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Abstract

The range median problem is that of preprocessing a list or array such that
the median of any arbitrary subarray can be found rapidly. The challenge is to
use as little space as possible in the process.

This Thesis is divided into two parts. The first part contain a general survey
on structures solving the range median problem. Included in the survey are
solutions that solve the range selection problem and thereby the range median
problem by inclusion. As a supplement to these algorithms a brief summary of
the state of popular range problems is included in the survey. The majority of
the time is spent describing the solutions given in [BGJS10] written by Gfeller,
Sanders, Brodal and Jørgensen. The range problems will be considered in both
a dynamic and a static setting.

The second part describes implementations of some of the data structures
given in [BGJS10] as well as the outcome of experiments performed on these.
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Chapter 1

Introduction

The world is continuously becoming flooded with information. Aside from the in-
formation we ourselves are generating and storing like text documents, images and
spreadsheets that is shared and indexed, huge amounts of data are collected with-
out human intervention. This includes sensory input from the security system of a
nuclear power plant or images taken by the Hubble Telescope. Answering queries
efficiently on large amount of data is probably the most important challenge com-
puter scientists face in the coming years.

In this thesis we will direct our focus to a specific class of data, that is a list of
elements where the position of an element in the list is significant. For instance, a list
periodic measurements are ordered by time, possibly even appended a time stamp,
and the data is of no use if the list is reordered. Notice, that in real life this list could
be infinite. We will abstract away form this, however, and assume that we are given
a finite list of some length n. Furthermore, we will impose a total ordering on the
elements stored in the list. This does not always make sense. How would one order
images for instance?

Having large amounts of data is in itself not very interesting. Ideally, we would
like to be able to answer interesting queries about the data. Given that elements
can be totally ordered interesting queries of course include: the minimum and max-
imum element, the most frequent element, also called the mode, or simply the r’th
largest element in the list. Efficient linear time algorithms exist for all of these prob-
lems. In some cases we are really not interested in answers to queries involving
the entire list. An example could be a web marketer wanting to analyze peoples
Internet surfing habits. For the sake of this example imagine he is in possession of
a list of measurements describing the IP-traffic on a web server each minute for a
year. There are several values of interest here. For instance, the minimum and max-
imum value of simultaneous visitors. In fact the median value is probably the most
interesting value here since it would give an approximation of the average while
simultaneously leveraging the impact of statistical outliers caused by downtime or
bot attacks. However, knowing the median of the entire list does not yield a lot of
valuable information. Especially, it does not give any information about peoples’
habits. In order to collect valuable information the web marketer would have to

1



2 CHAPTER 1. INTRODUCTION

sample the median in different time spans giving him an overview of the actual be-
havior of users. But that poses a problem. We know that finding the median of the
list is easy, [BFP+72]. We do not know whether or not sampling arbitrary ranges is
easy. Bear in mind, that the measurements are naturally sorted by time and that the
different samples could contain overlapping time spans.

The example above calls for an efficient solution of what is called a range prob-
lem. The word range here refers to an contiguous sublist within the input list. In-
formally speaking we can define range problems in the following way:

Definition 1 Given a list of values A of length n calculate a function f (j, i) where 1 ≤ i ≤
j ≤ ns. Formulating the function f is the range problem.

Since any range can be translated such that its endpoints correspond to indexes
between 1 and n the above definition makes sense. Throughout this thesis I will
refer to the f as a data structure and an actual call to f as a query.

There are exactly (n
2) different ranges that we could query. Hence, assuming

there is plenty of time to preprocess the list calculating a table of all possible ranges
in advance would render us capable of answering any range query constant time.
Using O(n2) words of space this approach very quickly becomes infeasible. The
other extreme is to copy the sublist specified by the range endpoints into a new
array and running the most time efficient algorithm. This uses only a constant times
the memory already used by the list. Unfortunately, the query time now is at least
linear.

Surprisingly, to the best of my knowledge the range median problem was first
considered ub 2005 by Krizanc, Morin and Smid, [KMS05]. Since then, only smaller
improvements has been done and the solutions proposed have been very compli-
cated. Quite recently Gfeller, Brodal, Sanders and Jørgensen published a paper with
solid improvements of the previous algorithms, [BGJS10].

This thesis will survey the solutions known for the range median problems.
However, we will especially focus on the solutions presented in [BGJS10]. As a
conclusion I will present the implementations I have done on some of the data struc-
tures and the result of experiments performed on these implementations.

Here follows a short introduction to the individual chapters:

• Chapter 2 will briefly sum up the previous work done on the more popular
range problems, as well as give a more in depth characterization of the previ-
ous work on the range median problem.

• Chapter 3 will present the algorithms given in [BGJS10].

– For the static version of the problem, that is the input list will not change,
an O(k log n + n log k) using O(n log n) space solution will be described
in section 3.1.1. This algorithm is so simple that the above upper bounds
holds for the Pointer Machine model 1. Section 3.1.2 will present an

1Very restrictive model only allowing memory to be accessed by pointers
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improvement of the above data structure using only O(n) space. Sec-
tion 3.1.3 will take a different approach to solving the static version of
the range median problem an will arrive at a data structure achieving
O(log n/ log log n) query time using only linear space and O(n log n) pre-
processing time.

– Section 3.2 will introduce the dynamic version of the range median prob-
lem and a very efficient solution obtaining O((log n/ log log n)2) time
worst case for queries. The updates can be performed subject to the same
upper bound but this time amortized. The data structures uses
O(n(log n/ log log n)2) words of space.

– Section 3.3 Will describe a space efficient constant time data structure.
That is, the data structure uses O(n3/2) words of space worst case achiev-
ing constant query time on the average. Unfortunately, it does not seem
possible to generalize this to a deterministic worst case constant time data
structure having the above space bound.

• Chapter 4 contains descriptions of four implementations of data structures
solving the range median problem. In addition a series of experiments will
be performed and discussed in an attempt to measure the efficiency of these
implementations in terms of space and time.

• Chapter 5 will contain a brief summary, and a discussion of future work.

The code referenced in Chapter 5 is enclosed on a compact disc.





Chapter 2

Range Problems

In this section I’ll give a quick summary of the history and current bounds for sev-
eral different range problems. The main emphasis will be put on the range median
problem.

2.1 Group Operators
This is a relatively simple set of range problems with very efficient solutions in both
the static and dynamic cases. Examples of query problems belonging to this class
are the range sum, range product and similar simple mathematical queries. This
class of range problems sees the input array as a collection of elements from some
set S. The query operator ◦ and S form a mathematical group (S, ◦). That is, there
exists a zero-element 0S and for all elements s ∈ S there exists a unique element s−1

such that s ◦ s−1 = 0S. The static case is now immediately solvable in constant time
using only linear space. For a specific group (S, ◦) and input array A we simply
calculate a table tab of size |A| defined by

tab[k] =
{

0S if k = 0
tab[k− 1] ◦A[k] if 1 ≤ k ≤ n

The array tab is often referred to as a prefix array. Solving a query is now done by
lookups in tab. More precisely the query Q(i, j) is equal to tab[j] ◦ tab[i− 1]−1.

The dynamic case is significantly harder. In fact, Patrascu and Demaine proved a
lower bound saying that comparions based data structure requires Ω(log |A|) time
for both queries and updates in the cell probe model, [PD06].

This is, in fact, a tight bound. A way to achieve the upper bound is to construct
a binary search tree, ordered by index, on top of the input array A. Each internal
node of this tree stores the collected sum, or what ever group operator is in use, of
its children. Updates to element k of the input array is handled by searching for the
leaf of corresponding to element k and adding the difference between the old value
and the new value to all nodes on the search path. The following method calculates
the sum of A[1, k] for some 1 ≤ k ≤ n: Search for the leaf k. Backtrack through the
root-to-leaf path while maintaining a sum of the values stored in the internal nodes.

5



6 CHAPTER 2. RANGE PROBLEMS

This sum is initialized to the value stored in A[k] . While visiting an internal node,
you add the sum stored in this node. If the search navigated though the left subtree,
however, the value stored in the right subtree is subtracted from the sum.

The query is now answered by applying the above method to j and i and subtract
the second result from the first. The height of the tree is O(log |A|). Hence, the
number of nodes visited during an update or query is at most this value.

2.2 Semigroup Operators

Range problems for semigroup operators are harder to solve than group operators,
since an inverse group operation is not available. However, the problem can still be
solved very efficiently. Using O(n) preprocessing time allows any query to be an-
swered in time O(α(n)) in the static case. The idea is to construct a directed acyclic
graph where each node stores a preprocessed value. The values are such that any
range query can be answered by summing the values of O(α(n)) nodes.

Actually this is a consequence of a more general result proved in [Yao82]. This
states that using O(cn) preprocessing time a query can be solved in time O(αc (n)),
where αc refers to the (c/2)-th function of the primitive recursive hierarchy. A
matching lower bound is shown in [Yao85].

Minimum and maximum are special semigroup operators in this context, since a
comparison based data structure allowing for constant time queries using only O(n)
preprocessing time and space exists for the static case. Algorithms obtaining this
bound does so by reducing the range maximum and range minimum problems to
the lowest common ancestor problem. A more recent relatively simple construction
can be found in [BFC04].

2.3 Mode

The range mode problem is the problem of finding an element in a range that oc-
curs at least as often as any other. This is neither a group nor a semigroup prob-
lem. It is, like the range median problem, a relatively new subject of research, first
considered by Krizanc, Morin and Smit, [KMS05]. It is still a rather unexplored
problem and one would expect large improvements in the future compared to the
current solutions. The original article solves the range mode problem in query time
O(nε log n) using O(n2−2ε) space, where 0 < ε < 1. For obtaining constant query
time the authors constructed a solution using O(n2 log log n/ log n) space. These
bounds were later improved by [PG09] to O(nε) query time using O(n2−2ε) space,
and O(n2 log log n/ log2 n) space with constant query time, respectively.

For a value array of size n, Greve, Jørgensen, Larsen and Truelsen very recently
showed a lower bound space/time tradeoff in the cell probe model, [GJLT10]. The
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result states that a data structure using S memory cells, with word size w spends at
least Ω( log n

log(Sw/n)) time solving a query. The authors proved this bound by a compli-
cated construction involving reduction to the problem of retrieving the frequency
of the mode, and then using a general result in communication complexity. Notice
that this leaves a significant gap to the best known upper bounds stated above.

2.4 Range Median
The range median problem was first considered by Krizanc, Morin and Smit, [KMS05].
The same article that gave birth to the range mode problem.

The range median problem will be the main focus of this thesis. Many times,
however, it will be discussed in context of its generalization the range selection
problem. The more general notion of selection covers the process of obtaining the
element of rank k from a collection. A range selection query does exactly that on a
range. The underlying collection could be a tree or a list for instance. In this thesis
I will limit myself to discussing the range median and range selection problems on
lists even though the original article present solutions on a tree as well. In fact, for
the most part I will assume that the list is given as an array facilitating random ac-
cess for constant time retrieval of any element.

The selection problem is obviously related to the sorting problem. We know that
sorting a list of size n in the comparison model requires O(n log n) comparisons.
Since it is possible to sort a list by doing n range selection queries on the range
[1, n], one for each rank, the combined number of comparisons of preprocessing
and performing the n queries most be above Ω(n log n). The range median problem
is subject to the same lower bound. The reduction is as follows.

Given an input array A, ”the sorting instance“, of size n we will construct an
array B of size 4n such that n range median queries determines the complete or-
der of A. The array contains three sections. The first section comprises n elements
which are all set to ∞. The second section also of size n consists of the elements in
A, whereas the last section consists of 2n elements all set to −∞. The sections are in-
serted in this order. Now the range [1, 2n] consists of n −∞ values and the original
elements of A. The median of this range is the minimum element of A. Similarly, the
element of rank two is the range median of [1, 2n + 2]. In general, the element of
rank k in A can be found by doing a range median query on [1, 2n + 2(k− 1)]. It is
evident, that n queries for incrementing ranks would yield a sorted version of A. We
used O(n) additional time and space constructing B. Hence, the comparisons used
for preprocessing B and performing n range queries on this would be Ω(n log n).

It should be noted that this does not show a lower bound of Ω(log n) compar-
isons per range median/selection query. In fact, using O(n log n) comparisons find-
ing the permutation of A we could find the median of any range in constant time by
a simple lookup.
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In this section I will give a brief introduction to some of the historic solutions
proposed for the range median problem by various authors. Since the dynamic
version is quite recent all solutions in this section will solve the static online or offline
problem. I will give the solutions in chronological order which in turn gives an
increasingly better time/space product for the tradeoffs and decreasing space usage
for the constant time solutions.

For the remainder of this chapter I will present quite a large number of data
structures. These structures represent the historic contributions that has been made
to the range median problem.

The first structure is by Krizanc, Morin and Smid. It works only in the static
case and was published in the very same article that first defined the range median
problem. It does not work for arbitrary ranks within the range though. The data
structure uses O(n log n2/ log log n) space achieving logarithmic query time.

The second structure is from the same article. It does not work for arbitrary ranks
but is based on the standard range tree data structure. The data structures answers
queries in O(nε) for any ε > 0 using only linear space.

The authors actually presents a third data structure achieving linear time us-
ing O(n2 log log n/ log n). This data structure is not described in this Thesis merely
noted.

The following two structures are attributed to Holger Petersen. He focuses on
creating constant time solutions and decreasing the space usage.

The first structure achieves constant time using O(n2 logk n/ log n) 1. His sec-
ond approach uses O(n2 log log2 n/ log2 n). Both of these structures are based on
techniques from succinct data structures and are packed with details. I will abstract
away from some of these in my description below.

The final subsection is devoted to a interval tree based structure my Har-Peled
and Muthukrishnan. This obtains an impressive O(n log k + k log k log n) using only
O(n log n) space for k queries given as batch. On the downside this structure is very
complex and to achieve the worst case bound mentioned the queries have to be
known in advance. If this is not the case the query time becomes amortized.

Krizanc, Morin and Smid

The solution given in [KMS05] is the first stated for the static range median problem
on a list. In fact the article presents two different solutions which I will describe in
turn.

1log(1) n = log n, log(k) n = log log(k−1) n
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Range Counting Data Structure

The input array A is divided into b blocks – or slabs – each of size n/b where n are
the number of elements contained in the input array. The constant b should be at
least two. Each of the b blocks are then preprocessed, in a way that will be described
shortly, such that any range median query can be answered using lookup tables and
a sequence of searches on a special persistent binary tree.

The data structure stores 2n/b + 1 elements for each of the (b
2) pairs of blocks in

an auxilliary table. These represent the n/b elements on either side of the median
of the elements contained in the multislab between and including these blocks. The
2n/b + 1 elements are kept as augmented binary search trees which is a structure
that will be defined shortly. We call these slab lists. Additionally, to each block we
associate partially persistent augmented binary search trees. These two trees contain
the elements inserted in increasing and decreasing order of index, respectively. The
division is then repeated, now on block level, ending when each block has constant
size.

Now to answer a query the data structure identifies the blocks containing the
range endpoints and performs a clever selection procedure on the union of three
components: the slab list stored for these two blocks and a search tree from each
block. Now we have an overview of the structure let us have a closer look at the
details.

The data structure uses the following crucial lemma:

Lemma 2 Let A, B and C be multisets with |A| = |B| = k. The median of A ∪ B ∪ C is
either in A or C or is within rank k of the median in B, i.e. has rank within [b|B| /2c −
k, d|B| /2e+ k]

Proof It is clear that the rank of the median of A∪ B∪C is equal to bB/2c+ k, since
the size of A and C was k.

