
Monte Carlo Evaluation of
Financial Options using a GPU

Claus Jespersen
20093084

A thesis presented for the degree of
Master of Science

Computer Science Department
Aarhus University

Denmark
02-02-2015

Supervisor: Gerth Brodal

Abstract

The financial sector has in the last decades introduced several new fi-
nancial instruments. Among these instruments, are the financial options,
which for some cases can be difficult if not impossible to evaluate analyti-
cally. In those cases the Monte Carlo method can be used for pricing these
instruments. The Monte Carlo method is a computationally expensive al-
gorithm for pricing options, but is at the same time an embarrassingly
parallel algorithm. Modern Graphical Processing Units (GPU) can be
used for general purpose parallel-computing, and the Monte Carlo method
is an ideal candidate for GPU acceleration. In this thesis, we will evaluate
the classical vanilla European option, an arithmetic Asian option, and an
Up-and-out barrier option using the Monte Carlo method accelerated on
a GPU. We consider two scenarios; a single option evaluation, and a se-
quence of a varying amount of option evaluations. We report performance
speedups of up to 290x versus a single threaded CPU implementation and
up to 53x versus a multi threaded CPU implementation.

1

Contents

I Theoretical aspects of Computational Finance 5

1 Computational Finance 5
1.1 Options . 7

1.1.1 Types of options . 7
1.1.2 Exotic options . 9

1.2 Pricing of options . 11
1.2.1 The Black-Scholes Partial Differential Equation 11
1.2.2 Solving the PDE and pricing vanilla European options . . 12

1.3 Asian options . 13
1.4 Barrier options . 15
1.5 Stochastic processes . 15

1.5.1 Geometric Brownian Motion 16
1.6 Related work . 17

2 The Monte Carlo Method 18
2.1 A classical Monte Carlo method example 18

2.1.1 Formal specifications of the Monte Carlo method 20
2.1.2 Monte Carlo integration 20
2.1.3 Quasi-Monte Carlo . 21
2.1.4 Optimizations . 21

II A review on Modern Computing Hardware 22

3 GPU computing 22
3.1 GPU vs. CPU . 22
3.2 OpenCL history . 23
3.3 General-Purpose computing on GPU (GPGPU) 24
3.4 Hardware architectures . 25
3.5 Cost/benefit . 27
3.6 The AMD Tahiti GPU architecture 30
3.7 OpenCL in action . 32

3.7.1 The OpenCL specification 32
3.7.2 The OpenCL execution model 33

3.8 The OpenCL memory model . 37

2

3.9 Theoretical limitations . 38
3.10 Summary . 39

3.10.1 Strengths of Graphics Processors 39
3.10.2 Weaknesses of Graphics Processors 39

III Algorithms, implementations, and results 41

4 Testing methodologies 41
4.1 OpenCL execution measurements 41
4.2 Benchmark scenarios . 43
4.3 CPU, GPU, and software setup 44
4.4 Considerations of Monte Carlo algorithm implementations 45

5 Results 46
5.1 Reduction sum . 47
5.2 Vanilla European call option . 52
5.3 Arithmetic Asian option . 59
5.4 Monte Carlo barrier Up-and-Out put option 65
5.5 Implementing the kernels . 70

6 Conclusions and Future Work 72

7 Bibliography 73

Appendices 75

A OpenCL kernels 75

3

Problem definition

The financial sector has in the last decades introduced several new financial
instruments. Among these instruments, are the financial options, which for
some cases can be difficult if not impossible to evaluate analytically. The Monte
Carlo method can however easily evaluate prices for these options. In this
thesis we will investigate whether the Monte Carlo method is useful for GPU
acceleration. In particular, we will investigate the evaluation of vanilla European
options, the arithmetic Asian option, and the Up-and-out barrier option using
the Monte Carlo method on a GPU. We will benchmark using two different
scenarios: the case for a single option evaluation as well as the case of multiple
options evaluation.

4

Part I

Theoretical aspects of
Computational Finance
1 Computational Finance

Financial institutions have always depended on arithmetics and algorithms/ac-
counting methods for proper evaluation of financial products. By financial prod-
ucts, we can think of loans, obligations, stock options, interest swaps, etc. In
the old days, before the modern mainstream computer became available, fi-
nancial institutions were dependent on the human brain for assessing financial
problems. While the human brain has many impressive features, its computing
capabilities is not anywhere near the capabilities of modern computers.

However, in the last several decades a lot of new products have been developed
within the financial sector. There are probably many valid reasons why these
products have been introduced. However, one of the explanations that cannot
be dismissed is that it is actually possible to evaluate them. With the intro-
duction of the personal computer, and the limitations of Moore’s law, we have
increased the computational capabilities of modern computers to a stage where
no human can compete. These developments have allowed the products we
denote as financial derivatives to grow significantly the last several decades. Fi-
nancial derivatives are defined as special kinds of contracts on underlying assets
such as stocks, bonds, commodities. These assets will be denoted underlying. A
simple example could be a contract of the forward type. A forward is a contract
where two entities agree to trade some underlying at a fixed price and time,
e.g., company A writing a forward to company B that requires company B to
buy 100,000 Microsoft Inc. stocks at the fixed price of $40 on the 1st of January
2015. The value of this contract depends on how the underlying performs. In
the case where the underlying Microsoft stock is ≥ $40 at expiration, the con-
tract results in a profit and thus is valuable, and vice versa if the stock price
is < $40 at expiration. Futures are almost identical to forwards but differ in
that they are traded through exchanges. E.g., the first future ever was traded
at the Chicago Board of Trade in 1864 and the underlying was grain. By being

5

Figure 1: A graphic showing growth in over-the-counter financial derivative
trading. Source: Wikipedia [19]

exchange traded contracts, futures carry no counterpart credit risk. The result
of financial derivatives is that the values of the contracts are dependent on how
the underlying assets perform.

The market for financial derivatives has largely been driven by globalization
and the technological capabilities of modern computers. This is especially the
case for some of the derivatives, namely those that only can be evaluated by
computers due to their intensive computational requirements. However, far
from all derivatives are computationally intensive, and thus other explanations
must exist. From Figure 1 we can see that a lot of the derivatives are so-called
Over-the-counter (OTC) derivatives. This means that they are not traded on
exchanges, e.g., NASDAQ, but are created and traded bilaterally among fi-
nancial institutions. The derivatives being OTC implies that the they are not
regulated like regular exchange traded derivatives, and there has also been some
speculation that OTC trading requires a more lax treatment for taxation and
accounting purposes.

6

1.1 Options

In their simplest form, option contracts are closely related to forwards and
futures in that they are also financial derivatives, i.e., contracts on underlying
assets, but are markedly different from the others in that options give the owner
a right but not the obligation to exercise, i.e., buy or sell, the underlying. Hence,
the term option. This means that an option can be thought of as an insurance
where one buys the right to exercise some pay-off that might or might not be
beneficial, but if not exercised the contract will simply become void. Indeed,
this instrument is often used to hedge risk – meaning minimizing the risks of
asset fluctuations. Another noteworthy property of options is that they each
carry an intrinsic value which is termed an option premium.

1.1.1 Types of options

There are basically two types of option contracts:

• Call options.

• Put options.

Later, we will distinguish even further since the computational complexity is
not related to being neither a call nor a put option. Furthermore, options can
be categorized by the types of the underlying assets and the trading markets
since these are factors that determine the way the option contracts in particular
are constructed.

