Median Sketch are
comparable as a black box for other problems.

Finally, in Section 6.3Section 6.3, we will be doing experiments for the approximate L1 heavy
hitters problem, where several different implementations from Chapter 4Chapter 4 will be tested
and compared against each other.

6.1 Implementation & Test Details

This section will describe the optimization and implementation details made in order for
the algorithms to perform as good as possible. Furthermore, we will describe the setup
in which the experiments are carried out in and more generally how the measurements
are performed. Finally, the distribution used to generate the test data is discussed.

6.1.1 Implementation

All implementations were written in C (C99), which enabled us to have full control
of the memory usage. We implemented two different sketches (the Count-Min Sketch
and Count-Median Sketch) and 6 different approximate L1 heavy hitters algorithms.
The sketches are implemented in a generic framework which enable algorithms using
a sketch to use an abstract sketch type and just specify which implementation (Count-
Min Sketch or Count-Median Sketch) the sketch should have. As a consequence, any use

51

of sketches becomes a use of an abstract sketch object, for which the user defines the
implementation.

Such an abstraction is a huge gain in being able to verify the correctness and increase
the maintainability of the code, since less code has to be written. Just as important, the
abstraction of sketches enables us to unit test the specific sketches, which again should
provide a better guarantee of the correctness of the sketch implementations.

One possible downside of having designed the implementations as generic as possi-
ble, is that performance could be affected negatively, since extra function calls are intro-
duced and since every generic structure allocates its own block of memory, that is not
necessarily consecutively stored with other memory. Hence, a consequence of using the
abstract sketch objects, could be extra cache misses.

For the sketch implementations, a big optimization is the placement of the constants
(a and b, see Subsection 2.3.1Subsection 2.3.1) for the c-universal hash function. These are placed at
the beginning of each row in the sketches. Such placement should generally imply fewer
cache misses, since both the update and query algorithms of the sketches follow a specific
pattern whenever a bucket is fetched or written to. First the constants are referenced in
order to generate the hash, where after some element in the same row as the constant
is referenced. Hence, for small sketches, the prefetcher of the cache, should be able to
prefetch the hashed value, without causing a cache miss.

For all heavy hitters implementations using the hierarchical data structure with sketches
as black boxes, an optimization is possible, since one can keep an exact count of the fre-
quencies of ranges, at the first l < logk m levels of the hierarchical data structure, where
k is the branching factor. This is because the first levels of the tree covers large ranges,
implying that only few nodes are present. The space usage from using a sketch at a level
keeping track of for instance 4 ranges, is far greater than just keeping an exact counter
for each of the ranges. The number of levels l for which the structure should hold exact
counts is calculated by finding the level of the tree, for which holding an exact count of
the ranges in that level becomes more expensive than having a sketch. This optimization
is also mentioned by Cormode and Muthukrishnan [99] and used in the implementation
from Cormode and Hadjieleftheriou [77].

A final optimization was performed for the Hierarchical Constant-Min Structure,
where the sketches on each levels of the hierarchical data structure was changed to
have a depth of 1. This implied that the width of the sketches should be scaled such
that w = O

(
ε−1δ−1), to allow each row of the sketches to provide a failure probability

of 1
b i.e. in order to maintain the same guarantees as an unscaled Count-Min Sketch.

The constant sized sketches could then be stored in a consecutively stored array, which
should imply fewer cache misses.

6.1.2 Setup

All tests ran on a few dedicated test machines. The specifications of the machines are
shown in Table 6.1Table 6.1 and they have the same specifications.

The machines have the latest version of Arch Linux with kernel version 4.4.5-1 in-
stalled, with a minimum of applications. The minimal install minimizes interference

52

CPU Intel(R) Core™2 Duo CPU E8500 @ 3.16GHz
L1 Cache 32 KiB, 8-ways associative, 64 byte lines, Split
L2 Cache 6144 KiB, 24-ways associative, 64 byte lines, Unified

TLB 4 KiB pages, 512 entries, 4-ways associative
RAM 8GB 800MHz DDR2 SDRAM
HDD Seagate Barracuda 7200.10 ST3160815AS 160GB 8MB

Cache SATA 3.0Gb/s 3.5“

Table 6.1: Dell Optiplex 760 specifications.

from other applications when running the tests, and lowers the chance of context switch-
ing for the tests.

The code is compiled with GCC version 5.3.0 using -03, -march=native, and -NDEBUG
flags for optimization and removal of debugging code. Debugging and verification of
correctness was done using the Valgrind11 tool along with unit tests written using the
Criterion22 library.

Analyzing and optimizing specific parts of the code has been done using the Cachegrind
and Callgrind tools available in Valgrind, along with the Perf33 tool.

The code is stored in a git repository and includes a README and a Makefile. This
combination allows for an easy way to fetch, compile, and reproduce the experiments.
In addition to the compiled binaries, there are also a few Bash scripts with different test
suites. Having the test suites in scripts, makes it easier to reproduce the set of tests and
specify the parameters δ, ε, φ etc. that the algorithms use.

The implementation of all sketches and heavy hitters algorithms can be found at
https://github.com/mortzdk/heavy-hittershttps://github.com/mortzdk/heavy-hitters, whereas a submodule enabling the col-
lections of the PAPI events can be found at https://github.com/mortzdk/libmeasurehttps://github.com/mortzdk/libmeasure.

6.1.3 Measurements

When measuring performance on a computer it is always difficult to ensure that nothing
external have influenced the measurements. Other programs might require CPU time,
memory etc. so in order to prevent this, the minimal install mentioned in the last section
is an important factor.

Another way of minimizing external influence is by repeating the tests and using the
mean values of the measurements. We make sure to repeat every measurement multiple
times to get minimal external influence.

For the update algorithms, the amount of repetitions performed, is equal to the size
of the stream n. This is feasible as we make sure that the streams are large i.e. at least
several hundreds of thousands of updates are performed, from which we compute an
average.

1http://valgrind.orghttp://valgrind.org
2https://github.com/Snaipe/Criterionhttps://github.com/Snaipe/Criterion
3https://perf.wiki.kernel.orghttps://perf.wiki.kernel.org

53

https://github.com/mortzdk/heavy-hitters
https://github.com/mortzdk/libmeasure
http://valgrind.org
https://github.com/Snaipe/Criterion
https://perf.wiki.kernel.org

PAPI_TOT_CYC Total cycles
PAPI_REF_CYC Total cycles for constant clock rate
PAPI_TOT_INS Instructions completed
PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses

PAPI_BR_NTK Conditional branch instructions not taken
PAPI_BR_TKN Conditional branch instructions taken
PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_BR_PRC Conditional branch instructions correctly predicted
PAPI_L1_DCA L1 data cache accesses
PAPI_L1_DCM L1 data cache misses

PAPI_L1_ICA L1 instruction cache misses
PAPI_L1_ICM L1 instruction cache misses
PAPI_L2_DCA L2 data cache accesses
PAPI_L2_DCM L2 data cache misses

PAPI_L2_ICA L2 instruction cache misses
PAPI_L2_ICM L2 instruction cache misses

Table 6.2: PAPI event descriptions.

When measuring the query algorithms we perform 10, 000 queries, and averages the
measurements.

The measured time is real time and it is measured with the clock_gettime function
using the CLOCK_REALTIME constant as an argument.

To get detailed information about the processor during executions of the update and
query algorithms, we use the PAPI library (v. 5.4.3). The information available from the
library is useful for a better understanding of which processor specific metrics that affect
the running times of the algorithms.

Table 6.2Table 6.2 shows the list of the different events collected, together with a short descrip-
tion of the event. As we present the experiments, we will provide plots that use some of
the events. Not all events are shown in the plots and experiments to follow, since only
those that helps reasoning about the general running times of the algorithms are relevant
to mention and show.

6.1.4 Zipfian Distribution

When testing algorithms, the test data used to do the tests is of great importance, since
specific distributions of test data could make the algorithms perform better or worse.

Realistic distributions of data can often be characterized by the Zipfian, Pareto, or
Power-law distributions, which essentially all are equivalent up to the choice of param-
eters. The zipfian distribution with parameter α ≥ 0 is a discrete distribution stating
that the k’th largest frequency fk has a frequency proportional to k−α. As a consequence,
α = 0 generates a uniform distribution whereas the larger α the more skewed the distri-
bution gets.

The zipfian distributions has been shown to fit a wide variety of real world data, such
as sizes of cities, word frequencies, citations of papers, web page access frequencies, and

54

Data Source Zipfian Skewness (α) Level of skew

0 Uniform
< 0.5 No/Light
≥ 0.5 Moderate

Web page popularity 0.7− 0.8 Moderate
FTP transmission size 0.9− 1.1 Moderate/High

≥ 1.0 High
Word use in English text 1.1− 1.3 High

Depth of website exploration 1.4− 1.6 High

Table 6.3: Examples of sources according to the α parameter of the Zipfian Distribution
from Cormode and Muthukrishnan [88].

file transfer size and duration, to name a few [11]. Examples of real world data com-
pared to the zipfian parameter α and the categorization of skewness of the distribution
generated from the choice of α, can be found in Table 6.3Table 6.3.

Zipfian distributions are especially interesting with regards to the heavy hitters prob-
lem since this problem looks for frequencies which are significantly larger than the rest
of the data. For increasingly skewed zipfian distributions the elements with such fre-
quencies become more frequent, since only a few of the overall frequencies account for
more of the total frequency. As a consequence, such elements should be easier to find
with a reasonably chosen φ parameter.

Due to the property of being similar to real world data, we chose to do our exper-
iments with artificially generated zipfian distributions, for different choice of α. The
different elements of the distributions will be distributed uniformly at random over the
universe of the data, such that elements with high frequencies are not necessarily neigh-
bors. Earlier experiments have used the same type of distribution of data and showed
that running the experiments on real world data gives the approximately same results as
using zipfian distributed data [77, 88].

6.2 Sketches

In this section we will perform experiments on the Count-Min Sketch and Count-Median
Sketch presented in Section 3.3Section 3.3 and Section 3.4Section 3.4.

Looking at the sketches from a theoretical point of view, the Count-Min Sketch and
Count-Median Sketch provide different guarantees in the error they introduce, as a con-
sequence of their approximations. The Count-Min Sketch guarantees a one-sided error
where all estimates v̂i ≤ vi + ε ‖v‖1 with failure probability δ. The Count-Median Sketch
gives a potentially stronger guarantee, in that the absolute difference between all esti-
mates and their true frequencies are |v̂i − vi| ≤ ε ‖v‖2 with failure probability δ.

Another difference between the sketches is the space they use. The Count-Min Sketch
has width w = b/ε and depth d = logb δ−1 for b > 1. The Count-Median Sketch has width
w = k/ε2 and depth d = ln

(
δ−1)/(1

6 −
1
3k

)
for k > 2.

55

As a consequence the sketches can be quite hard to compare in practice, nonetheless
we will try to do so.

In the next section we will test the sketches according to their theoretical bounds,
that is, using whatever constants found from the theoretical analysis of the sketches. The
constants b and k will be chosen to be equal i.e. b = k = 4 and the size of the universe –
amount of unique elements – is chosen to be m = 226, which requires at least 512 MiB to
create an exact solution by keeping a 64-bit counter for each element.

The choice of m comes from the fact that some of the results regarding the precision
of the sketches, depend on being able to hold an exact solution in memory.

Finally the failure probability is chosen to δ = 2−18 since such a low probability
typically is used for the heavy hitters problem due to scaling. This failure probability
gives a depth of 9 for the Count-Min Sketch and a depth of 150 for the Count-Median
Sketch.

Our tests should hopefully verify that the theoretical bounds and guarantees are up-
held for both sketches. Moreover the tests should show the true difference in space and
estimation errors for the two different sketches. Finally the tests should reveal the run-
ning times of the update and query algorithms and verify whether the Count-Min Sketch
and Count-Median Sketch are applicable as synopsis data structures (Definition 1Definition 1).

To compare the sketches even further we will repeat the experiments on the Count-
Min Sketch and Count-Median Sketch data structures, giving them the exact same width
and depth. This should clarify if we can allow to loosen the theoretical bounds of the
Count-Median Sketch in order to obtain more or less equivalent guarantees to the Count-
Min Sketch.

6.2.1 Theoretical bounds

In this subsection we will experiment with the Count-Min Sketch and Count-Median
Sketch. Since the Count-Median Sketch has a significantly higher space usage than
the Count-Min Sketch, due to different widths and larger constants in the depth (See
Section 3.4Section 3.4), we will perform measurements for this sketch with two different settings,
namely a Count-Median Sketch with the original theoretical bounds, and one without
the constants for the depth, i.e. one with depth d = ln δ−1.

Space

As the width of the Count-Median Sketch increases quadratically with ε, the width of
the Count-Median Sketch will be significantly larger than the width of the Count-Min
Sketch. Furthermore, the depth of the sketches differs in a considerable constant factor,
which put together with the width should have the overall effect that the Count-Median
Sketch will be using much more space than the Count-Min Sketch for most practical
purposes.