Let b1 be the element of rank b|B| /2c− k in B. The rank of b1 can at most increase
by 2k in the union and therefore it will have rank smaller than or equal to the final
median. Let b2 be the element of rank d|B| /2e+ k in B. b2 will at least retain this
rank as it can only increase. Hence, the median of the union is bounded by b1 and
b2.

Let x be an element in B which is smaller than b1. The rank of c A∪ B∪C must be
strictly smaller than d|B| /2e+ k. Analogously any element with rank higher than b2
must have strictly greater rank in the final union than that of the median. Therefore
the median must lie between b1 and b2. �

The augmented binary search tree is a binary search tree where each internal node
is decorated with the size of its subtree – or node count. For this application we
assume that elements are stored in both leafs and internal nodes. For any node
the rank of the element it stores is just the node count of the left child plus one.
Note that, using the method of finding the rank of a node just described the tree
forms a binary search tree on rank. The authors define the following lemma giving
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a method to find an element of arbitrary rank within the union of three augmented
binary search trees Ta, Ta, Tb.

Lemma 3 Giving three augmented search trees,Ta, Ta, Tb, the element of any giving rank
within the tree trees can be found in time O(h(Ta) + h(Tb) + h(Tc)), where the h-function
represents the height of the tree.

This implies that if balanced binary search trees are used as base for the aug-
mented tree the median can be found in worst case O(log n) time. The basic idea of
the proof is to order the trees by the value of their roots, and then search using the
node count to eliminate a subtree of either the maximum or the minimum tree. The
details can be found in the appendix to the original article.

As mentioned the data structure uses a partially persistent version of the aug-
mented binary search tree. Unfortunately it is not possible to use the conventional
methods for making binary search tree persistent with constant space overhead.
According to the authors this will not work on an augmented binary search tree.
Hence, this data structure utilizes the simpler method of path-copying, [DSST89].
This means that a tree that has been subject to k updates requires n log k space.

We will denote the two partially persistent augmented binary search trees stored
for the k’th block TfBk

and TrBk
. The tree TfBk

contains the elements of Bk inserted
in increasing order by index whereas TrBk

contain the same elements inserted in de-
creasing order.

Now consider a range median query Q(i, j) . The blocks containing the left
and right endpoints of the range are identified by index i′ = di/(n/b)e and j′ =
dj/(n/b)e, respectively. It is important that i′ 6= j. If this is not the case we simply
recurse on Bi′ until we find a level where it is.

A tree containing all elements from Bi′ that are inside the query range corre-
sponds to version (i div b) · (n/b)− i%b + 1 of TrBi

. Analogously, the tree containing
all elements from Bj′ inside the query range is found using version j%b of TfBj′

. Next

we obtain the 2n/b elements stored for the slab of blocks corresponding to Bi′+1 and
Bj′−1. Note that if i′ + 1 = j this slab list is actually empty. However, this makes no
difference to the applicability of lemmas. From Lemma 3 we know that these trees
combined contain all the possible candidates for the median we are after. Therefore
deploying Lemma 3 on the three augmented binary search trees with rank dn/2e
would yield the median of range [i, j].

Let us analyse the query time of this data structure. The height of the three
search trees is O(log (n/b)). The search for a level where i′ 6= j′ takes at most
O(logb n) = O(log n) time. Hence, the overall query time becomes O(log n)

The space complexity of this solution is a bit more involved. On an arbitrary
level the persistent trees stored for each block contribute O((n/b) log n) words to
the memory consumption. The slab lists contribute O(n/b) for each pair of blocks.
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Summed over all blocks and pairs of blocks, respectively, the total amount of mem-
ory used by this level becomes

O(b2n/b + b(n/b) log n) = O(n(b + log n))

The overall space consumption is therefore described by the following recursion:

T(n) = O(n(b + log n)) + bT(n/b) = O(n(b + log n) logb n)

For instance, if b is chosen to be log n, the space usage becomes O(n log n log n/ log log n)
which is equal to O(n log n2/ log log n). This is in fact asymptotic optimal choice of
b.

Krizanc, Morin and Smid did not analyze the preprocessing time of their data
structure, or at least it was not included in the final article. However, it is at least
nb2 because of the (b

2) slabs that are handled.

Range Tree Based Data Structure

Before describing this approach I will state another technical lemma, [?] Lemma 3.
The proof is rather involved and can be found in the original article.

Lemma 4 Let A1, . . . , Ak be sorted arrays of size O(n). There exists an O(k log n) algo-
rithm which finds the element of rank i in A1 ∪ A2 ∪ · · · ∪ Ak

The construction is a complete b - ary range tree build on top of the input array A.
Thus, elements are stored in the leafs. An internal node stores a sorted list of the
elements contained in its subtree.

Consider a range median query Q(i, j) . The data structure starts by tracing two
leaf-to-root paths. Consider the path from the root to the leaf containing the element
of index i . The children immediately to the right of this path all store sorted lists
of elements from the range [i, n]. In fact, these form a complete partitioning, albeit
permuted, of this range. An analogous observation is true for the path from the
root to the leaf containing the j’th element in A. However, in this case we choose to
consider the children to the left of the path. The element lists of these completely
partition [1, j].

The root-to-leaf paths will inevitable have a common subpath, perhaps only con-
sisting of the root. Denote the node where the paths split v. Now from node v the
data structure collects the lists contained in children to the right of the path from v
to the i ’th leaf and elements contained in children to the left of the path from v to the
j ’th leaf. These lists completely partition the range [i, j]. There are at most b logb n
of such lists. The height of the range tree is O(logb n) and each element stored by
exactly one ancestor on each level of the tree. Hence, the overall space consumption
of the range tree is n logb n. The algorithm uses this tree to search for a specific index
in A. Now using Lemma 4 it is possible to calculate the median of the node lists in

time O(b logb n log n) = O(b log n2

log b ). The space of the data structure is dominated by
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the range tree, which as mentioned earlier uses O(n logb n) words of space.
Note that, by choosing b correctly we can assure that there for any ε > 0 exists a
linear space variant of the above data structure that solves a range median query in
time nε.

Constant Time Solution

In addition to the trade offs given above, the authors propose a data structure which
ensures constant query time, and uses slightly less than quadratic space. I will not
present this structure since it is very complicated. However, the space complexity
of the solution is O(n2 log log n/ log n).

Petersen

Holger Petersen has made two contributions to this problem. Both have presented
solutions to the constant query time version of the range median and range mode
problems. The second paper was coauthored with Grabowski.

O(n2 log(k) n/ log n) Space Solution

In the first article Petersen presents a layered data structure for the constant time
query version of the problem, [Pet08]. The data structure is basically a clever way
to store all answers by storing them succinctly in tables. The actual way of storing
pointers in this structure is a bit complicated. For the technical details I refer to the
article.

In the following I will sketch the data structure, which has space complexity
O(n2 logk n/ log n), where k ≥ 1 is the number of layers. The notation log(k) n refers
to the iterated logarithm. Continuing the layering would entail a solution using
O(n2 log∗ n/ log n) space which is better, but with the downside of increasing query
time to O(log(∗) n).

Let k ≥ 2. For k = 1 the naive method of storing the median for all pairs of
elements solves problem within the space bound stated above.

The data structure consists of k layers. There are three different cases of pre-
processing depending on which level is being processed. The level 1 structure is
fairly similar to that of [KMS05]. The input array A is divided into blocks of size
b = log n. For each pair of blocks the structure store pointers to the 4b elements that
are possible results for queries with starting and ending point in these two blocks,
respectively. That is b elements from each block and the 2b middle elements in the
multislab defined by these two blocks.

For level 2 ≤ ` ≤ k − 1 the data structure basically repeats the procedure for
level 1. The size of a block on level ` is b` = log(`) n. For any pair of blocks the data
structure stores pointers to the 4b` elements that are potential results for queries be-
ginning and ending in these blocks. Notice that the candidates for a pair of blocks
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are a subset of the ones found for the two blocks of level ` − 1 containing them.
Therefore, pointers are stored relative to the pair of level `− 1 parent blocks them-
selves storing pointers. There are 4 log(`−1) n pointers for each pair of blocks in level
`− 1, and therefore log(`) n size pointers is sufficient on level `. Finally at level k a
pointer of size log(k) n is stored for all pairs of indexes. For a pair of indexes (i, j), the
pointer identifies the element in the level k− 1 structure representing the median of
range [i, j] relative to the data stored for the pair of blocks containing elements i and
j on level k− 1.

Consider a query Q(i, j) . Put simply the data structure follows pointers origi-
nating from the element stored for (i, j) on level k. When the search hits level 1 a
pointer to an actual element of A is found and this element is returned. Unfortu-
nately, it is not that simple to perform a query, due to the succinct nature of the data
structure. A lot of machinery has to be in place in order to squeeze the space usage
down to the wanted. Consequently, retrieving the pointers require some bit fiddling
and will not be shown here. Instead see ([Pet08], Theorem 3).

I will now analyze the space usage of this data structure. To sum up the space
requirement of level 1 is O((n/b)2 log n2) bits which is O(n2/ log n) words assum-
ing a O(log n) word size. The overall space usage of level ` for 2 ≤ ` ≤ k − 1 is
O((n/ log(`) n)2 log(`) n2). Since there are k− 2 of these levels The level k data struc-
ture requires O(n2 log(k) n) space in bits – or O(n2 log(k) n/ log n) space in words.
Summed over all levels this gives:

O(n2/ log n + (k− 2)n2 log n + n2 log(k) n/ log n) = O(n2 log(k) n/ log n)

Notice that this is measured in words.

O(n2 log log2 n/ log2 n) space solution

This solution was published in collaboration with Grabowski, [PG09]. Again I will
skip some details for brevity. The new data structure is essentially a way to fit the
data structure from the former section into two levels instead of k.

The input array A is split into super blocks of b = log2 n elements. For each pair
of super blocks Bi and Bj a pointer to the 4b elements that are possible medians of
ranges starting and ending in these super blocks are stored in a sorted table. The
space required to store these elements for all pairs of super blocks is O((n/b)2b) =
O(n2/ log n) bits which is equal to O(n2/ log2 n) words if stored compactly. Note
that the address space of the table for any pair of super blocks is O(log log n).

Now at level 2 super blocks are split into blocks of length Θ(log n/ log log n).
The key point in achieving the improved space complexity of this data structure is
handling candidate medians within super blocks differently from those contained
in slabs between super blocks. Note, that the space bound permits that answers for
ranges either contained within a single super block or that has endpoints in neigh-
boring blocks can be stored in a lookup table. There are O(n2/ log n2) such ranges,



14 CHAPTER 2. RANGE PROBLEMS

and for each the address of the median can be stored in a single word.

Hence, we only consider ranges with a nonempty middle super block slab from
now on. Now for each pair of level 2 blocks not in either the same or neighboring
super blocks the data structure stores a list of O(log n/ log log n) pointers. These
point to the addresses of median candidates of the middle super block slab between
the super blocks containing these level 2 blocks that was gathered at level 1. There
are exactly O(n2 log log2 n/ log2 n) such pairs of level 2 blocks.

Now the authors form a table c (i, h, j, k) that for super block i containing level
2 block h, and super block j containing level 2 block k stores the addresses of ele-
ments that are possible medians for the range [(i − 1)s + hb, (j − 1)s + (k − 1)b].
Since there are Θ(log n/ log log n) such addresses of length O(log log n) the list of
addresses will fit into one word. Additionally addresses to the original elements
within a block are stored unsorted in a single word. This is possible since each ad-
dress has length O(log log n) and there are exactly O(log n log log n) such addresses
to be stored.

A query Q(i, j) can now be answered by finding the super blocks and level 2
blocks containing the elements of index i and j , respectively. If the super blocks are
equal or neighbors we simply lookup the result in the precomputed table. In the
other case the data structure masks out the addresses of the prefix ending immedi-
ately before i of the address word of the level 2 block containing it. Analogously,
for the block containing j the suffix just after j is masked out. Concatenating these
words with the entry in c that is defined by the four computed values produces a bit
string of constant length in words. Addresses for all possible median candidates are
stored in this section. The result of the range median query is then extracted from
this string using a lookup table.

Har-Peled and Muthukrishnan

Har-Peled and Muthukrishnan propose a solution to the offline static version in the
article, [HPM08]. Their definition of the static offline range median problem is as
follows

Definition 5 Given n unsorted elements in an input array A and k intervals (ranges),
determine the median in each of these k possibly overlapping, intervals and return these as a
batch.

A data structure that solves the offline problem using O(n log n) space and a
collected query time of O(n log k + k log k log n) both worst case was then presented.
If the intervals are given in an online fashion the query bound becomes amortized.
The data structure is very hard to describe. Hence, I will leave out some technical
lemmas and details.

The authors present the following lemma. The proof can be found in Appendix
A of [HPM08].
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Lemma 6 Given ` sorted arrays of length at most n there exists an algorithm returning the
median of the union of the arrays in time O(` log n/`).

Notice the similarity to Lemma 4 that was stated in a previous Section.

Essentially, the data structure is an interval tree where each node keeps a sorted
array representing the elements stored in the leafs contained in its subtree.

Denote the query intervals delivered to the data structure I1, I2, . . . , Ik. The in-
put array is split into 2k− 1 atomic intervals such that no endpoint of I1, I2, . . . , Ik
is contained within any of the atomic intervals. Such a division can be obtained by
splitting the input array on the interval endpoints in a sweep line fashion. These
atomic intervals are sorted and inserted into a balanced binary search tree. Notice
since the intervals are assumed known at the time of preprocessing we can sort the
intervals without causing trouble for future queries. The height of the resulting bi-
nary tree is O(log k).

Now the median of an arbitrary query interval Id can be found by searching for
the endpoints of Id and collecting the atomic intervals between the two resulting
leafs. Using the algorithm from Lemma 6 on these atomic intervals median of Id is
obtained. Since the time bound of the batched version included the preprocessing
time also the sorting of the intervals stored at internal nodes count. Since the overall
cost of sorting is O(n log n) the promised time bound is exceeded by this approach
for k = o(n).

The actual data structure is using the overall structure as described above but
the sorting of the input intervals is handled more cleverly. The authors introduce a
concept they call u-sorting. An array A is u-sorted if there exists a sub array A` of
some size, depending on u by some constant, subject to the following constraints:

• For any element a in A` it is true that if a′ ∈ A, a′ ≤ a exists a′ is placed after a
in A. That is a is placed on the index corresponding to its rank in A.

• Any two elements of A` are placed at most n/u elements apart in A.

It is easy to u-sort an arbitrary array. A way to do it in the optimal number of com-
parisons is simply to pick the median and scan through the array dividing it into an
lower and an upper half. Then place the median in the middle and call this proce-
dure recursively on the lower and upper half. Repeated for u levels this produces
a u-sorted array. Actually, if continued for n levels, this is exactly the same method
used for the ”partition“ sub procedure of the popular quick sort. The number of
comparisons used for the above procedure is O(n log u).

