
Hashing and Random Graphs

Jana Kunert
Department of Computer Science, Aarhus University

20085208
feymour@cs.au.dk

Supervisor: Gerth Stølting Brodal
gerth@cs.au.dk

29th April 2014

Abstract

This thesis studies an idea to obtain simpler constant time evaluable hash
functions published by Dietzfelbinger and Woelfel1 in 2003. They came up
with a new way to generate a class of pairs of hash functions and use graph
theory to prove the efficiency and practicability of their hash class.
This thesis explains the idea given by Dietzfelbinger and Woelfel in more
detail than the article. The first part of the thesis describes a Dictionary from
a Data Structure perspective and gives some basic theory about Hashing;
followed by a short presentation of Cuckoo Hashing2, a hashing technique
that Rasmus Pagh and Flemming Rodler came up with in 2001.
The second part will introduce some short, but detailed excerpts of Graph
Theory, and especially Bipartite Graphs.
The third part introduces the class of hash function pairs created by Diet-
zfelbinger and Woelfel and establishes a connection between Cuckoo Hashing
and Random Bipartite Multigraphs. Using this connection and the basics of
Graph Theory introduced in the second part, a more specific subset of Bi-
partite Graphs is examined in more detail and used to prove the efficiency
of the hash class proposed by Dietzfelbinger and Woelfel.
The fourth and final part explains the impact of this hash class on Cuckoo
Hashing. Exchanging Siegel’s hash functions with hash function pairs created
by the class described in the article leads to the same constant time bounds
on operations, but achieves a very small constant.

1Dietzfelbinger, Martin and Woelfel, Philipp: Almost random graphs with simple hash
functions, Symposium on Theory of Computing, ACM 2003

2Cuckoo Hashing, Rasmus Pagh and Friche Rodler, European Symposium on Al-
gorithms, 2001

Contents

1 Introduction 5

2 Cuckoo Hashing as solution to the Dictionary Problem 7
2.1 The Dictionary Problem . 7
2.2 Hashing . 8

2.2.1 d-wise Independent Hash Families 9
2.2.2 AC0 vs TC0 . 10
2.2.3 Space usage . 11

2.3 Cuckoo Hashing . 11
2.3.1 Size . 12
2.3.2 Lookup . 12
2.3.3 Deletion . 12
2.3.4 Insertion . 12
2.3.5 Loops . 13
2.3.6 Re-sizing . 14
2.3.7 Remarks . 14

2.4 Classes of Pairs of Hash Functions 15

3 Excerpts from Graph Theory 16
3.1 Important properties of (undirected) graphs 16
3.2 Important properties of multigraphs 17
3.3 Important properties of bipartite graphs 20

4 Almost Random Graphs with simple Hash functions 21
4.1 A class of hash function pairs 21
4.2 Cuckoo Hashing and Bipartite Graphs 22
4.3 Truly random bipartite subgraphs 23
4.4 The Main Theorem . 25
4.5 Good function pairs . 26
4.6 Proof of the Main Theorem 29

2

5 Cuckoo Hashing without Siegel’s functions 36
5.1 Insertion . 36
5.2 Space usage and efficiency . 39

6 Conclusion 40

A 41
A.1 List of symbols . 42

3

List of Figures

2.1 Closed loop in Cuckoo Hashing 14

4.1 Bipartite Graph picturing Cuckoo Hashing 22
4.2 K(T) . 24
4.3 Split T into T1 and T2 . 28

4

Chapter 1

Introduction

Hashing is a technique that is used in both Cryptography and a lot of Data
Structures. With the amount of data to process getting bigger, efficient stor-
age becomes even more important. Because hash functions are operations
on numbers or bits, it comes natural to analyse them algebraically. What
distinguishes "Almost Random Graphs with simple Hash functions" by Di-
etzfelbinger and Woelfel [7] from other publications on Hash functions is,
that they use Graph Theory to analyse their Hash Function Class. This is
a very interesting idea, that might be usefull in other applications as well.
This thesis will therefore give some more detailed background with excerpts
from both Hash Functions and Graph Theory; and look at Dietzfelbinger
and Woelfels analysis in detail. Hopefully, this will enable some future work
using the same principles, and inspire some more research in between differ-
ent fields in Computer Science.

The main problem discussed in this thesis is the Dictionary Problem. We
will start by defining both the static and the dynamic version of this data
structure, including the time and space bounds that we want to achieve (Sec-
tion 2.1); followed by a short description of some Hash strategies (Section
2.2). We will then continue with an introduction to Cuckoo Hashing [6],
which will be the technique that we are analysing using the hash function
class by Dietzfelbinger and Woelfel. Cuckoo Hashing is easy to explain, but
the analysis uses guarantees on hash functions and probabilities to obtain
amortised constant time for insertions. We will show in the final chapter
that the analysis still holds, but that the structure of the hash function pairs
obtained from the class described by Dietzfelbinger and Woelfel gives better
(still constant) time bounds.

Chapter 3 contains some important excerpts of Graph Theory, and thereby

5

starts to give some fundamentals used in the proof of the efficiency of Di-
etzfelbinger and Woelfels hash function class. We define isomorphism for
labeled multigraphs and count the number of non-isomorphic graphs with
certain properties, to later be able to argue that a Graph G created in a
certain way by hash function pairs from the hash function class given by
Dietzfelbinger and Woelfel is almost random. Also, we will introduce graph
colouring to later bound the probability of subgraphs of G being isomorphic
to some given other graph.

Chapter 4 is the main part of this thesis. It draws a connection between
bipartite graphs and Cuckoo Hashing, and proves in detail, that the hash
function class introduced by Dietzfelbinger and Woelfel is effective.

The final chapter shows how to analyse Cuckoo Hashing with function pairs
of this function class instead of Siegel’s functions [1]. We will see that this
class enables us to choose a very small d, leading to a much smaller con-
stant in the constant time bounds and thus, the article by Dietzfelbinger and
Woelfel does indeed matter. They also provide a short overview on how their
hash function class can get used in shared memory simulations and d-wise
independent hashing without high-degree polynomials. In 2012, they were
joined by Martin Aumüller and used it for Cuckoo Hashing with a Stash [8].

It would be great to see their hash function class used in other problems,
as well as more extensions of their idea.

6

Chapter 2

Cuckoo Hashing as solution to
the Dictionary Problem

2.1 The Dictionary Problem

One of the very basic data structures is the so-called Dictionary: Think of
all possible combinations of the letters of the English alphabet, that are of
length ≤ 10. Only very few of them are actual words, and we want to be
able to check fast, whether a word can be found in an English dictionary.
More general, we define this (static) data structure as follows:

Problem 2.1.1 (Static Dictionary).

Instance A subset S ⊂ U , |S| = n, n ≪ |U |.

Query Given some e ∈ U , is e ∈ S?

When we design such a data structure, we judge it by the following criteria:

(1) small space usage

(2) fast queries

(3) short construction (preprocessing) time

We have some very strict lower bounds on all three factors: A data structure
that contains n different elements, needs at least Ω(n) space (1). A query – as
any operation – cannot be faster than constant time (2). The preprocessing
time spend on building the data structure involves inserting all n elements
and therefore equals at least Ω(n) time (3).

7

Also, we can easily optimise the space usage by ignoring the query time or
vice verse: To only use Θ(n) space, we sort all elements in S by some one-
to-one mapping U → U ′ and place them into an array. Using binary search,
the query time becomes Θ(log n). If we want to optimise the query time, we
can use a table of size |U | and place all elements in S into their positions
computed by some complete sorting function on U .
What we would like to achieve instead is a data structure that (1) supports
constant time queries by (2) only using space linear in n. Furthermore, (3) we
want to make sure that the data structure can be constructed in polynomial
time. A solution that (in theory) both uses little space and provides fast
queries involves Hashing.
To get hold of a fast construction time, we will concentrate on the dynamic
version of the data structure:

Problem 2.1.2 (Dynamic Dictionary).

Instance A subset S ⊂ U , |S| = n, n ≪ |U |. A dictionary containing all
elements of S.

Find Given some e ∈ U , is e ∈ S?

Insert Let S ′ = S ∪ {e}, e ∈ U . Insert e into the dictionary.

Remove Let S ′ = S\{e}. Remove e from the dictionary.

2.2 Hashing

The basic idea of hashing for a data structure purpose is the following: We
have a somewhat small subset S of a big universe U that we want to store
space-efficiently. We choose some function h that maps all elements from the
big set U to elements in a much smaller set [m] = {0, 1, 2, . . . , m − 1}. We
then create a table of size m and for each element in S, we find the element
in [m] that it is mapped into and save it their. Recall our example, where we
look at all combinations of the letters of the English alphabet of length ≤ 10.
We could for instance choose to give each letter a number (“a”=0, “b”=1,
“c”=2 , ..., “z”=25), and let the smaller set [m] be all numbers from 0 to
250. For each word, we add the numbers corresponding to its letters to find
position in [m]. If we want to check whether “dictionary” is part of our
dictionary, we compute the corresponding value

d i c t i o n a r y

3 + 8 + 2 + 19 + 8 + 14 + 13 + 0 + 17 + 24 = 108

8

and check if it placed in position 108 of our table.