Choose for example ε = 0.01 and δ = 0.02. The Count-Min Sketch will then use
≈ 0.0096 MiB while the Count-Median Sketch will use ≈ 15.04 MiB. Scaling the approx-
imation factor with 10−1 to ε = 0.001, yields for the Count-Min Sketch approximately

56

0

250

500

750

1000

1250

2-8 2-6 2-4 2-2

Approximation factor (ε)

M
eb

iB
yt

e
(M

iB
)

median median (d = ln 1
δ) min

Figure 6.1: The space usage for δ = 2−18 of the Count-Min Sketch and the Count-Median
Sketch with and without constants applied to calculate the depth.

0.096 MiB of space, while it will require approximately 1504 MiB of space for the Count-
Median Sketch.

Looking at the space usage for the Count-Median Sketch with depth d = ln δ−1,
the space with the two approximation factors would be ≈ 1.28 MiB and ≈ 128 MiB,
respectively. This is especially important for the latter setting as the size of the sketch is
below the size of an exact solution.

From Figure 6.1Figure 6.1 it can be observed that this is in fact the behavior of the space usage
over different choices of ε. Here the space usage is plotted in log2 for an increasing ε
and a fixed failure probability δ = 2−18. It is clear from the plot that as ε decreases, the
difference in space usage between the Count-Min Sketch and the two different Count-
Median Sketches increases significantly.

Comparing the sketches with holding an exact count over the frequencies, it is clear
that the Count-Min Sketch uses significantly less space. The Count-Median Sketch with
the true theoretical depth is another story. For ε < 2−8, the space usage of the sketch
becomes larger than keeping an exact count, which at this point implies that the sketch is
no longer useful. The Count-Median Sketch without the constants applied for the depth,
saves a factor of 12 in space making the sketch applicable for all tested ranges of ε.

This experiment shows that the Count-Median Sketch and its estimation error guar-
antee according to the L2-norm comes with a significant trade-off in space, implying an
exact count of the frequencies would be just as useful for small parameter choices.

57

0.5 1 1.5 2

100

102

104

106

2-8 2-6 2-4 2-2 2-8 2-6 2-4 2-2 2-8 2-6 2-4 2-2 2-8 2-6 2-4 2-2

Approximation factor (ε)

A
bs

ol
ut

e
Es

ti
m

at
ed

Er
ro

r
(|v̂

i
−

v i
|)

L1 threshold L2 threshold median median (d = ln 1
δ) min

Figure 6.2: The absolute error of sketches over zipfian distributed data with parameter
α = {0.5, 1.0, 1.5, 2.0}. Here the L1 and L2 thresholds are shown in order to determine if
the sketches uphold their guarantees. The Count-Median Sketch appears with theoretical
constants and without (d = ln δ−1).

Precision

The great difference in space usage should be compensated, when looking at the preci-
sion of the point queries. To test the precision, an experiment was created where the exact
frequencies of all elements were kept, in order to calculate the absolute error |v̂i − vi| of
the approximations. Such an experiment should reveal the error in each estimate and
whether the failure probability is upheld.

Recall, from Section 3.3Section 3.3 that the Count-Min Sketch provides estimated frequencies
v̂i ≤ vi + ε ‖v‖1 and the Count-Median Sketch provides estimated frequencies |v̂i − vi| ≤
ε ‖v‖2, both with probability 1 − δ. When querying the structures multiple times we
expect the result to deviate with more than the approximation factor with probability δ.
Therefore, the precision is measured as the largest absolute error less than the absolute
errors of the δ elements with the largest absolute errors. The deviation of these δ elements
are accepted to be more than the approximation factor.

For each element i ∈ [m]1 the exact structure and the approximate structure were
queried and the difference was calculated and stored in a list. Removing the δ m largest
absolute errors from the list leaves a set of absolute errors, for which all must be within
the approximation factor in order for the sketches to uphold their theoretical guaran-
tee. For the Count-Min Sketch and the Count-Median Sketch it is ε ‖v‖1 and ε ‖v‖2,

58

respectively.
In Figure 6.2Figure 6.2 the result of the experiment is shown. The y-axis contains the largest ac-

cepted absolute estimation which should be below the norm guarantees of the sketches.
The absolute error is plotted on the y-axis in log10 and the x-axis is plotted in log2 and
varies over the approximation factor ε. For a decreasing ε the structures use more space,
while the acceptable absolute error of the estimates gets smaller. For both sketches, a
fixed failure probability of δ = 2−18 was chosen. As mentioned in Subsection 6.1.4Subsection 6.1.4, the
experiments were run on artificially created zipfian distributions, that act like most nat-
ural data for different settings of α (See Table 6.3Table 6.3). In Figure 6.2Figure 6.2 the precision is plotted
for zipfian distributions with different α parameters. The plots represent data being dis-
tributed almost uniformly for the smallest α to data that is highly skewed for the largest
α.

From the plot it is clear that estimates provided by the Count-Median Sketch are
significantly more accurate than those provided by the Count-Min Sketch. This is not
really surprising as the Count-Median Sketch use a lot more memory than the Count-
Min Sketch to provide the estimates. This consequently leads to the error guarantees
being different for the two sketches, as found from the analysis in Chapter 3Chapter 3.

The relationship between the L1 and L2-norm is
√
‖v‖1 ≤ ‖v‖2 ≤ ‖v‖1, where

uniformly distributed data make the L2-norm go towards the
√

L1 and highly skewed
data the other way. This relationship between the norm guarantees, also seems to be
present in Figure 6.2Figure 6.2 where lower α values makes the difference between the precision of
the two sketches larger and higher values of α the opposite.

When the data becomes more skewed the sketches become more accurate. This is
seen from the difference between the absolute error and its respective threshold, where
the distances in general increase when α increases. This can be explained by the fact
that the larger α becomes the more skewed the data is, and less elements hold a larger
portion of the total mass. For an increasing α and decreasing approximation factor, these
elements will only collide with other heavy elements with less probability. The fact that
the sketches become more precise as data is more skewed, is described and analyzed in
Charikar et al. [55] and Cormode and Muthukrishnan [88] for both types of sketches. Here
they show stronger space or threshold guarantees of the data structures for α > 1.

The most important thing to note from the plot is the fact that for all α it holds that the
Count-Min Sketch is significantly below the L1 threshold and the Count-Median Sketch
are likewise significantly below the L2 threshold. This observation verifies that both
sketches uphold their theoretical guarantees, when they are used with their theoretical
parameters.

For the Count-Median Sketch, it can further be observed that for our testing data,
using depth d = ln δ−1 still makes the sketch uphold the L2 threshold, even though the
estimates are somewhat worse than those of the theoretical correct one. In practice the
Count-Median Sketch with d = ln δ−1 seem more attractive since it has a significantly
lower space usage, while still providing good frequency estimates with errors according
to the L2-norm.

A final note about the precision of the sketches is that experiments were also per-
formed for larger and smaller choices of δ. The results were similar and thus omitted.

59

102

102.5

103

103.5

104

104.5

2-7 2-6 2-5 2-4 2-3 2-2 2-1

Approximation factor (ε)

N
an

os
ec

on
ds

(n
s)

median median (d = ln 1
δ) min

(a) Running time in nanoseconds

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2-7 2-6 2-5 2-4 2-3 2-2 2-1

Approximation factor (ε)

PA
PI

_T
O

T_
IN

S

(b) Instructions Completed

0

100

200

300

400

500

600

700

800

900

2-7 2-6 2-5 2-4 2-3 2-2 2-1

Approximation factor (ε)

PA
PI

_L
1_

D
C

M

(c) L1 Data Cache Misses

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

2-7 2-6 2-5 2-4 2-3 2-2 2-1

Approximation factor (ε)

PA
PI

_L
2_

D
C

M

(d) L2 Data Cache Misses

0

100

200

300

400

500

600

700

800

900

2-7 2-6 2-5 2-4 2-3 2-2 2-1

Approximation factor (ε)

PA
PI

_T
LB

_D
M

(e) TLB Cache Misses

Figure 6.3: Update measurements where (a) shows the running time, (b) a plot of the
amount of instructions carried out by an update operation, while (c-e) show the amount
of different cache misses that occur during the update operation for the L1, L2, and TLB
cache, respectively. All measurements are for data from a zipfian distribution with α = 1.

60

Running times

The final set of experiments for the sketches was performed to measure the running times
of the update and query algorithms. From the analysis of both sketches in Section 3.3Section 3.3
and Section 3.4Section 3.4, the theoretical bounds of both algorithms are O (d) i.e. linear in the
depth of the sketch.

For a fixed failure probability δ = 2−18, the analysis implies that the running times
should be constant over all ε. However, this is not the case for either the update or query
algorithm. In fact all measurements tend to grow in time as ε decreases, which should be
clear from Figure 6.3aFigure 6.3a for the update algorithm where the y-axis is plotted in log10. The
query algorithm have a very similar behavior, but we choose to omit plots and analysis
of these, since the reasoning is equivalent to the update time.

Although this is not consistent with the analysis, one point is missing. When doing
the analysis in the word-RAM modelword-RAM model, the complexity of algorithms is measured in the
amount of operations and memory accesses performed to solve a given problem. On real
life machines a cache hierarchy is often present in the CPU. Such hierarchies are not part
of the model, which implies that any delay in time caused by such hierarchies are not
counted in the running time in the word-RAM modelword-RAM model.

The machine that ran the measurements has two levels of cache, L1 and L2 cache,
and the main memory (RAM), see Table 6.1Table 6.1. The L1 cache is the smallest but fastest
cache, the L2 cache is a bit larger but slower, finally the main memory is even slower but
much larger. One additional cache is present, namely the TLB cache which enables fast
processing of virtual to physical addresses.

Whenever data is not present in a cache, a cache miss occurs which implies that it
must be fetched from the next level in the cache hierarchy. As a consequence L1 cache
misses occur when the data is not present in the L1 cache and must be fetched from the
L2 cache, and L2 and TLB cache misses occurs when the data is not present, and must
be fetched from RAM.

Looking at the CPU data for the three caches mentioned above in our measure-
ments for the update algorithm and for α = 1 reveals from Figure 6.3cFigure 6.3c, Figure 6.3dFigure 6.3d,
and Figure 6.3eFigure 6.3e a pattern of the executions somewhat similar to the running time from
Figure 6.3aFigure 6.3a.

When ε decreases, more cache misses occur, which cause the increase in the running
time. The general reason behind the cache misses for all sketches is that memory accesses
to the sketches, generally happens in “jumps”, since one row is accessed at a time. The
only thing that might reduce the amount of cache misses is if the prefetcher of the L1
cache, manages to prefetch a block of memory containing the next row in the sketch.

The L1 cache size is of size 32 KiB. This seems to imply that even for the smallest
values of ε, the Count-Median Sketch with the true theoretical depth, suffers from several
hundreds of cache misses, due to the fact that the depth of the sketch becomes d = 150.

The update algorithm for the Count-Median Sketch is as follows: For each row, four
consecutively stored hash function constants, a1, b1, a2, b2, are fetched. Furthermore one
specific memory cell in the row is fetched and written to, in order to perform an update.

For ε ≥ 2−4 the widths of the sketches are generally of such size that the prefetcher

61

should be able to prefetch the four constants and the specific memory cell, since each
row of the sketch does not get too large compared to the L1 data cache size.

For ε < 2−4 it is another story. Here each row of the sketch becomes greater than the
full size of the L1 data cache and cache misses should in general occur for each memory
access performed, since the prefetcher no longer can store the next row.

The same problem exists for the Count-Median Sketch with depth d = ln δ−1. The
difference in the running times, comes from the fact that the depth is only d = 13, which
reduces the amount of cache misses by a factor of ≈ 12 for k = 4. The reduction in cache
misses comes from the fact that fewer rows has to be visited in order for an update to be
performed.

The Count-Min Sketch is less affected by L1 data cache misses, since the sketch in
general is small and the width for most of the measured ε fits in the L1 data cache.
A small increase is observed for ε ≥ 2−4, where a row no longer fits a cache line, but
the increase is not visible from the plot, since the increases for the other sketches are
dominating. Still, the increase is indirectly visible in the running time, which begins to
increase for ε < 2−4.

The L2 cache misses should show a similar behavior as the L1 data cache misses
i.e. increase as the width of the sketch grows. This is also the behavior observed from
Figure 6.3dFigure 6.3d. The closer the width of the sketches comes to the size of the L2 cache
(6, 144 KiB), the more L2 cache misses occur. The difference in the amount of L2 cache
misses between the sketches, is again due to the depth of the sketches, i.e. more rows
should be updated for the Count-Median Sketches.

The final kind of cache misses, the TLB data cache misses, occur whenever a memory
access is performed and the address of the memory is not present in the TLB data cache.
The page size of the test machines are 4 KiB, which implies that 4 KiB of consecutive
memory is mapped to the same virtual address. Whenever memory is fetched and the
TLB data cache is updated, the address of 4 KiB of consecutive memory around the
requested memory is also stored.

For both Count-Median Sketches, the TLB data cache misses increase significantly as
ε goes from 2−2 to 2−4. At 2−4 the width of the sketches becomes 8 KiB which results
in at least 1 TLB data cache miss for each depth of the sketches. As ε drops the misses
grow slightly, until the point where every cache access gives a TLB cache miss. Again, the
Count-Min Sketch is not too affected by TLB data cache misses, since it has a significantly
smaller width and lower depth.