A call option gives the bearer the right to purchase some of the contract’s
underlying assets at some fixed price. From a speculator’s point of view, these
contracts will be bought in the event that the speculator expects the asset to
appreciate in value. We typically denote it a long call contract if it is purchased.
Likewise, we denote it a short call contract if it is sold. A simple example: a
trader purchases a call option on 100 Microsoft stocks, typically exchange traded
stock options are denominated in 100 of the underlying stock per contract, and
let the option have a exercise price (E) of $100 and a premium (P) of $10.
Thus by a given spot price (S) the following formula one can calculate the pay-
off = S − E − P . And thus if S − E > P , i.e. the spot price less the contracts
exercise price is larger than the premium, then the speculator exercises the
option and yield a net profit. If 0 ≤ S−E ≤ P then the speculator will exercise
the contract will not yield a profit since the paid premium is larger than the

7

Figure 2: A graphic showing the pay-off of a long call option. Source:
Wikipedia [19]

difference between the spot and exercise price. Otherwise the contract becomes
void and will thus not be exercised. Figure 2 gives an overview of the pay-off of
a long call option.

A put option is an option that gives the bearer the right to sell some of the
contracts underlying assets at some fixed price, rather than just selling the
assets up front. From a speculators point of view, then theses contracts will
be bought in the event that the speculator expects the asset to depreciate in
value. We also typically denote it a long put contract if one purchases the
option contract otherwise we call it a short put contract if one instead sells a
put option. A simple example: a trader purchases a put option on 100 Microsoft
stocks. Let the option have a exercise price (E) of $100 and a premium (P) of
$10. Thus by a given spot price (S) the following formula one can calculate the
pay-off = E − S − P . And thus if E − S > P , i.e. the contracts exercise price
less the spot price is larger than the premium, then the speculator exercises the
option and yield a net profit. If 0 ≤ E−S ≤ P then the speculator will exercise
the contract will not yield a profit since the paid premium is larger than the
difference between the spot and exercise price. Otherwise the contract becomes
void and will thus not be exercised. Figure 3 gives an overview of the pay-off of
a long put option.

8

Figure 3: A graphic showing the pay-off of an long put option. Source:
Wikipedia [19]

1.1.2 Exotic options

There are many different ways to distinguish option contracts: these examples
are only a few of the categories:

• Which markets they trade: There exists financial options on bonds as well
as stocks but also on commodities like grains and cattle.

• Basic type: whether it is a short or long contract, and whether it is a call
or a put option as described in the previous chapter.

• Complexity of the option or option style. Whether it is a simple (vanilla)
option or a complex (exotic) option. Typically, most exchange traded
options are of the simple type whereas most OTC options are of exotic
nature.

• Underlying asset type: The underlying asset can either be of the financial
type (stocks, bonds, etc.) or of the real asset type (real estate, properties,
etc.).

• Trade type: whether it is exchange traded or OTC traded.

As can be seen from above, options come in many shapes and sizes – from a
mathematical point of view, there exist infinitely many different option con-
tracts. However, for the purposes of this thesis, we will investigate the simple

9

vanilla European option as well as the exotic option types: arithmetic Asian
and the barrier options .

Typically, we distinguish between simple and exotic options by their payoff.
Traditionally, we describe both European and American style options as vanilla
options since they are much alike and the payoffs are identical. The only dif-
ference between American and European options is on which dates the options
can be exercised. A European option may only be exercised at expiration time
whereas an American option can be exercised at any point of time from its in-
ception to its expiration. While this may sound as a minor, subtle, or trivial
difference, it actually increases the complexity of evaluating an American option
significantly compared to a European counterpart.

Exotic options on the other hand can vary much more than the vanilla options.
The major difference between vanilla and exotic options is related to the pay-
off as mentioned earlier. However, since the exotic options can vary in many
other regards, it would be to simple to only consider the payoff. Just to give an
overview, here is an enumeration of a few complex options:

• Bermudan options: An option where one can exercise at specific dates
and/or on expiration time. Essentially, this is an option that lies some-
where between an American and a European option.

• Asian options: An option where the the value of the underlying gets av-
eraged till expiration.

• Barrier options: An option where a property of the underlying asset needs
to reach some barrier before it can be exercised or become void.

• Basket options: An option that has more than one underlying asset.

The enumeration above is far from exhaustive, but it lists the most common
examples of exotic option types. What is especially interesting and almost
common to all of them, is that the valuation of them are often quite computa-
tionally intensive. The major reason for this computational complexity is that
there rarely exists an analytical way of evaluating an option and thus one needs
to simulate/approximate the value.

10

1.2 Pricing of options

The complexity of evaluating options can range from a trivial analytical solution
to a path-dependent, very computationally intensive simulation. The standard
European option, which is the easiest to price, is typically evaluated using the
Black-Scholes model. The Black-Scholes model was first published in 1973 in
the paper "The Pricing of Options and Corporate Liabilities" [4] and has since
been developed further into more complex models, e.g., the Heston model [10].
Nevertheless, Robert Merton and Myron Scholes received the Nobel Prize in
Economics in 1997 for the development of this model.

1.2.1 The Black-Scholes Partial Differential Equation

Like most economic models the Black-Scholes PDE has a lot of assumptions:

• The risk-free interest rate is constant throughout the contract.

• The movement of the underlying asset is assumed to be a random walk
with a constant drift, i.e., a geometric Brownian motion.

• The stock does not pay dividends.

• There are no transaction costs or fees.

• There are no arbitrage opportunities in the market.

• It is possible to borrow and lend any amount of cash at the risk-free
interest rate.

• It is possible to buy and sell any amount of the underlying asset.

However, before we discuss the model, let us look at the essential partial dif-
ferential equation (PDE) that one needs to solve to price European options
[20]:

∂V

∂t
+ σ2S2

2
∂2V

∂S2 + rS
∂V

∂S
− rV = 0

where V is the price of the option as a function of time t, r is the risk-free
interest rate, σ is the volatility of the stock, and S is the stock price. However,
applying some simple arithmetics and one gets

∂V

∂t
+ σ2S2

2
∂2V

∂S2 = rV − rS ∂V
∂S

11

The left hand side now consists of two terms: theta and gamma. Theta is the
time decaying term ∂V

∂t , i.e., the change in derivative value due to time increasing
and gamma, σ2S2

2
∂2V
∂S2 , is the convexity of the derivative value with respect to

the underlying asset. On the right hand side, we also have two terms: the first
term rV is the risk-free return from holding a long position in the derivative
and the second term is a short position of ∂V∂S shares in the underlying asset.

While the Black-Scholes equation can be solved analytically, it is in general not
possible for all PDEs to be solved analytically. ’Analytically’ in this domain
means that there exists a non-stochastic formula or function that can easily
be evaluated and that yields a deterministic result. Thus, if there does not
exist an analytical formula for a given PDE, then one needs to simulate and
approximate a solution. When one derives the Black-Scholes equation, there is
an assumption (already mentioned above) that the movement of the underlying
asset (most often a stock) adheres to a geometric Brownian motion. Thus, we
note that a geometric Brownian motion in this domain can be formulated as

dS

S
= µ dt+ σ dW

whereW is a stochastic variable, i.e., a Wiener process. One can then simply use
Monte Carlo simulations to price the options. We will investigate this further
in the next chapter.

1.2.2 Solving the PDE and pricing vanilla European options

As mentioned earlier, when one has applied the boundary and terminal condi-
tions of a derivative, the PDE can be solved numerically with, for instance, the
finite difference method or Monte Carlo simulations. However, in certain cases,
it is possible to analytically derive a formula for pricing a given option, and in
particular it is possible for a European call option. For a European call option
we have the following boundary conditions:

C(0, t) = 0 for all t

C(S, t)→ S as S →∞

C(S, T) = max{S −K, 0}

12

Here, T denotes the expiration time and t the time. The two first boundary
conditions are a bit theoretical since they rarely occur. The first condition tells
us that a stock worth 0$ will continue being worth 0$ (which is obvious since
then the company is bankrupt). The second condition is simply the case where
a stock heads for infinity, and one way to circumvent it is to ignore the gamma
term - this case does not really happen in the real world anyway. Finally, one
can derive and use the following formula [11]:

C(S, t) = N(d1)S −N(d2)Ke−r(T−t)

where

d1 = 1
σ
√
T − t

[ln(S
K

) + (r + σ2

2)(T − t)]

d2 = 1
σ
√
T − t

[ln(S
K

) + (r − σ2

2)(T − t)]

= d1 − σ
√
T − t

Here, N(x) is the standard normal distribution function:

N(x) = e−
1
2x

2

√
2π

However, if one were to evaluate a vanilla European call option using a non-
analytical solution, then one would have to solve [11]

C (S, t, T) = e−rTE
[
(S(ti)−K)+

]
where r is the risk free interest rate, S is the underlying asset price, t is the
time, T is the expiration time, E is the expected value, and (S(ti)−K)+ denotes
max (S(ti)−K, 0).