Definition 2.2.1 (Hash function). Let U be a universe, let m be a positive
integer m ≪ |U |, and let h be a function h : U → [m] that maps the universe
U into a much smaller image [m]. Then h is called a hash function from U
to [m].

Since the hash set [m] is smaller than the universe U , there must be some
collisions, viz. at least two elements in U , that hash to the same value in [m].
Reusing our example with words in the English language, we find that this
applies to “thing” and “night”. Both words consist of the same letters
and hence, hash to the same table spot.
Given the fact that the Second edition of the 20-volume Oxford English
Dictionary has full entries for more than 170.000 words and our table is of
size m = 251, we can easily see that we need a bigger table to store them
all. Therefore, we need a hash function that hashes to a much bigger set
than [251]. More precisely, we want a hash set that is big enough to contain
each existing word in its own table spot. Eventually, we would like to find
a perfect hash function, that actually hashes all values in our dictionary to
different table spots.

Definition 2.2.2 (Perfect hash function). Let S ⊂ U be a small subset of
U , and let h : U → [m] be a hash function from U to [m]. If |h(S)| = |S|,
then h is called a perfect hash function on S.

2.2.1 d-wise Independent Hash Families

If our dictionary was static, we could just stop here. However, this is usually
not the case. Since the set S (containing all the elements of U that are in the
dictionary) is dynamic, we cannot construct a perfect hash function. Instead,
we want to construct a hash function, that – no matter what S looks like
and how we extend it – is very unlikely to have many collisions on S.
A hash function h : U → [m] must create collisions for at least |U | − m
elements in U , and thus, we are not able to find one hash function to cover all
possible S ⊂ U . Instead, we use probability theory; and decide to randomly
choose some hash function from a family of hash functions, that – for each
possible S – only contains very few ‘bad’ hash functions, i.e. very few hash
functions that do not distribute S almost uniformly. To have some proper
bounds, we want to use a Universal Hash Family.

Definition 2.2.3 (Universal Hash Family). A Family of Hash Functions
H = {h : U → [m]} is called universal, if for a randomly chosen hash

9

function h ∈ H

∀a, b ∈ U : Probh∈H[h(a) = h(b) | a 6= b] ≤
1

m
.

Definition 2.2.4 (d-wise Independent Hash Family). A family of univer-
sal hash functions Hd

m = h : U → [m] is called d-wise independent, if for
each possible subset of d distinct elements in U , x0, x1, . . . , xd−1, a randomly
chosen hash function h ∈ Hd

m, distributes the values h(x0), h(x1), . . . , h(xd−1)
uniformly and independently.
Let y0, y1, . . . , yd−1 be any values in [m].

Probh∈Hd
m

[h(x0) = y0, h(x1) = y1, . . . , h(xd−1) = yd−1]

≥
d−1
∏

i=0

Probh∈Hd
m

[hi(x) = yi] .

Clearly, the greater d is chosen, the less likely collisions become for our
subset S ⊂ U . Unfortunately, most known constructions for d ≥ 3 involve
polynomials of degree less than but close to d [9]. We will take a short look
into Complexity Theory to explain, why this is a problem.

2.2.2 AC0 vs TC0

Complexity Theory classifies problems according to their known complexity,
i.e., how much time in terms of input size it takes us at least, to find the
correct solution to a problem. To compute some lower bound for the com-
plexity of an arbitrary function f , we can look at boolean circuits and try to
find minimum requirements for a circuit, that computes our function f . We
exclusively look at circuits consisting of AND, OR and NOT gates. There
are two types of those classes, NCk and ACk, k ≥ 0, where k is a coefficient
for the size and depth of the circuit. NCk only allows the AND and OR gates
to get applied to two input bits, while ACk allows an unbounded number of
input bits to these gate types. We will use the following simplified definition.

Definition 2.2.5 (AC0). A function f is in AC0, if f(x) can get computed
by a circuit family {C|x|}, where C|x| consists of AND and OR gates with
unbounded input size as well as NOT gates; it has size poly(|x|) = |x|O(1)

and constant depth.

We would like our hash functions to be in AC0, because a circuit with con-
stant depth can get computed it in constant time. Addition, Subtraction and

10

Division are in AC0, but Multiplication is shown to be at least in TC1, and
thus, for an input x needs a circuit of depth O(log |x|).

Definition 2.2.6. A function f is in TC1, if f(x) can get computed by a
circuit family {C|x|}, where C|x| consists of AND and OR gates with input
size 2 as well as NOT gates; it has size poly(|x|) and depth O(log |x|).

That means, that the time for the computation of a multiplication is logar-
ithmic in terms of the input size and not constant. Thus, if our hash func-
tion h is a high degree polynomial, computation consists of many multiplic-
ations and h becomes very slow. If we want our dictionary to be practicable,
we have to aim at finding faster solutions.

2.2.3 Space usage

Another problem with hash functions is that we need space to store them.
The easiest way of computing a perfect hash function for S ⊂ U is to store
a hash table of size |S|. For dynamic dictionaries, a hash function must be
defined on all elements of U , and hence, there is no point in storing it as a
hash table since the table would need to have size |U | and thus, there would
not be any point in hashing. If we use a polynomial of size d,

h(x) =
((

a0x
d + a1x

d−1 + . . . + ad−1x + ad

)

mod m
)

,

we need to store all chosen coefficients a0, . . . , ad. This means that not only do
we have to deal with the multiplication problem, but the better a guarantee
we want that the keys are hashed somewhat uniformly, the more space we
use, if we stick to d-wise independent hash families, as we already established
that the known constructions involve polynomials of a degree close to d.

2.3 Cuckoo Hashing

In 2001, Rasmus Pagh and Flemming Friche Rodler [6] came up with a new
approach to build a dictionary, the so-called Cuckoo Hashing. Compared
with a simple hash table, they double the size of the data structure and keep
two tables t1, t2 in order to reduce the number of collisions radically. This
is done by choosing two hash function h1 and h2, and keeping the following
invariant:

Invariant 2.3.1 (Cuckoo Hashing). If an element x is in the dictionary, we
find it either on position h1(x) in table t1 or on position h2(x) in table t2

(but never both).

11

The query time therefore is constant (in theory). In practice, the problem
described in Section 2.2.2 applies here as well: Multiplication is not in AC-0
and hence, if we want to be able to query in constant time, we need hash
functions where the amount of multiplications does not relate to the size of
the data set, nor the size of the data structure (dictionary).

2.3.1 Size

Pagh and Rodler [6] show that it is reasonable to chose the size of each table
to be r ≥ (1 + ε)n for n being the size of the set S ⊂ U and some constant
ε > 0, such that each table becomes a little less than half-full. Therefore,
the whole dictionary uses 2(1+ε)n = O(n(1+ε)) space and Cuckoo Hashing
fulfills our requirement of using linear space.

2.3.2 Lookup

If we want to know whether some word x is in the dictionary, we have to
look it up in the data structure. Invariant 2.3.1 ensures, that we always
can answer such a lookup in constant time: We have to look at the possible
position of x in the first table t1, h1(x), and the possible position of x in the
second table t2, h2(x) and return true, if we find x in one of them:

return (t1[h1(x)] = x) ∧ (t2[h2(x)] = x)

If x is not found in one of these two table entries, the invariant ensures, that
it is not in the dictionary.

2.3.3 Deletion

To delete an element x from the dictionary, we have to find it first, and then
delete it. Once again, we can find out whether x is in the dictionary, and if
so, where it is by only looking into the two possible positions t1[h1(x)] and
t2[h2(x)]. If we find x in one of these two table entries, we simply delete
it from there. Since this does not effect the other elements (words) in the
dictionary, there is no cleanup to be done.

2.3.4 Insertion

The crucial operation in a dictionary based on Cuckoo Hashing is insertion.
Invariant 2.3.1 gives us exactly two possible cells for the insertion of a new
element x, namely t1[h1(x)] and t2[h2(x)]. For the purpose of simplicity in

12

the description, we will always insert a new element x into the first table t1.
In general, we could also choose to always insert into the second table or
alternating insert into the two tables. For the analysis, this makes no differ-
ence.
The insertion process gives this technique the name. If t1[h1(x)] is empty,
we just insert x and are done – but if t1[h1(x)] already contains another
element xi, xi gets thrown out and is now ‘nest-less’. We need to move it
into it’s other possible cell, t2[h2(xi)]. If t2[h2(xi)] already contains another
element xj, xj gets thrown out and becomes the next ‘nest-less’ element. We
need to insert it into t1[h1(xj)], and the element already placed in this cell1

gets thrown out and is now the ‘nest-less’ element. This continues until we
can place an element into an empty cell – or until we reached a maximum
number of insertion tries, MaxLoop. If this happens, we choose two new hash
functions and rebuild the whole data structure.