In the orginal article the authors demonstrate how to merge two u-sorted arrays
into a new u-sorted array in linear time. The machinery that makes the fast algo-
rithm possible is an extension of, [HPM08] Theorem 4.
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Lemma 7 Given ` u-sorted arrays A1, A2, . . . , Al with total size n and an integer 1 ≤
t ≤ n, there is an algorithm that returns ` sub arrays B1, B2, . . . , B` and a number t′ such
that:

• The t′’th ranked element in B1 ∪ B2 ∪ . . .∪ Bl is the t’th ranked element in A1 ∪ A2 ∪
. . . ∪ A`.

• The running time of the algorithm is O(` log n/`)

• ∑`
i=1 |Bi| = O(` · (n/u))

The data structure basically uses the same procedure as the slow algorithm I ini-
tially described but with the modification of applying u-sorting instead of complete
sorting to the atomic intervals. Particularly, the atomic intervals are u-sorted in the
leafs of the tree and are combined in internal notes. All this preprocessing takes
O(n log u) time. Calculating the median of one of the query intervals is done by
running the algorithm of Lemma 7 on the m = log k disjoint subarrays obtained by
searching for the interval endpoints and collecting the lists of internal nodes cov-
ering the entire range. As the integer t we use r. Since the accumulated size of
the resulting arrays is at most O(m(n/u)) selecting the element of rank t′ from the
union of resulting arrays is done by merging the arrays and using linear selection.

The number of comparisons required for solving all k queries is: O(kmn/u +
km log n). If u is chosen to be k2 this reduces to: O(n + k log k log n). Since the
preprocessing time was O(n log u) = O(n log k) the overall number of compar-
isons required for solving a batch of k range median queries becomes:O(n log k +
k log k log n).

Notice that this data structure only works when the queries are known. The
authors demonstrate how to convert it into a data structure solving the problem for
known k and even unknown k. In doing this, however, the time bound becomes
amortized. Even so this was still the best tradeoff known for the static case at the
time.



Chapter 3

Efficient Solutions to the Range
Median Problem

In this section I will describe the data structures presented by Brodahl, Gfeller, Grøn-
lund and Sanders in [BGJS10]. The article presents the best known time/space trade
offs and are at some points approaching optimality in terms of upper bounds. Fur-
thermore the authors are, to my knowledge, the first to consider the dynamic version
of this problem.

Section 3.1 will contain three different solutions to the static range media prob-
lem. As I progress through the three solutions the time/space product gradually
improves to the point where the query time is sublogarithmic and the space usage
is linear.

Section 3.2 defines the dynamic range median and range selection problems.
Then it describes a solution that solves the ladder, and the first by inclusion. This
solution is basically a clever customization of one of the static solutions. It is sur-
prisingly fast, however leaving somewhat of a gap to the current lower bound. The
final Section 3.3 in this chapter is dedicated to a constant time solution solving the
range median problem exclusively. The article proposes a very neat little solution
that answer a range median query in constant time on the average using O(n3/2)
words of space in the worst case. Not only is it more space efficient, but it is also
way simpler than any costant time solution presented in chapter 2. Contrary to the
other solutions we have seen all structures in this chapter, except the constant time
variant, works for general ranks in the range [1, j− i + 1]. Hence, it would really
be more proper to call them range selection data structures than range median data
structures.

3.1 Static RMP

I will start by describing the authors’ solution to the static, both online and offline,
version of the range median problem. The article gives three different solutions to

17
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the static problem.

1. A O(k log n + n log k) time algorithm using O(n log n) space in the RAM or
pointer machine mode. This algorithm is optimal in the pointer machine model.

2. A space efficient variant of the first algorithm using linear space and obtaining
the same running time in the RAM model however.

3. A very complicated, time efficient and compressed data structure achieving
O(log n/ log log n) query time with linear space.

In the next three sections I will describe these three data structures in detail. The
main idea of the constructions is to translate a range selection query into a series of
range counting queries. Later in this thesis, I will implement and experiment with
variants of the first two structures.

O(n log n + n log k) Pointer Machine Data Structure

The first data structure for the static range median problem that I will describe in this
section supports k range median queries in O(k log n + n log k) time using O(k log n)
space. The k queries can be given in an online fashion or as a batch. We only demand
k to be known as a way of analyzing the running time. It is neither the fastest nor
the most space efficient algorithm presented in the original paper, but it is justified
by the fact that it solves the problem optimally, for k = O(n), in the Pointer Machine
model.

The data structure is much simpler than the ones of Krizanc et al, Petersen and
Har-Peled and Muthukrishnan. Even more importantly it achieves its running time
and space bound without using any knowledge about the queries beforehand. Fur-
thermore, a simple O(n log n) complete preprocessing phase allows for an arbitrary
query to be solved in time O(log n). From a bird’s perspective the data structure is a
balanced binary tree, with adjacent structures in the form of arrays or binary search
trees. The crucial part in achieving the query time bound is that preprocessing of
one branch is delayed until a query demands it. I will now proceed to discussing
the internals of the tree.

The nodes of the base tree contains an array of elements and either two or no
children. The children will be denoted lower and upper, respectively. During ini-
tialization of the data structure the root of this tree is created. The array of elements
it contains is a possibly slightly altered copy of the array1 given as input to the data
structure. The children of the node are constructed as queries demand them. I will
now describe the approach taken by a single query. This is done by the means of

1I will throughout this paper state that elements are given as arrays contrary to, for instance,
linked lists. This is, for the most, true but in some cases where the specific model of computation
do not allow random access one should substitute every reference to arrays by the concept of linked
lists.
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a recursive function. In reality it traces out a path in the tree, creating child nodes
when needed. I will be a bit cavalier about the description though, not distinguish-
ing between the input array of the node and the actual node. Hence, when i refer to
the lower part of an array it is actually assumed that I proceed to the lower child of
the node having storing this array.

Recall the ”partition“ procedure of quick sort that we briefly visited in the dis-
cussion of the Har-Peled and Muthukrishnan construction. The procedure extracts
the median from an array of elements in linear time and splits the array into an up-
per and lower half. We assume the median is to be appended to the lower half since
it is defined to be the element of rank

⌊n
2

⌋2. The median considered here is the ac-
tual median of the input array – not the range median we have discussed until now.
Notice, utilizing a simple scanning procedure ensures that the upper and lower half
are still sorted with respect to their index in the original array. Let the A be the in-
put array. Each element is augmented by its index in A. Both as a way to break ties,
but also because it is crucial to the range counting taking place later. For the rest of
this section the name element refers to the corresponding value/index pair. We will
denote the lower array resulting from partitioning the array by the median A.lower,
and let A.upper be the corresponding upper half.

As mentioned earlier this data structure solves the range selection problem which,
in turn, also means the range median problem. For the remainder of this section the
term query will refer to a range selection query Q([i, j], r) where [i, j] is the query
range and 1 ≤ r ≤ j− i + 1 is the rank of the element wanted.

We will now take a closer look at how the query process works. Consider a
query Q([i, j], r) . The range [i, j] is of course completely contained in A. The
”partition“-procedure distributes some of the elements from [i, j] to A.lower and
some to A.upper. Assume now that the element of r’th rank in the range [i, j] was
distributed to A.lower. This means that the number of elements originally in the
[j, j] contained in A.lower is at least r. Since we did not sort the elements in A.lower
by value we still can not return the correct element. However, we can discard the
elements in A.upper from the rest of the search. Realizing this we let the data struc-
ture proceed recursively on A.lower with query Q([i, j], r) .

In the other case, where the element of rank r in the range is contained in
A.upper, less than r elements of the range is contained in A.lower. Assume that
ml elements of the range [i, j] is contained in A.lower. This means that mu =
j − i − ml + 1 elements was distributed to A.upper. Since we have discarded the
ml smallest element of the query range, the wanted element in A.upper now has
rank r − ml in A.upper and the data structures proceeds recursively on A.upper
with query Q([i, j], r−ml).

2We can assume that all elements are distinct. If not, we could just postfix these with their index
in A.
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The remaining problem now is how to count the elements of [i, j] in A.lower.
Searching for the index of j in A.lower returns the number of elements that have
index smaller than or equal to j. By subtracting the count obtained from a similar
search for search for i− 1, we get the actual count of elements in A.lower that orig-
inated from [i, j] within A. Recall that the elements of A.lower are sorted by their
original position in A. Thus, a binary search for an arbitrary index between 1 and n
returning the position of the predecessor of the element with that index-parameter
in A.lower can be performed in O(log n) worst case time.

Algorithm 1 Range selection algorithm with binary search.
1: procedure RANGESELECTIONQUERY(A, i , j , r )
2: if |A| = 1 then return A[0]
3: end if
4: if A.lower = ∅ then . Split the array into lower and upper array
5: median← linearSelection(A,

⌊n
2

⌋
)

6: for all elm ∈ A do
7: if elm ≤ median then
8: A.lower.append(elm)
9: else

10: A.upper.append(elm)
11: end if
12: end for
13: end if
14: ml ← A.lower.search(j)−A.lower.search(i− 1) . Search with respect to

index field. For i ≤ 0 return 0.
15: if ml ≥ r then
16: return RANGESELECTIONQUERY(A.lower, i, j, r)
17: else
18: return RANGESELECTIONQUERY(A.upper, i, j, r−ml)
19: end if
20: end procedure

The query procedure is depicted in pseudo code above. We still have a problem
however. The recursion tree has height log n, and on each level we perform two
binary searches. This means that we use ∑

log n
i=0 log 2i comparisons on range count-

ing which sums to O(log2 n). Since we perform k such queries, the compound cost
becomes O(k log2 n).

Looking for an alternative way of doing range counting we notice that the series
of binary searches performed for a query are all performed on the same values, i− 1
and j. Since the input array A never changes neither do the results of the binary
searches. Furthermore, the result of a range count is the same whether we query for
the actual range parameters, or their predecessors in the current array of the recur-
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sion. This suggests that one of the log-factors can be removed by the technique of
fractional cascading – and that is indeed the case. Actually, a quite simple version of
the technique will suffice. For an arbitrary element in A we must be able to find the
largest element smaller than it with respect to index, its predecessor, in both A.lower
and A.upper. Now, what was formerly a series of binary searches is performed by
doing a single binary search for i− 1 and j, or simply indexing the array, on the top
level and following the fractional cascading pointers.

Setting the fractional cascading pointers is quite simple. For an arbitrary element
e the fractional cascading pointers are set in the following way. After processing e
on line 6 in the pseudo code above, the largest element in A.lower smaller than e
with respect to the index field, is the last element currently in A.lower. The pointer
to A.upper is set analogously. This means that exactly one of the two pointers will
point to e on the level below, see figure 3.1. If A.lower and A.upper are arrays,
which is probably true if we are not in the Pointer Machine model, two simple in-
tegers representing the indexes of e’s predecessors on the level below will work as
fractional cascading pointers. If A.lower and A.upper are for instance binary search
trees we need actual pointers.

Figure 3.1: Setting fractional cascading pointers for an element e

To actually perform the range counting in the presence of fractional cascading
pointers is simple if we are using indexes as pointers as described above. It is done
by a simple subtraction of the two pointers pointing into A.lower. If on the other
hand A.lower and A.upper are stored as binary search trees we have to augment
the search tree nodes with its rank in a preorder traversal of the tree. Notice that,
for the RAM version of the data structure, we can actually omit the index field of
the element, since it is no longer needed for the binary search. This property is only
true if we have actual random access though.

Analysis

Introducing fractional cascading pointers helped salvage the query part of the asymp-
totic running time, since each query now uses O(log n) operations for a single binary
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search and O(log n) operations following fractional cascading pointers.
It still remains to bound the preprocessing part that takes place while answering

the k queries. We will call a node empty if its associated lower child has not been
created yet. The worst case number of operations used for preprocessing is attained
when queries meet an empty node on the lowest level possible counting from the
root. Assuming queries are picked by an adversary so as to maximize the cost of
preprocessing a level d node can be the lowest empty node for O(2d) queries. At
that time all its cousins on the same level must be filled. If we assume visiting a pre-
processed node is free, the running time of a query meeting the first empty node at
level d is O(n/2d) which is linear in the size of the associated array of this node. This
follows from the fact that the data structure uses a linear selection algorithm on line
5 and a simple scanning algorithm to split the array. Furthermore, the running time
of preprocessing levels d + 1, d + 2, . . . , log n is dominated by the time it takes to pre-
process level d. Assuming the adversary wishes to meet an unfilled node as early
as possible The lowest level of the tree that he can delay filling completely is level
blog kc. Note that level dlog ke could be left partially filled to cover the remainder.
Filling a level completely costs O(n) operations since every element is processed
exactly once. Combined the worst case number of operations performed while pre-
processing becomes O(n log k). The overall running time of answering k queries
thus becomes O(n log k + k log n) as wanted. The space bound follows through a
similar adversary argument since new space is only allocated when a query needs
it.

This data structure works both for known and unknown k since it makes no
assumptions about, and no choices based upon, the queries it receives. The bounds
hold both for the online and the offline case.
For k = ω(n/ log n) the data structure is an improvement over that of Har-Peled and
Muthukrishnan. Note that complete preprocessing, by simply splitting the nodes
recursively independent of queries, yields a data structure capable of answering
queries in time O(log n) using n log n space.

Getting Linear Space

The above data structure had the advantage that it was very simple, and that it was
close to optimal for the very restrictive Pointer Machine model. The downside how-
ever was that it needed quite a bit of space when k became large.

In this section I will describe a data structure that retains the fast query time but
reduces the space usage to linear in terms of machine words. Hence, this data struc-
ture is only working in the well known RAM model and its variants. We assume
that the word size w is such that we can address elements within A using a constant
number of words. That is, w = O(log n).

The new improved data structure is actually only a slightly rebuild version of the
old. The main insight is that the associated arrays and fractional cascading pointers
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can be replaced by a space efficient binary rank data structure, in a way that only
uses n bits, or n/w words, on each level. We did not use the associated arrays for
anything else but range counting anyway. Having these structures we can omit the
associated arrays in the internal nodes and store elements in the leafs to be accessed
by a query. We can also omit the augmented index field entirely.

The layout of the data structure is essentially the same as the Pointer Machine
Solution. Each node has two children, and an associated structure, lowerbits which
is a binary rank/select structure, [OS07]. We will not use binary selection for any-
thing here, since we only need to count the bits set in an arbitrary prefix of a binary
string. The associated structure is build by a function make_rank(b) where b is a
binary string. The associated structure can be queried by a function rank(t) that
returns the number of 1-bits in the t’th prefix of b. I will describe one possible im-
plementation of such a space efficient rank structure that uses n + o(n) space, where
n is the length of b, and answers the rank query in constant time later.

Remember that the only information we needed to branch the search in the frac-
tional cascading algorithm was the number of elements in the query range present
in the lower array. A simple way to store the required information would be to store
n bits for each associated structure where a bit t is set if the element with index t
in A is present in the lower array of the split. Unfortunately, such a strategy uses
n bits for each internal node and would therefore use too much space. Instead the
data structure takes a different course, still letting the binary rank count the number
of elements in A.lower smaller than a given index but doing so in a dense manner
where we are sure that at least half the bits of the binary range structure are set. The
way to do this is to construct a binary string as long as the input array of this node,
and checking bit t in this string if the t’th element in the input array was distributed
to the lower half during partitioning. The d’th level of the tree now contain 2d bi-
nary strings of combined length n. If stored compactly this uses O(n log n) when
summed over all levels.