1.3 Asian options

The Asian option (or average option) is an exotic option and differs quite a lot
from the standard vanilla European option. The averaging of the Asian option is
related to the underlying asset’s or assets’ movement from start to expiration,
and thus peaks in either direction do not affect the option as much as they
do for the vanilla European option. This gives the Asian option the following

13

advantages:

• Asian options are usually somewhat cheaper and carry lower premiums
due to its lower volatility of the underlying compared to other options.

• It is typically more in line with the accounting principle of averaging fluc-
tuating costs over some time frame, and thus end users of options prefer
these to other more volatile options.

• Asian options offer protection against manipulation of the underlying as-
set, e.g., a spike in price suddenly before expiration does not affect the
Asian option significantly.

However, we distinguish between two fundamentally different Asian options,
namely the arithmetic Asian option:

C (S, t, T) = 1
T

∫ T

t

S(t)dt

as well as the geometric Asian option:

C (S, t, T) = 1
T

∫ T

t

ln (S(t)) dt

For the purposes of this thesis, we will limit the scope to the arithmetic case.
The arithmetic Asian option does not have an analytical solution and is thus
an excellent candidate for the Monte Carlo method. The discrete version of the
arithmetic Asian option is

C (S, t, T) = 1
N

N∑
i=1

S(ti)

where there are N time steps: t = t1, t2, ..., tN = T . The solution to the discrete
version of a call option is the following [11]:

C (S, t, T) = e−rTE

(1
N

N∑
i=1

S(ti)−K
)+

Here, r is the risk free interest rate, S is the underlying asset price, t is the
start time, T is the expiration time, E is the expected value, and (S(ti)−K)+

denotes max (S(ti)−K, 0).

14

1.4 Barrier options

Barrier options are options that feature at least one barrier. By barrier, we
mean a certain value where something happens once the underlying stock hits
this barrier. We typically define this something by the following:

• For knock-in barrier options, once the underlying reaches the (upper or
lower) barrier, the option becomes non-void.

• For knock-out barrier options, once the underlying reaches the (upper or
lower) barrier, the option becomes void.

Thus for the barrier option we get both a call and a put, and for each of these
we get four variations:

• Up-and-out

• Up-and-in

• Down-and-out

• Down-and-in

This implies that we have eight variations in total. In this thesis, we will only
look at the Up-and-out put barrier option, which can be priced as follows [11]:

P (S, t, T) = e−rTE

(1
N

N∑
i=1

K − S(ti)
)+

1MS<B

where r is the risk free interest rate, S is the underlying asset price, t is the
start time, B is the barrier level, T is expiration time, E is the expected value,
and (S(ti)−K)+ 1MS<B denotes max (S(ti)−K, 0) when (S(ti)) < B, ∀i and
otherwise 0 (void).

1.5 Stochastic processes

Above, we used the term S(ti) to denote the price of some asset. However,
we did not explicitly state how such a price evolution would be simulated. It
turns out that there exist several valid Stochastic processes which can be used
to model financial assets.

15

1.5.1 Geometric Brownian Motion

A time continuous stochastic process in which the logarithm of the randomly
varying quantity follows a Brownian motion or more generally a Wiener process
is denoted a geometric Brownian motion. This means that some stochastic pro-
cess St is said to follow a geometric Brownian motion if it satisfies the following
stochastic differential equation [20]:

dSt = µStdt+ σStdz

where µ is the drift, σ is the volatility, and dz = ε(t)
√
dt is the Wiener process,

where ε(t) is a standard normal distributed random variable. Now, to derive
an analytical solution that can be implemented and thus used for simulation
purposes, we use Ito’s lemma that states that for some random process s defined
by the Ito process that

ds(t) = a(x, t)dt+ b(x, t)dz

where dz is the standard Wiener process as mentioned above. If we then let
y(t) = F (x, t) which satisfies the Ito equation

dy(t) =
(
a
∂F

∂x
+ ∂F

∂t
+ b2 ∂F

2∂x

)
dt+ b

∂F

∂x
dz (1)

then if we apply Ito’s lemma to the process F (St) = lnSt, we can see that

a = µS, b = σS,
∂F

∂S
= 1
S
,
∂2F

∂S2 = − 1
S2

Substituting these values into (1), we get that

d lnS =
(
a

S
− b2

2S2

)
dt+ b

S
dz =

(
µ− σ2

2

)
dt+ σdz

By Ito integrating on both sides, we obtain that

ln (St)− ln (S0) =
(
µ− σ2

2

)
(t− 0) + σdz

⇐⇒ St = S0e

(
µ−σ2

2

)
dt+σdz

16

and, finally, by using the fact that dz = ε(t)
√
dt for a normal Wiener process,

we conclude that [20]

St = S0e

(
µ−σ2

2

)
dt+σ

√
dtε(t)

1.6 Related work

On the subject of Monte Carlo simulated option pricing performances in the
literature, we get ranges from one extreme of a 900x speedup [14] to the opposite
extreme of only a 2.5x speedup [12]. The speedup of course depends on what
kind of option, e.g., vanilla European, Asian, etc., and what kind of pricing
model, e.g., analytical, Monte Carlo, Binomial tree, etc. Hence, one has to be
careful with the interpretations of results. However, the authors’ backgrounds
might also influence the results. In the paper titled "Debunking the 100X GPU
vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU "
[12] all eight authors are employed by Intel. They deliberately chose to use
double-precision on an Nvidia mainstream GPU that is known to have a crippled
double-precision performance due to Nvidia marketing a much more expensive
line of GPUs for double-precision computing. Furthermore, double-precision is
not necessary for Monte Carlo simulations. Had they picked single-precision
instead, they would have gotten at least a speedup of 15x or more.

On the other end of the spectrum, one does not really demonstrate anything
by using a single-threaded Monte Carlo option pricer in Matlab versus a highly
optimized GPU version even though one gets a speedup of 900x [14]. Others
demonstrate a much more fair comparison using a multi-threaded optimized
CPU version versus a GPU implementation showing a more modest speedup of
50x versus the multi-threaded CPU version and around 200x versus the single-
threaded CPU version [1, 18, 21]. It is also popular to use energy efficiency as
performance metric [7], i.e., the number of options evaluated per Watt usage.
Whatever performance metric one uses, the "mathematization" of the financial
sector necessitates the usage of high performance in the present as well as in
the future [22].

17

2 The Monte Carlo Method

This chapter provides an overview over the practical as well as theoretical per-
spectives of the Monte Carlo method in general but also in particular its appli-
cation within the domain of computational finance. The Monte Carlo method is
used in general within the financial sector [6] – particularly within the domain
of option pricing [5]. This chapter is a necessity to understand why the Monte
Carlo method is not only necessary but also requires a considerable amount of
computational power. Although the Monte Carlo method has been used since
ancient times, it was formalized by Stanislaw Ulam and John von Neumann in
the late 1940s [19].

2.1 A classical Monte Carlo method example

The Monte Carlo method, in general terms, can be summarized as follows:

• Define a domain of possible inputs.

• Find a suitable probability density function to make a suitable probability
distribution for generating random inputs.

• Perform a deterministic computation on the random inputs.

• Aggregate/average the results.