2.3.5 Loops

When the insertion of an element takes too much time, we might have en-
countered a closed loop. Therefore, we rebuild the data structure with two
new hash functions.

Definition 2.3.2 (Closed loop). Let h1, h2 : U → [m] be two hash functions
chosen to build the dictionary, and let S ′ ⊆ S be a subset of elements in S
that are already in the dictionary. Let x be the next element that we want
to insert.
If the sum over the number of hash values h1(S

′) and h2(S
′) equals the total

number of elements in S ′, and if h1(x) ∈ h1(S
′) and h2(x) ∈ h2(S

′) i.e.

|h1(S
′ ∪ {x})| + |h2(S

′ ∪ {x})| < |S ′ ∪ {x}| ,

then we are trying to fit |S ′| + 1 elements into |S ′| cells. Inserting x will lead
us into a closed loop, where we continue to hustle elements forward in a circle
– and the insert operation will never end.

For a small example of this, look at Figure 2.1.
To prevent this infinite loop, we stop the insertion after MaxLoop iterations.
Pagh and Rodler show, that by choosing MaxLoop to be ⌈3 log1+ε n⌉, the
total expected time for a rehash is O(n), and thus, for any insertion, the
expected time for rehash is amortised constant.

1We always insert new elements into the first table. If we find xj in the second table,
it must have been thrown out of its cell in the first table and hence, there must be an
element in t1[h1(xj)].

13

Figure 2.1: Closed loop, a simple example: x, y and z hash to the same table
spots in both tables t1 and t2. When we insert z (a), x becomes nest-less and
throws y out of table 2 (b). Afterwards, y throws z out of table t1 again (c),
and so on.

2.3.6 Re-sizing

If the dictionary is suddenly extended by many new words, or is reduced by
some high fraction, the data structure needs to get re-sized to still fulfill our
requirement of using linear space. This can be done in expected amortised
constant time, for instance with a construction given by Dietzfelbinger et
al. [3].

2.3.7 Remarks

In practice, using two hash functions instead of one means, that we need the
double amount of random bits. But true random bits are expensive2, and
thus we want to use as few as possible. Furthermore, good random functions
are slow3 or need a lot of space. We want to improve on this.

2Not quite anymore, as Intel added a CPU random call to their Ivy Bridge processor
line. It cannot be used for Cryptographic purpose as it is suspected to be a backdoor trap
from the NSA, but still, the idea behind the architecture might open up for some future
development.

3Even Siegel’s constant time evaluable construction [1], that is used by Pagh and
Rodler, uses a huge amount of time due to the very big constant.

14

2.4 Classes of Pairs of Hash Functions

In 2003, Martin Dietzfelbinger and Philip Woelfel [7] came up with a way
to construct a class of pairs of hash functions. Their (simple) construction
leads to hash functions with a small constant evaluating time – unlike Siegels
construction [1] with a huge constant. The analysis is done by comparison
to random bipartite graphs. We will start by looking at some properties of
random bipartite graphs and then show how they relate to Cuckoo Hashing.
Afterwards, we will look at Dietzfelbinger and Woelfel’s construction of a
class of pairs of hash functions and use the analogy to bipartite graphs to
show that the probability of those functions not acting randomly is very
small, as is the probability that those functions do not correspond to graphs
with the wanted properties.

15

Chapter 3

Excerpts from Graph Theory

Dietzfelbinger and Woelfel use properties of random graphs to prove the
effectiveness of their hash function family. Thus, we need to take a closer
look at some small excerpts from Graph Theory. We will only use undirected
graphs, and thus, when using the word graph, we implicitly mean undirected
graph.

3.1 Important properties of (undirected) graphs

An (undirected) graph G has two properties, that are going to be useful
for our analysis: The expected length of the longest path starting in an
arbitrary vertex and the maximal expected cyclomatic number of a connected
component in G.

Definition 3.1.1 (Length of a path in G). The length of a path p in G is
the total number of edges on p.

Definition 3.1.2 (Cyclomatic number). Let G = (V, E) be a connected
graph, and let T ⊆ E be an arbitrary spanning tree of G. The cyclomatic
number of G is |E| − |T |, the number of edges of G not in T .

Lemma 3.1.3. The cyclomatic number of an (undirected) connected graph
G = (V, E) equals |E| − |V | + 1.

Proof. Since a spanning tree on V vertices has |V | − 1 edges, the cyclomatic
number of a connected graph with |E| edges on |V | vertices is defined to be

edges in G − # edges in spanning tree = |E| − (|V | − 1)

= |E| − |V | + 1 .

16

Furthermore, we are going to need a definition of when two graphs are iso-
morphic, as we want to count graphs. We are working with labeled graphs,
and thus, our definition of isomorphism will include the labels.

Definition 3.1.4. Let H = (VH , EH) and H ′ = (VH′ , EH′) be two graphs
labeled with elements from some set S ⊆ U , EH and EH′ being multisets. We
call H and H ′ isomorphic if and only if there exist two bijections σ : VH → VH′

and τ : EH → EH′ such that for all e ∈ EH connecting u, v ∈ VH , τ(e) ∈ EH′

has the same label as e ∈ EH and connects σ(u), σ(v) ∈ VH′ .

3.2 Important properties of multigraphs

Definition 3.2.1. The degree of a vertex v describes the number of edges
incident to v.

We use the degree to classify the edges in G to be able to count non-
isomorphic undirected multigraphs.

leaf edge An edge is called a leaf edge, if it has an endpoint with degree 1.

inner edge An edge is called an inner edge, if it is not a leaf edge.

cycle edge An edge is called a cycle edge, if it lies on a cycle.

We define two numbers N(k, l, q) and N∗(k, p) that we will use to find an
upper bound on the probability that a random bipartite graph is isomorphic
to a connected graph with a given cyclomatic number.

Definition 3.2.2 (N(k, l, q)). Let N(k, l, p) be the number of non-isomorphic
connected graphs on k edges, whose cyclomatic number is q and which have
l leaf edges.

Definition 3.2.3 (N∗(k, p)). Let N∗(k, p) be the number of non-isomorphic
connected graphs on k edges, of which p edges are either cycle or leaf edges.

First of all, we need an upper bound on the number of non-isomorphic graphs
with a given cyclomatic number. Lemma 3.2.4 is used to prove Lemma 3.2.5
and Lemma 3.2.6, both of which are going to be needed to examine the
hash function family given by Dietzfelbinger and Woelfel. All three lemmas
are given by them [7], as Lemma 2a-c. Down below, the proofs are slightly
extended.

Lemma 3.2.4. N(k, l, 0) ≤ k2l−4 .

Proof. All connected graphs G with cyclomatic number 0 are trees.

17

Let Gi be a subtree of G with i leaf edges. To construct any tree consisting
of k edges with l ≥ 2 leaf edges (and thus, k − l inner edges), we start
by choosing a path G2 of length k2 ∈ [2, k − (l − 2)]. For i = 3, 4, . . . , l,
we can construct Gi by adding a new path of length ki to Gi−1, such that
k2 + k3 + . . . + ki ≤ k − (l − i), starting in an arbitrary (non-leaf) vertex
in Gi−1. As long as k2 + k3 + . . . + ki ≤ k − (l − i), there are at least l − i
edges left that can get added, and thus, we are able to add all remaining leaf
edges (and possibly some inner edges as well). The length of the last path is
determined by kl = k − (k2 + k3 + . . . + kl−1).
In each of the l−2 transitions from Gi−1 to Gi, there are ≤ k possible starting
points for the new path, as there are < k edges in any Gi−1. Moreover,
because there are k edges in total, each ki can only be chosen in [1, k[and
thus, there are < k possible choices for each of the l−2 numbers ki. Therefore,
the total number of non-isomorphic trees on k edges is bounded as stated
above:

N(k, l, 0) ≤ kl−2 · kl−2 = k2(l−2)

= k2l−4 .

Lemma 3.2.5. N(k, l, q) = kO(l+q) .

Proof. Lemma 3.2.4 shows that this holds for q = 0:

k2l−4 = kO(l) = kO(l+q) .

For q > 0, by our definition of the cyclomatic number, we can iteratively
remove q cycle edges such that only a spanning tree is left. Every time we
remove a cycle edge, we might – but do not necessarily – convert two inner
edges to leaf edges. Thus, the spanning tree will have l′ leaf edges,

l ≤ l′ ≤ l + 2q ,

and the number of the possible spanning trees is N(k − q, l′, 0).
Each of the removed cycle edges has less than k2 possibilities for its two
endpoints and therefore, we can estimate N(k, l, q) as follows:

N(k, l, q) ≤ (k2)q · N(k − q, l′, 0)

≤ k2q · (k − q)2l′−4

≤ k2q · (k − q)2(l+2q)−4

= kO(k+q) .