Doing the range counting this way, however, makes queries a bit more intri-
cate to perform. The reason is that the query range has to be transformed in order
to fit the contracted bit array. Consider a range selection query Q([i, j], r) at an
arbitrary node N of the tree. Let rankl = N.lowerbits.rank(i− 1) and rankr =
N.lowerbits.rank(j) be the number of elements appended to N.lower with index
less than or equal to i− 1 and j, respectively. If r ≤ rankr− rankl we know that the
element of rank r is located in the lower subtree. For the next level of the recursion
the query rank remains to be r but the query range changes. The new query range
becomes rankl + 1 and rankr. By definition this range contain all elements in the
range [i, j] of the associated array of N.

If r > rankr− rankl the element of the required rank must be found in N.upper.
In this case we have to change both the query range and the query rank. The new
query rank becomes rn = r − (rankr − rankl) as it did in the Pointer Machine data
structure. How do we translate the query range in this case? We discard exactly



24 CHAPTER 3. EFFICIENT SOLUTIONS TO THE RANGE MEDIAN PROBLEM

rankl elements smaller than i by proceeding with N.lower. Hence, the left endpoint
should be shifted rankl towards the beginning of N.upper. The same is true for j and
rankr. Hence, the new query range becomes Q([i− rankl, j− rankr], r − (rankr −
rankl)). Pseudocode describing the query and preprocessing procedure is depicted
in Algorithm 2.

Algorithm 2 Linear space RAM data structure with logarithmic query time
1: procedure RANGESELECTIONQUERY(A, i , j , r )
2: if |A| = 1 then return A[0]
3: end if
4: if A.lower = ∅ then . Split the array into lower and upper array
5: median← linearSelection(A,

⌊n
2

⌋
)

6: idx ← 0
7: b← zeroes(|A|) . A binary string containing of all zeroes
8: for all elm ∈ A.arr do
9: if elm ≤ median then

10: b.set(idx)
11: A.lower.append(elm)
12: else
13: A.upper.append(elm)
14: end if
15: idx ← idx + 1
16: end for
17: A.lowbits← make_rank(b)
18: deallocate A . Remove the value array associated to this node since

there is now no need for it.
19: end if
20: rankl ← A.lowbits.rank(i− 1)
21: rankr ← A.lowbits.rank(j)
22: ml ← rankr− rankl
23: if ml ≥ r then
24: return RANGESELECTIONQUERY(A.lower, rankl + 1, rankr, r)
25: else
26: return RANGESELECTIONQUERY(A.upper, i− rankl, j− rankr, r−ml)
27: end if
28: end procedure

Notice that the input array of a node is removed since it is no longer needed.
Elements are stored in leafs though making it possible to answer queries. Recall
from the previous section the input arrays of level d of the tree contain n elements
combined. Since these input arrays have been replaced by space efficient binary
trees using a number of bits linear in the number of elements, we use n/w words on
each level. Since there are O(log n) levels in the tree the data structure uses linear
space when all levels are filled completely. The logic of answering queries are the
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same, though now the fractional cascading pointers have been replaced by rank
counting queries that can be achieved in constant time for each level. Therefore the
running time of a query is not affected by the change.

Even the data structure we just described can be improved on. In the next Sec-
tion I will describe a RAM data structure solving a range selection query achieving
O(log n/ log log n) query time still using linear space. First, however I will describe
a Binary Rank/Selection Data Structure supporting the prefix rank counting in con-
stant time using only a linear number of bits.

Verbatim – A Binary Rank/Selection Data Structure

I will now, as promised, describe a binary rank/selection data structure. The data
structure takes a binary string containing n bits, and supports the following opera-
tions:

• rank(i) – Counts the bits set in the i’th prefix of the binary string.

• select(i) – Returns the index of the ith bit set in b.

The structure Verbatim, [OS07], is a binary rank/selection structure supporting the
rank-operation in constant time, while using only n + o(n) space in bits. Since we
do not really need the select-operation, I will only describe the implementation of
the rank-operation for the Verbatim data structure.

Recall that we defined w = dlog ne to be the word size of the RAM. The prepro-
cessing phase of this data structures the binary string into superblocks of size w2,
which are in turn divided into blocks of size w.

A table tsb of size n/w2 holds the prefix sum bits set in super blocks. I.e. tsb[1] =
0 and tsb[i] = tsb[i− 1]+ "# of bits set in previous super block" for any i ∈ [2,

⌊
n/w2⌋].

This is essentially the same as storing the value of rank for each w2 sized chunk
of the binary string. Additionally, the data structure maintains a 2-dimensional
table tb that stores the prefix sums of bits set within the at most w blocks con-
tained of a super block. The prefix sums for the blocks stored are relative to the
start of their parent super block. I.e. tb[i][0] = 0 and tb[i][j] = tb[i][j − 1] +
"# of bits set in block j-1 within super block i" for 1 ≤ j ≤ w, 1 ≤ i ≤ n/w2. This
ensures that the prefix sums of tb can be stored using log log n bits. Notice, that
both tables are easily calculated by doing only one scan through the binary string.
Pseudo code showing this scan is presented in algorithm 3.

The space usage, measured in bits, of the two tables become: O(nw/w2) =
O(n/ log n) for tsb and O(n log log n/w). In total, the two tables contribute with
o(n) bits to the space usage of this algorithm.

Besides storing the two tables Verbatim stores the original n-bit bitstring using
in total n + smallOhn space.

The rank-operation is implemented as a lookup in the two tables. In addition
a constant POPCNT-operation most be supported. The POPCNT-operation does,
given a binary string at most a constant number of words long, return the number
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Algorithm 3 Preprocessing phase of the Verbatim binary rank/select data structure
data structure

procedure MAKEVERBATIM(b)
sblockidx ← 1
sblockbitcnt← 0
tsb[0]← 0
while sblockidx ≤

⌈
n/w2⌉ do

tb[sblockidx][0]← 0
nword← Get the next w bits from b
blockidx ← 1
while blockidx ≤ dn/we do

blockbitcnt← 0
for all bit ∈ nword do

if bit = 1 then
blockbitcnt← blockbitcnt + 1

end if
end for
sblockbitcnt← sblockbitcnt + blockbitcnt
tb[sblockbitidx][blockbitidx] ← tb[sblockbitidx][blockbitidx − 1] +

blockbitcnt
end while
tsb[sblockidx]← tsb[sblockidx− 1] + sblockbitcnt

end while
end procedure

of bits set in the string in constant time. If not implemented directly by the CPU, It
can be tabulated using O(

√
n log2 n) bits.

Given a rank query rank(i) the super block containing the i’th bit has index
sbi =

⌈
i/w2⌉. The block, within super block sbi containing i can now be calculated

by the modulo operator: bli = di/we mod w2. Having these two values we can
lookup tsb[sbi] and tb[sbi][bli]. This yields the rank of the string ending in the block
just preceding the bli’th block. Calling POPCNT on the i’th prefix of the bli’th block
gives the remaining part rank. The table lookups are clearly done in constant time.
As is the call to POPCNT-operation as discussed above.

The Verbatim data structure is actually not the best binary rank/select data struc-
ture. Others has been produced which, by empirical studies have been proven faster.
They all, however, bear a striking resemblance to Verbatim but split the string in dif-
ferent ways. An example of such a data structure can be found in [OS07].

Achieving Sublogarithmic Query Time and Linear Space

The data structures presented in the former two sections have been relatively sim-
ple. Their simplicity is mostly due to the ”partitioning“-phase of quick sort, and
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the fact that range counting is, in essence, a simple problem that can be solved effi-
ciently. The downside of having these two components in a data structure is that no
matter how one chooses the pivotal element in the ”partition“-function the optimal
height of the the root-to-leaf path followed while answering a query is O(log n).
Since, the range median, and thereby the range selection problem is no easier than
sorting and the lower bound for sorting in the RAM model is Ω(log log n) it leaves
a somewhat significant gap to the trivial lower bound. Some of this gap, however,
is bridged by the data structure that will be described next.

In this section I will describe a data structure that as of this moment, gives the
best tradeoff between query time and space usage. The data structure permit queries
to be answered in sublogarithmic time while maintaining the linear space bound in
words of the former two static solutions. The cost, however, is that the solution
much more complicated.

The main idea of this data structure is a different way to do range counting, using
advance RAM-operations permitting it to be done in constant time, while increasing
the branching factor of the tree to dlogε ne for some 0 < ε < 1. Since the tree
has height loglogε n n = O(log n/ log log n) a sublogarithmic solution is achieved.
Squeezing the space down to linear is, unfortunately, quite an ordeal complicating
queries a bit.

Overall Structure

Contrary to the ”partition“-based structures this one is built bottom-up. The input
array A is sorted while still keeping track of an elements original position in A. A
balanced search tree T with branching factor dlogε ne is built on top of the sorted
array A.The leafs of T is simply the elements in A. The real magic of this structure
happens in the internal nodes. For the rest of this section I will refer to the set of
leafs contained in the subtree rooted at an internal node v ∈ T as Tv. Each internal
node v of T stores the following memory.

• f = logε n, pointers some possibly empty to the children of Tv.

• An array, Av, consisting of |Tv| matrices, each containing f rows of bits. For a
specific yi ∈ Tv the the `’th row of corresponding matrix Mi stores the number
of elements of A[1, i], where i is the original position of yi in A, contained in the
first ` subtrees of v. Note, that the layout of the array ensures that the position
of Mi is equal to the number of elements from Tv contained in A[1, i]. Each
row of a matrix is stored in its own word.

• A copy of the matrices above. The matrices are stored such that the g =
blog n/ f c = O(log1−ε n) first columns of the f rows, for the raminder of this
description denoted a section, are stored in a single word. The second sec-
tion consists of the last 3 columns of the previous section followed by the first
g− 3 columns not yet processed. This pattern continues until all columns have
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been handled. We can think of each section as a f × g matrix.In order to han-
dle come carry problems the first row of each section has a columns of zeroes
prepended before being divided into sections. For each matrix we will num-
ber the sections from 1 to f /g, from the most significant end. Notice, that a
portion of the sections starting from 1 could contain all zeroes.

The purpose of these fields, and especially how they each participate in answering
queries will be discussed in the next Section.

For each internal node v and arbitrary 1 ≤ i ≤ |Tv| the rows of matrix Mi of Av
form a nondecreasing sequence of integers. This property is due to the fact that any
leaf contained in one of the first 1 ≤ j ≤ f will be counted in row j, and all following
rows of Mi. Furthermore, each row in the array Av, that is the integers stored in a
fixed row of all matrices forms a nondecreasing sequence since they are in effect
prefix counts. In the next Section I will describe how this construction permits us to
answer a range selection query.

Handling queries

Consider a range selection query Q([i, j], r) where 1 ≤ i, j ≤ n and r ≤ j− i + 1.
The data structure, basically, just traces out the path to the leaf holding the element
of r ’th rank in the range [i, j]. In each internal node the branching decision depends
on a prefix range counting in the number of leafs contained in the subtrees of its
children. The main difficulty is making the branching decision in an arbitrary inter-
nal node v in constant time. This is, of course, a direct consequence of increasing the
branching factor of the tree.

Intuitively it seems simple. For any internal node v we have stored the prefix
count of leafs contained in subtrees. In particular, we have two matrices Mj and
Mi−1, corresponding to elements aj and ai−1, respectively. Since some elements are
discarded as we descend down the tree aj and ai−1 might not be present in Tv.
Therefore, while searching down the tree Mj is actually represented by Md(j) where
d(j) is the largest index such that ad(j) ∈ Tv and d(j) ≤ j. Mi−1 is changed to
Md(i−1) in a similar way.

Consider a matrix M′ defined by Md(j) −Md(i−1). The `’th row of M′ holds the
number of leafs in the first ` subtrees of v contained in A[i, j]. Consider the mini-
mal row r` of M′ where r ≤ r`. The element of rank r in A[i, j] will be contained in
the subtree rooted at the `’th child of v, and the search will continue by that node.
Unfortunately, since each row of the matrices was stored in a word of its own, just
computing M′ from the matrices in Av would require O( f ) RAM operations. The
rest of this Section will be devoted to one thing. Explaining how we can make the
branching decision described above without explicitly computing M′.

The main insight is that it is possible to obtain a range [`1, `2] ∈ [1, f ] of indexes
from M′ in constant time. The range specifies a list of rows from M′ which have their
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most significant sections in common with r . Since the remaining less significant sec-
tions are not included all rows in the list could in fact be smaller than r . Therefore
we include the row immediately after the range. In summary, the children specified
by the range [`1, `2] are all candidates for the next node in the search, and none
outside the range can be candidates. Consider choosing ` from [`1, `2] such that ` is
the first row larger than r . If `2 − `1 ≤ 2 we can determine ` in constant time. For
both endpoints compare the word M`i

d(j)−M`i
d(i−1) with r . This operation only costs

a single RAM-operation. If the range is larger we first test the endpoints `1 and `2.
If either the `1’th row is smaller than r or both the `2’th and the row just before it
are larger than r we have to search for ` using a binary search. Such a search uses
O(log loge n) = O(log log n) operations. If we were forced to do a binary search on
all levels the query time would become O( f log log n). Later we will show that no
more than O(log n/g) binary searches are performed.

Recall that we stored the matrices of Av, for an arbitrary internal node v, in an
alternative way consisting of a number of f × g matrices called sections. These
sections are each stored in a single word and we can therefore subtract them using
just one RAM operation.

The query process maintains a value c, initially 1, holding the number of the cur-
rent section of the bit matrices in use. We maintain an invariant ensuring that the
c’th section indeed contains the most significant bit of the matrix M′. That is, all
sections to the left of the c’th section contain nothing but zeroes. Let rc be the c’th
section of r . Next it will be explained how to maintain c and r as the search pro-
gresses. Let v be an internal node encountered during the search. We’ll let K denote
the number of elements from A[i, j] contained in Tv. We will denote by Si and Sj
the c’th section of the matrices represented by i and j, respectively. All sections pre-
ceeding Si and Sj in these matrices will contain all zeroes. By the invariant Si and Sj
contain the most significant bits of the two words. The goal is to obtain a word Wij
approximating the c’th section of M′. The obvious approach would be to subtract Si
from Sj. Unfortunately, we have to be a bit more clever. Depending on how the in-
dividual rows are distinguished within the section subtraction of lower order rows
could cause a cascading query to inflict on the later rows. To remedy this every row
in Sj is prepended by a 1 while every row in Si is prepended by a zero. These actions
are achieved through bitmasks. This will stop the carry from cascading through the
word and ensure mononicity of Wij. The first bit of each row of Wij is then masked
out before the process continues.

The word Wij is still not entirely equal to the c’th section of M′. The reason is
that a cascading query stemming from the least significant bits is not counted. The
consequence is that a row in Wij can become one larger than the corresponding row
in the c’th section of M′.

As described earlier we calculate [`1, `2] now using Wij. In order to factor in the
missing carry, we must include elements that match the first g bits in r added by
one, as well as the first row immediately following these. It is clear that no rows
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that would have been candidates are discarded by the approximation. The search
for the first child containing at least r children is performed by first checking the
interval endpoints `1 and `2. If none of these options represent the correct choice for
the next node in the search, we have to resort to binary search among the elements
in [`1 + 1, `2 − 1]. This correctly identifies the subtree in which the queried element
resides. There are still, however, some issues about the handoff of responsible to the
child that must be addressed.

The purpose of the active section index c is now explained. Since the (`1 + 1)’th
row of Wij is at most 1 smaller than the ”optimal“ row in M′, whereas the (`2− 1)’th
row is at most 1 too large, the difference between them is at most 2.