Pi (π) is one of the classical constants that one meets in almost any scientific
context from classical geometry to post modern physics, and yet the constant is
only an approximation since it is an irrational number. There exist many ways
to approximate π, but one in particular is a classical Monte Carlo application.
The algorithm for the Monte Carlo method for estimating π is

• Draw a square on the ground and then draw a circle touching every side
of the square.

• Uniformly scatter some rice grains of uniform size over the square area.

• Count the rice grains that landed inside the circle as well as outside.

• Divide the inside count by the total rice grain count. This gives you an
approximation of π4 . Multiply the result by 4 to get the approximated π.

18

Figure 4: A graphic showing one way of estimating pi using the Monte Carlo
method. Source: wikipedia.org [19].

An example of the π approximation algorithm can be seen in Figure 4. However,
as we also see from the figure, the circle and square are only vaguely covered
with dots. Intuitively, one would expect that the approximation of π would be
more accurate the more rice grains are distributed over the area as described
in the above algorithm, and in fact this happens to be the case for the Monte
Carlo method in general. With the π example in mind, consider the case where
we only distributed 100 rice grains and 84 landed within the circle area. Then
one gets an approximated π of 3,36... which is a very crude approximation.
However, if we distribute 10,000 rice grains, i.e., we increase the amount of
simulations, and imagine that 7854 rice grains landed within the circle, we get
an approximation of 3,1416. Thus by increasing the amount of simulations,
the experiment converges to the true π: in this case we went from a completely
unusable result to a still very crude result but at the cost of increasing the
amount of simulations with two orders of magnitude (100x). At this point, it

19

should be clear that the Monte Carlo method does converge to the true value
the experiment seeks – although at the cost of increased compute requirements.

2.1.1 Formal specifications of the Monte Carlo method

Although no true formal definition exists of the Monte Carlo method, it can
in general be considered a method for solving or modelling a subset of the
stochastic simulations of probabilistic models. Ripley [15] limits the Monte
Carlo method to Monte Carlo integration, whereas Sawilowsky [16] distinguishes
further between simulation, Monte Carlo method, and Monte Carlo simulation.
He defines them as follows:

• A simulation is a fictional/virtual representation of an event/object of the
real world.

• The Monte Carlo method is a technique for solving a mathematical or,
typically, a statistical problem.

• A Monte Carlo simulation uses repeated sampling to solve a problem or
determine some properties of some phenomenon/problem.

To this end: while one might intuitively have a good idea of the Monte Carlo
method, there exists no single formal definition. However, the typical definition
would be that of Monte Carlo integration.

2.1.2 Monte Carlo integration

The problems that Monte Carlo integration addresses are the computation or
evaluation of multidimensional definite integrals. Consider the following inte-
gral:

α =
∫ b

a

f (x) dx

If one were to approximate the value of α in the above integral using Monte
Carlo integration, one would draw the random samples Ui, i = 1, ..., n, from the
uniform distribution over the continuous range of the integral [a, b] and then
finally compute α̂ as

α ≈ α̂ = 1
n

n∑
i=1

f(Ui)

20

where α approaches α̂ as n goes to infinity as the law of large numbers ensures
that

lim
n→∞

α̂ = α

The complexity of the Standard Error of the Monte Carlo method is O
(

1√
N

)
where N is the amount of samples, i.e., the number of simulations. Running
time therefore depends on the amount of precision needed for each individual
problem that is solved using the Monte Carlo method.

2.1.3 Quasi-Monte Carlo

The Quasi-Monte Carlo method is a modified version of the regular Monte
Carlo method. In the Quasi-Monte Carlo method we use quasi-random input,
i.e., low-discrepancy sequences, instead of using regular pseudo-random input.
Low-discrepancy sequences, such as Sobol [17] or Halton [9] sequences, are de-
terministic but yet "appear" random for their purpose, and thus the term quasi-
random should be taken with a grain of salt. However, the primary advantage
of low-discrepancy sequences is that they fill out the given domain of numbers
much better than those of a pseudo-random generator. The Quasi-Monte Carlo
method reduces the complexity of the Standard Error to O

(
(logN)d

N

)
where d

is the dimension of the integral. In general, however, the Quasi-Monte Carlo
method performs closer to O

(1
N

)
(when d is small) which is why the Quasi-

Monte Carlo method in the literature is often being denoted as O
(1
N

)
[3]. There

is currently an ongoing debate in the literature on whether or not Quasi-Monte
Carlo is worthwhile for multi-dimensional integrals (when d is large) [13]. For
this thesis, the Quasi-Monte Carlo method will not be used.

2.1.4 Optimizations

The standard Monte Carlo method has a relatively slow rate of convergence,
O
(

1√
N

)
as mentioned above, and, thus, to decrease the error by a factor of two,

we need to increase the number of simulations with a factor of four. A number
of optimizations exist to increase the rate of converge, and these techniques are
often referred to as variance reduction techniques. Quasi-Monte Carlo is one
of them, but others are the antithetic variates, the control variates, and the
stratified sampling [15]. It is worth noting that these optimization techniques
are limited to optimizing the input data to the Monte Carlo method rather than
optimizing the Monte Carlo method itself.

21

Part II

A review on Modern Computing
Hardware
3 GPU computing

The purpose of this chapter is to give the reader a thorough introduction to
general purpose GPU computing (GPGPU). GPGPU computing has developed
from its very basic graphics pipeline purposes to a much more mature general
purpose application framework. The following subsections highlight the history
of GPGPU as well as discuss various GPGPU frameworks such as OpenCL and
how these frameworks have allowed using GPUs for much broader purposes than
just graphics rendering.

3.1 GPU vs. CPU

Before investigating the details of GPU computing, it is perhaps worthwhile to
discuss the drivers behind the recent shift towards GPU computing specifically
as well as towards massive parallelism in general.

Traditionally, the performance gains realised in computing have been attributed
to increasing amounts of transistors on integrated circuits (ICs) as well as the
frequency with which these transistors could switch. Moore’s law states that
the number of transistors doubles every 1.5-2 years, and thus increasing the
logic and computing power has been true since its inception circa 19651. Up
until the last single-core super-scalar Netburst architecture, Intel’s Pentium 4
CPU family, we could account on this law for an ever-increasing single-thread
sequential performance.

The Prescott revision of the Pentium 4 CPUs where made using a lithography
of 90 nm and reached a peak of 3,8 GHz and a thermal design power (TDP) of
115 Watts. At this point, however, Intel started experiencing extreme power re-
quirements and thus accompanying heat dissipation problems, especially when

1Some interpret Moore’s law as stating that the performance will double every 1.5-2 years
rather than that the number of transistors will.

22

trying to increase performance, and thus at this point the law of diminishing re-
turns became the final frontier. The reason for this diminishing returns barrier
is that for each performance increment of the processor, the increased TDP and
heat dissipation requirements increase more than proportionally to the perfor-
mance gain.

Intel initially had a goal of reaching 10 GHz with its Netburst architecture. This
was in hindsight far from achievable so instead they, including the rest of the
industry, started pursuing multi-core CPUs with much better efficiency with
regards to performance/TDP per core. Today, it is not uncommon to have 2-8
physical cores and 2-16 logical cores within a single CPU. Even low power CPUs
for mobile devices often contain two or more cores.

3.2 OpenCL history

OpenCL is a framework that consists of a software library to write programs
than can be executed on heterogeneous hardware platforms such as Central
Processing Units (CPUs), Graphical Processing Units (GPUs), as well as field
programmable gate arrays (FPGAs). OpenCL can be considered a superset
of the C99 programming language that adds a few extra keywords. Although
intended to run on virtually all mainstream processors, it is intended for massive
parallelism and thus heavily targets GPUs and GPU-like hardware architectures,
e.g., Intel’s Xeon Phi coprocessors. It has been developed at the Khronos Group
since 2008, a consortium consisting of major software and hardware companies,
e.g., Apple, Intel, Nvidia, and AMD, although it was initially developed by
Apple only.