What we have established at this point is that the caching hierarchy of the CPU does
influence the running time and in such ways that the plots of the caches and the running
time have a similar curve. The question is then, if update algorithm do in fact uphold the
bound from theory? To answer this we look at the amount of instructions performed. In
the word-RAM modelword-RAM model all simple instructions can be carried out in constant time. Since
δ is fixed in these measurements, the amount of instructions are expected to be constant
for all sketches. From Figure 6.3bFigure 6.3b we can indeed observe that this is true.

Here it is worth mentioning that the instructions actually drops for the Count-Median
Sketch for the query algorithm as ε decreases, which is not visible since the plot was
omitted. This can be explained by the fact that as ε decreases, the estimates generally

62

0.5 1 1.5 2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

2-8 2-6 2-4 2-2 2-8 2-6 2-4 2-2 2-8 2-6 2-4 2-2 2-8 2-6 2-4 2-2

Approximation factor (ε)

U
pd

at
es

pe
r

m
ill

is
ec

on
d

(U
ps

/M
s)

median median (d = ln 1
δ) min

Figure 6.4: Updates per millisecond of the Count-Min Sketch and Count-Median Sketch,
where the Count-Median Sketch is tested for different depths. For α = {0.5, 1, 1.5, 2}.

become more equal over all rows. When the median algorithm is run for equal estimates,
it decreases the amount of instructions, since branches can be skipped, as it does not
matter which of the equal estimates to return.

Experiments where δ was varied were also performed, and it was observed that the
instructions increased with a factor of d as expected by theory.

Based on the above observations we can say that the sketches follow the theoreti-
cal running times in the word-RAM modelword-RAM model, but suffers from penalties, whenever cache
misses occurs.

Having argued the relationship between the running times in theory and practice we
can now actually look at the performance of the sketches. In Figure 6.4Figure 6.4 and Figure 6.5Figure 6.5
the operations per millisecond are plotted, ranging over different choices of ε.

From Figure 6.4Figure 6.4 it is quite clear that the Count-Min Sketch is extremely fast, and
can perform several thousands more operations than the Count-Median Sketches. For
ε ≥ 2−4 the amount of updates for the Count-Min Sketch only decrease slightly. For
ε < 2−4 the decrease in amount of updates begins to be larger. This can be explained by
the fact that more L1 cache misses occur due the width of the sketch becoming bigger
than the size of the cache line.

Still, the Count-Min Sketch performs with several thousands of updates per millisec-
onds overall. The Count-Median Sketch with true theoretical depth, generally performs
badly and as ε grows, it is only able to perform between 25 − 100 updates per mil-
liseconds. The reason for the big difference between the Count-Median Sketch and the

63

0.5 1 1.5 2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

2-8 2-6 2-4 2-2 2-8 2-6 2-4 2-2 2-8 2-6 2-4 2-2 2-8 2-6 2-4 2-2

Approximation factor (ε)

Q
ue

ri
es

pe
r

m
ill

is
ec

on
d

(Q
s/

M
s)

median median (d = ln 1
δ) min

Figure 6.5: Queries per millisecond of the Count-Min Sketch and Count-Median Sketch,
where the Count-Median Sketch is tested for different depths. For α = {0.5, 1, 1.5, 2}.

Count-Min Sketch is the extra space usage, which in turn implies a lot more cache misses.
The Count-Median Sketch with depth d = ln δ−1 is less affected by the cache misses, but
still performs significantly less updates per milliseconds than the Count-Min Sketch.

A final thing to note about the update times, is the fact that they are influenced by
the skew of the distributions. As α grows, the data becomes more skewed, which implies
that updates to the same element happens more frequently. Since the same element is
updated more frequently, fewer cache misses in general happens, as the chance of having
the memory or address stored in cache increases. A lot of real world data tends to be
skewed, which impacts the sketches positively by making the update algorithms faster.

In Figure 6.5Figure 6.5 the queries per millisecond of the sketches is shown. For the Count-Min
Sketch this looks a lot like the updates, which is expected since the two algorithms are
almost identical, except that no updates is performed, instead the minimum of all rows
have to be found. The query throughput for the Count-Median Sketches are generally
lower than the update throughput. This is due to the median algorithm generally be-
ing slower than for example finding the minimum, which influence the running time
negatively.

The skew of the data does not seem to influence the running time of any of the
query algorithms. The queries were performed for randomly chosen elements in the
data, which means that the chance of the cache to reuse memory or addresses from old
queries is almost non-existing.

As a final note, experiments with other choices of δ were also performed and what

64

could be observed about the running time was as in theory, that an increasing δ resulted
in better running times whereas decreasing δ resulted in worse running times due to
increasing the depth of the sketches.

From the experiments above, we conclude that the Count-Min Sketch is very appli-
cable as a synopsis data structure, since it has a low memory footprint, is incredibly fast,
and since the precision is within the bounds of theory. These features along with the fact
that the sketch works as a good surrogate of the frequencies makes it a good synopsis
data structure. Even though the Count-Median Sketch with true theoretical depth was
shown to have a very good precision according to the guarantees from theory, it falls
through when looking at the space usage and running times. The Count-Median Sketch
with depth d = ln δ−1 is in general more applicable as a synopsis data structure, since it
upholds the bounds from theory for all data tested upon, while using acceptable space
and having decent running times. We can thus conclude from the measurements that
the Count-Min Sketch and the Count-Median Sketch with depth d = ln δ−1 in practice
do a good job approximating the frequencies of elements with an additive error within
an approximation factor of the L1 and L2-norm, respectively.

All the results presented in this section have been for two different sketches providing
different error guarantees. For this reason the comparisons made between the Count-
Min Sketch and Count-Median Sketch is not really fair, since the sketches in general are
used in two different contexts. In the next section we will experiment with the sketches,
giving them the same depth and width. Such a change will enable a better and more fair
comparison between the sketches.

6.2.2 Equal Space

This section will describe experiments with the Count-Min Sketch and the Count-Median
Sketch of equal size. That is, configuring the sketches with equal width and depth,
to obtain the same memory usage. The experiments will eliminate the advantages or
disadvantages of using more memory, and specifically test the sketches with the main
difference being the approach of choosing the minimum or median of the estimated
frequencies and applying a sign or not.

Giving the two sketches equal width and depth will result in an almost equal mem-
ory usage for the two sketches, with the Count-Median Sketch using only slightly more
space, to be able to change the sign of the updated values. The actual extra space for the
Count-Median Sketch is two words more for each depth, which is a small and insignifi-
cant overhead. We therefore choose to say that these algorithms use equal space.

From Subsection 6.2.1Subsection 6.2.1 we found that the Count-Median Sketch provided estimates
with an error guarantee according to the L2-norm, even when the depth was chosen
to be d = ln δ−1. Using these results, we choose to ignore the constants in any future
experiment, since the estimations were sound according to the L2-norm at least for our
data and since the space and running times generally improved by factors, simply by
ignoring the constants.

Since the Count-Min Sketch should not be effected by the equal amount of memory,
we expect the results of the Count-Min Sketch to be along the same as in Subsection 6.2.1Subsection 6.2.1,

65

whereas the Count-Median Sketch will use a lot less memory, which should infer differ-
ent results for both precision, space and running times.

Changing the width of the Count-Median Sketch to be equal to the one of the Count-
Min Sketch, should improve the running times of both the update and query algorithm.
We in fact expect the running times of the algorithms to be quite close to those of the
Count-Min Sketch. This is because the size of the two sketches will be equal, which
should imply that both suffer equally from cache misses, which were shown to be the
biggest reason for increased running times in the last section.

The Count-Median Sketch is still expected to be a little slower than the Count-Min
Sketch, as it needs to evaluate an extra hash function to determine the sign of the index
and then multiply it on to the update value. The query of the Count-Median Sketch
is also expected to be a constant factor slower, since the median algorithm is generally
thought to be slower than finding the minimum element in practice.

The precision of the Count-Median Sketch is also expected to change drastically, due
to the decrease in space usage. In fact it is expected that the decrease in space implies
that the error guarantee now is bounded according to the L1-norm instead of the L2-
norm. This expectation comes Theorem 10Theorem 10 and from a similar proof in Gilbert and Indyk
[1717].

Theorem 10 (Count-Median Sketch L1 guarantee). Using the Count-Median Sketch, one is
able to bound guarantees according to the L1-norm, choosing w = O

(
ε−1) i.e. the absolute

difference between all estimates and their true frequencies are |v̂i − vi| ≤ ε ‖v‖1 with failure
probability δ.

Proof. To obtain a proof of this theorem the analysis of the Count-Median Sketch is done
differently than earlier. Instead of only looking at the true frequency vector v, we also
choose to look at a subset of the vector v[ε

−1], which is defined as the vector v where the
ε−1 largest frequencies – which we denote heavy frequencies – are zeroed.

For the Count-Median Sketch to provide estimates according to the L1-norm, it must
hold that each row of the Count-Median Sketch provides a L1-norm guarantee for esti-
mates with probability at least 1/2. We can then use the same analysis as in Section 3.4Section 3.4 to
bound the space, update and query time using an approximation factor ε and a failure
probability δ, by taking the median of all rows. Let v̂i,j denote the frequency estimate of
element si in row j of the sketch. Further let E be the event that |v̂i,j − vi| > ε ‖v‖1, A
be the event that the estimate v̂i,j collide with a heavy frequency, and let B = ¬A be the
event that it does not.

The probability of a frequency estimate to fail in any row can then be stated as:

P [E | A ∪ B] = P [E | A] + P [E | B]

To argue that the Count-Median Sketch can deliver L1-norm guarantees for its estimates
we must show that the above happens with probability less than or equal to 1/2.

P [E | A] comes from the fact that the mass of the ε−1’th heaviest element in v can be
at most ε ‖v‖1. The probability for any frequency to collide with any one of the heavy
frequencies can then be stated according to the Union BoundUnion Bound. Let Xi,k be an indicator

66

variable indicating whether the estimated frequency of element si collides with heavy
frequency vk for any fixed row in the sketch. Since we use a c-universal hash function
to decide the bucket of each elements frequency, we have that the probability of any two
elements frequencies to collide is c/w where c ≥ 1 is a constant.

P [E | A] ≤
⋃

{k | vk,j is heavy}
E [Xi,k]

≤ ∑
{k | vk,j is heavy}

E [Xi,k]

≤ ∑
{k | vk,j is heavy}

c
w

=
c

εw

=
1
4

(Choosing w =
4c
ε
)

We thus have that a collision with one or more of the heavy frequencies happens with
probability 1/4 choosing w = 4c/ε.

P [E | B] is then capturing the collisions of the remaining non-heavy frequencies. Here
we can reuse the analysis of the expectation and variance of a single bucket for the vector
v[ε
−1] as done in Lemma 7Lemma 7 and Theorem 2Theorem 2. This give us:

E
[
v̂i,j
]
= vi

Var
(
v̂i,j
)
=

c
∥∥∥v[ε

−1]
∥∥∥2

2
w

By Chebyshev’s InequalityChebyshev’s Inequality we can then bound the probability of any bucket to varie by
more than

√
ε
∥∥∥v[ε

−1]
∥∥∥

2
, which we will show, is enough to state a guarantee according to

the L1-norm.

P

|v̂i,j − vi| ≥ ε

√
c
∥∥v[ε−1]

∥∥2
2

w

 ≤ 1
ε2 ⇒ P

|v̂i,j − vi| ≥ ε

√
c
∥∥∥v[ε

−1]
∥∥∥

2√
w

 ≤ 1
ε2

⇒ P
[
|v̂i,j − vi| ≥ ε

∥∥∥v[ε
−1]
∥∥∥

2

]
≤ c

wε2

⇒ P
[
|v̂i,j − vi| ≥

√
ε
∥∥∥v[ε

−1]
∥∥∥

2

]
≤ c

wε

⇒ P
[
|v̂i,j − vi| ≥

√
ε
∥∥∥v[ε

−1]
∥∥∥

2

]
≤ 1

4
(6.1)

where (6.16.1) comes from choosing w = 4c/ε.
The final step is then to show that the above inequality does in fact state a guarantee

according to the L1-norm.

√
ε
∥∥∥v[ε

−1]
∥∥∥

2
=

∥∥∥v[ε
−1]
∥∥∥

2

w
1
2

(w = O
(

ε−1
)
)

67

=

√
∑i(v

[ε−1]
i)2

w
1
2

<

√∣∣∣ ‖v‖1
w

∣∣∣ ∗ ∣∣∣∑i v[ε
−1]

i

∣∣∣
w

1
2

(∀v[ε
−1]

i < ε ‖v‖1)

=

√
|‖v‖1| ∗

∣∣∣∑i v[ε
−1]

i

∣∣∣
w

<
‖v‖1

w
= ε ‖v‖1

From (6.16.1) we get that the probability of any bucket to provide frequency estimates
above ε ‖v‖1 is less than or equal to 1/4 for w = 4c/ε, when we are looking at the vector
v[ε
−1].
This proves the theorem since we have shown that:

P [E | A ∪ B] = P [E | A] + P [E | B]

≤ 1
4
+

1
4

=
1
2

which means that any specific bucket in the Count-Median Sketch will provide an esti-
mate where the probability of |v̂i,j − vi| > ε ‖v‖1 is less than or equal to a half. Taking
the median of estimates of each bucket over depth d = O

(
ln δ−1) will then provide an

L1 error guarantee with failure probability δ by the same argument as in Theorem 2Theorem 2.