18

Lemma 3.2.6. N∗(k, p) = kO(p) .

Proof. For simplicity, we will use the following number in our proof.

N∗(k, p, q) the number of non-isomorphic connected graphs on k edges whose
cyclomatic number is q and which have p edges that are either cycle
edges or leaf edges.

By reducing our analysis to graphs with a certain cyclomatic number, it
becomes much simpler. We will conclude the proof by summing over all
N∗(k, p, q) for 0 ≤ q ≤ p to find a bound on N∗(k, p).
For q = 0, the graphs are trees and thus, do not contain any cycle edges.
Therefore, they contain p leaf edges and according to Lemma 3.2.4

N∗(k, p, 0) = N(k, p, 0) ≤ k2p−4 .

For q > 0, we can use the same technique as in the proof of Lemma 3.2.5:
We can remove q cycle edges such that only a spanning tree T is left, that
consists of k − q edges. When a cycle edge e is removed, there is once again
the possibility, that we convert one or two edges to leaf edges. But this
can only happen for edges that lie on the cycle that we are splitting up,
and hence, such edges are cycle edges that now get converted to leaf edges.
Therefore, the number of leaf edges in T must be bounded by ≤ (p − q), as
p is the number of edges in G that are either leaf edges or cycle edges and q
is the number of cycle edges that have been removed from G to obtain T .
There are N∗(k − q, p − q, 0) possible spanning trees T on k − q edges with
p − q leaf edges.
Each of the removed cycle edges has less than k2 possibilities for its two
endpoints and therefore, we can estimate N∗(k, p, q) as follows:

N∗(k, p, q) ≤ k2q · N∗(k − q, p − q, 0)

= k2q · N(k − q, p − q, 0)

≤ k2q · (k, q)2(p−q)−4 < k2q+2(p−q)−4

= k2p−4 .

Now we sum up over all N∗(k, p, q) for 0 ≤ q ≤ p, as the cyclomatic number
cannot exceed the number of cycle edges.

N∗(k, p) =
p
∑

q=0

N∗(k, p, q)

≤ p · k2p−4 .

19

As the number of cycle edges cannot exceed the total number of edges, we
can bound N∗(k, p) by

p · k2p−4 ≤ k · k2p−4 = k2p−3 = kO(p) .

3.3 Important properties of bipartite graphs

If the vertices of a graph G = (U ∪ V, E) can get parted into two disjoint
sets U and V , such that the every edge e ∈ E has one end points in U and
the other end point in V , G is called a bipartite graph.

Definition 3.3.1 (k-colourable). A graph G = (V, E) is k-colourable, if
there exists a function f : V → [k], that assigns a colour 0, 1, . . . , k − 1 to
each vertex v ∈ V , such that for each edge (u, v) ∈ E, the two endpoints are
coloured differently, f(u) 6= f(v).

Lemma 3.3.2. Every bipartite graph is 2-colourable.

Proof. The vertices U ∪ V in a bipartite graph G can get split into two sets
U and V in such a way, that each edge has one end point in U and one end
point in V . If we colour all vertices u ∈ U with 0 and all vertices v ∈ V with
1, all vertices in G are coloured and for each edge (u, v), the two endpoints
have different colours.

Lemma 3.3.3. There are exactly two 2-colourings for a connected bipartite
graph.

Proof. There are at least two 2-colourings for a connected bipartite graph
G = (U ∪ V, E) with E ⊆ U × V : Either all vertices u ∈ U are coloured with
0 and all vertices v ∈ V are coloured with 1 – or vice verse.
Assume for contradiction, that there exists a third colouring f : U, V → [2].
For f to be different from the first two colourings, either U or V must contain
nodes of both colours. Assume without loss of generality that there exists a
vertex u0 ∈ U that has a colour different from all other vertices in U . G is
connected and thus, there exists a path from u0 to each other vertex in U ,
for instance u1, f(u0) 6= f(u1). Because G is bipartite, each second vertex
on the path from u0 to u1 lies in V and thus, the length of the path is even.
For c to be a valid 2-colouring, the vertices on the path from u0 to u1 must
be coloured alternating, and therefore, f(u0) must equal f(u1), which is a
contradiction.

20

Chapter 4

Almost Random Graphs with
simple Hash functions

Now that we have established both basic Hash Functions and some important
properties of Bipartite Graphs, we can look at the hash function class defined
by Martin Dietzfelbinger and Phillipp Woelfel and show how we can use
Graph Theory to prove its efficiency.

4.1 A class of hash function pairs

Dietzfelbinger and Woelfel chose not to create a new class of hash functions,
but a class of pairs of hash functions, R̂d

r,m. It is defined as follows:

Definition 4.1.1. Let d ≥ 2 and r, m ∈ N. For f ∈ Hd
m, g ∈ Hd

r , and
z = (z0, z1, . . . , zr−1) ∈ [m]r the hash function hf,g,z : U → [m] is defined by

x →
(

f(x) + zg(x)

)

(mod m).

Definition 4.1.2. The hash class Rd
r,m is the family of all functions hf,g,z.

Definition 4.1.3. The family R̂d
r,m consists of all hash function pairs (h1, h2),

where hi = hfi,g,z(i) with f1, f2 ∈ Hd
m, g ∈ Hd

r and z(1), z(2) ∈ [m]r.

The idea of a hash function class very much alike R̂d
r,m was already examined

by Dietzfelbinger and Meyer auf der Heide [2], and appears again in different
work [4], [5]. Previous analysis had never looked on the behaviour of the
functions on a given key set S, but concentrated on the use of single functions
from Rd

r,m. The article from 2003 however, uses graph theory to examine

the behaviour when using function pairs from R̂d
r,m for Cuckoo Hashing. To

introduce their main theorem, we need to draw a connection between Cuckoo
Hashing and Bipartite Graphs.

21

x h1(x) h2(x)

a 2 2
b 2 5
c 1 3
d 5 0

Figure 4.1: Simple example of a graph G(S, h1, h2) with S = {a, b, c, d} and

m =
(

1 + 1
4

)

n.

4.2 Cuckoo Hashing and Bipartite Graphs

Look at the following scenario: Assume a set S of n keys from a universe
U and some range [m], m ≪ |U |. Choose two hash functions h1, h2 : U →
[m] at random (according to some distribution1). We look at the bipartite
multigraph on the vertices V ⊎ W with V = [m] and W = [m] and assume
that m ≥ (1 + ε)n for some ε > 0. For each x ∈ S, we add an edge between
h1(x) in V and h2(x) in W .

Definition 4.2.1 (G(S, h1, h2)). Let S ⊆ U be a subset of a universe U ,
and let h1, h2 : U → [m] be two hash functions chosen at random that
hash all elements in U into [m]. Furthermore, let V and W be two inde-
pendent sets of vertices, labeled with the numbers 0, 1, . . . , m − 1, and let
E = {(h1(x)V , h2(x)W) | x ∈ S} be a set of (undirected) edges from V to W .
Then we define the bipartite graph (V ⊕ W, E) as G(S, h1, h2).

For a simple example, see Figure 4.1.
We are particularly interested in graphs with

(a) the expected length of the longest path bounded by a constant and

1In the context of randomised algorithms we usually work with some kind of limited
randomness instead of assuming complete randomness and hence, we cannot use the tools
known from the theory of random graphs. We choose the hash functions from univer-
sal hash classes and use functions that have a moderate representation size and a small
evaluation time.

22

(b) the cyclomatic number of each connected component bounded by 1.

Why these two properties are of importance becomes clear, when we map the
set S and the hash functions h1, h2 onto Cuckoo Hashing instead. Let S be
the set of elements we want to insert into the dictionary, and let h1 and h2 be
the hash functions that we are using. Now the length of the longest path in
graph G starting in vertex x becomes the maximum number of nestless keys
during the insertion of x into the dictionary2. Thus, the expected length of
the longest path starting in an arbitrary vertex gives an (expected) upper
bound on the insertion for each elements in S. If this number is bounded by
a constant, the expected insertion time is constant as well.
If we map Cuckoo Hashing onto G, a the set of vertices V ′ in a connected
component in G corresponds to a subset of table entries, while the set of
edges corresponds to the subset S ′ ⊆ S that hashes into the subset of table
entries V ′. As stated in Section 2.3.5, we cannot build the data structure if
we try to fit |S ′| elements into less than |S ′| cells. However, this will only be
the case if the cyclomatic number of the subgraph (V ′, S ′) is greater than 1.
For h1, h2 to be a successful hash pair, we need the graph G(S, h1, h2) to only
have connected components with cyclomatic number ≤ 1.