The competing framework, Compute Unified Device Architecture (CUDA) by
Nvidia, which only runs on Nvidia hardware, has historically been the most
successful implementation measured by market share. OpenCL has nevertheless
gained a lot of market share since AMD joined OpenCL and will probably be
the dominating framework in time due to its support by most major software
and hardware manufacturers including Nvidia – as well as the fact that it runs
on virtually all modern CPUs and GPUs.

23

3.3 General-Purpose computing on GPU (GPGPU)

To understand OpenCL, one needs to understand GPGPU. GPUs have histor-
ically been developed to serve one need and one need only: to accelerate the
graphics pipeline in games. This allowed for ever-increasing levels of detail in
graphics rendering capabilities. Rendering graphics on a screen essentially con-
sists of calculating the color value of each pixel. This can be done in parallel and
thus graphics rendering is a perfect match for parallel hardware architectures.

Up until the late 90s, it was quite common to do graphics rendering in software,
typically denoted "software rendering", which was executed by the machines’
CPUs. It was quickly discovered that CPUs were not the best fit for graphics
rendering due to the limiting processing power and the lack of accelerated par-
allel execution because of the sequential architecture. In the early 2000s, the
graphics pipeline started to expand with the advent of programmable shaders.
A shader is basically a small program executed on each primitive (fragment
or vertex) that could be utilized to create much more realistic graphics with
lighting and shadows – unfortunately with the cost of higher computational re-
quirements.

Due to the ever-increasing performance requirements of graphics rendering as
well as the mainstreams CPUs lack of parallel execution performance, discreet
graphics cards were no longer merely nice to have for extra features but became
a real requirement. It was quickly realised that these discreet graphics cards,
which often offered an overwhelming amount of computing power, probably
could be used for other purposes than pure gaming. One of the first alternative
usages was to accelerate matrix multiplications. This was done by exploiting
the programmable shaders in such a way that, when executed, it would use
the whole graphics pipeline – as if it were real graphics being rendering in a
game. This was clearly cumbersome since it required rewriting a problem into
a another problem solvable by a limited graphics rendering pipeline. ATI (now
AMD) introduced the ATI FireStream framework in 2006 and this was the
first fully fledged framework for general purpose programming of GPUs directly
supported by a hardware manufacturer. When AMD bought ATI and shortly
thereafter introduced OpenCL, they decided to pursue OpenCL rather than
FireStream. In the middle of the 2000s, Nvidia started developing CUDA as a
competitor to ATI’s FireStream and released it in 2007. CUDA has been the

24

most successful GPGPU implementation to date by market share.

3.4 Hardware architectures

Due to the nature of graphics pipelines, GPUs are today a completely different
piece of hardware than traditional CPUs. GPUs today are many-core devices
that can execute thousands of threads in parallel.

Figure 5: A graph that shows the development in raw single-precision compute
performance in GPUs and CPUs. Source: Nvidia.

Since the graphics pipeline can be executed in parallel, it is no surprise that
modern GPUs are designed to execute the graphics rendering in parallel to
maximize efficiency. Historically, GPUs, however, have not been the only hard-
ware available for parallel problems. Actually, it is only very recently that GPUs
started being general purpose programmable: until then we had clusters and
"supercomputers". If one peeks at the list of the top 500 supercomputers2, one
can see that supercomputers are massive computers with a huge amount of com-
puting cores. Supercomputers are often very large clusters of mainstream CPUs

2http://www.top500.org/

25

"clustered" together with high speed networks. Thus, the distinction between a
supercomputer and a mainstream consumer computer is often only limited to
the amount of physical machines rather than the type of hardware. There do,
however, also exist supercomputers built with "special" hardware designed for
parallel processing. Intel’s newly released Xeon Phi processor, for instance, is
a co-compute unit that is designed for heavy parallel processing, and this is its
only purpose, and thus it cannot be used for other general usages.

One of the major drawbacks with the cluster design is that it is in general very
difficult to utilize within the parallel programming paradigm – namely synchro-
nization between processes and states among cores/machines in the grid. This
is especially cumbersome in clusters since communication through a network
introduces higher latencies. These challenges are not limited to clusters since
synchronization of cores within a single CPU can be challenging as well and can
incur severe performance penalties if done wrong.

From a purely hardware-architectural standpoint, GPUs and CPUs are very
different. In general CPUs are still optimized for sequential execution, even
though they often have several cores available for execution. A GPU is on
the other hand optimized for parallel execution. These major architectural dif-
ferences manifest themselves in that the GPUs’ die areas are primarily spent
implementing logical cores (ALUs) whereas modern CPUs’ die areas are used
primarily for cache, conditional-branch prediction logic, out-of-order execution
speculation, and other I/O logic. Paradoxically, today’s CPUs often contain a
small embedded GPU which, compared to a discreet desktop GPU, is severely
limited but has its niche within mobile hardware platforms, e.g., laptops, where
power usage is often more important than performance.

Taking a peek at Figure 5, we can see that the theoretical performance in
single-precision floating operations has increased greatly in GPUs compared to
CPUs. Interestingly, when comparing double-precision performance, we notice
that the increased gain is not nearly as great. This is due to the fact that
graphics rendering only requires single-precision. Conversely, the logic of CPUs
for single-precision and double-precision are equivalent – especially since the
introduction of 64-bit CPUs in mainstream PCs. Although modern GPUs of-
fer double-precision, this feature has primarily been driven by recent GPGPU
requirements. Among these are pressure from within the financial sector which

26

sometimes need higher precision. Nvidia’s mainstream GPUs typically deliver
1

24 double-precision performance compared to single-precision whereas AMD’s
GPUs are typically limited to 1

8 of the performance – this, however, varies among
each specific GPU. Both Nvidia and AMD offer non-mainstream GPUs which
are not nearly as limited regarding double-precision performance but come with
a significant increase in price.

Another major difference between the hardware architectures of GPUs and
CPUs is the memory subsystem. Caching, as already mentioned, is quite dif-
ferent among GPUs and CPUs. CPUs dedicate a lot of its die area to caching.
For instance, my current desktop CPU has the stats given in Table 1. Here,

CPU specifications
Brand Intel
Model i7-3770
Physical cores 4
Logical cores 8 (hyper-threading)
Clock 3.4 GHz base (3.9 GHz turbo)
Level-1 cache 4 · 32 KB = 256 KB
Level-2 cache 4 · 256 KB = 1,024 KB
Level-3 cache 8,192 KB
Memory bandwidth Dual-channel DDR3-1600 (25.6 GB/s)
Theoretical performance 108.8/54.4 GFLOPS (single-/double-precision)

Table 1: Specifications of my current desktop processor. Source: Intel.

we can see that on my CPU there is a lot of cache available for the few cores
it has. The memory subsystem is a typical DDR3 memory setup, and the chip
supports up to dual-channel with an effective frequency of 1600 MHz for a total
theoretical memory-transfer capability of 25.6 GB/s.

3.5 Cost/benefit

Since the inception of CUDA, and later on OpenCL due to the rising interest
in GPGPU, cost/benefit should not be neglected as a driving force behind the
recent advancements in GPGPU frameworks such as OpenCL as well as new
GPU hardware architectures optimized for not only graphics rendering but also
general purpose computing.

If we look at the raw performance numbers between CPUs and GPUs, we see

27

that the GPUs typically outperform the CPUs with at least one order of mag-
nitude. For my personal setup, the numbers are

CPU GPU GPU
CPU

Single-precision 108.8 GFLOPS 4,096 GFLOPS 37.5x
Double-precision 54.4 GFLOPS 1,024 GFLOPS 18.8x

Table 2: Theoretical performance metrics of my CPU compared to my GPU.
Sources: AMD, Wikipedia, and Intel.