As a consequence of giving the Count-Min Sketch and Count-Median Sketch equal
amount of space, we expect that they perform equally fast and that their errors are within
an additive approximation factor of the L1-norm.

Precision

As can be seen in Figure 6.6Figure 6.6 the precision of the Count-Median Sketch has changed
drastically compared to the precision presented when using theoretical space. It no
longer stays below the L2 threshold for all distributions of data. In fact for α = {0.5, 1}
the error is significantly higher than the L2 threshold. This is as expected since we have
reduced the width of the sketches from ε−2 to ε−1. More important is whether the
Count-Median Sketch stays below the L1 threshold, as is expected by Theorem 10Theorem 10. This
seems to be the overall case, but for α = 0.5 and ε ≤ 2−20 the error becomes greater than
the allowed threshold. At this point the sketches reaches sizes near those of solving the
problem exactly and the consequence of a having an error higher than the L1 threshold
becomes insignificant since one would choose the exact solution.

68

0.5 1 1.5 2

100

102

104

106

2-20 2-15 2-10 2-5 2-20 2-15 2-10 2-5 2-20 2-15 2-10 2-5 2-20 2-15 2-10 2-5

Approximation factor (ε)

A
bs

ol
ut

e
Es

ti
m

at
ed

Er
ro

r
(|

v̂ i
−

v i
|)

L1 threshold L2 threshold median min

Figure 6.6: The precision of Count-Median Sketch and Count-Min Sketch on a zipfian
distribution dataset with parameter α = {0.5, 1.0, 1.5, 2.0}. The L1 and L2 thresholds are
shown to be able to compare the sketches according to these.

For α = {1.5, 2} and ε = {2−1, 2−2, 2−3} the error of the Count-Median Sketch is
also a tiny fraction above the L1 threshold. This is more surprising. One explanation of
this behavior is that the depth is chosen according to the Count-Min Sketchs depth i.e.
d = logb δ−1 whereas the theorem from above expects a depth of d = ln δ−1. This implies
that the Count-Median Sketch gets a depth of d = 9 for δ = 2−18, where it in theory
should have d = 13. This explanation was tested in practice and showed to be true.

Overall we can conclude that the Count-Median Sketch does in fact uphold a L1-norm
guarantee, when choosing w = O

(
ε−1). Comparing the precision of the two sketches, it

is clear that for data with a near uniform distribution, the Count-Median Sketch provides
smaller errors, whereas when the data becomes more and more skewed, the Count-Min
Sketch provides the smallest error. This is not surprising since the Count-Median Sketch
still has a relationship with the L2-norm, which increases when the data becomes more
skewed implying that the error increases as well.

Running times

The performance of the algorithms of the sketches can be seen in Figure 6.7Figure 6.7 and Figure 6.8Figure 6.8.
Here the amount of operations per millisecond is shown for the update and query algo-
rithms respectively. Overall both the update and queries of both sketches suffer from the
same things as explained for the Count-Min Sketch in the last section.

69

0.5 1 1.5 2

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

2-15 2-10 2-5 2-15 2-10 2-5 2-15 2-10 2-5 2-15 2-10 2-5

Approximation factor (ε)

U
pd

at
es

pe
r

m
ill

is
ec

on
d

(U
ps

/M
s)

median min

Figure 6.7: Updates per millisecond of Count-Min Sketch and Count-Median Sketch
when the width w and depth d is fixed to be equal for both sketches.

0.5 1 1.5 2

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

2-15 2-10 2-5 2-15 2-10 2-5 2-15 2-10 2-5 2-15 2-10 2-5

Approximation factor (ε)

Q
ue

ri
es

pe
r

m
ill

is
ec

on
d

(Q
s/

M
s)

median min

Figure 6.8: Queries per millisecond of Count-Min Sketch and Count-Median Sketch
when the width w and depth d is fixed to be equal for both sketches.

70

The update throughput for both data structures are very similar. This is as expected,
since the update algorithms of both structures are more or less equal, with the excep-
tion of the Count-Median Sketch calculating an extra sign for all updates. Surprisingly
enough, the extra work does not seem to affect the running time significantly. It can
in fact be observed that the Count-Median Sketchs update algorithm is faster than the
Count-Min Sketch’s for smaller choices of ε. From the data obtained from PAPI about
cache misses and accesses, instructions, branch mispredictions, cycles etc. we were not
able to derive, why this is the case. In fact they only show that the Count-Median Sketch
use more instructions because of the extra sign calculation. Nonetheless, the difference in
update throughput is in general so insignificant that we conclude they perform equally
fast for ε < 2−4.

The query throughput shows a greater difference. This is mainly due to the fact
that finding the median of the d estimated frequencies is more expensive than finding
the minimum. Overall both sketches have queries supporting at least 1000 queries per
millisecond.

Summing it up, we can conclude that the Count-Min Sketch and the Count-Median
Sketch with width w = O

(
ε−1) is indeed comparable, and that comparing the sketches

according to space, precision and running times gives very similar results, where dif-
ferent data distributions determines which sketch performs the best. The only notable
difference is in the running time of the query algorithms where the Count-Min Sketch in
general seems to be faster than the Count-Median Sketch.

Common for both, as a consequence of their running times, precision, and space
usage, is that they would be applicable as a black box mechanism to other algorithms
e.g. the approximate heavy hitters problem.

6.2.3 Summary

In this section, we have experimented with two different sketches, namely the Count-
Min Sketch and the Count-Median Sketch. At a first glance of the theoretical bound of
both sketches, they did not seem very comparable, due to having different widths and
different error guarantees. This was also shown to be true in Subsection 6.2.1Subsection 6.2.1, where
it was found that, even though they both provided good data structures to estimate
frequencies with errors according to L1 or L2, the differences in running time and space
were significant.

We then showed that the Count-Median Sketch can in fact be shown to provide an
error guarantee according to the L1-norm, by changing the width to be equal to the width
of a Count-Min Sketch. Experiments doing exactly this revealed that the two sketches are
in fact comparable, and that they in general perform equally well for both the precision
and the update algorithm. In practice the query algorithm of the Count-Min Sketch was
shown to be faster than the Count-Median Sketchs query algorithm, likely due to it being
easier to calculate the minimum compared to calculating the median.

Overall, both structures were small and fast, which make us conclude that they would
both serve as good synopsis data structures and particularly in applications where a
black box solution is needed for the frequency estimation problem.

71

6.3 Heavy Hitters

In this section we will describe experiments and results for 6 different implementations
solving the approximate L1 heavy hitters problem. First we will follow up on the last sec-
tion, by testing the hierarchical data structure from Section 4.3Section 4.3 using Count-Min Sketches
and Count-Median Sketches with equal width and depth. Next we will compare those
results to the Hierarchical Constant-Min Structure solution from Section 4.6Section 4.6. All these
solutions will then be compared to earlier results in the literature presented in Cormode
and Hadjieleftheriou [77], specifically to their implementation of the hierarchical data
structure using Count-Min Sketches. Finally we will further present results for hierar-
chical data structures using Count-Min Sketches and Count-Median Sketches with equal
width and depth, but where the tree will be k-ary instead of binary. After analysing the
performance of all solutions according to a single data distribution we will briefly have
a section where the performance of all solutions are compared according to different
aspects of skewness of the data distributions. Then we will briefly compare the space
usage of all solutions, before a final section containing the summary of all results of the
heavy hitters experiments will be given.

The heavy hitters experiments will generally look at three different aspects of each
of the solutions. This is the precision of the query algorithm, the running times of the
update and query algorithms and finally the space usage of the data structures used in
the algorithms.

The precision of the query algorithms is tested by measuring special metrics of the
resulting set. These metrics are denoted the recall and false positives of the resulting
set. The recall is adopted from Cormode and Hadjieleftheriou [77] and is the percentage
of true heavy hitters of the data, present in the resulting set. Such a metric was measured
by knowing the exact frequency of a large portion of the highest frequencies of the data
in advance, which enabled us to verify if all true heavy hitters were part of the resulting
set obtained by the query algorithms.

The false positives of the resulting set, are the amount of elements which are not a
true heavy hitters of the data. Such false positives can be present, since the frequency
estimation algorithms used in the solutions, are all approximations. This implies that
some error is introduced. The false positives metric can be derived from our experiments,
due to the same reason as the recall can be derived.

Hence, from the above metrics, it is possible to measure if all true heavy hitters were
found and furthermore measure the amount of the additional false heavy hitters that are
returned. This is interesting as a measure of the precision of the algorithms, since it is
important to know if the algorithms return the correct heavy hitters elements without
providing too many extra elements. The metrics though only provide a good overview
of the precision of the algorithms, when they are looked at in combination. A simple
algorithm with 100% recall could just return all elements in the universe. Hence, the
false positives are and important measure in order to determine that we did not return a
lot of unwanted elements.

The ideal result of the above metrics come from comparing it according to an exact
solution i.e. a solution keeping an exact count of all of the frequencies. A query on such

72

Parameter Default Value Description

φ 2−10 Threshold factor
δ 2−2 Failure probability
ε

φ
2 Approximation factor

α 1 Zipfian data skew
m 231 − 1 Size of universe

Table 6.4: Default parameters chosen when nothing else is specified.

a data structure would result in a recall of 100% and 0 false positives. These numbers
comes from the fact that all estimates are precise, which enables the query algorithm to
choose precisely those that are true heavy hitters and no others. As argued in Section 4.1Section 4.1
such a solution is not reliable in practice when m becomes large, and one has to turn
to approximation algorithms as those 6 solutions tested in this section to find the heavy
hitters.

Still, the goal is the same. If the approximation algorithms can obtain a recall of 100%
and 0 false positives, they can provide as good a result as an exact solution for the data
tested. By the definition of an approximate L1 heavy hitters algorithm, such an algorithm
should in fact have 100% recall, since all true heavy hitters must be returned, where as
the approximation is effectuated by allowing a relaxation of the false positives, such that
no elements si with frequency vi < (φ− ε) ‖v‖1 should be returned.

An important observation from the false positives metric for approximate solutions,
is that returning false positives is not the same as saying that the algorithms failed to pro-
vide a resulting set of approximate L1 heavy hitters. This is because the approximation
algorithms are allowed to return some false positive by the definition above. An error of
these algorithms only occurs whenever an element si with frequency vi < (φ− ε) ‖v‖1
is present in the resulting set and this should by theory only happen with probability δ.
To argue about whether the approximation algorithms actually do make errors, we also
measured these errors, by checking whether the elements in the resulting set had a true
frequency vi >= (φ− ε) ‖v‖1.

Both the measurements of the precision and the running times will be run for arti-
ficially generated data from the zipfian distribution that varies over α = {0.5, 1, 1.5, 2},
which means that the distributions of the data will go from almost uniform, towards a
very skewed distribution. This should ensure that any effect resulting from the distribu-
tion of data should be visible in the experiments.

The measurements of the space usage will only be run for a single choice of α = 1.
This is because the space usage of any of the data structures are not affected by the
distribution of the data.

General for all experiments in this section is that the size of the universe will be
m = 231 − 1. The default parameters are listed in Table 6.4Table 6.4, and is used unless otherwise
specified.

In Figure 6.9Figure 6.9 the PAPI measurements of the update algorithms is presented for α = 1.
These measurements will be used to compare and explain the running time between

73

each of the solutions throughout the next sections. The measurements for the query
algorithms can be seen in Figure 6.10Figure 6.10, but is generally of less interest, since queries in
most cases will only be carried out a fraction of the times that updates do.

In Figure 6.11Figure 6.11 the precision of all the solutions is plotted, likewise for α = 1. These
measurements will likewise be compared and explained throughout the next sections.

General for all plots are that min and median denotes the binary hierarchical solutions
using Count-Min Sketches and Count-Median Sketches. The solution called cormode de-
notes the binary hierarchical solutions using Count-Min Sketches from Cormode and
Muthukrishnan [88]. The Hierarchical Constant-Min Structure solution is denoted const,
while the k-ary hierarchical solutions using Count-Min Sketches and Count-Median
Sketches are denoted kmin and kmedian respectively.

In the next section we will follow up on the sketch experiments, by testing the same
hierarchical data structure with two different black box solutions in the form of the
Count-Min Sketch and the Count-Median Sketch.

6.3.1 Count-Min Sketch & Count-Median Sketch

As was shown in Subsection 6.2.2Subsection 6.2.2, the Count-Median Sketch could provide guarantees
according to the L1-norm using the same space as the Count-Min Sketch. Changing the
space of the Count-Median Sketch, according to the theoretical space of the Count-Min
Sketch, provides us with two different frequency estimation algorithms that could be
used in the hierarchical data structure from Section 4.3Section 4.3 to find approximate L1 heavy
hitters.