Hence, after guiding the search to a child v′, all rows in the c’th section of M′, that
is Mi−1 −Mj−1, calculated for v′ will represent a number between 0 and 2. This is
the reason for the 3 bit overlap between sections, that seemed a bit misplaced when
we described the structure. By the above discussion the first three bits of any row
in the (c + 1)’th section of M′v′ will start by a zero, which satisfies the invariant we
maintain, and a number between 0 and 2 is encoded in the next two bits. All bits in
section 1 through c will contain nothing but zeroes. The bits stored in section c will
remain zero for the rest of the search. We can therefore safely increment c, shifting
the active section towards the lesser significant bit positions of r and M′.

We need a way to determine the new prefix count matrices Mi′ and Mj′ that will
form the basis of the approximation in the next level of the search. At the top level of
the search Av contains n matrices and Mi−1 and Mj−1 are simply found by indexing
into this array. For the remaining levels we deploy fractional cascading. We set f
pointers for each matrix. The query rank r needs to be translated to fit the size of
T′v. We will translate it in the same way as we did in the O(log n)-time data struc-
tures described in the previous Sections. The number of elements from A[1, i − 1]
and A[1, j] contained in Tv′ is stored in the f ’th rows M f

i′ and M f
j′ of the two new

element matrices, and the new query rank therefore becomes r− (M f
j′ −M f

i′).

I will now show how the range [`1, `2] can be calculated in constant time. First
we need to define some tables that are assumed created during the preprocessing
phase:

• A table rep that for each possible g-bit string, s, stores a string consisting of s
repeated f times, where each occurrence of the string is preprended a 0 bit. We
can think of this as a single word.

• A table lessbit that given a word storing binary string returns the index of the
least significant 1-bit.

Remember that each row of the matrix Wij starts with a 0 bit by construction. Let
rp be the element stored for for the c’th section of r in table rep. By using a bitmask
containing ones on every g’th position we exchange the 0 bit in front of every row
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in Wij by a 1 bit. The idea now is to subtract the word rp from Wij, hereby creating a
new word Wdi f f . The 1 bits masked into Wij serve two purposes:

1. They ensure that carries will not cascade from one row to another,

2. If row ` is less than rp the inserted 1 will be converted to a 0-bit by the carry.

By the remarks above, the value of `1 can be read from the entry corresponding to
Wdi f f in lessbit. The maximum element of the range, `2, can be found in a similar
way.

Since c can be incremented at most d1 + log n/(g− 3)e = O( f ) times, no more
than O( f ) binary searches will ever be performed. Each of these costs O(log f ) =
O(log log n) time. In the cases where a binary search was not necessary, that is the
next subtree is represented by either `1 or `2, the branching decisions is made in
constant time.

Hence, the amount of time spent guiding the search down the tree amounts to:

O( f log log n + log n/ log log n) = O(logε n log log n + log n/ log log n)
= O(log n/ log log n)

The remaining operations performed in an internal node take constant time. We
can therefore conclude that the data structure answers a range selection query in
time O(log n/ log log n).

The space used by the data structure just described is, unfortunately, a bit above
linear. Each element of A is represented on every level of the tree by a matrix taking
up f words of space. Since there are log n/ log log n levels in the tree the complete
space usage of the data structure becomes

O(n logε (n) log (n)/ log log n) = O(n log1+ε (n)/ log log n)

In the next Section I will sketch how the layout of the matrices can be compressed
enough to make the whole data structure fit within O(n) words.

Matrix compression

In this Section I will briefly sketch the way the data structure described above is
compressed to fit in a linear number of words. Instead of getting bogged down with
the details one can keep the mental image of the previous Section, since the new
structure is basically just thais crammed into chunks of memory, and skip this Sec-
tion.
The technique used is standard and a concept that is widely spread in both data
structures and dynamic algorithms. The idea is to insert ”check points“ within the
memory, and then compress the memory between them in such a way that any
memory cell can be restored in constant time from one or more check points.
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We’ll define t = d f log ne and call it the chunk size of this data structure. For
any internal node v the array Av is split into chunks of size t such that only the
last matrix is stored completely. For the remaining elements in A dlog f e bits are
stored, each describing the index of the subtree this element belongs to. The de-
scriptions are stored compactly meaning d = blog n/ d f ec of them are packed into
one word called a direction word. After each direction word a prefix count meaning
the same as in the previous Section, is stored. That is, the count of elements for each
subtree stored wihthin the preceding chunk. Since there are t elements in a chunk
storing the prefix sum can be accomplished using f dlog te / log n = O(1) words.
On an arbitrary level of the tree the n elements are split into n/t chunks each us-
ing O( f + t/d + 1) space. Summed over all levels this gives a space usage of O(n)
words.

The query procedure is somewhat more involved than in the first version of the
data structure. The reason, of course, is that we do not necessarily have Mi and MstR
available. Recall that those where key for obtaining the approximation word Wij.
Given a query Q([i, j], r) , and assuming the search is currently at an internal node
v, we denote by ri and rj the number of elements from Tv contained in A[1, L− 1]
and A[1, R], respectively. We use the matrices stored for the bri/tc’th and

⌊
rj/t

⌋
’th

chunks as replacements for Mi and Mj. Denote these Ma and Mb. Since each chunk
comprises t elements, any row in Mb is at most t smaller than the corresponding row
in Mj. The same is true for Ma and Mi. The value of any row in M̄ = Mb −Ma can
therefore differ by at most t from its corresponding row in M′. But this means that at
most the log t least significant bits can be wrong, essentially meaning only the first
section is affected. The remaining, more significant sections is indirectly affected by
a possibly missing carry though. The c’th section of M̄ can therefore be both one
smaller or one larger than the corresponding section of M′.

Using matrix M̄ and the direction words and prefixes stored in chunks immedi-
ately after Ma and Mb, we can calculate a similar approximation. The main impact
is that the overlap between sections in the is increased to 4 bits instead of 3.

Let L′ = bri/tc and similarly R′ =
⌊
rj/t

⌋
. Aside from creating the matrices

the query process is similar to that of the previous data structure. Specifically, an
active section counter c is kept and initialized to 1 before the query. An invariant
is maintained saying that all more significant bits than those of the c’th sections are
zero and the first bit of the c’th section will also be zero. Recall that the matrix Mb is
associated with the R′’th chunk.

I will now describe how to recreate a row of Mj using Mb and the prefix and
direction words stored in the (j′ + 1)’th chunk. Mi is recovered in a similar way us-
ing Ma and the (i′ + 1)’th chunk. This recovered version is only used for the binary
search search, or if c identifies the last section. In any other case the c’th section of
Mb and Mj are the same except for the carry problem. The objective is to calculate
for each ` between 1 and f the number of elements from A[1, R] that is contained
within the first ` children of the current node v. We already know this value for
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A[1, tR′] which is stored in the `’th row of Mb. The last portion is equal to the num-
ber of elements among the first (rj − t · j′) contained in the (R′ + 1)’th chunk. The
direction word with index p =

⌊
(rj − R′t)/d

⌋
stores how many of the first pd ele-

ments from the chunk are stored in the first ` subtrees. This only leaves the elements
in the direction word containing rj.

We start by masking out the last bits corresponding to the addresses directing
elements larger than rj.A table of size at most n is created that for each valid direc-
tion word, including those where a prefix or postfix has been masked out, stores the
prefix count of the incidences for the f children. These prefix counts can each be
stored in log t bits and all f therefore fit in 1 word.

A lookup in this table gives the prefix count for element l among the remaining
rj − j′t− pd elements that was not yet accounted for. We have therefore completely
restored the `’th row of Mj. If c currently points to the last section of r the matrices
Mi and Mj are calculated completely, the first c − 1 most significant sections will
contain zeroes, using the above solution and the search is guided exactly as in the
previous data structure. In the other case we calculate the word Wij using the c’th
section of the two matrices Ma and Mb. The range [`1, `2] containing the candidates
for containing the r ’th element in A[i, j] is calculated in the same way as described
above.

Like earlier a cascading query from the lower bits of the rows in Ma and Mb
could cause a row in the approximation matrix to become 1 too large compared to
M̄. Therefore when determining [`1, `2] we need to include rows matching both rc,
the c’th section of r , rc − 1, rc + 1 and rc + 2. Moreover, we must include the first
row immediately after the maximum. The additional slack of 1 to each side comes
from using M̄ as the basis for the approximation and was accounted for above. Con-
sequently, the value of the (`2− 1)’th row of the c’th of M′ is at most rc + 3, whereas
the value of the (`1 + 1)’th row of the same section at least becomes rc − 3. Hence,
the difference between rows (`2 − 1) and (`1 + 1) is 6. Consequently, to correctly
distinguish each of these rows in the remaining subtree we need 3 bits. The extra bit
is set to zero as above.

In summary, by introducing chunks and small changes to the query phase we
succeeded in achieving linear space. As for the query time, both the fractional
cascading between chunks and advancement of c active section is assumed. The
rest of the modification is basically supported by table lookups which can be done
in constant time. Since the branching factor of the tree remains the same so does
the height. We can therefore conclude that in spite of the modification we retain a
O(log n/ log log n) query time as promised.
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3.2 Dynamic Range Median Algorithm
In this section I will describe the dynamic data structure for the range selection prob-
lem described in [BGJS10]. This data structure is, literally, a dynamic version of the
first O(log n/ log log n) solution I described in the previous sections. Its main core
is a B-tree. The internal nodes of this B-tree are storing matrices similar to the prefix
matrices that was an integral part of the static solution.

For this dynamic setting we do not have an input array, or list, that we can refer
to as we did in previous chapters. The definition of the dynamic range selection
problem that I will use is the following: A set of points (x, y),of size n, that supports
the following three functions:

• A query function Q([i, j], r) which returns the r ’th y-value among the set of
points having x-values within the range [i, j].

• An insert function insert(x, y) that inserts the point (x, y) or changes the value
of y for the x’th value if already present.

• And finally a delete(x, y)-function deleting the point (x, y) if present.

The data structure supports range selection queries in O((log / log log n)2) worst
case time. Insert – and delete operations can be done within the same time bound,
albeit amortized. The space usage in words is O(n log n/ log log n).

Structure

As mentioned earlier the core of structure is a weighted B-tree with B = logε n
ordered on the y-values of the points. Points are stored in leafs and an internal
node has at most B children. Since the layout of the algorithm depends on n, B will
change as updates are coming in. More specifically the data structure will be rebuild
for every Θ(n) updates. In the process B is changed to reflect the new size of the
point set.
Let c(v) denote the number of children of a node within a B-tree. A weighted B-
tree is a data structure designed for IO-efficient search structures and is specifically
designed for data structures that needs associated structures. That is, the weighted
B-tree minimizes the splits and fuses caused by updates to the main tree. In this
data structure each internal node v keeps two associated structures.

• A ranking tree Rv. This is a B-tree storing matrices, in some sense, of all ele-
ments contained in the subtree of v, Tv. The leafs Rv each store B2 elements.
The maximum height of a ranking tree is h = logB n. We will have more to say
about the structure of ranking trees in the next section.

• A linear space predecessor structure that stores all elements in Rv stored by
x-value. This structure is used for accessing the leaf in Rv containing the pre-
decessor of query index in Tv.
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For an arbitrary internal node v of the main tree the ranking tree Rv stores the
elements of the corresponding Tv in the leafs. An internal node u of Rv contains
an array of at most f prefix matrices. For each of the c(v) ≤ f children of v a node
u of Rv stores a single matrix. The p’th row of the `’th matrix, 1 ≤ ` ≤ c(v) and
1 ≤ p ≤ c(u) contains the number of leafs within the first p subtrees of u that is a
copy of a leaf in one of the first ` subtrees of v. The rows of an arbitrary matrix are
each stored in one word as with the case with the static structure. Furthermore, as
we did in the static solution an alternative copy of each matrix is stored along with
the original. This copy stores the rows in sections of size g = blog n/ f c bits each
consuming one word of memory. However, we need Θ(log log n) bits of overlap
between the rows in successive sections this time. Why this is necessary will be ex-
plained later.

Additionally, each node of Rv stores the description of up to B2 updates. First
of all an update description contained within the update buffer of a node u of Rv
states whether it was an insertion or a deletion. Moreover, both the subtree of v and
the subtree of u, from which the update originated is stored as part of the update
description.

Range Selection Query

I will now describe how to perform a range selection query on the structure de-
scribed in the previous section.

A query Q([i, j], r) is naturally interpreted as finding the r’th y-value among the
points which x-value falls within the interval [i, j].

The main idea is to reconstruct the matrices Mi and Mj or at least an approxima-
tion of them. Th These will be used for branching between the at most B children of
an internal node v of the main tree. The interpretation of these matrices are analo-
gous to the ones stored in an internal node of the static structure. The reconstruction
is done using the matrices encountered along a search path in a ranking tree. The
subtree of the main tree containing the r ’th point then corresponds to the smallest
row of M′ = Mj −Mi having a larger value than r .

The search ends in the leaf containing the queried element.

Assume that the search through the main tree is currently located in a node v.
The predecessors of i− 1 and j in Rv is found in constant time using the linear space
predecessor structure. These correspond to the values obtained by d(i) and d(j)
that we implemented using fractional cascading. The predecessor structure gives
two pointers to the leafs storing the predecessors as well.

Now, the procedure traces the paths from the two leafs towards the root of Rv.
Steps are taken simultaneously, that is both paths ascend one level for each step until
they merge in a node u. Commonly speaking node u is the lowest common ancestor
of the two leafs. Assume the two paths arrived at node u from subtrees ui and uj,
respectively. The subtrees to the left of ui contain x-values in the range [−∞, i− 1],
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whereas the subtrees to the right of uj contain values in the range [j + 1, ∞]. On the
other hand, we are certain that leafs in subtrees strictly between ui and uj correspond
to points with x-value in the range [i + 1, j− 1]. Now let M′u correspond to the row
wise difference between the matrices immediately before the matrix of uj and that
immediately after ui. The `’th of M′u counts the number of points stored in subtrees
1 through ` of v having x-values within some middle portion of the range. The left
end of this middle portion correspond to the leftmost leaf of the subtree rooted at
ui + 1, and the rightmost interval correspond to the rightmost leaf in the subtree
rooted at uj − 1. The part of the interval not yet counted corresponds to leafs within
the subtrees ustR and ui. The remaining leafs of the interval is included into M′ by
retracing the path from u to the leafs and adding the following to M′. For a node
of the leftmost path we add the rowvise difference between the rightmost matrix
and the matrix belonging to the subtree immediately to the right of the path. In the
rightmost path we add the matrix belonging to the subtree immediately to the left of
the path. When the search hit the leafs the the B2 elements of the leafs are accounted
for by a simple scan. As an alternative M′ can be calculated bottom up by doing the
calculations as we trace out the paths.

However, the subtractions and addition of full matrices are obviously too expen-
sive. Instead an approximation section, Wu

ij , of the active section in M′ is calculated
by adding and subtracting corresponding sections of the matrices along the two
paths – instead of full matrices. Figure 3.2 presents a graphical representation of the
process. As we know from the static version adding sections only require standard
RAM-operations on single words. Thus, the cost of calculating the approximation
section is at most O(h) = O(log n/ log log n).
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Figure 3.2: A graphical representation of the calculation of Wu
ij . The

gray squares represent the roots that has already been counted,
whereas the black squares are the leafs holding the predecessors
of i and stR in Rv.