Hence, the GPU, AMD Radeon HD 7970, has a raw performance advantage
compared to the CPU, Intel i7-3770, by an impressive factor of 37.5x for single-
precision as seen in Table 2. Likewise, the GPU still has an impressive factor of
18.8x of theoretical performance advantage over the CPU for double-precision
– although it is only half as fast compared to its single-precision performance.
The GPU’s performance difference in double-precision is noteworthy but can be
explained by the fact that graphics rendering requires only single-precision. This
is, however, not a complete explanation since, typically, Nvidia’s mainstream
GPUs’ double-precision performance are artificially limited to 1

24 of their single-
precision performance, but this is a deliberate strategy to market its higher
double-precision performing hardware – the Nvidia Tesla series compute hard-
ware – which is a business-made decision.

But what about performance in monetary terms? Often one can describe the
rise and fall of products or trends by their utilities, e.g., the monetary cost
savings they deliver compared to competing products. Above we noted that a
mainstream GPU is often performing many times better (at least from a the-
oretical perspective), but what about performance relative to its cost? The
most critical metrics are performance/initial price and performance/Watt (en-
ergy). In Table 3 we have an overview of the performance delivered compared

CPU GPU GPU
CPU

Initial price $294 $500
Single-precision

initial cost 0.37 GFLOPS · $−1 8.19 GFLOPS · $−1 22.1x
Double-precision

initial cost 0.185 GFLOPS · $−1 2.048 GFLOPS · $−1 11.05x

Table 3: Cost/benefit calculation of initial price versus theoretical performance.
Sources: AMD, Wikipedia, and Intel.

28

to the initial cost. It is quite obvious that the GPU delivers a much better
performance per $ invested: for double-precision > 10x and for single-precision
> 20x. Although these numbers are calculated specifically for my hardware, it
would in general be safe to assume that they approximately hold for most other
combinations of CPU and GPU hardware – perhaps with the caveats of certain
Nvidia GPUs.

CPU GPU GPU
CPU

TDP3 77 W 250 W
Single-precision

TDP 1.41 GFLOPS ·W−1 16.38 GFLOPS ·W−1 11.6x
Double-precision

TDP 0.7 GFLOPS ·W−1 4.1 GFLOPS ·W−1 5.85x

Table 4: Cost/benefit calculation of energy usage versus theoretical perfor-
mance. Sources: AMD, Wikipedia, and Intel.

Regarding continuously accruing costs, the most critical metric is performance
per power consumption. Not surprisingly, the GPU again leads this race with
a comfortable > 10x for single-precision and > 5x for double-precision. These
numbers show that, for those applications where one can utilize the hardware
fully, a tremendous increase in efficiency can be achieved. These numbers are
quite significant since power usage is a continuing cost that will incur proportion-
ally with frequent usage so a potential saving of 5-10x for power consumption
is a significant overall cost reduction.

To conclude, one can clearly see that from a purely economical point of view,
a GPU can deliver better performance for each $ invested. Although the above
numbers are based on my personal equipment, it is safe to assume that the
conclusion will hold for most likely any hardware configuration where the pur-
chasing prices are roughly equivalent (between the CPU and the GPU). One
can wonder, however, that if a GPU really is that much more efficient than
a comparable CPU, then why would one use a CPU instead of a GPU? The
answer to this is two-fold:

• Investment of writing custom code (OpenCL/CUDA) for the particular
hardware.

• Far from all algorithms can be efficiently converted to utilize the GPU
hardware.

3Thermal Design Power.

29

3.6 The AMD Tahiti GPU architecture

In 2012, AMD released a new GPU lineup consisting of the revisions Cape Verde,
Pitcairn, and Tahiti – all codenamed southern islands. The overall architecture
in the southern islands chips is called Graphics Core Next (GCN). This ar-
chitecture is a deviation of the earlier Very Long Instruction Word (VLIW)
architecture. AMD justifies this architectural shift in that it is much easier to
deliver high performance – especially in GPGPU cases. The largest and fastest
chip is the Tahiti chip equipped in the Radeon 7950 and 7970 graphics card mod-
els. I own an AMD Radeon 7970 GHz edition which is a slightly overclocked
stock AMD Radeon 7970 graphics card. To understand the chip architecture,

Figure 6: A block diagram of AMD’s Tahiti architecture. Source: "Heteroge-
neous Computing with OpenCL" [8].

we need to realize that the architecture compared to a CPU is very different.
For instance, the term "Core" can be a bit deceptive when dealing with GPUs.
One normally thinks of a core as a logical unit of execution capable of not only
basic integer arithmetics and floating point operations but also other logical

30

processing such as decoding instructions and controlling the execution flow – as
one normally expects a core implemented in a CPU can do.

In Figure 6, we can see a simplified block diagram of the AMD Radeon 7970
GPU. From the diagram, we can see that the GPU has eight clusters consisting
of four Compute Units (CUs) for a total of 32 CUs. Sometimes the term "core"
is used instead of Compute Unit, however, they are still not the equivalent to
normal CPU cores. Each Compute unit consists of a single-scalar unit (SC),
four 16-wide SIMD units, registers, and a small cache. The single-scalar unit
handles basic integer operations as well as branching while the SIMD units are
where the true computing performance is hiding. Each SIMD unit can be con-
sidered an ALU which, instead of processing one element at a time as a typical
ALU would do in a CPU, computes a single instruction on 16 elements – hence,
it being a SIMD unit. This equals a total of 32 Compute Units · 4 SIMD units
· 16-wide ALU = 2,048 single element ALUs or streaming processors as is the
most commonly used term.

GPU specification
Brand AMD
Model Radeon HD 7970 GHz Edition
Physical cores 32 (compute units)
Streaming processors 2,048
Clock 1 GHz base (1.05 GHz turbo)
Level-1 cache 16 KB per compute unit = 512 KB
Level-2 cache 768 KB

Level-3 cache 16 KB instruction cache and
32 KB scalar data cache (per compute unit)

Memory bandwidth GDDR5 (288 GB/s)
Theoretical performance 4,096/1,024 GFLOPS (single-/double-precision)

Table 5: Specifications of my current graphics card. Source: AMD, "Heteroge-
neous Computing with OpenCL" [8].

It should be clear at this point that the GPU architecture of modern GPUs
is drastically different than that of mainstream CPUs. The caches’ primary
purpose is to speed up often accessed data and instructions, but the registers
– or local memory (LDS) as per OpenCL convention – are a rather small local
memory of 32 KB available on a shared basis among the streaming processors.
The local memory is very fast compared to the global memory with a latency
equivalent of that of the L1-cache. Often when developing for GPUs, the typical

31

bottleneck is an overgenerous use of this memory which, if memory allocation
surpasses the locally available in the GPU, will use the vastly slower global
memory. In the AMD Radeon HD 7970, the 32 KB will be shared among all
of the streaming processors in each compute unit. This means that there will
be a maximum of 32 KB / 64 streaming processors = 512 bytes per streaming
processor.

3.7 OpenCL in action

3.7.1 The OpenCL specification

The OpenCL specification specifies several levels of how an OpenCL implemen-
tation should handle a kernel (an OpenCL program) and how the application
programming interface (API) should look. The layers are:

1. Platform model: The host is defined as the processor coordinating the
execution of the kernel on one or more capable processors (OpenCL de-
vices: CPUs, GPUs, and other OpenCL-capable hardware). This is the
abstract hardware model that the OpenCL application developers use to
model and execute kernels.

2. Execution model: This is used for defining the OpenCL environment on
the host as well as how kernels are executed on the device(s). In this step,
the OpenCL context is set up which is necessary for the host-device com-
munication as well defining the concurrency model used when executing
the kernel(s).

3. Memory model: The OpenCL memory model defines the abstract mem-
ory hierarchy that kernels can use – regardless of the actual underlying
memory architecture. The model is heavily inspired by how the typical
memory hierarchy of a modern GPU is – although it is still general enough
to adapt to other memory layouts of different architectures.