These two approximate L1 heavy hitters data structures would be similar and almost
use the same amount of memory. The precision of the algorithms is in theory similar,
but it would be expected that the version using Count-Median Sketches would return
more false positives, since the threshold of that algorithm would have to be adjusted, as
described in Section 4.5Section 4.5. In the measurements from Figure 6.11Figure 6.11, this is not be expected,
since the threshold was not adjusted, due previous empirical studies [66, 77], saying that
the version with Count-Median Sketches, should do approximately as well without any
adjustments.

The running times of the query and update algorithms are expected to be to the
results for the sketches in Subsection 6.2.2Subsection 6.2.2, as the extra overhead from updating and
querying the hierarchical structure should be equal for both. So, we expect that the
update algorithms perform equally well, while the query algorithm of the version with
Count-Min Sketches should be faster than the Count-Median Sketches since calculating
the median is more costly than finding the minimum in practice.

From Figure 6.9Figure 6.9 and Figure 6.10Figure 6.10 we can see that this is actually true in practice. Note
that the hierarchical structure using Count-Min Sketches is denoted min, while the one
using Count-Median Sketches is denoted median.

The running time of the update algorithms show that both solutions perform equally
well over all ranges of φ. We saw a similar pattern for the sketches in Figure 6.7Figure 6.7 where
the amount of cache misses grew as ε decreased. Likewise, we get an increase in cache
misses when φ decreases.

74

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

N
an

os
ec

on
ds

(n
s)

cormode const kmedian kmin median min

(a) Running time in nanoseconds

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

PA
PI

_T
O

T_
IN

S

(b) Instructions Completed

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

PA
PI

_L
1_

D
C

M

(c) L1 Data Cache Misses

0
100
200
300
400
500
600
700
800
900

1000

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

PA
PI

_L
2_

D
C

M

(d) L2 Data Cache Misses

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

PA
PI

_T
LB

_D
M

(e) TLB Cache Misses

Figure 6.9: Update measurements where (a) shows the running time, (b) a plot of the
amount of instructions carried out by an update algorithm, while (c-e) show the amount
of different cache misses that occur during the update operation for the L1, L2, and TLB
cache, respectively. All measurements are for data from a zipfian distribution with α = 1.

75

102

103

104

105

106

107

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

N
an

os
ec

on
ds

(n
s)

cormode const kmedian kmin median min

(a) Running time in nanoseconds

103

104

105

106

107

108

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

PA
PI

_T
O

T_
IN

S

(b) Instructions Completed

101

102

103

104

105

106

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

PA
PI

_L
1_

D
C

M

(c) L1 Data Cache Misses

10-2

100

102

104

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

PA
PI

_L
2_

D
C

M

(d) L2 Data Cache Misses

100

102

104

106

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

PA
PI

_T
LB

_D
M

(e) TLB Cache Misses

Figure 6.10: Query measurements where (a) shows the running time, (b) is a plot of the
amount of instructions carried out by an query algorithm, while (c-e) show the amount
of different cache misses that occur during the query operation for the L1, L2, and TLB
cache, respectively. All measurements are for data from a zipfian distribution with α = 1.

76

0.97

0.98

0.99

1.00

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

R
ec

al
l(

%
)

const cormode kmedian

(a) Recall (%)

0

2

4

6

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

#
Fa

ls
e

Po
si

ti
ve

s

kmin median min

(b) # False Positives

Figure 6.11: Precision measurements of the heavy hitters query algorithms where (a)
shows the recall i.e. percentage of true heavy hitters returned and (b) shows the amount
of false positives returned in the resulting set.

For the TLB cache misses, the grow begins at φ = 2−4, this is due the fact that every
sketch of the hierarchical tree begins to consume more space than the size of a page. As
a consequence memory references to sketches begins to cause more than one TLB miss,
and for φ ≤ 2−7, all memory references to sketches tend to invoke a TLB cache miss.
The L1 cache experiences a grow around φ = 2−6, at this point, one whole sketch cannot
be stored in the L1 cache any more, which means that more L1 cache misses generally
occur. Finally, the L2 cache misses also grows as φ and hence ε decreases.

The amount of instructions executed for an update, are expected to increase as φ
decreases. This expectation comes from the fact that the decrease in φ should affect an
increase in the depth of the internal sketches. For all choices of φ tested, the depths of the
sketches are shown in Table 6.5Table 6.5. Here it can be observed that only every second decrease
in φ affect the depth of the sketches.

From Figure 6.9bFigure 6.9b it can be observed that the amount of instructions generally does
not increase as φ decreases. Instead the amount of instructions have a sawtooth behavior
i.e. the amount of instructions increases and decreases for decreasing φ. An explanation
for this behavior is that for every second decrease of φ, one more level will be using an
exact count instead of a sketch. Updating the frequency exactly instead of in a sketch is
significantly faster and requires less instructions, since only a single update is required,
which is the reason we see the sawtooth behavior. Still, for all choices of φ the amount
of instructions performed for both solutions are very similar, and can be thought of as
almost constant.

Overall, we can conclude that the amount of instructions does not have any significant
affect on the running time, and that the biggest influence of both update algorithms
comes from the cache misses.

77

φ 2−12, 2−11 2−10, 2−9 2−8, 2−7 2−6, 2−5 2−4, 2−3 2−2, 2−1

d 10 9 8 7 6 5

Table 6.5: Depth of the Count-Min Sketches and Count-Median Sketches used for the
heavy hitters solutions.

The query time of the two solutions show that the solution using the Count-Median
Sketches is slower than the solution using Count-Min Sketches. This is exactly as ex-
pected, as a single Count-Median Sketch has a slower query than a Count-Min Sketch.
The running time of a query increases as φ and ε decrease, which again is due to an
increasing amount of cache misses.

Precisionwise, both solutions performs very well. From Figure 6.11Figure 6.11 the recall and
amount of false positives are shown. The solution using Count-Min Sketches has 100%
recall as a consequence of always overestimating the frequencies while the amount of
false positives is 0 for all choices of φ, except φ = 2−12 where 2 false positives are found.
As noted in the initial description of the precision metrics, this is not the same a making
an error, as looking further into the data of the experiments showed us that all returned
elements was within (φ− ε) ‖v‖1.

The solution using the Count-Median Sketches has a 100% recall after φ = 2−9, and
misses a few actual heavy hitters up until and before this point. The heavy hitters
threshold of the implementation was not subtracted the potential ε ‖v‖2 underestimate,
implying that heavy hitters close to the threshold would potentially not be reported
if they were underestimated. Still, almost all true heavy hitters are returned, and no
false positives are included in the resulting set. Due to not having 100% recall, the
implementation does not in a strict sense uphold the definition of a L1 heavy hitters
algorithm, but the precision is arguably almost as good as those that do uphold it.

An experiment with the solution using the Count-Median Sketch where the threshold
was adjusted to (φ − ε) ‖v‖1 was also performed. This experiment resulted in a recall
of 100%, but also an increase in the amount of false positives. No elements below the
allowed (φ− ε) ‖v‖1 was found, but different data might. The adjusted threshold gave
an extra overhead for the query time as more subtrees of the hierarchical structure are
visited and more elements are returned.

Finally, to test the failure probability of the algorithms the precision tests were run
several times with δ = 1/4, implying that every fourth run should include an error.
The observation of the experiment was that this was not the case as no errors were
encountered for more than fifty runs. This result indicates that the failure probability
of the heavy hitters algorithms is indeed an upper bound, much smaller in practice.
Another reason for this result could be because the test data was generated using random
weighted sampling which together with the random choices of hash functions imply that
the behavior of the hash functions is truly random in practice.

78

6.3.2 Hierarchical Constant-Min Structure

The Hierarchical Constant-Min Structure mentioned in Section 4.6Section 4.6 is an approximate L1
heavy hitters solution which to our knowledge has not previously been tested in practice.

This solution has lower space usage, faster update times, and expected faster query
times than the two solutions tested in the previous section. Consequently, we expect it
to outperform these solutions on both space and running times while having the same
precision.

The expectation of the running time is built on the fact that, at each level of the
tree, a constant sized sketch is kept. In our implementation of the algorithm, these
are kept by storing one big consecutive block of memory containing the whole tree.
This is an optimization compared to the solutions in the last sections, where an abstract
sketch structure was kept for each level of the tree and where the memory of the sketch
structures in general are not consecutively stored. The traversal of the tree for both
update and query should due to the consecutively stored memory be very fast, since
fewer cache misses should occur. Moreover since only a single entry per level of the tree
is updated/queried compared to d entries for the earlier solutions, this should imply
that the speed of the Hierarchical Constant-Min Structure should be considerably faster.

The update and query times of the Hierarchical Constant-Min Structure denoted
const is shown in Figures 6.96.9, and 6.106.10 respectively. From the plots it is clear that the
algorithm is also faster than the hierarchical structures using Count-Min Sketches and
Count-Median Sketches in practice. This is because it performs less work, which can
be seen from the number of instruction and because the amount of cache misses are
significantly lower.

The precision of the Hierarchical Constant-Min Structure can be seen in Figure 6.11Figure 6.11
and is very similar to the solutions presented earlier. Since the Hierarchical Constant-
Min Structure internally uses Count-Min Sketches it has a recall of 100% for all choices
of parameters. What is more interesting is that the solution generally seems more vul-
nerable to having false positives among the resulting set of the query algorithm. For
φ ≥ 2−4, one or more false positives are among the resulting set. This is likely due to
the constant probability (1/4) of error for each estimate on all levels of the tree, which
infers that extra queries are made to the bottom sketch. Due to the scaling of the bottom
sketch, all estimates vi < (φ − ε) ‖v‖1 is discarded, but a few extra false positives are
found, due to the extra queries in the bottom sketch.

Overall this solution is a huge improvement in running time compared to the previ-
ous solutions, and the trade-off of having a few more false positives seems insignificant
compared to the improved performance and lower space usage.

6.3.3 Cormode and Hadjieleftheriou

In the last two sections we have experimented with our own implementations. Since the
heavy hitters problem is a heavily researched topic, others have also performed experi-
ments.

To check how our own implementations performed compared to another implemen-

79

tation we also experimented with the hierarchical structure using Count-Min Sketches
implemented in Cormode and Hadjieleftheriou [77]. We include the implementation in
our own test runs, to make sure that the data is comparable, by running on the same
setup.

Their findings for the hierarchical structure using Count-Min Sketches are that the
space of the solution is small. As a consequence the update algorithm has a high through-
put from 1500 to 2200 updates per millisecond ranging over φ ∈ [2−6; 2−10]. They also
measure precision by the recall of the algorithm and according to the number of true
heavy hitters reported over the total number of reported elements. The recall is 100% for
all experiments, since the Count-Min Sketches never underestimate frequencies. The sec-
ond measure shows that as the data becomes more skewed, less and less false positives
are returned in the resulting set. Still, over the range of φ ∈ [2−6; 2−10] the amount of
true heavy hitters only account for between 73− 87% of the resulting set, which implies
that some false positives are present. The problem with having provided these results in
percentage is that, we cannot derive how many false positives this exactly is in practice
and it is furthermore not mentioned whether any of the false positives are in fact errors.

The results from the article is not directly comparable with those provided in the
earlier sections, since some crucial points are missing. In their testing setup, a fixed depth
of 4 was chosen for all sketches in the hierarchy. This does not follow the theoretical
depth of the sketches, which can be seen in Table 6.5Table 6.5, and this implies that the theoretical
guarantees of the sketches are no longer true, as opposed to the implementations we
provided in the earlier sections.

Furthermore, the hierarchical structure from their measurements is having a branch-
ing factor of 16 as opposed to the binary ones of our implementation. This will, as
mentioned in the bottom of Section 4.3Section 4.3, lead to better space and update time with a
trade-off on the query time.

Finally, from the code provided in Cormode and Hadjieleftheriou [77], it looks like
the data they test on, is skewed in such a way that they only have elements with mass
among the first 220 elements, and not spread out on the full universe, of 231− 1 elements.
As a consequence only a fraction of the hierarchical tree structure will ever be visited.
This could lead to improvements in running times, that actually would not be present,
if the data would have been uniformly distributed among the whole universe, as is the
case for our test data.

Next we will present the results of using their implementation with binary branching
in our test setup. In Figure 6.11Figure 6.11 the precision of the implementation can be seen. The
implementation of the article is denoted cormode.

From Figure 6.11aFigure 6.11a the recall of the implementation can be observed. Here there is no
real surprise, since the recall is a 100% over all runs, which is also expected since Count-
Min Sketches are kept which never underestimate the frequencies. This is the same exact
same results as for our hierarchical structure using Count-Min Sketches.

From Figure 6.11bFigure 6.11b, the number of false positives can be observed. Here it is notable
that the number of false positives are just above our implementation for some choices of
φ, with a difference of one element. This is certainly within a reasonable amount of false
positives and probably significantly less than what is seen from the results of the article

80

[88]. None of the false positives are actual errors.
The running times of the query and update algorithm are expected to be more or less

equivalent to our implementation as they have equal space, due to having sketches with
equal depth and width.