4.3 Truly random bipartite subgraphs

To be able to analyse the bipartite graphs created by function pairs from the
hash class in the main theorem in the next section, we will need some more in-
formation on the behaviour of truly random connected bipartite (sub)graphs.
This is due to the later shown fact that if G(S, h1, h2) is created using a hash
function pair (h1, h2) ∈ R̂d

r,m, then it will contain a lot of truly random
subgraphs.

Definition 4.3.1 (K(T)). We construct a graph G(S, h1, h2) using two hash
functions h1, h2 : U → [m] and a set S ⊆ U . Let each edge (h1(x), h2(x))
in G(S, h1, h2) be labeled with the element x ∈ S. We define K(T) to be a
subgraph of G, containing only the edges T ⊆ S, and disregarding all vertices
with degree 0.

See Figure 4.2 for an example.

Definition 4.3.2 (Special edge in K(T)). An edge (h1(x), h2(x)) in K(T)
is called special if there exists some other key x′ ∈ T , x′ 6= x, such that
g(x) = g(x′).

2i.e. the number of times that a hash function is used in worst case, to insert x

23

Figure 4.2: G(S, h1, h2) shown in Figure 4.1 (left) and the corresponding
K(T) for T = {a, b} (right)

Recall definition 3.1.4 that defines when two graphs are isomorphic.

Lemma 4.3.3. Let T ⊆ U and let H = (VH , EH) be a bipartite, connected
graph, where each edge is labeled with a unique element in T . If the values
for h1(x), h2(x), h1, h2 : U → [m] are chosen fully randomly for all x ∈ T ,
then

Prob[K(T) is isomorphic to H] ≤ 2 · m−|EH |−q−1 ,

where q is the cyclomatic number of H.

Proof. Let deg(v) be the degree of vertex v. If K(T) is isomorphic to H, the
following must apply to all vertices v ∈ VH : For all edges e0, e1, . . . , edeg(v)−1 ∈
EH adjacent to v, either h1(e0) = h1(e1) = . . . = h1(edeg(v)−1) or h2(e0) =
h2(e1) = . . . = h2(edeg(v)−1).
Because H is a connected bipartite graph, we can colour it with two colours
i = {1, 2} (Lemma 3.3.2). Furthermore, H can only get coloured in two
different ways (Lemma 3.3.3(1)).
The probability that K(T) is isomorphic to H is bounded by the prob-
ability that there exists a 2-colouring of H such that for each vertex v ∈
VH the following is true: If v has colour i and v is incident to the edges
e0, e1, . . . , edeg(v)−1 ∈ S, then hi(e0) = hi(e1) = . . . = hi(edeg(v)−1). Let this
event for one vertex v be defined as A(v).

24

All random values hi(x) are chosen independently and thus,

Prob[A(v)] =
1

mdeg(v)−1

Prob[∀v ∈ VH : A(v)] =
∏

v∈VH

1

mdeg(v)−1
(2)

Combining (1) and (2) we get that the probability that H is isomorphic to
K(T) is at most

2 ·
∏

v∈VH

1

mdeg(v)−1
= 2 ·

1

m
∑

v∈VH
deg(v)−|VH |

= 2 · m
|VH |−

∑

v∈VH
deg(v)

= 2 · m|VH |−2|EH | .

Lemma 3.1.3 tells us that the cyclomatic number equals the following sum:

q = |EH | − |VH | + 1 ⇔ |VH | = |EH | − q + 1

and thus, the probability that H is isomorphic to K(T) is at most

2 · m|VH |−2|EH | = 2 · m|VH |−|EH |−q+1

as stated.

4.4 The Main Theorem

Dietzfelbinger and Woelfel show that there exist function pairs in their hash
function class R̂d

r,m that meet our criteria from Section 4.2 and furthermore,
that it is very likely that we choose such a function pair if we choose some
function pair from this class at random.

Theorem 4.4.1. Let ε > 0 and l ≥ 1 be fixed and let m = m(n) = (1 + ε)n.
For any set S ⊆ U , |S| = n, there exists a set R(S) of ‘good’ hash function
pairs in R̂2l

r,m, such that for randomly chosen (h1, h2) ∈ R̂2l
r,m the following

holds.

(a) Prob[(h1, h2) ∈ R(S)] ≥ 1 − n
rl .

(b) For every constant q ≥ 2 the probability that (h1, h2) ∈ R(S) and that
there is a connected subgraph of G(S, h1, h2) whose cyclomatic number is
at least q, is O (n1−q).

(c) For every key x ∈ S, the probability that (h1, h2) ∈ R(S) and that in the
graph obtained from G(S, h1, h2) by removing the edge (h1(x), h2(x)) the
vertex h1(x) is the endpoint of a simple path of length t, is bounded by
(1 + ε)−t.

25

4.5 Good function pairs

Looking at the hash function pair class R̂d
r,m, we will now further identify,

what a good hash function pair is. Recall that each function pair consists
of h1 = h

f1,g,z
(1)

g(x)

and h2 = h
f2,g,z

(2)

g(x)

, determined by the d-wise independent

hash functions f1, f2, g and the random offset vectors z
(1)
g(x) and z

(2)
g(x). In the

Main Theorem 4.4.1, we stated that there exists some subset of the hash
function pairs in R̂d

r,m, R(S), as the set of good hash function pairs for S.
We now define this set.

Definition 4.5.1 (R∗(T)). Let S ⊆ U . For T ⊆ S, the set R∗(T) consists
of those hash function pairs (h1, h2), whose g function satisfies

|g(T)| ≥ |T | − l ,

i.e. the image of T created by g is of size ≥ |T | − l and thus, for a reasonable
l, g distributes T rather well.

Definition 4.5.2 (l-bad). The graph G = G(S, h1, h2) is called l-bad if there
exists a subset T ⊆ S such that K(T) is connected and the hash function
pair (h1, h2) is not in R∗(T).

Definition 4.5.3 (R(S)). The set R(S) ∈ R̂2l
r,m contains those hash function

pairs (h1, h2) for which the graph G(S, h1, h2) is not l-bad.

In the next theorem, we analyse the properties of R∗(T) further. It is import-
ant for us, that we can show that each connected component in G(S, h1, h2)
is practically random if we choose the hash function pair (h1, h2) randomly
from R∗(T) ∩ R(S), such that we can use Lemma 4.3.3. Furthermore, we
want to make sure that if a function pair (h1, h2) is chosen from R(S), then
(h1, h2) lies in R∗(T) for all T ⊆ S that are contained in a connected com-
ponent of G(S, h1, h2). If a hash function pair lies in R∗(T) ∩ (R̂2l

r,m − R(S)),
we do not know how it behaves. However, this set will be proven to be very
small when we prove part (a) of the Main Theorem 4.4.1.
For now, we want to prove that a subgraph K(T) is a random subgraph if
the hash function pair (h1, h2) is chosen from R∗(T); and that this will be the
case if (h1, h2) is chosen from R(S) and K(T) lies in a connected component
in G(S, h1, h2).

Theorem 4.5.4. Let ε > 0 and l ≥ 1 be fixed, let m = (1+ε)n, and consider
some S ⊆ U , |S| = n. Use Definition 4.5.3 for R(S). We claim that for each
subset T ⊆ S R∗(T) has the following two properties:

(1) If (h1, h2) ∈ R(S) and K(T) is a subgraph of one connected component
in G(S, h1, h2), then (h1, h2) ∈ R∗(T).

26

(2) If (h1, h2) is chosen at random from R∗(T), then the image pair (h1(x), h2(x))
is uniformly and independently distributed in [m]2 for x ∈ T .

Proof. (1) Let (h1, h2) ∈ R(S) and let K(T) be contained in a connected
component K ′ in G, containing all elements from some set T ′ ⊆ S such
that T ⊆ T ′.

Suppose for contradiction, that (h1, h2) /∈ R∗(T), which means that
|g(T)| < |T | − l. If |g(T)| < |T | − l, then |g(T ′)| < |T ′| − l as well,
as the image of T ′\T cannot be bigger than T ′\T , i.e. |g(T ′)| − |g(T)|
must be less than or equal |T ′| − |T |. Therefore, T ′ ⊆ S is a set for
which K(T ′) is connected in G(S, h1, h2), but (h1, h2) is not in R∗ by our
assumption.

Per Definition 4.5.2 this means that G(S, h1, h2) is l-bad and thus, the
hash function pair (h1, h2) cannot be in R(S), which is a contradiction
and proves part (1) of the theorem.

(2) Let (h1, h2) be chosen at random from R∗(T), i.e. |g(T)| = |T | − l′ for
some l′ ≤ l. We fix g and pick |T | − l′ keys from T such that they all
hash into different values and call this set T1, |T1| = |g(T1)| = |T | − l′.