The data structures keeps an active section counter c initially set to one, which is
incremented each time the search advances one level.

Since we make at most h subtractions of sections at most h cascading carries
that would have been counted in the corresponding section of M′ is not counted.
Similarly, we make at most h additions while calculating Wu

ij . The c’th section Wu
ij is

therefore at most dhe too large and accordingly at least dhe too small compared to the
c’th section of M′. Additionally, the update buffer of u containing at most B2 post-
poned updates could change the `’th row by log B2 = O(log log n). This will only
affect the last section directly, but a cascading query could cause the c’th section to
change by one to either side. After calculating the range [`1, `2] in exactly the same
way as for the static data structure, the maximum difference among the `1 + 1’th row
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and `2 − 1’th rows of M′ becomes 2h + 2. If we add a zero bit needed by the invari-
ant, the total overlap between sections becomes dlog (2h + 2) + 1e = O(log log n).

Next we need a way to actually get the rows of M′ needed for the binary search.
Since we have no need for all c(v) rows – and calculating them would be rather
expensive – we only ever calculate a single row of M′ at a time. We will employ
the following procedure to retrieve an arbitrary row of M′. It is basically a matter
of employing the process of calculating Wu

ij . However, we use the first copy of the
matrices all the way in order to calculate precisely. In addition, the update buffer of
the node u must be taken into account now. Correcting for the missing updates is
really simple when working on only one row. Any missing insert of a point that falls
within the query range, that was placed in a child with index smaller than or equal
to the row in question causes an increase by one. An analogous delete would cause
the target row to decrease by one. Unfortunately, it is too expensive for us to scan
though the update buffer. Instead, a table is created, from which we can extract the
wanted information using the constant number of words storing the update buffer
as index.

Finding the smallest prefix larger than r in M′ is done in much the same way
as we did in the static case. We start by checking the interval end points `1 and `2
and if none of these work, we perform a binary search on the rows of M′ to find
the correct row. The binary search reconstructs a row of M′ from the matrix in each
search step as described above. The cost of performing a binary search is therefore

O(log f logB n) = O(log log (n) · log n/ log log n)
= O(log n)

Since a row is associated with a child of v, we can continue the search at this node.
The active section counter c can at most be incremented dlog n/ge times making the
worst case accumulated cost of binary searching during a query o((log n/ log log n)2).

Now, we will recap and show that this solution actually answers range selection
queries in the time required.

The height of the main tree is O(logB n) = O(log n/ log log n). A range selection
query consisted of a root to leaf search in the B-tree while performing a series of
operations in internal nodes along the path. Calculating the approximation section
Wu

ij takes time O(h) = O(logB n) = O(log n/ log log n). The time spent processing
this word, that is finding the range [`1, `2] is O(1).

Finding the next subtree was accomplished by trying the interval endpoints `1
and `2 and, if necessary, perform a binary search retracing the path from the leafs
to their least common ancestor at most log n times. We saw above that this at most
takes o((log n/ log log n)2) time accumulated over the whole range selection query.
Hence, the time querying the ranking tree is bounded by the time spent calculating



3.2. DYNAMIC RANGE MEDIAN ALGORITHM 39

Wu
ij . The worst case time of a range selection query thus becomes

O(logB (n) log n/ log log n) = O((log n/ log log n)(log n/ log log n))

= O((log n/ log log n)2)

We can hereby conclude that this solution correctly answers a range selection query
and that it does it in worst case time O((log n/ log log n)2).

Updates

The essence of a dynamic data structure is having fast updates. The reason is that
”dynamization“ always adds an extra cost on queries compared to online static so-
lutions, and if update time is very bad and we are likely to make many queries and
only few updates we could be better off just completely rebuilding a static solution
every time an update is issued. This is not the case for this data structure however.
First of all, the building time of the static structure is at best O(n log n), since sorting
is involved. Moreover, the dynamic solution supports both queries and updates in
the same theoretical time bound, namely O((log n/ log log n)2).

As I mentioned in the introduction the entire structure is rebuilt for every n/2
updates. Rebuilding the entire tree can be done in time O(n(log n/ log log n)2),
building the tree and ranking structures bottom up, adding an amortized cost of
O((log n/ log log n)2) to each update.

Insert

In order to insert a point (x, y) in the dynamic data structure a search for y is per-
formed in the main B-tree, and the point is inserted into a new leaf. Inserting a
new leaf could cause its parent to overflow. In this case, the parent is split into two
new nodes. For each internal node v on the path from the root to the new leaf, x
is inserted into both the ranking tree Rv and the predecessor structure. This could
cause a number, at most h, of the nodes in Rv to split. A split in Rv is handled by
introducing a new node and rebuilding the parent.

We still have to address the problem of dividing the associated structures, rank-
ing tree and predecessor structure, when an internal node splits. We will do this
by keeping 2 additional structures of each type in each internal node of the main
tree. One that will be distributed to the left node of the split, and one for the right
node. This is possible since it is known exactly when the node splits, and which
children will be distributed to the left and right nodes, respectively. While updating
the ranking trees or predecessor structure a similar update is issued in either the
left or right structure depending on from which child the update came. The same
technique is used to split the matrices stored by internal nodes of the ranking tree.
This technique only introduces a constant space and insert time overhead.

After inserting x in Rv the entire path from the root to the leaf containing x is
visited and a description of the update is appended to the update buffer. Once the
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update buffer of a node is completely full, that is, for every B2 updates the matrices
of this node are rebuilt.

The internal node of a ranking tree stores at most f matrices, each having at
most f rows. Since prefix sums are very easy to calculate in constant time per row,
we can recalculate all matrices in time O( f 2). Since B = f this means that each of
the updates added to the update buffer is handled in O(1) time amortized.

The search for the correct leaf in the main B-tree can be done in O(logB n) time.
For each internal node on the path an insert in a O(n)-sized B-tree, the ranking tree,
is performed. What about the cost of splitting a node? Since the children of the orig-
inal nodes are divided between the two new nodes we have to change the pointers
of these nodes costing O(B) RAM-operations per node split. Sharing the ranking
tree and predecessor structure cost only constant time since we employed the grad-
ual global rebuild as described above. Furthermore, the amortized number of splits
caused by a update on B-tree is known to be two. This result also applies to weighted
B-trees. Hence the amortized cost of inserting in the main tree becomes O(B). By the
same arguments the insert of a nw leaf in a ranking tree costs O(logB n) for search-
ing and O(B) for splitting. Note, that appending an update to the update buffers of
internal nodes is assumed to be done in constant time. The overall time spent insert-
ing the new point into a single rankning tree thus becomes O(B + logB n). Since we
perform an insert in a ranking tree for each internal encountered on the path from
the root to the new leaf the total update time becomes

O(B +
log n

log log n
(1 + B + log n/ log log n)) = O(B +

B log n
log log n

+ (log n/ log log n)2)

= O(
log1+ε n
log log n

+ (log n/ log log n)2)

= O((log n/ log log n)2)

We can therefore conclude that the time used by an insert operation is as predicted.

Delete

A delete takes a point (x, y) value and deletes this point from the structure if present.
Contrary to inserts the delete update does not change the main tree forcing fuses/shares
along a leaf-to-node path. In stead nodes are marked as deleted and removed when
the structure is rebuilt every n/2’th update.

Like the insert operation a search for the leaf holding the y-value of the point in
question is performed. If the search did not succeed in finding a node we simple
break out of the operation. In the other case the found leaf is marked as deleted but
not removed from the tree. If the marked leaf was the last non marked child of its
parent, the parent is marked. This marking process continues up the tree. After we
are done marking nodes in the main tree, a similar marking process is performed on
the associated structures of internal nodes. This is done by searching for the point
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in the ranking tree adding delete updates to the update words and marking nodes
along the way. As mentioned earlier the nodes marked due to deletes are removed
when the global rebuild is performed. This happens every n/2’th update.

Searching for the leaf containing the point in question still takes time O(log n/ log log n).
Marking a node in the ranking tree for an internal node v also takes time O(log n/ log log n).
If the marked elements x-value is present in the predecessor structure of v we have
to delete it from here too. For any reasonable implementation of this structure the
cost of this is at most O(log log n) and is thus dominated by searching through Rv.

We can therefore conclude that the delete operation is accomplished in amortized
time O((log n/ log log n)2).

3.3 Constant Time Static Algorithm
We have now seen data structures solving RMP in both a static - and dynamic -
setting. As was mentioned quite a few times these structures were in fact very ver-
satile. Not only did they support range median queries they were in fact able to
solve queries for any rank in a range. For that reasong these data structures were
dubbed range selection data structures.

The data structure that will be described next is a genuine range median struc-
ture. It uses properties only pertaining to the median of a range and can not answer
arbitrary range selection queries. This structure shares a lot of ideas with the con-
stant time structure of Petersen and Grabowski presented in Section 2.4. However
this data structure only has one level and exploits some basic properties of the me-
dian. The structure supports queries in constant time on the average using only
O(n3/2) words of space and O(n3/2)preprocessing time. By using some clever trick
the space and preprocessing time can be reduced by a log n-factor on the average.

Constant Time Structure

Imagine that our input array A is divided into three parts:

• A part M consisting of the middle 2a, where a = O(
√

n), elements in A 3, ie
A[a + 1, n− a].

• A part F consisting of the first a elements. This is equal to the range A[1, a].

• A part E consisting of all the remaining elements not yet covered. That is, all
elements in the range A[n− a + 1, n].

Furthermore assume that for any query Q(i, j) it is true that i ∈ F and j ∈ E.

3Rounding issues are skipped here for brevity.
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The median of M is the element of rank bn/2c − a in A. This is obvious since M
contains n − 2a elements. We know from Lemma 2 on page 8 that the median of
the union of F, E and M, is either contained in F or E or consists of a shift of rank
of at most a from the median in M. This specifically means that if not contained in
F or E the median is within the range [bn/2c − 2a, bn/2c] of M both inclusive. It
should be noted, that no matter the specific choice of i and j this property holds for
the median. The data structure stores these 2a + 1 elements in a sorted array Mc.

If we, for a minute, assume that all elements in F and E is either smaller than
Mc[1] or larger than Mc[2a + 1] . Furthermore, let sl and sr be the number of el-
ements from A[i, a] and A[n − a + 1, j], respectively, smaller than Mc[1] . These
quantities are assumed precalculated during preprocessing.

The number of elements larger than Mc[2a + 1] must then be equal to the re-
maining number of elements due to the assumption we made on F and E. We’ll
denote this quantity b = j− i + 1 + 2a− n− sr − sl. The median of the union is now
located in Mc and it has rank a + 1 +

⌊
b−sl−sr

2

⌋
.

Unfortunately, saying that all the middle elements of the range is contained in
Mc is a bold assumption. In an arbitrary input there can of course be elements in F
or E that is larger than Mc[1] and smaller than Mc[2a + 1] . The data structure store
these elements explicitly in a sorted list X, along with its index. I will now analyze
the expected size of X.

We will determine an upper bound on the probability that an arbitrary element
x from F or E intersects the array Mc. That is, Mc[1] ≤ x ≤ Mc[2a + 1]. Since the
element x is drawn randomly the probability of it having rank 1 ≤ t ≤ n in A is 1

n .
There are 2a + 1 illegal ranks, that would cause the element x to intersect Mc. Thus,
the probability we were looking for can be stated as follows:

Pr[Mc[1] ≤ x ∧ x ≤ Mc[2a + 1]] =
2a + 1

n

=
2a + 1
Θ(a2)

= O(1/a)

If we assume that the elements of E and F are added independently one by one, the
expected size of the set X becomes:

E(|X|) = ∑
x∈F∪E

Pr[Mc[1] ≤ x ∧ x ≤ Mc[2a + 1]] = 2a O(1/a) = O(1)

For a general range query X is scanned in constant time, and the elements inside
the range [i, j] are appended to a list X’. Note that our value b, calculated like
above, has now become too big. By subtracting |X’| from b we moved the cal-
culated median X’

2 to the left before taking the actual elements of X’ into account.

This means the median of A[i, j] is equal to the element of rank a + 1 +
⌊

b−s
2

⌋
+ X’

2
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in Mc. Alternatively, we notice that adding the elements of X’ to Mc can at most
shift the median |X’|

2 to either side. Consequently, the median must either be an

element from X or within the subarray Mc[a + 1 +
⌊

b−s
2

⌋
, a + 1 +

⌊
b−s

2

⌋
+ |X′|].

This means that the median of A[i, j] can be found by doing selection after rank
|X’|

2 within the set Mc[a + 1 +
⌊

b−s
2

⌋
, a + 1 +

⌊
b−s

2

⌋
+ |X′|] ∪ X′. The way we will

go about this is to simply merge the two constant sized arrays. Elements from X’,
that is smaller than Mc[a + 1 +

⌊
b−s

2

⌋
] or larger than Mc[a + 1 +

⌊
b−s

2

⌋
+ |X’|] are

not added to the merge since we do not have enough information to conclude any-
thing about their rank within Mc ∪ X′. They still move the median either left or
right however, and therefore they are counted. Assume that we, while doing the
merge find tl elements from X’ smaller than Mc[a + 1 +

⌊
b−s

2

⌋
] and tr elements

larger than Mc[a + 1 +
⌊

b−s
2

⌋
+ |X’|] . The median of A[i, j] is now the element of

rank |X’|
2 +

⌊
tr−tl

2

⌋
within the merged elements.

The merging is done in time O(|X′|), that is, constant time on the average.

The above method assumed that i and j were located within the first a and last
a elements, respectively. That is, of course, not necessarily the case. We can still use
the above idea though, but it has to be generalized a bit. First of all i and j could be
closer together than Θ(n−

√
n) elements. Morever, the two extremes of the range

will probably not be evenly distributed around the middle of A that is contained
in different halfs. What we need is a covering scheme that will take the above so-
lution and generalize it to all ranges in A ensuring all queries of all lengths can be
answered.

First of all, notice that the size of A, which is always denoted n, is merely a con-
stant here. The calculations – of b, sl and Mc – used in the above method works for
any fraction of n, and we can therefore split – or trisect – an arbitrary contiguous
subarray of A. In order to elaborate on this idea we introduce categories of divisions
with different values of a, that is lengths of start end ending pieces of the trisection.
These are intended to answer queries with different widths of query ranges – with
larger categories handling wide queries. For each category divisions are distributed
over the input array A, such that we are able to answer queries for any range of
width corresponding to the category. I will now describe the covering scheme pro-
posed by the authors.

Covering Scheme

I will start by describing the structure of the categories used in this covering scheme.
later I will argue why it can be stored using only O(n3/2) words of memory, and
demonstrate how it can be calculated in time O(n3/2 log n).

A category in this covering scheme is identified by the width of queries it sup-
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ports. More specifically category d is capable of answering all possible queries that
has width between d2 and d2 + 2d. Since d2 + 2d + 1 = (d2 + 1) the ranges of query
lengths supported by successive categories d and d + 1 are contiguous. Obviously
d ∈ [1,

√
n] meaning this layout of categories handles all query widths possible.

For an arbitrary category bn/d− d + 1c subarrays are trisected into first, middle
and last part and for each of these the 2d median candidates are stored. So are the
values sl and sr. Each subarray has length 2i + (i2− i) + 2i. The trisection consists of
a starting and ending part each of length 2i, and a middle part of length i2 − 1. The
layout is such that the middle part C of the k’th subarray starts at index dk + 1 for
k ∈ [0, n/d− d]. This actually means that the first and second subarray of index 0
and 1, respectively, starts outside A. Equivalently, the last subarray can end outside
A. This can be handled by adding dummy values and we will not bother with this
in this description.