Figure 6.9Figure 6.9 shows among other things, the running time in nanoseconds per update.
Here it can be observed that the implementation of the article has a faster running time
than our implementation for most choices of φ. The faster running time, is a consequence
of the cormode implementation having a lot less cache misses compared to our solution
as can be observed in all the cache plots of the same figure.

At first this might seem strange, since the implementations are similar. One point is
missing, in our implementation, the sketches are actually generic structures created as
an abstract sketch object, in the cormode implementation the sketches are implemented
inline without any abstractions. The consequence of having the sketch abstraction is
that every sketch allocates its own block of memory, which does not necessarily gets
consecutively stored. The cormode implementation is on the other hand stored along
with the hierarchical tree, which means that the memory block of the whole tree is
consecutively stored. This has a huge influence with respect to cache misses, since the
prefetcher of the CPU is actually more likely to prefetch the next memory that should
be used as opposed to our solution, where it cannot know the next block to use due
to them not being stored consecutively. What is also notable is that the running time
of the update algorithm is no longer nearly as fast as the results presented in Cormode
and Hadjieleftheriou [77]. This comes as a natural consequence of having the correct
theoretical parameters, a lower branching factor and by not tangling with the skewness
of the data.

Figure 6.10Figure 6.10 shows the running times of the query algorithm. The overall behavior
of the query times are very similar, for their and our implementations. Still, our im-
plementation is a factor faster than theirs over all distributions of data, which can be
explained by the fact that our query implementation was implemented iteratively, while
their query implementation is recursively implemented, giving an overhead due to extra
function calls and stack buildings.

Overall, the algorithms perform similarly, even though differences are observed in
running times for both the query and update algorithm. What can be taken from this
sections is the fact that all the implementations implemented by us, could in fact become
even faster if the sketches of the structures were implemented inline instead of using the
abstraction of a sketch. The experiments of Cormode and Hadjieleftheriou [77] show that
even though the theoretical bounds of the algorithms are not followed, the algorithms
are still precise with decent running times.

6.3.4 k-ary Hierarchical Structures

As mentioned in the earlier section, the experiments from Cormode and Hadjieleftheriou
[77] were performed with a branching factor of 16. In general the hierarchical structure
from Section 4.3Section 4.3 can be created for any branching factor, as long as the ranges in the tree
is adjusted accordingly to the branching factor. In this section we will present results

81

for a k-ary hierarchical structure using Count-Min Sketches and Count-Median Sketches
with branching factor k = 256. The choice of k was made inorder to achieve an update
algorithm, which could be comparable in running time to the Hierarchical Constant-Min
Structure solution in practice.

As noted in the theoretical sections, the implication of a k-ary hierarchical structure
is that the space usage and update time improves, while the query time becomes worse
as k rises. Hence, we expect that the practical results of the algorithms shows exactly this
behavior compared to the binary solutions.

The running time of both the update and query algorithm can be seen in Figure 6.9Figure 6.9
and Figure 6.10Figure 6.10 respectively, where the structure using Count-Min Sketches is denoted
kmin and the one using Count-Median Sketches is denoted kmedian.

From the plots of the running times of the update algorithms, it becomes clear that
both the k-ary tree using Count-Min Sketches and Count-Median Sketch are significantly
faster than their binary alternatives over all range of φ. This is a consequence of having
fewer levels in the tree, implied by the branching factor. Fewer levels gives fewer cache
misses and fewer instructions for the k-ary solutions compared to their binary counter-
parts.

The cache misses, instructions and running time of the update algorithm are in fact
comparable to the Hierarchical Constant-Min Structure solution, which makes the solu-
tion applicable in practice, due to being able to handle hundreds of thousands of updates
per seconds.

An odd thing about the update running times of the k-ary solutions are the drop in
running time between φ = 2−9 and φ = 2−10. Since φ and hence ε decreases, the depth of
the internal sketches increases. The reason for the drop in running time is found in the
amount of sketches kept among the levels in the tree. The tree only consists of four levels
due to its branching factor. Three of these are sketches up till φ = 2−9. At which point
it becomes more feasible to hold an exact count of the second level and hence the tree
is reduced to having only two sketches. This improves the running time of the update
algorithm, since it is much cheaper to do a single memory access in an array than doing
d accesses in a sketch.

What is gained in update speed should be lost in query speed, according to theory.
From the running time of the query algorithm we can see that this is in fact true. The
query time of both algorithms becomes significantly slower than any other algorithm,
due to the fact that a lot of queries have to be carried out as a consequence of the
branching factor. This implies a lot of extra instructions and L1 cache misses, since large
parts of the tree have to be queried in order to find the heavy hitters. As was the case
for the binary alternatives the k-ary tree with Count-Min Sketches has a faster query
time than the one with Count-Median Sketches, this is again explained by the fact that
computing the median takes more time than computing the minimum in practice. The
query times are generally so much worse that any application using it in practice would
have to consider how to handle the major delay that such a query operation would
add. Comparing it to the Hierarchical Constant-Min Structure solution, the Hierarchical
Constant-Min Structure is much faster, and would in any case be the preferable solution
in practice according to the running times.

82

0.5 1 1.5 2

101.5

102

102.5

103

103.5

2-12 2-10 2-8 2-6 2-4 2-2 2-12 2-10 2-8 2-6 2-4 2-2 2-12 2-10 2-8 2-6 2-4 2-2 2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

U
pd

at
es

pe
r

m
ill

is
ec

on
d

(U
ps

/M
s)

cormode const kmedian kmin median min

Figure 6.12: Updates per milliseconds shown for all heavy hitters solutions.

The precision of the k-ary trees can be seen in Figure 6.11Figure 6.11. Since the solution using
Count-Min Sketches does not underestimate its frequencies, it have a recall of 100%. The
solution using Count-Median Sketches have the same problem as the binary solution
using Count-Median Sketches i.e. it misses a couple percent of the true heavy hitters as
φ decreases. The amount of false positives of the solution using Count-Min Sketches is
generally the same as for the Hierarchical Constant-Min Structure solution, that is a few
false positives is returned. For the solution using Count-Median Sketches the behavior is
the same as the binary alternative, namely that no false positives are returned, except for
a single one for φ = 2−12. Still, none of the false positives were actual errors. The solution
with Count-Median Sketches was also tested with adjusted threshold (φ− ε) ‖v‖1, and
generally showed the same results as for binary alternative described in Subsection 6.3.1Subsection 6.3.1.
Overall the precision measurements shows that precisionwise both k-ary solutions are
very applicable in practice.

6.3.5 Data Distributions

One point missing from all measurements above is the distribution of data. For all
experiments above the data was zipfian distributed with parameter α = 1. How does
the algorithms behave speed- and precisionwise as the data gets distributed differently?
To argue about that, the measurements from earlier sections was performed for α =
{0.5, 1, 1.5, 2} i.e. for distributions ranging from almost uniform, to highly skewed.

From the experiments on the sketch implementations, we found that skewed distri-

83

0.5 1 1.5 2

102

103

104

105

106

107

2-12 2-10 2-8 2-6 2-4 2-2 2-12 2-10 2-8 2-6 2-4 2-2 2-12 2-10 2-8 2-6 2-4 2-2 2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

N
an

os
ec

on
ds

(n
s)

cormode const kmedian kmin median min

Figure 6.13: Running time for the query method in nanoseconds for all heavy hitters
solutions.

butions affected the running time of the update algorithm of the sketches but not the
query time. Since we use the sketch abstractions in all implementation it is only natu-
ral that skew should affect the update time of the heavy hitters solutions as well. Even
though the query time of the sketches are not affected by the skew of data, the heavy
hitters solutions actually are expected to be. This is due to the fact that, the more skewed
data is, the more heavy hitters should be found for larger values of φ.

Hence, we should see that the query time for low values of α generally are faster,
since almost no heavy hitters are found. As α grows, so should the amount of heavy
hitters within the threshold of our experiments and this will have a negative effect on
the running time of the query algorithm, since more queries have to be carried out
throughout the trees.

From Figure 6.12Figure 6.12 the updates per milliseconds over the different data distributions
can be seen. Exactly as expected, the updates per milliseconds generally seems to in-
crease as the data get more and more skewed. This is due to the fact that as data
becomes more skewed, the probability of an element to be updated multiple times in a
row increases, and hence the probability of having the memory present in at least the L2
cache increases. This is also what we see from the measurements, where the L1 cache
misses stays approximately the same, whereas the L2 cache misses lowers significantly,
as data becomes more skewed.

From Figure 6.13Figure 6.13 the running times for the query algorithms are shown in nanosec-
onds. As noted there should occur changes in the query times as the data becomes more

84

5

10

15

20

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

A
ct

ua
l/

T
he

or
y

w
or

d
ra

ti
o

const cormode kmedian

(a) Word ratio

0

10

20

30

2-12 2-10 2-8 2-6 2-4 2-2

Threshold factor (φ)

M
eb

iB
yt

es
(M

iB
)

kmin median min

(b) Space usage

Figure 6.14: Space usage of the different algorithms where (a) shows the word ratio when
the actual space usage is divided by the theoretical one, (b) shows the actual space usage
in mebibyte (MiB), where const and k{median,min} are the lower ones.

skewed. This also seems to be the case. For α = 0.5, no actual heavy hitters are found for
any choice of φ, hence the traversal of the tree should in general stop for all solutions,
before reaching the bottom of the tree. For α > 0.5, heavy hitters begin to exist in the
data for some of the ranges of φ. This implies that the heavy hitter paths of the trees
have to be fully explored causing more queries on the tree. This is the main reason why
the distribution of data implies a difference in query time.

With regards to precision, the distribution of data also has an impact. For α =
{0.5, 1.5, 2} all solutions have 100% recall and no false positives. Only for α = 1 the
picture is different and this is the case that was analyzed for every solution in the earlier
sections. The main reason for this is that for α = 1, the most heavy hitters are present
in the data, while a lot of the elements still have very similar frequencies. This seems to
imply more false positives since the error introduced by the sketches, make the heavy
hitters algorithm consider more elements.

Overall the skew of data seems to have an impact on the performance and precision
of the solutions. The impact is though of such character that the overall conclusions from
the analysis of the experiments on the individual algorithms from the last sections also
is true for general distributions of data.

6.3.6 Space

The space usage for each of the algorithms is shown in Figure 6.14Figure 6.14. A general thing to
note about the space usage is that it is not affected by the distribution of the data, for
which the algorithm it tested on, as was shown to be the case for both the update and
query algorithm in the last section. The plots in Figure 6.14Figure 6.14 are for data with α = 1.

85

To verify that the space usage of the algorithms follow those of the theory, a plot of
the space usage in words divided by theoretical big-O space usage is seen in Figure 6.14aFigure 6.14a.
Generally the resulting ratio of each of the algorithms should as a consequence converge
towards a constant value. From the plot this can be argued to be true, since the ratio
seems to settle as φ decreases. The inclination can be explained by the extra amount
of space used to store extra implementation specific structures, as well as the uneven
change in the number of rows in the sketches, when the depth increases, versus the
number of levels counted exactly.

Hence, we conclude that the practical space usage of the algorithms, generally follow
the theoretical space. Next we look at the actual space usage of the algorithms.

What is interesting from Figure 6.14bFigure 6.14b is the fact that the algorithms can be split in
two groups according to their space usage. The first group is the group of the hier-
archical structures using the Count-Min Sketch and Count-Median Sketch denoted min
and median and the solution from Cormode and Hadjieleftheriou [77] denoted cormode.
These solutions use more memory than the other solutions since they theoretically keep
a sketch for each of the levels in a binary tree, which for a universe of m = 231− 1, means
31 levels. In practice the counts of the first levels of the tree are kept exactly until the
point where it in terms of space becomes feasible to use sketches. Since the width and
depth of the sketches are kept equal for all three of these solutions, they end up using
the same amount of space.

The second grouping consist of the Hierarchical Constant-Min Structure and the two
k-ary hierarchical data structures using Count-Min Sketches and Count-Median Sketches.
The latter algorithms use significantly less space, since the height of the tree is smaller
because of the branching factor. With a branching factor of 256 the height of the tree
is 4. The former, Hierarchical Constant-Min Structure, has a tree of height 31, but each
of the levels only contain a sketch of constant size, plus a slightly larger sketch at the
bottom, which is scaled appropriately to answer all queries performed on it. In practice
the total amount of non-constant sized sketches becomes approximately the same for the
Hierarchical Constant-Min Structure solution and the k-ary tree structure, which implies
that the space usage also becomes approximately the same.

Comparing the groups, it is clear that the space usage of the second grouping in-
creases at a much lower rate than the first grouping, as the heavy hitter threshold, φ,
decreases. Still, the first grouping use less than 40 MiB and the second grouping less
than 10 MiB for the choice of parameters to solve the approximate L1 heavy hitters prob-
lem with very good precision. This space usage is an extreme improvement compared
to solving the problem exactly, for which at least 16 GiB of space would be needed.

6.3.7 Summary

In this section we have performed several experiments for 6 different implementations
of solutions solving the approximate L1 heavy hitters problem.