T = T1 ∪ T2 with |T1| = |g(T1)| = |T | − l′

|T2| = l′ ≥ |g(T2)| .

The remaining l′ values, that we will call T2, hash into ≤ l′ of the values
already covered by T1.

g(T2) ⊆ g(T1)

Let T ′
1 ⊆ T1 be the subset of T1 that hashes into the same ≤ l′ values as

T2 (see Figure 4.3).
T ′

1 ⊆ T1 : g(T ′
1) = g(T2)

All elements in T1 hash into different values, and thus, |T ′
1| = |g(T2)| ≤ l′.

Therefore, we can give the following upper bound on the size of T ′
1 ∪ T2:

|T ′
1 ∪ T2| ≤ |T ′

1| + |T2| ≤ 2l′ ≤ 2l

We fix the offsets z
(1)
i and z

(2)
i randomly for all i ∈ g(T2). Recall that f1

and f2 are both 2l-independent, and thus,

h1(x) =
(

f1(x) + z
(1)
g(x)

)

(mod m) and h2(x) =
(

f2(x) + z
(2)
g(x)

)

(mod m)

are distributed independently and uniformly in [m] for all x ∈ T ′
1 ∪ T2.

This leaves us with g(T1 − T ′
1). Because of our definition of T ′

1

g(T1 − T ′
1) ∩ g(T ′

1 ∪ T2) = ∅

27

Figure 4.3: T is divided into T1 and T2, where each value in T1 hashes to
a different value in g(T) and g(T1) = g(T). T ′

1 ⊆ T1 is the subset of T , for
which g(T ′

1) = g(T2), i.e. that contains all the elements in T1 that hash into
the same values as the elements in T2.

but |g(T1)| = |T1|, and thus, the offsets z
(1)
i and z

(2)
i can get chosen for all

i ∈ g(T1 −T ′
1) independently of each other, but also independently of the

(now already chosen) z-values for i ∈ g(T ′
1). This implies that the hash

values h1(x) and h2(x) for x ∈ T1 −T ′
1 are distributed independently and

uniformly, as well as independently from the values for x ∈ T ′
1 ∪ T2.

We have now established that the connected components in G(S, h1, h2) are
fully random if we choose (h1, h2) from R(S). Now we want to set an upper
bound on the number of cycle and leaf edges in a graph K(T), such that
we can use N(k, l, q) to count the possible number of graphs K(T) with
edges T ∈ S and compute the probability for subgraph to have a cyclomatic
number ≥ 2.
Recall the definition of a special edge in K (Definition 4.3.2).

Lemma 4.5.5. If G = G(S, h1, h2) is l-bad, then there exists a subset T ⊆ S
such that |g(T) = |T |− l, K(T) is connected and the total number of leaf and
cycle edges in K(T) is at most 2l.

Proof. G is l-bad and thus, we can find some set T ⊆ S such that K(T)
is connected and |g(T)| < |T | − l. We start deleting keys from T and the
corresponding edges from K(T), while the new set T ′ ⊆ T does not break
the following two conditions: K(T ′) still connected and |g(T ′)| ≤ |T ′| − l.

28

When this process stops, all cycle and leaf edges in K(T ′) are special edges
in K(T), because removing non-special edges will always reduce both |g(T ′)|
and |T ′| and thus be possible, unless we are about to remove an inner non-
cycle edge, which would split the graph into two. Removing a special edge
however will reduce the size of T ′ by one while |g(T ′)| stays the same and
therefore, removing special edges will only be possible until

|g(T ′)| = |T ′| − l .

When this status quo is reached, no more special cycle or leaf edges can get
removed. If |g(T ′)| = |T ′| − l, then we can split T ′ into T ′′ and T ′ − T ′′,
such that the elements in T ′ − T ′′ hash to |T ′| − l different values and all l
elements in T ′′ hash into values already covered by g(T ′ − T ′′). The edges
corresponding to the keys in T ′′ and the keys in T ′ that are hashed into g(T ′′)
must be the ones that are special, and there are at most |T ′′| + l of them.

|T ′′| ≤ l ⇒ #special edges ≤ 2l .

Since all leafs and cycle edges in T ′ are special, there are at most 2l cycle
and leaf edges in K(T ′) and |g(T ′)| = |T ′| − l.

4.6 Proof of the Main Theorem

We are now able to prove the Main Theorem.

Theorem 4.4.1. Let ε > 0 and l ≥ 1 be fixed and let m = m(n) = (1 + ε)n.
For any set S ⊆ U , |S| = n, there exists a set R(S) of ‘good’ hash function
pairs in R̂2l

r,m, such that for randomly chosen (h1, h2) ∈ R̂2l
r,m the following

holds.

(a) Prob[(h1, h2) ∈ R(S)] ≥ 1 − n
rl .

(b) For every constant q ≥ 2 the probability that (h1, h2) ∈ R(S) and that
there is a connected subgraph of G(S, h1, h2) whose cyclomatic number is
at least q, is O (n1−q).

(c) For every key x ∈ S, the probability that (h1, h2) ∈ R(S) and that in the
graph obtained from G(S, h1, h2) by removing the edge (h1(x), h2(x)) the
vertex h1(x) is the endpoint of a simple path of length t, is bounded by
(1 + ε)−t.

Proof. (a) Let each edge (h1(x), h2(x)) in G = G(S, h1, h2) be labeled with x.
Recall that for (h1, h2) to be in R(S), G may not be l-bad. We are going

29

to find an upper bound on the probability that G is l-bad, to compute a
lower bound on the probability that G(S, h1, h2) ∈ R(S).

But if G was l-bad, then from lemma 4.5.5 we know that there exists
some subset T ⊆ S such that |g(T)| = |T |− l and K(T) contains at most
2l leaf and cycle edges. Let k be the number of elements in T .

Furthermore, let H be a connected bipartite graph with k edges, each
marked with a different element from T , and let H have at most 2l leaf
and cycle edges. We define the following two events:

L(K(T)) |g(T)| = |T | − l

IK(T)(H) K(T) is isomorphic to H

We want to bound the probability that both events occur, i.e.

Prob[IK(T)(H) ∧ L(K(T))]

If L(K(T) occurs, then T can be partitioned into to two disjoint subsets
T1 and T2, |T1| = |T | − l, such that every element in T1 is hashed into a
different element by g,

|T1| = |g(T1)| = |T | − l

and all elements in T2 are hashed into values already covers by T1,

g(T2) ⊆ g(T1).

(Recall Figure 4.3.)

Let T ′
1 ⊆ T1 be the subset of T1 that is mapped into the same values as

T2,
g(T ′

1) = g(T2).

Because all elements in T1 hash into different values, the size of T ′
1 must

be bounded by the size of T2.

|T ′
1| = |g(T ′

1) = |g(T2)| ≤ |T2| = l

Recall that T contains k elements, and thus, there are ≤ k2l possibilities
to choose T2 and T ′

1 from T . We want to bound the probability that
g(T ′

1) = g(T2) and |g(T ′
1)| = |T ′

1|.

Prob[g(T ′
1) = g(T2) ∧ |g(T ′

1)| = |T ′
1|]

= Prob[g(T ′
1) = g(T2)] · |{T ′

1 | |g(T ′
1)| = |T ′

1|}|

30

Because g is chosen randomly from the 2l-wise independent hash family
H2l

r , the probability that g(T ′
1) = g(T2) for a given T2 equals

Prob[g(T ′
1) = g(T2)] =

(

1

r

)|T2|

.

The number of possibilities to choose |T ′
1| elements such that |T ′

1| =
|g(T ′

1)| is bounded by

|{T ′
1 | |g(T ′

1)| = |T ′
1|}| ≤ |T ′

1|
|T2|

and therefore, we get that

Prob [g(T ′
1) = g(T2) ∧ |g(T ′

1)| = |T ′
1|] ≤

(

|T ′
1|

r

)|T2|

≤

(

l

r

)l

.

Thus, we get

Prob[L(K(T))] ≤ k2l ·

(

l

r

)l

=

(

k2l

r

)l

Now we look at the cases, where this event occurs. Because |g(T)| =
|T | − l, reuse the partition from above into T1 and T2 to show that h1(x)
and h2(x) are independently and uniformly distributed. We start by

choosing the offsets z
(1)
i and z

(2)
i randomly for all i ∈ g(T2) and assume

that they are fixed. Because f1(x) and f2(x) are 2l-wise independent,

h1(x) =
(

f1(x) + z
(1)
g(x)

)

(mod m) and h2(x) =
(

f2(x) + z
(2)
g(x)

)

(mod m)

are still distributed independently in [m] for x ∈ T2 ∪ T ′
1. This leaves us

with g(T1 − T ′
1). Because of our definition of T ′

1

g(T1 − T ′
1) ∩ g(T ′

1 ∪ T2) = ∅

but |g(T1)| = |T1|, and thus, the offsets z
(1)
i and z

(2)
i can get chosen for

all i ∈ g(T1 − T ′
1) independently of each other, but also independently of

the (now already chosen) z-values for i ∈ g(T ′
1). This implies that the

hash values h1(x) and h2(x) for x ∈ T1−T ′
1 are distributed independently

and uniformly, as well as independently from the values for x ∈ T ′
1 ∪ T2.