I owe to describe how the categories and subarrays actually come into play
while answering a query. Given an arbitrary query Q([i, j], r) the the category
d =

⌊√
j− i + 1

⌋
, contains the longest subarray for which the middle part will be

contained within the query range. We now have to identify the subarray, of category
d, having i and j within F and E, respectively. Since the start of successive subarrays
shift by d elements i is contained within exactly two different ”left parts“, those of
the bi/dc’th and bi/dc+ 1’th subarray. Now if the query width of the query range
is within the range [d2, d2 + 1], the subarray of index k = bi/dc is used and in any
other case the one with index k + 1. It is worth noticing that, since we round down
in our calculation, i is always located in the last half of F. The reason for this is that
a query range of length d2 or d2 + 1 must have its left endpoint within the second
half of F while the right endpoint is within the first half of E. We can therefore safely
choose the k’th subarray and run our median finding algorithm as described earlier.
If the query range has width in the range [d2 + 2, d2 + 2d], j is definitely contained
within the last d elements of the k’th subarray, or equivalently within the last 2d el-
ements of the (k + 1)’th subarray.

I will now analyze the space usage of this particular covering scheme. The cate-
gory d contains O(n/d) subarrays, each storing O(d) median candidates, in their Mc
lists, and O(d) words of auxiliary information. Summing over all O(

√
n) categories

this gives a space consumption of O(n3/2).
The question is now, how should we actually go about implementing this? I will

now demonstrate how to construct all subarrays of the category d in O(n log d + n)
time. The overall running time, taken over all categories, is then dominated by the
last category taking time O(n log

√
n) = O(n log n).

We will start the preprocessing of the d’th category, for 1 ≤ d ≤
√

n by creating
an empty balanced binary search tree. This tree will hold the elements in the mid-
dle section M of the current subarray. As a way to start the process the first d2 − d
elements of A are added to the binary search tree. The 2d + 1 elements around the
median of M is found by doing a standard range query on the binary search tree
in time log (d2 − d) + d and stored in an array accessible through the index of the
subarray. The remaining 4d elements in the sections F and E are then compared with
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the median candidates by a simple scan, during which the auxiliary information sl,
sr and X is collected. The elements corresponding to the first d of M is then deleted
from the tree, and the first d of E is inserted. Now the binary search tree contain
the elements of the center part of the next subarray. This process continues until no
more subarrays need processing.

There are n/d subarrays in each category, and we use O(d + log d) time for each,
disregarding the time used inserting and deleting elements in the search tree. This
gives a total running time of O(n) solely for processing the subarrays. In fact, the
time spent in each category is actually dominated by inserting in and deleting from
the binary search tree. Each element is inserted once and deleted once from a tree of
size O(log (d2 − d)), giving a total time of O(n log (d2 − d)) = O(n log d).





Chapter 4

Implementation

In this chapter I will discuss implementations I made of some of the static algorithms
presented in Section 3.1. The implementations will be accompanied by plots demon-
strating that these implementations actually follow the expected theoretic bounds
both in terms of query time and space. In the final Section I will compare the time
and space usage of the different solutions choosing the solution best suited for ev-
eryday use.

I have implemented the following algorithms:

• A very naive solution simply copying the desired range of the input array
and sorting it to find the element of wanted rank. I will actually not perform
experiments on this solution. It is simply too slow. Instead it has been used for
testing the correctness of the other solutions.

• A variant of the pointer machine efficient solution using binary search. Notice,
in this implementation is actually not mode for the pointer machine.

• The actual pointer machine solution using fractional cascading. Again I use
random access within the data structure making it a RAM data structure. I
made two different implementations of this structure that will be treated sep-
arately.

• The space efficient solution using a binary rank tree.

The implementation was done in C++ using templates ensuring easy customiza-
tion of the data structures. All implementations have been tested against the naive
implementation, that definitely works, and are currently working as expected. The
testing procedure consisted picking various random input arrays of increasing sizes.
A naive and the structure under test was then created using the chosen input array.
The process the fired random queries at the two data structures and checked that
they gave consistent answers.

In the first section I will state the shared interface of these data structures and
describe the behavior of some shared utility functions.

47
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The second section will contain a brief introduction of the measures that will be
used to determine the of the implementations. Furthermore, I will account for the
experiments that were conducted in order to collect these measures.

In the third section I will present each of the implementations. Each subsection,
except the naive solution, will be concluded by a small presentation of the results
gathered by the experiments. Notice that I will defer all comparisons between the
structure to the last section of this chapter.

4.1 Interface

I will now describe the common interface of the four implementations.
I will start by giving a brief overview of the machinery involved - and shared -

by all the data structures.

The foundation of each structure is a binary tree. Nodes are created with an ar-
ray as parameter. The tree is only linked from above, meaning there are no parent or
sibling-pointers. The binary tree is created by initializing a root with the input array
A, whereby a single node with two empty children pointers is created. When the
first query is made to the structure A is split into an upper and lower half and the
root creates its left and right children by making its child pointers identify two new
nodes created with the lower and upper arrays, respectively. In my implementa-
tion the left child corresponds to the lower array that was mentioned in Section 3.1
whereas the right child represents the upper array. The leafs of the tree are defined
to be nodes that has an input array of size 1.

The tree is built as queries arrive meaning that the splitting procedure performed
on the root initially is repeated on internal nodes that have empty child pointers.
As an alternative, a function that builds the entire tree splitting all nodes doing a
preorder traversal on the tree as it is being created. The implementation of the al-
gorithms does not include padding of A to make n a perfect power of 2. Hence, the
tree is not necessarily perfectly balanced.

The way I implemented the four different versions was by plugging three differ-
ent nodes into the above tree. A tree node supports the following operations:

• splitNode This operation splits the input array of its node object, taking the
median of the input array as an argument and creates all auxiliary branching
information.

• find This operation takes two indexes between 1 and n and a pointer to a piece
of memory holding the current query parameters. The two indexes should
define a range and the method returns the number of elements from the asso-
ciated array of the node that falls within this range. Furthermore, this method
is responsible for resetting i and j stored in the associated memory.
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• getLower and getHigher accesses the children of a node. For a leaf they should
simply return null.

• Utility methods like getArray and getSize that are there for technical reasons.
Their function is exactly as would be expected by their respective names.

The actual range selection structure stores a pointer to the root as its way to
access the tree. Initially, this pointer is set to null, and it is only initialized as part of
a query or a explicit call to the preprocessing operation. The range selection interface
is defined as follows:

• RangeSelectionQuery Given i , j and r find the element of rank r in [i, j].

• Preprocess Build the entire tree at once.

The implementation of RangeSelectionQuery is the same for all tree implemen-
tation. The operation is implemented recursively. To accomplish this I have intro-
duced a piece of memory which is passed with a query down the tree, storing the
current versions of the query parameters. When a find-operation is performed the
four values associated with this memory are changed. These represent the current i
and j , depending on whether the query is guided to its left or right child. I.e. cal-
culating the new query parameters is the responsibility of the node, not the Range-
SelectionQuery-function. Notice that this is necessary to have a shared RangeSe-
lectionQuery-operation between the different version, since the query parameters
are changed in different ways according to how range counting is performed. The
memory is only allocated once, not for every query, and is managed by a resource
pool singleton.

A subprocedure of splitting a node during a query or a preprocess operations
is calling the global selection function, which is implemented as a function object
and passed as a template paramenter, to retrieve the median of the associated array
of the current node. These implementations use a linear median algorithm which
I will describe next. However, choosing a different method might yield better time
measurements. Then the calculated median is used as an argument for splitNode
which completes the task. This sequence of actions perform exactly what is depicted
in algorithm 2, line 4 through 10, in Section 3.1.

I will now describe the linear selection algorithm that is used for finding medi-
ans. During the course of a query it is at most called O(log n) times.

Linear Selection Algorithm

The algorithm I have implemented is truly classical. It is the original algorithm by
Plum et al, [BFP+72], from 1972, that pioneered the search for an efficient method
to solve the selection problem. Its complexity is linear in the worst case, but the
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constants have later been shown to be very large. I will just briefly sum up the high-
lights of this algorithm.

The input is assumed to be an array A of length n and a number r where 1 ≤ r ≤
n. The algorithm proceeds recursively, by discarding a certain portion of the array
that cannot contain the element of rank r.

This portion is found in the following way. Divide the array into dn/5e subarrays
of length five1. Since these subarrays have constant size, we find the median of
each in constant time by sorting the arrays. The medians of these small arrays are
collected in yet another array. The algorithm is then called recursively using the
array of medians and dn/10e. Note, that the result of the above call is the median of
the medians. We can think of this as an approximation of the actual median of the
array. Now the algorithm starts to resemble the tree data structures of Section 3.1.
The input array A is divided into two arrays, As and Al. These contain the elements
from A smaller and larger than the median of medians, respectively. If |As| ≤ r, the
algorithm is called recursively with As. In the other case, recursion is called using
al and r− |As| as arguments.

The recursion is stopped when the size of the input array is smaller than or equal
to some constant. Historically, and in order to make the analysis work this constant
was chosen to be 140.

Assume for a minute that we order the sorted subarrays of length five by the
value of their median. The median of medians, m, is then contained in the dn/10e’th
subarray, that is exactly in the middle. The median of medians is now larger than
all medians of subarrays in the first half and smaller than all medians in the second
half. We will now bound the size of As and Al.

We definitely know that all elements in the first half which is among the first
3 elements of their subarray are smaller than m. Analogously, all elements in the
second half that are among the last 3 elements of their subarray must be larger than
m. That is, 3n/10 of the elements are distributed to Al and a comparable amount,
possible minus a constant, is distributed to Al. We can not make any assumptions
about neither the last two elements of each subarray in the first part neither the first
2 elements of subarrays in the second part. Nevertheless, the information gained
ensures that As and Al can at most contain b7n/10c elements each. If we factor in
the recursive call we made to obtain m, the final recurrence relation becomes:

T(n) ≤
{

T(dn/5e) + T(7n/10) + O(n) if n > 140
O(1) else

The above recursion can be proven to solve to O(n) by induction. I will not do this
here.

I ended up doing a rather straightforward implementation of this algorithm. The
recursive function is implemented by a C++ function object2, with a private recur-
sive utility function. The input arrays for this algorithm is a C++ STL vector, and

1The array can be padded to avoid special cases.
2A function object is a class where the only implemented function is the parenthesis-operator
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two C++ vectors are used to represent the partition arrays As and Al. Partitioning is
done in one single scan over A, and elements are added to the end of the partitioning
vectors taking a total of O(n) operations in total.

The above solution assumes that all elements are different in order to work. My
implementations handles this issue during the scan of A, by adding an element
equal to m to As if and only if |As| ≤ |A/2|. In the opposite case the element is
added to Al. This ensures that the recursion will end for input arrays that contain
all equal elements, and the recursion function describing the worst case time still
applies.

4.2 Measures and Experiments

In this section I will list the measures upon which we will conduct our analysis of
the implementations. Furthermore, I will describe experiments designed for col-
lecting these measures under different use scenarios of the data structures. These
experiments will be done on each implementation, and in the end of this chapter I
will compare the four main implementation on the basis of these results.

The two main measures that I will focus on are time spent which serves as an
abstraction for simple instructions on the RAM, and the space usage. The tool used
for measuring the time spent is low level hardware timers on Linux. The space mea-
sure is collected by overwritten new and delete operators increasing and decreasing a
global variable, respectively. The variable is stored as a singleton, which means that
one, and only, one can be instantiated. The singleton is updated by public meth-
ods and the cost of this would possibly make an impact on the time measurement.
Therefore, the overwritten new and delete operators are turned on by compile flags
and this should not be done while measuring time. Furthermore, the global single-
ton variable is only linked in when space measurements are collected.

I will conduct the following experiments to gather measures on the different
implementations:

1. I The first experiment consists of posing a lot of random queries to structures
with different sizes input arrays. That is, both the query range [i, j] and the
query rank r are chosen independently but in a way such that i ≤ j. The input
arrays are composed of randomly picked numbers. The sizes of the input array
will be in the range [210, 222]. The experiment is performed on both clean
data structures taking the cost of preprocessing into account – and on fully
preprocessed structures.

2. The space measure is analyzed through an experiment that calls the prepro-
cessing function 10 times on clean data structures while measuring the space

”operator()“. An invocation of such a function is then done by forming a temporary object only
to call the parenthesis-operator on it. This is comparable to the concept of functors known from
functional programming languages.
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usage through the modified new and delete operations. The output of the ex-
periment is the average of these 10 runs.

Technical Specifications

The experiments have been run on a Lenovo laptop equipped with a 2.6 GHz Celeron
M CPU, 3 GB RAM and a Linux Fedora 13 distribution (Linux kernel 2.33.8). The
machine was booted in kernel run level 1 in order to minimize the noise caused by
a running GUI. The experiments were deployed as Python scripts calling an exe-
cutable version of my code with various configuration options.

I am now done describing the parts of the implementation that is shared be-
tween all the tree based data structures. In the next 4 sections I will describe the
implementation of the four different versions one by one. I will focus on the details
that distinguishes the four versions.

4.3 Naive Implementation
This implementation is probably the most naive way you can think of solving the
range median/selection problem. It is, however simple, still a data structure fol-
lowing the above interface. Hence, it is constructed given an input array A. When
processing a query, it does not change the tree at all. Instead it copies the range
specified by the query directly from A into a new temporary STL vector and uses
standard the STL sort operation to sort this. The element of selected rank is then
extracted directly from this temporary vector and returned.

The space usage of this datastructure is O(n). The query time is O(n log n) worst
case. It should also be noted that this data structure, does not ”learn“. I.e. ten
queries using the same range and rank will take an equal amount of operations.

4.4 Binary Search Implementation
The binary search version also support the described interface. I will describe the
way the node for this specific tree based structure has been implemented as well as
the way a query is handed off to a child node.

Notice that we, in this implementation, search for the elements actual position
within A all the way down the tree. Therefore the elements stored in the associated
structures of the nodes are augmented with its original index in A. A comparator
operator has been implemented for this element/index pair, such that this change
has no impact on neither the RangeSelectionQuery-function nor auxiliary selection
function.

The splitNode-operation is implemented just as would be expected. That is,
there are no special considerations to be taken here. Notice, that a simple left to
right scan always produce upper and lower vectors sorted by index. Hence, the
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conditions for doing a binary search are met. The binary search is implemented in a
public operation PerformBinarySearch that takes an index and returns the number
of elements within the associated array having at most this index in A. The imple-
mentation is a standard discrete binary search.

The find operation then calls the PerformBinarySearch twice. Once with the in-
dex immediately before the left endpoint of the range given as input and once with
the right endpoint. The difference between these are then returned. No change is
done to the memory holding the current i and j , since we have access to the original
index of all elements.

To sum up, the most significant features of this implementation are:

1. Elements are augmented with their original index in A.

2. Binary search is used to implement the find operation, and we perform exactly
two on each level of the tree.

3. The query parameters, sent with the recursion through the tree, never change
after they are handed to the node in the top of the recursion.

As we discussed in Section 3.1 the theoretical time spent answering k queries in
this implementation is O(k log n2 + n log k). The space used is O(k log n) for k ≤
O(n) and O(n log n) for a fully preprocessed structure.