4. Programming model: This is the definition of how the chosen concurrency
model actually maps to the physical hardware.

In the most typical case, we have a machine with a CPU, the host, executing
some application where a part of this is implemented as a OpenCL kernel using
the GPU as an accelerator. The platform model is the relationship between the
CPU and GPU. The host then creates the kernels with some parameters and

32

instantiates it with a specified degree of parallelism – this is the execution model.
The data within the application necessary for the execution of the kernel is
allocated within the abstract OpenCL memory hierarchies by the programmer,
and the OpenCL runtime and driver for that particular hardware will map
the abstract memory hierarchies to real physical memory hierarchies of the
device – this is the memory model. Lastly, the hardware threading context that
execute the kernel must be instantiated onto the actual GPU hardware – this is
the programming model. However, the above is only one example of a typical
OpenCL application flow and could deviate in several ways. The CPU, as the
host, could also execute OpenCL kernels as well as the dedicated GPU located
on most modern CPUs. One could also, for instance, have several GPUs and
execute kernels in parallel distributed on all GPUs.

3.7.2 The OpenCL execution model

When one wants to execute code within the OpenCL specification, one needs to
write a OpenCL kernel. Writing a OpenCL kernel is almost syntactically iden-
tical to any other CPU concurrency model, e.g., OpenMP and win32 thread
API, in that it is basically a C function (though with some extra keywords).
One major difference between OpenCL kernels and other typical CPU concur-
rency models is that in OpenCL one does not consider the overhead of creating
threads and switching between these as well as the overhead of handling the
physical resources, e.g., the CPU cores, as is necessary when using standard
win32/posix threads, for instance. The benefit of using OpenCL is that the
coarseness of typical CPU concurrency is mostly eliminated while still keeping
the goal of representing parallelism programmatically at the finest granularity
possible. The thread or unit of concurrent computation in OpenCL is called a
work item.

When an OpenCL compatible device begins executing a kernel, it provides some
OpenCL specific functions like get_global_id() which returns a number or in-
dex to the programmer so that he knows which work item is currently being
executed. Since threads or work items are very lightweight in comparison to typ-
ical CPU concurrency models, we normally unroll loops and map each iteration
to a work item. Consider a two-dimensional problem which in a sequential im-
plementation would require two nested for loops. Now, we instead translate this
into creating work items in two dimensions – one for each for loop – and then

33

get the relevant indexes by calling the get_global_id() for each dimension.
For instance, consider the following sequential pseudo algorithm:

i n t SomeCFunction (i n t x_length , i n t ∗ x_arr [] ,
i n t y_length , i n t ∗ y_arr []) {
f o r (i = 0 ; i < x_length ; i++)
{

f o r (j = 0 ; j < y_length ; j++)
{

// a lgor i thm . . .
}

}
}

Listing 1: Simple example of an arbitrary algorithm.

which can loosely be translated to the following OpenCL parallel kernel:

__kernel void SomeCKernel (i n t ∗ input_array [] ,
i n t ∗ output_array []) {
i n t i = get_global_id (0) ;
i n t j = get_global_id (1) ;

// a lgor i thm . . .
}

Listing 2: Simple illustration of an OpenCL kernel.

First, notice that kernels always return void. Thus, one always has to return a
value by writing to an output array. Secondly, notice how we have transformed
the two input arrays in the sequential solution to one input array in the OpenCL
kernel. This is due to the nature of how a GPU reads from memory and thus
determines what the memory layout for optimal performance is. Since a GPU is
a SIMD device, it naturally executes one instruction on multiple data and thus
it is obviously optimal to have a data layout such that when an ALU executes
an instruction, it has all the necessary data available at hand. Otherwise, it will
stall until the data arrives. A GPU will read memory in a coalescent fashion.
This means that it can read a wavefront at a time. A wavefront is AMD’s termi-
nology for an execution unit whereas Nvidia uses the term warp. The wavefront
for the AMD 7970 GPU is a 64-wide execution unit since, as noted earlier,
the 7970 GPU’s SIMD computation core contains four ALUs (each capable of

34

executing one instruction on 16 data pieces at a time). When accessing and
reading a memory location in the GPU’s global memory, that location is read in
an coalescent fashion, meaning that a multiple of 64 memory addresses are read
at a time instead of just one single address at time as a CPU would do. This
coalescent memory reading fashion requires special care from the programmer
since exceptionally poor memory reading utilization can result in equally bad
execution performance since the data is not available when needed, and thus
the device is far from being fully utilized.

When a kernel is instantiated and executed, the programmer must specify
the number of work items needed and create these as an n-dimensional range
(NDRange). A NDRange is a one-to-three-dimensional vector which, as noted
above, is the parametrization of the threads within the kernel. Using the
get_global_id() function, one can, as shown earlier, get the current index
of the thread executing the kernel. While one can pick arbitrary values for
NDRange, it is advised for optimal performance that special care is given de-
pending on the running hardware. This is because work items are grouped
together in workgroups. In general though, the OpenCL runtime will, at least
for a one-dimensional NDrange, optimize an arbitrary choice to make it opti-
mal for proper performance. However, this does not hold for NDranges with
more than one dimension. When executing a kernel, one might need to syn-

Figure 7: An example of a two-dimensional NDRange of work items in their
respective workgroups. Source: "Heterogeneous Computing with OpenCL" [8].

chronize the work items, i.e., make sure that the kernel execution follows the
algorithm. These synchronization methods are called barrier operations and are
only available within workgroups as of OpenCL 1.2 [8]. There exists an upper

35

limit on how large a workgroup can be, which for the AMD 7970 GPU is 256
work items. It is, however, exceedingly difficult to precisely calculate how the
NDrange should be parameterized: this depends on each specific kernel for each
specific OpenCL capable hardware since hardware, as noted earlier, can be very
different. This does not mean that the kernel will deliver poor performance
when executing on different hardware; it only means that it most likely will not
deliver its maximum theoretically possible performance. For specific hardware
implementations, a programmer should always tweak the settings using a pro-
filer for benchmarks to maximize performance. Lastly, as noted earlier, local
memory (or registers) is only available on a shared basis among each workgroup.
Some kernels might require a large number of local variables while others do not.
In the former case one might spill over with register usage which means that
global memory will be used instead for variables. Since this memory is orders
of magnitude slower, performance will degrade severely.

Figure 8: The OpenCL memory hierarchy. Source: "Heterogeneous Computing
with OpenCL" [8].

36

3.8 The OpenCL memory model

As mentioned earlier, the architectures of OpenCL capable hardware are very
different. We have traditional CPUs optimized for sequential performance,
FPGA, and GPUs for parallel performance, and yet all of these hardware de-
vices ought to run every OpenCL kernel – save for minor platform/hardware
specific tweaks. However, with the abstract memory hierarchy available through
the OpenCL API, one can wonder how this maps to the different architectures
available. It is heavily inspired – if not identical – to the memory layout of
modern GPUs.

The OpenCL memory model distinguishes between four different memory types,
which are here itemized from Figure 8:

• Global memory.

• Constant memory.

• Local memory.

• Private memory.

Global memory is to the GPU what the main- or system-memory is for a CPU.
This is the memory where 3D meshes and their textures reside when GPUs are
rendering graphics, and since this kind of processing requires large amounts of
RAM, it is today not unheard of having 2 to 6 GB of dedicated video RAM on
a graphics card. The AMD 7970 GHz Edition graphics adapter, that is used for
this thesis, is equipped with 3 GB of RAM.

For OpenCL computing purposes on GPUs, the video memory is the equivalent
of the global memory. This memory is used to transfer and hold input data as
well as output data from and to the host. If executing the kernel on a CPU, the
main memory would be the global memory. Global memory is visible from all
work units on the computing device. The OpenCL keyword __global is used
in front of pointers to mark them as global.