31

Now we can apply Lemma 4.5.5 and get the probability that K(T) is
isomorphic to H is bounded as follows:

Prob[IK(T)(H)] ≤ 2m−|EH |−q−1,

q being the cyclomatic number of H. We can now compute the overall
probability that |g(T)| = |T | − l and K(T) is isomorphic to H, recalling
that the number of edges in H is k and the cyclomatic number of H is 0.

Prob[IK(T)(H) ∧ L(K(T))] = Prob[L(K(T))] · Prob[IK(T)(H)]

≤

(

k2l

r

)l

· 2m−|EH |−q−1

=

(

k2l

r

)l

· 2m−k−1

Now we need the number of non-isomorphic graphs on k edges that
have at most 2l cycle and leaf edges, which is the number of possibilit-
ies to choose H. Following Lemma 3.2.6 we know that this number is
N∗(k, 2l) = kO(2l) = kO(l). Because l is a constant, the number of of
possibilities to choose H is kO(1). Also, because S contains n elements
and T contains k elements, there are less than nk possible ways to choose
T and mark the edges in H uniquely with the k keys in T .

If we sum over all k, we obtain an upper bound on the probability that
G(S, h1, h2) is l-bad. Recall that l is a constant, and that m/n = (1+ε).

Prob[∃H : IK(T)(H) ∧ L(K(T))] ≤
n
∑

k=2

kO(1)nk

(

k2l

r

)l

· 2m−k+1

=
1

rl

n
∑

k=2

kO(1) · 2(lk2)l nk

mk−1

=
1

rl

n
∑

k=2

kO(1) nk

mk−1

=
n

rl

n
∑

k=2

kO(1)
(

n

m

)k−1

=
n

rl

n
∑

k=2

kO(1)

(1 + ε)k−1

= O
(

n

rl

)

32

Thus, we can bound the probability that (h1, h2) ∈ R(S) by

Prob[6 ∃H : IK(T)(H) ∧ L(K(T))] = 1 − Prob[∃H : IK(T)(H) ∧ L(K(T))]

≥ 1 −
n

rl

(b) Let G = G(S, h1, h2) be a graph with cyclomatic number at least q.

G must contain some connected component with cyclomatic number ≥
q. Recall that neither the deletion of cycle edges in a component, nor
the deletion of leaf edges in a component will break the components
connectivity. Take the connected component with cyclomatic number
q′ ≥ q, and recursively delete q′ − q cycle edges until the cyclomatic
number of the component equals q. Now recursively continue deleting
leave edges, until there are no leaf edges left. Let T ⊆ S be the set of
elements corresponding to edges left in the graph, and call the connected
graph with cyclomatic number q and no leaf edges H.

We will proof that for every constant q ≥ 2, the probability that (h1, h2) ∈
R(S) and that there exists a connected subgraph K(T) of G(S, h1, h2)
with cyclomatic number at least q and without any leafs is O(n1−q),
which proofs the Theorem. If (h1, h2) ∈ R(S) and K(T) is contained
in a connected component of G, then Theorem 4.5.4 (1) proves that
(h1, h2) ∈ R∗(T). Thus, Theorem 4.5.4 (2) proves that all edges in K(T)
are chosen completely at random.

Now Lemma 3.2.5 applies, and we can compute the number of possibilit-
ies to choose a connected bipartite graph on k edges without any leaves
and cyclomatic number q, keeping in mind that q is a constant.

N(k, 0, q) = kO(0+q) = kO(1)

S contains n elements, and thus, there are less than nk possibilities to
choose the k elements in T ⊆ S, and label all edges in H with distinct
elements in T .

From Lemma 4.3.3 we have that the probability that K(T) is isomorphic
to H is at most

2

m|EH |+q−1

and thus, the probability that there exists a T ⊆ S, where |T | = k and
K(T) has no leaves and cyclomatic number q is bounded by

kO(1) · nk ·
2

mk+q−1

33

Summing over all k we get the probability that there exists such a T of
arbitrary size and thus, the probability that (h1, h2) ∈ R(S) and that
there is a connected subgraph of G(S, h1, h2) whose cyclomatic number
is at least q. Recall that m/n = 1 + ε, and that k cannot be bigger
than n. The probability that (h1, h2) ∈ R(S) and that there exists a
connected subgraph of G(S, h1, h2) whose cyclomatic number is at least
q is therefore bounded by

n
∑

k=q+1

kO(1) · nk ·
2

mk+q−1
=

n
∑

k=q+1

2kO(1) ·
1

nq−1
·

nk+q−1

mk+q−1

=
1

nq−1
·

n
∑

k=q+1

kO(1) ·
1

(1 + ε)k+q−1

=
1

nq−1
·

n
∑

k=q+1

kO(1)

(1 + ε)k+q−1

= O(n1−q)

(c) Let h1(x) be the endpoint of a simple path of length t, that does not
contain ex = (h1(x), h2(x)). Let x1, x2, . . . , xt be the elements on the
path, such that h1(x) = h1(xt), h2(xt) = h2(xt−1), h1(xt−1) = h1(xt−2),
and so on. Let ei denote edge (h1(xi), h2(xi))

Let T = {x, x1, x2, . . . , xt}, and notice, that the path

p = (h1(x) →)ex1 → ex2 → . . . → ext

only exists, if K(T) is a connected graph. Thus, we can bound the
probability that (h1, h2) ∈ R(S) and h1(x) is an endpoint of a path of
length t by the probability that p exists if (h1, h2) ∈ R(S) and K(T) is
connected. According to Theorem 4.5.4 (1), if (h1, h2) ∈ R(S) and K(T)
is connected then (h1, h2) ∈ R∗(T). Theorem 4.5.4 (2) then proves,
that the values h1(x), h2(x), h1(xi) and h2(xi) for i = 1, 2, . . . t are all
completely random and thus, we can to bound the probability that the
path p is formed in the completely random bipartite graph K(T) by 1

mt .

There are less than nt possibilities to choose t edges from S, |S| = n.
The probability that (h1, h2) ∈ R(S) and h1(x) is an endpoint of a path
of length t is therefore bounded by

1

mt
· nt =

(

n

m

)t

= (1 + ε)t

34

Using the Main Theorem 4.4.1, we have established some important proper-
ties of hash function pairs from the class R̂d

r,m, that we now can use to show
there effectiveness on Cuckoo Hashing.

35

Chapter 5

Cuckoo Hashing with Rd
r,m

instead of Siegel’s functions

Recall, that we want to use hash functions from the hash class Rd
r,m examined

in Chapter 4 to build a fast and space-saving dictionary. We will exchange
the usage of Siegel’s hash functions in Cuckoo Hashing with function pairs
chosen from the hash family Rd

r,m, and see how this affects the performance.
We choose function pairs from the hash family Rd

r,m, and let m = (1 + ε)n,
r = mδ, 1

2
< δ < 1 and d = 4. The bound L for insertions is chosen to be

Θ(log n). Clearly, both the deletion and lookup operations are still running
in constant time. Insertions are somewhat more complicated and thus, we
will analyse the procedure described in Section 2.3.4, using the new hash
function pairs. We will look at a phase consisting of ρn operations on n keys.

5.1 Insertion

We analyse a phase of ρn, ρ > 0, updates involving n keys, and want to
show, that the expected time spend on these ρn operations is O(n). We let
a subphase describe the lifespan of a hash function pair, i.e. the time from
choosing a hash pair until we either

• are done with all operations or

• meet a series of L nestless keys during an insertion and thus, choose a
new hash function pair.

Lemma 5.1.1. In worst case, the total time spent on the insertions in one
subphase is O(n log n).

36

Proof. We chose L = log n and thus, each insertion in a subphase takes time
< log n. At most ρn elements get inserted during a subphase and therefore,
the total time spent on the insertions in one subphase is

≤ ρn · log n = O(n log n)

Lemma 5.1.2. The expected number of subphases is 1 + n
r2 .

Proof. To find the expected number of subphases, we need to compute the
probability that a subphase ends before all ρn elements are inserted.
Let (h1, h2) be the hash function pair now used. By Theorem 4.4.1 (a), the
probability that (h1, h2) is not in R(S) is

1 −
n

rl
= 1 −

n

r2
.

We can therefore expect (h1, h2) to be in R(S).
If the subphase ends before all ρn elements are inserted, then there must be
some key x that causes a series of L nestless keys. This can only happen if
either

(1) x belongs into a subgraph with cyclomatic number q ≥ 2, or

(2) x belongs into a subgraph with cyclomatic number q ≤ 1, but there

exists a path of length ≥ (L−1)
3

that ends in h1(x) or h2(x) and does not
contain edge (h1(x), h2(x))1.