In Section 6.2Section 6.2, we found that both the Count-Min Sketch and the Count-Median
Sketch was applicable as a black box solution for the frequency estimation problem with
error bounds on estimates according to the L1-norm. As a consequence both sketches

86

were used in the hierarchical structure described in Section 4.3Section 4.3 to solve the approximate
L1 heavy hitters problem in the Strict Turnstile Model. They were furthermore compared
to a solution from previous work [77], which showed to be faster than our implementa-
tions for the update algorithm, due to alignment of memory and slower for the query
algorithm due to our iterative implementation opposed to their recursive one. Common
for all where that the updates performed per millisecond were reasonably high, but still
significantly lower than other solutions tested.

Furthermore they all used significantly more space than other solutions. One thing
to take from the comparisons was the fact that implementing the sketches inline instead
of using an abstraction of a sketch, implied faster algorithms.

Next experiments on the Hierarchical Constant-Min Structure was run, which to our
knowledge never had been done before in practice. This structure theoretically had
better bounds than any of the above solutions and also showed to be significantly faster
in practice for both the update and query algorithms. Furthermore it used significantly
less space, since only constant sized sketches were kept in the hierarchical structure. As
such, this solution showed to be the most impressive structure to solve the approximate
L1 heavy hitters problem, and the only way to produce other structures that could be
comparable in update time and space, but significantly worse in query time, was to
change the branching factor of the hierarchical data structure significantly.

Doing this gave two more structures with very similar update running times com-
pared to the Hierarchical Constant-Min Structure, but sadly the queries became signifi-
cantly worse than any other structures.

The precision of all solutions was also tested. Here it was shown that all solutions
performed very decent with respect to finding heavy hitters and not too many false
positives. One of the reasons for this was that the solutions all used the theoretically
correct parameters. An earlier practical experiment in literature [77] further enlighten that
loosening the choices of parameters did not effect the precision that much in practice.

Finally the space usage of all solutions was shown and it was clear that all of them
would be a great improvement opposed to finding heavy hitters using an exact count
solution.

Overall, the Hierarchical Constant-Min Structure showed to perform the best and any
streaming application with the need of a approximate L1 heavy hitters solutions, should
favor this solution, compared to the other tested.

87

88

Chapter 7

Conclusion

In this thesis we have analyzed and experimented with solutions to the approximate
L1 heavy hitters and frequency estimation problems in the Strict Turnstile Model. The
conclusions for each of the algorithms are as follows.

For the frequency estimation problem, the Count-Min Sketch is optimal in space
and has a near-optimal update time with an additive L1-norm error. The experiments
showed the Count-Min Sketch to be efficient at estimating frequencies with fast update
and query times. The sketch has a low space usage and guarantees that frequencies are
never underestimated.

The Count-Median Sketch with an additive two-sided L2-norm error uses more space
than the Count-Min Sketch, but is optimal in space and has a near-optimal update time.
The experiments featured two versions with different depths, one with constants and one
where we ignore constants. Removing the constants showed to decrease the space usage,
update, and query time significantly, without sacrificing its error guarantee. We also
showed that the Count-Median Sketch has a L1-norm error guarantee by changing the
dimensions of the sketch to be equal to those of the Count-Min Sketch. The experiments
showed that the L1-norm error guarantee made the Count-Median Sketch comparable
with the Count-Min Sketch, with the differences being a slower query and the precision
between the two sketches varying for different data distribution. To sum up, we showed
that the Count-Median Sketch is able to provide guarantees according to the L1-norm
and L2-norm with different space usages.

We conclude that the frequency estimation solutions are useful in practice as they are
fast, provide good guarantees, and uphold their theoretical bounds.

For the heavy hitters problem, the Hierarchical Count-Min Structure ensures that all
heavy hitters are found because of the underlying sketch. The solution is not optimal in
space nor in update time. The experiments showed that the algorithm provided good
results without including to many false positives, but with slow throughput. The results
are good, but the update times were among the slowest we compared against.

The Hierarchical Count-Median Structure is neither optimal in space nor update time.
The analysis showed that it used more space than the Hierarchical Count-Min Structure,
but by using modified Count-Median Sketches the structure used space, and provided

89

a L1-norm guarantee, equivalent to the Hierarchical Count-Min Structure. The experi-
ments showed a precise solution with update times equivalent to the Hierarchical Count-
Min Structure, but slower query times. Depending on how the threshold of the structure
is adjusted it has a trade-off between finding all heavy hitters, but lots of false positives
versus finding a few false positives, but potentially missing some heavy hitters.

The k-ary versions of the Hierarchical Count-Min Structure and Hierarchical Count-
Median Structure obtains a smaller depth of the hierarchical structure. The experiments
showed that the change in depth decreased the update time by more than a factor of 10
and decreased the space usage, compared to their binary counterparts. The disadvantage
was a slower query. Consequently, increasing the branching factor is only desirable when
it is acceptable to have a slow query.

The Hierarchical Constant-Min Structure provides an expected good query time, fast
update time and optimal space usage. The experiments showed it to have the fastest
query time while the update time and space usage were comparable to the k-ary solu-
tions. Thus, this heavy hitters algorithm provides the overall best performance and is
highly applicable for streaming settings with several hundreds of thousands updates per
second.

Generally, we did not observe any errors for the heavy hitters solutions, which was
unexpected as the solutions provide approximate results with a small probability of
failure. Furthermore, all algorithms showed to provide precise results and to work as
described in theory.

The results of the experiments with the recently introduced Hierarchical Constant-
Min Structure are important as they show that this construction does indeed provide
good results in practice. The experiments showed that the expected query time is indeed
fast, and better than what is gained by using a k-ary solution with similar update times.

To conclude, this thesis is a collection of solutions in the Strict Turnstile Model to the
frequency estimation problem and solutions for the heavy hitters problem using sketches.
It provides an overview of the theory and bounds for each of the solutions, practical
experiments with their implementations, and a theoretical and practical comparison of
the solutions.

7.1 Future Works

Even though this thesis has studied the problem of estimating frequencies and finding
heavy hitters extensively, some further work on the subject is still available. In the fol-
lowing we list some of the work, which could be interesting to address in the future.

Generic implementations may cause the algorithms to suffer from cache penalties. The
code for the heavy hitters algorithms could be rewritten to handle the sketches
specifically, as the code from Cormode and Hadjieleftheriou [77], which should re-
move the gaps between our implementation the implementation from Cormode
and Hadjieleftheriou [77].

90

A L2 heavy hitters algorithm using Count-Median Sketches could be interesting to mea-
sure in practice. An L2 heavy hitters algorithm would be using quite a lot of space
compared to the L1 heavy hitters solutions, but it would still be interesting to see if
such solutions would be efficient in practice.

The update time lower bound for both the heavy hitters problem and the frequency
estimation problem was shown to have a gap between best known upper bounds
and the lower bounds. Hence, an open problem exists whether it is possible to
provide a matching upper bound for the update algorithms and if so, whether the
space optimality can still be kept.

Real world data would be a good practical example to test on, to find out if heavy hitters
from for example a DoS attackDoS attack could be detected. It could also be interesting to
simulate traffic in real time, to find out if the implementations would be fast enough
for real world usage.

Tough data that would result in errors was never found. It might be difficult to find data
that would make the algorithms fail with theoretical bounds. One way to improve
space and running times of the algorithms, would be to loosen the parameters
and hence leave the theoretical guarantees in order to find a trade-off where the
algorithms performs well, while still finding all heavy hitters and not too many
false positives and errors.

A tighter bound on the Count-Median Sketch could be done using Lemma 6Lemma 6. This
would have reduced the theoretical depth of the Count-Median Sketch significantly.

91

92

Glossary

Delete-Min An operation that can be performed on a Min-Heap, which will delete and
return the minimum element stored in the heap and heapify the remaining heap,
in order for the heap to again uphold the heap property. 3030

DoS attack A denial-of-service (DoS) attack is an attempt to make a machine or network
resource unavailable to its intended users, such as to temporarily or indefinitely
interrupt or suspend services of a host connected to the Internet. In the simples
form the attack comes from the same IP address. . 11, 9191

Min Heap A heap is a specialized tree-based data structure that satisfies the heap prop-
erty: If A is a parent node of B then the key of node A is ordered with respect to
the key of node B with the same ordering applying across the heap. For the sake
of the min heap this ordering is ascending. 3030

Pigeonhole Principle The pigeonhole principle states that if n items are put into m con-
tainers, with n > m, then at least one container must contain more than one item.
88, 1414, 2828

93

94

List of Tables

6.1 Test-machine Specifications.6.1 Test-machine Specifications. 53
6.2 PAPI event descriptions.6.2 PAPI event descriptions. 54
6.3 Examples of Zipfian Distribution6.3 Examples of Zipfian Distribution . 55
6.4 Default parameters for heavy hitters measurements6.4 Default parameters for heavy hitters measurements 73
6.5 Sketch depths of heavy hitters solutions6.5 Sketch depths of heavy hitters solutions . 78

95

96

List of Figures

3.1 Illustration of linear transformation of input vector.3.1 Illustration of linear transformation of input vector. 16
3.2 Illustration of the Count-Min Sketch.3.2 Illustration of the Count-Min Sketch. 17
3.3 Illustration of the Count-Median Sketch.3.3 Illustration of the Count-Median Sketch. 21

4.1 Illustration of the hierarchical data structure used to find heavy hitters4.1 Illustration of the hierarchical data structure used to find heavy hitters . . 31
4.2 Illustration of the behavior of a heavy hitters query.4.2 Illustration of the behavior of a heavy hitters query. 32
4.3 Illustration of the Hierarchical Constant-Min Structurebottom sketch argument4.3 Illustration of the Hierarchical Constant-Min Structurebottom sketch argument 39

6.1 Space usage of the Count-Min Sketch and Count-Median Sketch structures6.1 Space usage of the Count-Min Sketch and Count-Median Sketch structures 57
6.2 Precision of the Count-Min Sketch and Count-Median Sketch structures6.2 Precision of the Count-Min Sketch and Count-Median Sketch structures . . 58
6.3 Update measurements of sketches6.3 Update measurements of sketches . 60
6.4 Updates per millisecond of the sketches with theoretical bounds6.4 Updates per millisecond of the sketches with theoretical bounds 63
6.5 Queries per millisecond of the sketches with theoretical bounds6.5 Queries per millisecond of the sketches with theoretical bounds 64
6.6 Precision of Count-Median Sketch and Count-Min Sketch with equal size6.6 Precision of Count-Median Sketch and Count-Min Sketch with equal size . 69
6.7 Updates per millisecond of sketches with equal size6.7 Updates per millisecond of sketches with equal size 70
6.8 Queries per millisecond of sketches with equal size6.8 Queries per millisecond of sketches with equal size 70
6.9 Update measurements of heavy hitters algorithms6.9 Update measurements of heavy hitters algorithms 75
6.10 Query measurements of heavy hitters algorithms6.10 Query measurements of heavy hitters algorithms 76
6.11 Precision measurements of heavy hitters query algorithms6.11 Precision measurements of heavy hitters query algorithms 77
6.12 Updates per millisecond for all heavy hitters solution6.12 Updates per millisecond for all heavy hitters solution 83
6.13 Running time for query for all heavy hitters solution6.13 Running time for query for all heavy hitters solution 84
6.14 Space usage of the heavy hitters algorithms6.14 Space usage of the heavy hitters algorithms 85

97

98

List of Theorems

1 Lemma (Linearity of Expectation)1 Lemma (Linearity of Expectation) . 6
2 Lemma (Union Bound)2 Lemma (Union Bound) . 6
3 Lemma (Markov’s Inequality)3 Lemma (Markov’s Inequality) . 6
4 Lemma (Chebyshev’s Inequality)4 Lemma (Chebyshev’s Inequality) . 7
5 Lemma (Convenient Multiplicative Chernoff Bounds)5 Lemma (Convenient Multiplicative Chernoff Bounds) 7
6 Lemma (Multiplicative Chernoff Bound)6 Lemma (Multiplicative Chernoff Bound) . 7

1 Definition (Synopsis data structure)1 Definition (Synopsis data structure) . 14
1 Theorem (Count-Min Sketch point query guarantees)1 Theorem (Count-Min Sketch point query guarantees) 18
7 Lemma (Count-Median Sketch expected bucket error)7 Lemma (Count-Median Sketch expected bucket error) 22
2 Theorem (Count-Median Sketch point query guarantees)2 Theorem (Count-Median Sketch point query guarantees) 24

3 Theorem (Hierarchical Count-Min Sketch structure bounds)3 Theorem (Hierarchical Count-Min Sketch structure bounds) 34
4 Theorem (Hierarchical Count-Median Sketch structure bounds)4 Theorem (Hierarchical Count-Median Sketch structure bounds) 35
5 Theorem (Hierarchical Constant-Min Structure bounds)5 Theorem (Hierarchical Constant-Min Structure bounds) 37

8 Lemma (Augmented indexing problem bound)8 Lemma (Augmented indexing problem bound) 43
6 Theorem (Heavy hitters space lower bound)6 Theorem (Heavy hitters space lower bound) 44
7 Theorem (Sketch space lower bound)7 Theorem (Sketch space lower bound) . 46
2 Definition (Non-adaptive Randomized Streaming Algorithm)2 Definition (Non-adaptive Randomized Streaming Algorithm) 48
8 Theorem (Point Query update lower bound)8 Theorem (Point Query update lower bound) 49
9 Theorem (Heavy hitters update lower bound)9 Theorem (Heavy hitters update lower bound) 49

10 Theorem (Count-Median Sketch L1 guarantee)10 Theorem (Count-Median Sketch L1 guarantee) 66

99

100

Bibliography

[1] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. Space-
optimal heavy hitters with strong error bounds. ACM Trans. Database Syst., 35(4):
26:1–26:28, October 2010. ISSN 0362-5915. doi: 10.1145/1862919.1862923. URL
http://doi.acm.org/10.1145/1862919.1862923http://doi.acm.org/10.1145/1862919.1862923.