Results of Experiments

Figure 4.1: Results of experiment 1 performed on a clean binary search structure.
Divided by the theoretic time bound which is 10000 log n2 + n log 10000.
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Figure 4.1 shows the time measurements of 10000 random queries on a clean
binary search based structure. The plot looks a bit strange since it starts of by a
steep downhill slope and then suddenly takes an uphill slope. I think this is due to
the random nature of the queries and the relatively small constant that this query
time analysis seems to hide. Anyways it does not stray to far from a constant line.
It is therefore safe to assume that the query time is in fact O(k log n + n log k).

Figure 4.2: Space usage of a fully preprocessed binary search structure.

Figure 4.2 shows the results of experiment 2 on the binary search solution. It
does not quite start out resembling a constant line, but appears to converge towards
the end.

4.5 Fractional Cascading Structure

I will now describe the implementation of the tree structure where elements are
linked with their predecessors down the tree. From here I will refer to this as the
fractional cascading structure. Even though I stated in Section 3.1 that this structure
is optimal in the pointer machine model my specific implementation is intended for
the RAM model. I.e. the associated arrays of the nodes are just ordinary vectors and
elements can be accessed using fractional cascading. Knowledge about the original
index within the original array is not needed in this data structure. Therefore, con-
trary to the implementation described in the previous section the input vector A is
given to the root without modifications.

I will start by describing the node that is plugged into the tree template in or-
der to construct the range selection data structure. Aside from the associated in-
put array this node stores fractional cascading pointers for each node. The storage
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method used for these pointers is a point of variation. This is accomplished through
a builder pattern interface defining getter and setter methods. The setter should
receive an index representing a position in the input array and two integers index-
ing elements within the lower and upper arrays. After invocation of the method
fractional cascading pointers are set such that the element representing by the first
index references the positions on the level below designated by the two indexes. The
getter method takes an index as input and returns the fractional cascading pointers
originating from the element identified by the index as a pair of integers.

An implementation of this interface will be called a pointer storing strategy from
now on.

Note that the type of pointer storing strategy used is passed to the node as a
template parameter. Hence, it is known at compile time.

I have implemented two different concrete pointer storing strategies. The first
type stores two C++ vectors which I will denote leftFracPtrs and rightFracPtrs. The
integer stored in the `’th position of leftFracPtrs contains the index of its predeces-
sor, with respect to original index in A, in the associated array of the left child. The
`’th integer in leftFracPtrs represents the same, but for the associated array of the
right child.

The second pointer storing strategy I implemented tries to benefit from storing
elements that will most likely be used together close together. Note that both frac-
tional cascading pointers of the current i and j are of interest to us since they are
used to reset the memory passed on to one of the children of the node we are cur-
rently visiting. Therefore, whenever accessing one we will get the other. This stor-
age method places the right and left fractional cascading pointers of each element
in a C++ STL pair. The rationale behind this pointer storage strategy is that both
pairs of pointers for the elements of interest are needed in every application of find.
Hence, we allegedly save some random access just returning them as pairs, instead
of indexing into two different vectors not necessarily adjacent in memory. We will
compare these two methods of storage later.

The splitNode operation constructs and fills out the fractional cascading pointer
structure. While processing an element during the splitting process the setter method
of the pointer storage strategt is called with the index of the current element and the
current sizes of the upper and lower arrays after the element has been inserted. Note
that this means that exactly one of the pointers will point to the element itself on the
level below.

The find-operation is implemented by taking the calling the getter method on the
pointer storing strategy with i and j , respectively. Note that only the first element of
the resulting pairs are of interest for calculating the range count. By definition these
values are exactly equal to the number of elements inserted prior to i and j . Hence,
by subtracting the first from the ladder, we get the range count of elements in the
lower array of this node. The four query parameters kept in auxiliary memory are
set to reflect the pairs returned by the pointer storing structure.
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Since each element in the fractional cascading vectors is a 32 bit, or one word,
integer, this implementation uses 2 words of space for each element on each level.
Furthermore, we still store the associated element arrays, also costing 1 word per
element on each level. If we sum over all levels the total space becomes O(3n log n).
Notice that compared to the binary search solution this is one extra word per ele-
ment on every level.

The time for k queries, however, becomes O(k log n + n log k), since we only use
constant time on each find-operation and constant additional time setting up the
fractional cascading pointers.

Results of Experiments

We would expect the fractional cascading solutions to use a sizable amount of space.
That is, for a fully preprocessed data structure I would expect the constant hidden
in the analysis in Section 3.1 to be quite large. Since, the vector-implementation and
the STL-pair implementation store the same amount of integer pointers I would not
expect there to be a large difference between the space measured by the experiments.
Perhaps, the effect of not allocating memory, as is done by C++ vectors in order to
ensure constant time insertion, could cause the pair-strategy to win by a smidge.

The query time of this solution is expected to approach the theoretical time
bound. Aside from that, the constant of the ”bigOh“-notation should be relatively
small. After all, the preprocessing phase is mostly inserting elements into different
vectors.

Figure 4.3: Results of runnning experiment 1 on a clean fractional cascading struc-
ture using the vector pointer strategy. Divided by the theoretic time bound which is
10000 log n + n log 10000.
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A plot of the values obtained from running experiment 1 on the fractional cas-
cading structure using the vector pointer strategy is shown in Figure 4.3. The values
have been divided by the expected theoretical running time for k = 10000 queries.
The connected points seem to converge to a constant line towards the end. The
downhill climb observed in the beginning, could be explained with large amount of
preprocessing done by the first few queries. The probability of hitting a node that
has not yet been preprocessed is simply to small. As n grows the depth of the tree
becomes the dominant factor as preprocessing becomes expensive even on lower
levels. The value of the points are somewhere between 100 and 200 the constants
hidden by the ”bigOh“ notation are a bit large. Most likely the cost of recursion
and random access have a large part to play here. Just as expected values seem to
decrease as n grows and these small constants lose impact.

Figure 4.4: Results of experiment 1 on a clean fractional cascading structure using the pair
pointer strategy. Divided by the theoretic time bound which is 10000 log n + n log 10000.

Figure 4.4 shows the result of experiment 1 on the fractional cascading structure
using the pair pointer strategy. The values are divided by the theoretical time bound
for k = 10000 queries. As was the case with the vector pointer strategy the points
seem to converge to a constant line towards the end. Aside from that we see the
same steep decline for smaller n. Note that the actual values here are a bit smaller,
hinting at a smaller constant.

The space usage of the two strategies should be relatively similar. The only thing
that could sway the result in favor of the pair pointer strategy is the possible excess
capacity in C++ vectors. Even though we never use it it is allocated and counts
towards the space usage.
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Figure 4.5: Space usage of the factional cascading structure using vector strategy for storing
pointers. Divided by theoretical space bound which is n log n for the fully preprocessed
structure.

Figure 4.6: Space usage of the factional cascading structure using pair strategy for storing
pointers. Divided by theoretical space bound which is n log n for the fully preprocessed
structure.
The plots depicted in Figure 4.5 and Figure 4.6 shows the amount of space for dif-
ferent values of n divided by n log n. The points of both plots tend to converge to a
constant line.
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From the plots we have seen in this section we can conclude that the measures
gathered from experiments are consistent with the analysis we performed in Section
3.1. Furthermore, this is true for both pointer strategies.

I will compare the two pointer strategies more thoroughly in the concluding sec-
tion of this chapter.

4.6 Binary Rank Tree Implementation

I will now describe my implementation of the data structure using a linear time
space binary rank data structure for performing range counting queries. The node
I implemented to complete this data structure has additional parameters that I will
briefly account for.

The word size w, does not depend on the actual size of A but can be chosen and
passed to the data structure as it is declared. This is accomplished by a template
argument. Furthermore, the node in itself has a query parameter specifying which
binary rank data structure to use. Note, that these things can only be set on compile
time – not on runtime. In this way the implementation should avoid some of the
hidden performance costs of polymorphism.

The binary rank structure used for this first take on an implementation is the
one described in Section 3.1 adherent to the description of the linear space data
structure. It is called Verbatim and supports rank queries in constant time using
only n + o(n) bits of space where n is the size of the bit string. The rank-operation
involved a call to a POPCNT-function, that is either implemented as a machine in-
struction on the CPU or by means of a table. My implementation of Verbatim uses
the __builtin_popcnt operation of the GCC tool chain, that uses a combination of a
compact table and bit operations.
The arrays that store prefix sums for blocks and super blocks are actual arrays of
integers each using one word of space. Hence, I have chosen the word size to be 32
bits, which is larger than log n for all real world applications. It is certainly enough
for what I had capacity to test. An immediate space optimization of this structure
would of course be to change the memory layout into a more compact bit string,
and retrieve a certain portion using bit operations and masks instead of indexing.

The splitNode-operation creates the lower and upper vectors in the usual way.
In the process, it fills out a n′-bit binary string, where n′ is the size of this nodes
associated array, by setting the `’th bit if the `’th element is distributed to the lower
array. An instance of the binary rank structure is the created using the bit string,
and the node is given a pointer to this structure. It is possible for other nodes to
obtain a copy of this pointer. When the node has been split the two child nodes are
created and given their associated arrays. The final thing done by the pseudo code
corresponding to this operation, algorithm 2 lines 4 through 18, is to delete the asso-
ciated array of this note. It is actually not possible to delete a vector as long as you
are holding a reference to it, nor is there a method that clears all its memory. The
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problem is that a C++ vector for optimization purposes retains its allocated capacity
even though you delete the elements stored in the vector. The way out in my im-
plementation, was to simply replace it with a vector of size zero. A vector is never
created with more memory than needed, which is why this approach is an efficient
way to clear the space used by the associated array of this node.

The find-operation implemented for this node uses the binary rank structure of
its left node. The return value is found by subtracting the value rank j from ranki.
These integers are the result of calling the rank operation with j and i − 1, respec-
tively. The two new i , j pairs are set as is depicted in algorithm 2, line 26.

Even though this implementation forces the user to choose a constant word size
on compile time, the wordsize is still log n for all intends and purposes. Therefore,
the arguments for the space usage of the algorithm we made in Section 3.1 still
apply. The only place that it should have an impact is on the constant hidden by
the ”bigOh“ notation.

As we saw in Section 3.1 each level uses O(n log n) words of memory sum-
ming to a total of O(n). The rank-operation is still implemented by only two array
lookups and a single call to a POPCNT-operation. All of which is done in constant
time. This means k queries are answered in time O(k log n + n log k), theoretically
that is.

Results of Experiments

I will now present the results of running the experiments on this implementation.
My expectations are that both the space and query time measures will be consistent
with the theoretical analysis performed in Section 3.1.
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Figure 4.7: Time of 10000 random queries to the binary rank tree structure. Divided by
theoretical space bound which is 10000 log n + n log 10000 for the fully preprocessed struc-
ture.

Figure 4.8: Space usage of a fully preprocessed binary rank tree structure. Divided by
theoretical space usage which is n.

The plot shown in Figure 4.7 and Figure 4.8 shows the outcome of running ex-
periment 1 and experiment 2 on the implementation. As we can see both sets of
points seem to converge to a constant. Notice, however, that the constant hidden in
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the analysis of the space analysis turned out to be rather large.

4.7 Comparison of Implementations

In the previous three sections it was shown that the implementations more or less
performed as would be expected with regards to the theoretical analysis. In this
section I will present further plots and compare the implementations on the basis of
these. I will start by summing up my expectations to how the comparison will turn
out.

Most likely the fractional cascading structure will turn out to have the best query
time. I base this on the fact that the number of operations performed during a query
is relatively low compared to the binary rank data structure. The binary search data
structure is likely to be a lot slower than the others with respect to query time sim-
ply because of the excess of operations spent on the range counting.

With regards to space I would predict the binary range structure to win by a
great distance. We saw in the previous section that the space used by this structure
was in fact linear. Simultaneously, the space used by the fractional cascading and
range structures were shown to converge to O(n log n).

I will now present a plot showing the actual time spent solving 10000 queries,
that is running experiment 1. Notice that all four implementations are plotted to-
gether for easier immediate comparison.

Figure 4.9: Real times measured for experiment 1.

The plot depicted in Figure 4.9 does seem to cooperate the prediction made ear-
lier. The binary search structure is way slower than the others. The two flavors
of fractional cascading structures are almost equal with a slight advantage to the
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pair pointer strategy. This difference could possibly be explained by the random
nature of the queries and input structure. What surprises me a bit is that the binary
rank tree structure appears to be gaining on them as the number of elements grows.
Actually they all three seem to meet in the last point.

Figure 4.10: Space measured for fully preprocessed data structures.

The plot in Figure 4.10 shows the space used by the four data structures, when
they are fully preprocessed. Notice that the actual values in the input array are of
absolutely no importance here. Actually randomness plays no part at all.

All normalized space plots we examined in the previous sections had a strange
downhill slope. Here we see why. Apparently, the space usage of the fractional
cascading structures is completely dominated by constants. Aside from that the
results immediately read of the plots is that the binary rank tree structures is by far
the most space efficient. The Furthermore, the two fractional cascading structures
use virtually the same amount of space. The binary search structure is naturally a bit
more space efficient than the two fractional cascading structures since it only stores
two integers per element on each level of the tree whereas the other store three.

If I had to choose between the four implementation, I would use the binary rank
tree structure. Even though we would lose a bit on query time, the space efficiency
gained fully makes up for it.





Chapter 5

Conclusion

The purpose of this thesis was to investigate the current state of the range median
problem. I will now briefly summarize what was covered in the process. The thesis
started out looking at some classic simple range problems. Specifically the current
optimal bounds for these. For range queries involving group and semi group opti-
mal solutions were known. Especially, this was the case for the first semi interesting
problem we encountered, namely the range min/max problem. Similar in nature to
the these problems neither the range median nor the more general range selection
problem can be solved using conventional range problem techniques. In Section 2.4
we got acquainted with the historical solutions proposed in the very short history of
the range median and range selection problems. This brought us to the current state
of the art solutions. This included a data structure that solved that was optimal in
the very restrictive pointer machine mode and a static RAM data structure achiev-
ing sublogarithmic query time with linear space. Furthermore, a rather complicated
solution achieving constant query time for average input was presented. First and
foremost however, we were equipped with a set problems well suited for practical
implementation. The very simple tree based structures of Section 3.1. Chapter 5 was
devoted to these implementations and the experiment performed on these.

The speed and the space usage of the implementations presented in this the-
sis clearly proves that the range median problem actually can be solved. Even for
realistic input sizes. Combined with a very fast binary rank tree the linear space
tree solution is actually both very space and time efficient. I highly doubt the
O(log n/ log log n) would be able to outperform the solutions that we experimented
with in Chapter 5. I suspect that the constants hidden in both the time and space
bound will overshadow the small theoretical advantage over for instance the binary
rank structure.

It is clear that a lot of work remains in this area. Both in terms of lowering upper
bounds and raising lower bounds. The next natural step would be to consider the
problems on higher dimensions. That is finding the median of an totally ordered set
of points within a ball in hyperspace. A next step would be to consider other mod-
els such as the IO-model. Furthermore, the relationship between the range selection
and the range median problem could be interesting to investigate. The current so-
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lutions seem to solve the range selection problem just as well as the range median
problem even though it is more general. On the contrary, it is evident from this the-
sis that introducing the range selection problem into the equation greatly simplified
the solutions for the range median problem.
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