The probability that case (1) happens is bounded by

O(n1−q) = O
(

n

r2

)

,

as stated in Theorem 4.4.1 (b).
The situation as described in case (2) is examined in Theorem 4.4.1 (c), that
bounds the probability of this event for a path length t to

2 · (1 + ε)−t = 2 · (1 + ε)− L−1
3

1For the proof we refer to Lemma 4.1 in Pagh’ and Rodlers article on Cuckoo Hash-
ing [6].

37

If we set L ≥ 6⌈log1+ε n⌉ + 1, then the probability that this happens to some
key x is bounded by

(1 + ρ)n · 2 · (1 + ε)− L−1
3 ≤ 2 · (1 + ε)−

6 log1+ε n

3

= (1 + ρ)n · 2 · (1 + ε)−2 log1+ε n

= (1 + ρ)n · 2 · (1 + ε)− log1+ε n(1 + ε)− log1+ε n

= (1 + ρ)n · 2n−1n−1 = (1 + ρ)n · 2n−2

= 2 · (1 + ρ)n−1· = O
(

n

r2

)

.

Now that we have shown that the probability that a subphase ends before
all ρn elements are inserted is O

(

n
r2

)

, we can compute the expected number
of subphases to be

1 + O
(

n

r2

)

.

Theorem 5.1.3. Let (h1, h2) be chosen at random from R4
r,m, where m =

(1 + ε)n and r = mδ for 1
2

< δ < 1 a constant. Assume that we run a phase
consisting of ρn operations on n keys. Then the lookup and deletion can be
executed in worst case constant time, and insertion takes expected constant
time.

Proof. As argued before, the use of hash function pairs from R4
r,m does not

worsen the performance of lookups and deletions and thus, they take constant
time in the worst case.
The expected time spent in all subphases that end before the phase has ended
is bounded by the expected number of such subphases times the worst case
time spent on all insertions during such a subphase.

O
((

n

r2

)

· n log n
)

= O

(

n2 log n

r2

)

= O

(

n2 log n

(mδ)2

)

= O

(

n2 log n

((1 + ε)δ)2

)

= O

(

log n

nδ(1 + ε)2δ

)

= o(n) .

Thus, for a total of ρn insertions, we expect to spend o(n) time in total on
these subphases and thus, amortised O(1) time per element.
If the last subphase uses a hash function pair (h1, h2) /∈ R(S), the calculation
becomes the same, as the probability of choosing such a hash function pair

38

is ≤ O
(

n
r2

)

and again, the total time spent on all insertions during the last

subphase is bounded by O(n log n).
If the last subphase uses a hash function pair (h1, h2) ∈ R(S), we can ar-
gue just like Pagh and Rodler [6]. For each key x inserted during this last
subphase, we know that if it creates a sequence of at least t nestless keys,
then the graph G(S, h1, h2) must contain a simple path of length ≥ t−1

3
, that

starts in h1(x) or h2(x) and does not contain the edge (h1(x), h2(x)). Be-
cause (h1, h2) ∈ R(S), Theorem 4.4.1 (c) proves that the probability that
this happens is bounded by

2 · (1 + ε)− t−1
3 .

Thus, the expected number of nestless keys during the whole insertion of x
is bounded by

∑

t≥1

2 · (1 + ε)− t−1
3 = O(1) ,

and hence, the expected insertion time per element is O(1) in this case.
Because we expect to spend constant time per element in total in all sub-
phases except for the last, and we expect to spend constant time per element
during the final subphase as well, the amortised expected insertion time is
constant.

5.2 Space usage and efficiency

The efficiency of the hash function class R̂d
r,m allows us to keep d a very

small constant by still achieving the same bounds as Pagh and Rodler. As
shown above, we can easily achieve the right bound using d = 4, which
reduces the space used to save the function pair, but also reduces the number
of multiplications to a small constant. This makes the hash function pairs
chosen from this class very fast and achieves, as wanted, constant time bounds
with a very small constant.

39

Chapter 6

Conclusion

The hash function pair class R̂d
r,m introduced by Martin Dietzfelbinger and

Philipp Woelfel has been proven to be useful for a dynamic dictionary, as
it allows us to exchange Siegel’s functions in Cuckoo Hashing, by keeping
the constant time bounds. The construction is much simpler than Siegel’s
functions and also leads to a much smaller constant in the time bounds. The
special structure of the hash function pairs chosen from R̂d

r,m allow us to
choose a very small d and still obtain very strong randomness in dense areas.

The idea of finding a different representation for hash functions to exam-
ine their behaviour has shown to be a still very unique, but also promising
one to obtain better bounds on hash functions. Interestingly, the fact that
two functions in a function pair share one g function has been shown to be
very useful for the analysis, and does not affect the randomness negatively.

There are definitely possibilities for further work on this, either by apply-
ing R̂d

r,m to other problems or by extending R̂d
r,m to span over more than two

functions, such that it can be used in other contexts.

40

41

Appendix A

A.1 List of symbols

Symbol Explanation / Use

G undirected bipartite graph
H undirected connected graph
H Family of hash functions

H
⌈
m d-wise independent Hash Family

V, W Sets of vertices in a graph
E Set of edges in a graph
η Edge in a graph
S Set of keys
S ′ Modified set S
U Universe
|U | Size of universe U

a, b, e Elements in a set
c Connected component
d Variable, integer ≥ 2
f Function
h, h1, h2 Hash function
i Index
j Index
k, l, p, q Variable, positive integer
[m] Hash set consisting of integers {0, 1, 2, . . . , m − 1}
n Size of set S
r Size of one table used in Cuckoo Hashing
t1, t2 Hash table
x Input to function f

log x log2(x)

a
uar
∈ A Element a chosen uniformally at random from set A

poly(n) 2O(log n) = nO(1) 42

Bibliography

[1] Alan Siegel. On universal classes of fast high performance hash functions,
their time-space tradeoff, and their applications (extended abstract). In
IEEE Symposium on Foundations of Computer Science, pages 20–25.
IEEE Computer Society, 1989.

[2] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. Dynamic
hashing in real time. In Johannes Buchmann, Harald Ganzinger, and
Wolfgang J. Paul, editors, Informatik, volume 1 of TEUBNER-TEXTE
zur Informatik, pages 95–119. Vieweg+Teubner Verlag, 1992.

[3] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert Endre Tarjan. Dynamic perfect
hashing: Upper and lower bounds. SIAM, J. Comput., 23(4):738–761,
1994.

[4] Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide. Ef-
ficient pram simulation on a distributed memory machine. Algorithmica,
16(4/5):517–542, 1996.

[5] Rasmus Pagh. Hash and displace: Efficient evaluation of minimal perfect
hash functions. In Frank K. H. A. Dehne, Arvind Gupta, Jörg-Rüdiger
Sack, and Roberto Tamassia, editors, Workshop on Algorithms and Data
Structures, volume 1663 of Lecture Notes in Computer Science, pages
49–54. Springer, 1999.

[6] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Friedhelm
Meyer auf der Heide, editor, Eupean Symposium on Algorithms, volume
2161 of Lecture Notes in Computer Science, pages 121–133. Springer,
2001.

[7] Martin Dietzfelbinger and Philipp Woelfel. Almost random graphs with
simple hash functions. In Proceedings of the thirty-fifth Annual ACM Sym-
posium on Theory of Computing, pages 629–638. Association for Comput-
ing Machinery, 2003.

43

[8] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Expli-
cit and efficient hash families suffice for cuckoo hashing with a stash.
In Proceedings of the 20th Annual European Conference on Algorithms,
volume 7501 of Lecture Notes in Computer Science, pages 108–120, Ber-
lin, Heidelberg, 2012. Springer-Verlag.

[9] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate
texts in mathematics. Springer, 2012.

44

	Introduction
	Cuckoo Hashing as solution to the Dictionary Problem
	The Dictionary Problem
	Hashing
	d-wise Independent Hash Families
	AC0 vs TC0
	Space usage

	Cuckoo Hashing
	Size
	Lookup
	Deletion
	Insertion
	Loops
	Re-sizing
	Remarks

	Classes of Pairs of Hash Functions

	Excerpts from Graph Theory
	Important properties of (undirected) graphs
	Important properties of multigraphs
	Important properties of bipartite graphs

	Almost Random Graphs with simple Hash functions
	A class of hash function pairs
	Cuckoo Hashing and Bipartite Graphs
	Truly random bipartite subgraphs
	The Main Theorem
	Good function pairs
	Proof of the Main Theorem

	Cuckoo Hashing without Siegel's functions
	Insertion
	Space usage and efficiency

	Conclusion
	
	List of symbols