[2] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.
Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, Au-
gust 1973. ISSN 0022-0000. doi: 10.1016/S0022-0000(73)80033-9. URL
http://dx.doi.org/10.1016/S0022-0000(73)80033-9http://dx.doi.org/10.1016/S0022-0000(73)80033-9.

[3] Robert S. Boyer and J. Strother Moore. Mjrty - a fast majority vote algorithm, 1982.

[4] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions
(extended abstract). In Proceedings of the Ninth Annual ACM Symposium on Theory
of Computing, STOC ’77, pages 106–112, New York, NY, USA, 1977. ACM. doi:
10.1145/800105.803400. URL http://doi.acm.org/10.1145/800105.803400http://doi.acm.org/10.1145/800105.803400.

[5] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Automata, Languages and
Programming: 29th International Colloquium, ICALP 2002 Málaga, Spain, July 8–13,
2002 Proceedings, chapter Finding Frequent Items in Data Streams, pages 693–703.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-3-540-45465-6. doi:
10.1007/3-540-45465-9_59. URL http://dx.doi.org/10.1007/3-540-45465-9_59http://dx.doi.org/10.1007/3-540-45465-9_59.

[6] Graham Cormode. Sketch techniques for approximate query processing. In Syn-
poses for Approximate Query Processing: Samples, Histograms, Wavelets and Sketches,
Foundations and Trends in Databases. NOW publishers, 2011.

[7] Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data
streams. Proc. VLDB Endow., 1(2):1530–1541, August 2008. ISSN 2150-8097. doi:
10.14778/1454159.1454225. URL http://dx.doi.org/10.14778/1454159.1454225http://dx.doi.org/10.14778/1454159.1454225.

[8] Graham Cormode and Shan Muthukrishnan. Summarizing and Mining Skewed
Data Streams, chapter 5, pages 44–55. doi: 10.1137/1.9781611972757.5. URL
http://epubs.siam.org/doi/abs/10.1137/1.9781611972757.5http://epubs.siam.org/doi/abs/10.1137/1.9781611972757.5.

101

http://doi.acm.org/10.1145/1862919.1862923
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://doi.acm.org/10.1145/800105.803400
http://dx.doi.org/10.1007/3-540-45465-9_59
http://dx.doi.org/10.14778/1454159.1454225
http://epubs.siam.org/doi/abs/10.1137/1.9781611972757.5

[9] Graham Cormode and Shan Muthukrishnan. An improved data stream sum-
mary: The count-min sketch and its applications. J. Algorithms, 55(1):58–
75, April 2005. ISSN 0196-6774. doi: 10.1016/j.jalgor.2003.12.001. URL
http://dx.doi.org/10.1016/j.jalgor.2003.12.001http://dx.doi.org/10.1016/j.jalgor.2003.12.001.

[10] Graham Cormode and Shan Muthukrishnan. What’s hot and what’s not:
Tracking most frequent items dynamically. ACM Trans. Database Syst., 30(1):
249–278, March 2005. ISSN 0362-5915. doi: 10.1145/1061318.1061325. URL
http://doi.acm.org/10.1145/1061318.1061325http://doi.acm.org/10.1145/1061318.1061325.

[11] Graham Cormode and Shan Muthukrishnan. Approximating data with the count-
min sketch. IEEE Software, 29(1):64–69, Jan 2012. ISSN 0740-7459. doi: 10.1109/MS.
2011.127.

[12] Graham Cormode, Theodore Johnson, Flip Korn, Shan Muthukrishnan, Oliver
Spatscheck, and Divesh Srivastava. Holistic udafs at streaming speeds. In Proceed-
ings of the 2004 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’04, pages 35–46, New York, NY, USA, 2004. ACM. ISBN 1-58113-859-8. doi:
10.1145/1007568.1007575. URL http://doi.acm.org/10.1145/1007568.1007575http://doi.acm.org/10.1145/1007568.1007575.

[13] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency
estimation of internet packet streams with limited space. In Proceedings
of the 10th Annual European Symposium on Algorithms, ESA ’02, pages 348–
360, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-44180-8. URL
http://dl.acm.org/citation.cfm?id=647912.740658http://dl.acm.org/citation.cfm?id=647912.740658.

[14] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen.
A reliable randomized algorithm for the closest-pair problem. J. Algorithms, 25
(1):19–51, October 1997. ISSN 0196-6774. doi: 10.1006/jagm.1997.0873. URL
http://dx.doi.org/10.1006/jagm.1997.0873http://dx.doi.org/10.1006/jagm.1997.0873.

[15] Michael J. Fischer and Steven L. Salzberg. Finding a Majority
Among N Votes. Defense Technical Information Center, 1982. URL
https://books.google.dk/books?id=OaSUNwAACAAJhttps://books.google.dk/books?id=OaSUNwAACAAJ.

[16] Phillip B. Gibbons and Yossi Matias. Synopsis data structures for massive
data sets. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’99, pages 909–910, Philadelphia, PA, USA, 1999. So-
ciety for Industrial and Applied Mathematics. ISBN 0-89871-434-6. URL
http://dl.acm.org/citation.cfm?id=314500.315083http://dl.acm.org/citation.cfm?id=314500.315083.

[17] Anna Gilbert and Piotr Indyk. Sparse recovery using sparse matrices. Proceedings
of the IEEE, 98(6):937–947, June 2010. ISSN 0018-9219. doi: 10.1109/JPROC.2010.
2045092.

[18] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers,
finding duplicates in streams, and related problems. In Proceedings of the Thirtieth

102

http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://doi.acm.org/10.1145/1061318.1061325
http://doi.acm.org/10.1145/1007568.1007575
http://dl.acm.org/citation.cfm?id=647912.740658
http://dx.doi.org/10.1006/jagm.1997.0873
https://books.google.dk/books?id=OaSUNwAACAAJ
http://dl.acm.org/citation.cfm?id=314500.315083

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
’11, pages 49–58, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0660-7. doi:
10.1145/1989284.1989289. URL http://doi.acm.org/10.1145/1989284.1989289http://doi.acm.org/10.1145/1989284.1989289.

[19] Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment
estimation in data streams in optimal space. In Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing, STOC ’11, pages 745–754, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0691-1. doi: 10.1145/1993636.1993735. URL
http://doi.acm.org/10.1145/1993636.1993735http://doi.acm.org/10.1145/1993636.1993735.

[20] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algo-
rithm for finding frequent elements in streams and bags. ACM Trans. Database
Syst., 28(1):51–55, March 2003. ISSN 0362-5915. doi: 10.1145/762471.762473. URL
http://doi.acm.org/10.1145/762471.762473http://doi.acm.org/10.1145/762471.762473.

[21] Kasper Green Larsen, Jelani Nelson, and Huy L. Nguyen. Time lower bounds
for nonadaptive turnstile streaming algorithms. CoRR, abs/1407.2151, 2014. URL
http://arxiv.org/abs/1407.2151http://arxiv.org/abs/1407.2151.

[22] Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and M. Thorup. Heavy hitters
via cluster-preserving clustering. ArXiv e-prints, April 2016.

[23] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts
over data streams. In Proceedings of the 28th International Conference on Very
Large Data Bases, VLDB ’02, pages 346–357. VLDB Endowment, 2002. URL
http://dl.acm.org/citation.cfm?id=1287369.1287400http://dl.acm.org/citation.cfm?id=1287369.1287400.

[24] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computa-
tion of frequent and top-k elements in data streams. In Proceedings of the 10th In-
ternational Conference on Database Theory, ICDT’05, pages 398–412, Berlin, Heidel-
berg, 2005. Springer-Verlag. ISBN 3-540-24288-0, 978-3-540-24288-8. doi: 10.1007/
978-3-540-30570-5_27. URL http://dx.doi.org/10.1007/978-3-540-30570-5_27http://dx.doi.org/10.1007/978-3-540-30570-5_27.

[25] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data
structures and asymmetric communication complexity. In Proceedings of the Twenty-
seventh Annual ACM Symposium on Theory of Computing, STOC ’95, pages 103–111,
New York, NY, USA, 1995. ACM. ISBN 0-89791-718-9. doi: 10.1145/225058.225093.
URL http://doi.acm.org/10.1145/225058.225093http://doi.acm.org/10.1145/225058.225093.

[26] Jayadev Misra and David Gries. Finding repeated elements. Technical report, Ithaca,
NY, USA, 1982.

[27] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, New York, NY, USA, 1995. ISBN 0-521-47465-5, 9780521474658.

[28] Shan Muthukrishnan. Data streams: Algorithms and applications. Found. Trends
Theor. Comput. Sci., 1(2):117–236, August 2005. ISSN 1551-305X. doi: 10.1561/
0400000002. URL http://dx.doi.org/10.1561/0400000002http://dx.doi.org/10.1561/0400000002.

103

http://doi.acm.org/10.1145/1989284.1989289
http://doi.acm.org/10.1145/1993636.1993735
http://doi.acm.org/10.1145/762471.762473
http://arxiv.org/abs/1407.2151
http://dl.acm.org/citation.cfm?id=1287369.1287400
http://dx.doi.org/10.1007/978-3-540-30570-5_27
http://doi.acm.org/10.1145/225058.225093
http://dx.doi.org/10.1561/0400000002

[29] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the
data: Parallel analysis with sawzall. Scientific Programming, 13(4):277–298, 2005.

104

	Abstract
	Quote
	Acknowledgments
	Contents
	Introduction
	Background and related work
	Overview

	Preliminaries
	Notation
	Probabilistic Intuition
	Linearity of Expectation
	Union Bound
	Markov's Inequality
	Chebyshev's Inequality
	Chernoff Bound

	Hash Functions
	c-universal
	k-wise Independence

	Computational Models
	Data Stream Models
	Word-RAM Model

	Frequency Estimation
	The Problem
	Sketches
	Figure 3.1: Illustration of linear transformation of input vector.

	Count-Min Sketch
	Figure 3.2: Illustration of the Count-Min Sketch.
	Point Query

	Count-Median Sketch
	Figure 3.3: Illustration of the Count-Median Sketch.
	Point Query

	Summary

	Heavy Hitters
	The Problem
	Cash Register Model
	Deterministic
	Randomized

	General Sketch Approach
	Figure 4.1: Illustration of the hierarchical data structure used to find heavy hitters
	Figure 4.2: Illustration of the behavior of a heavy hitters query.

	Hierarchical Count-Min Structure
	Hierarchical Count-Median Structure
	Hierarchical Constant-Min Structure
	Figure 4.3: Illustration of the Hierarchical Constant-Min Structurebottom sketch argument

	Summary

	Lower Bounds
	Space Lower Bound for Approximate Heavy Hitters
	Space Lower Bound for Frequency Estimation
	Update Lower Bounds
	Summary

	Experiments
	Implementation & Test Details
	Implementation
	Setup
	Table 6.1: Test-machine Specifications.

	Measurements
	Table 6.2: PAPI event descriptions.

	Zipfian Distribution
	Table 6.3: Examples of Zipfian Distribution

	Sketches
	Theoretical bounds
	Figure 6.1: Space usage of the Count-Min Sketch and Count-Median Sketch structures
	Figure 6.2: Precision of the Count-Min Sketch and Count-Median Sketch structures
	Figure 6.3: Update measurements of sketches
	Figure 6.4: Updates per millisecond of the sketches with theoretical bounds
	Figure 6.5: Queries per millisecond of the sketches with theoretical bounds

	Equal Space
	Figure 6.6: Precision of Count-Median Sketch and Count-Min Sketch with equal size
	Figure 6.7: Updates per millisecond of sketches with equal size
	Figure 6.8: Queries per millisecond of sketches with equal size

	Summary

	Heavy Hitters
	Table 6.4: Default parameters for heavy hitters measurements
	Figure 6.9: Update measurements of heavy hitters algorithms
	Figure 6.10: Query measurements of heavy hitters algorithms
	Figure 6.11: Precision measurements of heavy hitters query algorithms
	Count-Min Sketch & Count-Median Sketch
	Table 6.5: Sketch depths of heavy hitters solutions

	Hierarchical Constant-Min Structure
	Cormode and Hadjieleftheriou
	k-ary Hierarchical Structures
	Data Distributions
	Figure 6.12: Updates per millisecond for all heavy hitters solution
	Figure 6.13: Running time for query for all heavy hitters solution

	Space
	Figure 6.14: Space usage of the heavy hitters algorithms

	Summary

	Conclusion
	Future Works

	Glossary
	List of Tables
	List of Figures
	List of Theorems
	Bibliography