The constant memory is, contrary to what the name would indicated, not lo-
cated in a read-only memory. On GPUs, it is actually typically located within
the global memory – whereas on CPUs it can be more complicated where exactly
this data will reside. It is designed to hold data that is accessed simultaneously

37

by all of the work units, e.g., the constant π would be a very relevant candidate.
Using the OpenCL keyword __constant, one creates a variable in the constant
memory.

The local memory is a scratch pad memory which is dedicated to compute unit
on the device. On a GPU such as the AMD 7970, this is, as mentioned earlier,
a 32-KB address space that is available for all compute units in a workgroup.
This address space is quite commonly dedicated on the chip, as is quite com-
mon with GPUs, but there is no absolute requirement for this. The idea with
this memory space is that is should have a significantly lower latency and much
higher bandwidth than that of the global memory. Using the OpenCL keyword
__local, one creates a variable in the local memory.

Lastly, we have the private memory which is unique to each work item. Local
variables in the kernel as well as kernel arguments are private by default. For
most purposes, these variables are mapped to the private memory although, as
mentioned earlier, care should be taken since variables might spill over from the
small register memory to global memory which is much slower.

3.9 Theoretical limitations

To this end, GPUs can deliver an enormous amount of computing power, but
there are unfortunately some limitations on utilizing these. When evaluating
the performance of a larger software program, it is critical to the overall per-
formance which parts of it that can be parallelized. These concerns have been
conceptualized in Amdahl’s law [2]:

T (n) = T (1)
(
B + 1

n
(1−B)

)
Here, n is the number of threads of execution, T (n) is the time of execution,
and the B ∈ [0, 1] is the fraction of the program that is strictly sequential. The
law states that the limiting factor of the performance speedup of the program
is determined by the amount of code that is strictly sequential. The theoretical
speedup according to Amdahl’s law can be calculated as follows:

S(n) = T (1)
T (n) = T (1)

T (1)
(
B + 1

n (1−B)
) = 1

B + 1
n (1−B)

38

Thus, for a program of which 10% is strictly sequentially executed and the
remaining 90% parallelizable, with 1000 threads one gets a maximum speedup
of

1
0.1 + 1

1000 (1− 0.1)
= 9.91x

3.10 Summary

In this chapter, the focus has been on the OpenCL parallel computing frame-
work, GPU architecture, GPUs compared to CPUs, motivations for using a
GPU, and, lastly, highlighting the execution and memory model in OpenCL. It
should be clear at this point that GPUs can deliver tremendous amounts of raw
computing power compared to mainstream CPUs – not only in raw numbers –
but also relatively compared to electrical power usage or initial purchasing costs.
However, these benefits come with the cost of extra programming complexity
since one needs to know the underlying hardware for maximum performance.

3.10.1 Strengths of Graphics Processors

The main advantages of using GPUs for computational problems are

• Higher theoretical performance available compared to CPUs. Typically
GPUs are more than an order of magnitude faster in single-precision
performance and around a single order of magnitude faster in double-
precision.

• Cheapest available compute performance measured in GFLOPS·$−1 for
initial cost.

• Best power efficiency compared to CPUs. It is not uncommon that a GPU
can deliver > 5x (GLFOPS·W−1) that of a CPU. Hence, both cooling
requirements as well as electricity bills are much lower than those needed
when using a CPU.

3.10.2 Weaknesses of Graphics Processors

Although GPUs can be beneficial regarding cost and compute performance,
there are some disadvantages when using GPUs:

• Not all algorithms are suitable for massively parallel hardware (GPUs):
GPUs perform abysmally for sequential programs.

39

• It is necessary to learn OpenCL/CUDA for programming GPUs. This
means that there is a steep learning curve for a relative narrow domain of
problems, and often you are at the mercy of the quality of the implemen-
tation of the OpenCL specification by the hardware manufacturer, e.g.,
lacking Linux drivers.

• There is a overhead of transferring back and forth between the host and
GPU, and for smaller problems, this overhead might make it not worth-
while to execute on a GPU.

• The programmer needs to know the hardware running the kernels since
a lot of optimization needs to be done for proper utilization of the GPU.
Thus, while OpenCL kernels are intended to be "write once run every-
where", rarely it is the case for maximum performance.

40

Part III

Algorithms, implementations,
and results
4 Testing methodologies

4.1 OpenCL execution measurements

Before we can actually benchmark and compare performance results of CPU
vs. GPU executions, we need to step back and get an overview over what
we are actually measuring. Given that this thesis is about accelerating option
evaluations using a GPU, we need to understand what parts of the algorithm
we are actually accelerating, and what overhead using a GPU incurs. Recall
that there occur some overheads from using OpenCL in general but even more
specifically when utilizing a GPU. Consider Figure 9 where an overview of the
steps necessary for executing an OpenCL kernel is presented.
Figure 9 shows that two steps are necessary, but they only occur once. These
events comprise the initialization of the OpenCL subsystem such as query-
ing OpenCL for available OpenCL compatible hardware and then creating an
OpenCL context as well as an execution queue for the selected hardware. This
is necessary every time the application is run on the host, but only once. The
next step actually allows for two possible scenarios: either Just-In-Time (JIT)
compilation of the source code or using a pre-compiled binary – in which case
there are really no overhead at all. However, the last feature has only recently
become available, secondly, it is not the recommended way to include OpenCL
code due to potential hardware compatibility/optimization issues that the JIT
compiler can handle on the local machine. Nevertheless, I have decided that the
benchmarks will refrain from including time spend on handling initializations
including JIT compiling of the OpenCL source code.

From Figure 9, we can see that the last three steps involve memory transfers
back and forth between the host and the GPU as well as the actual execution
of the kernel on the GPU. These three steps are absolutely critical in measuring
the performance and execution time for benchmarking against a CPU imple-
mentation since they are the complete round trip necessary for an OpenCL

41

Initialize device and
OpenCL context

Compile program
from source and
build kernels

Transfer data and
kernel arguments
from host to GPU

Execute the kernel(s)

Transfer results
back to the host

One occurrence

From one to many occurrences

Figure 9: Overview of the steps for executing an OpenCL kernel.

execution on a GPU. These three events will be referred to as Total execu-
tion time (GPUtotal) in benchmarks. However, I will also include timings for
the actual kernel execution time, i.e., the three steps above except the memory
transfer from the host to the GPU, and denote this Kernel execution time
(GPUkernel).

The justification for including the kernel execution time is several-fold. First
and foremost, it represents an apple-to-apple comparison to the CPU in pure
execution performance. Secondly, it is sometimes the case that the memory
transfers only consume an insignificant amount of total computing time which
actually is the case in some of the scenarios that are benchmarked in this thesis.
Also, there can be some hardware differences that might render the results obso-
lete, e.g., my PCI Express bus is of version 3.0 which is capable of transferring
around 16 GB/s; however, there is a new version 4.0 just around the corner
capable of transferring around 32 GB/s which of course will reduce OpenCL
memory transfers by half. Consider the following example: we have a case

42

where the initial memory transfer from the host to the GPU takes 500ms, the
kernel execution takes 50ms, and the memory transfer from GPU takes 15ms
for a total of 550ms + 50ms + 15ms = 615ms. Then, if we upgraded the PCI
Express bus to 4.0, we could double the memory transfer and thus get a to-
tal of 550ms

2 + 50ms + 15ms
2 = 332.5ms reducing the total execution time by

332.5ms
615ms = 45%. Lastly, GPUtotal will converge to GPUkernel as we increase the
workload enabling us to use GPUkernel as a metric for upper bound performance.

4.2 Benchmark scenarios

When benchmarking software, it is often worthwhile to consider the contexts in
which said software will run. In this thesis, we have implemented several Monte
Carlo simulations for pricing various options. However, option evaluations can
take place in several different scenarios so to take these into account regarding
benchmarking, we will enumerate and discuss them and the motivation behind
them.

The motivation for this thesis occurred at my old job where I once, at random,
was discussing financial matters with a colleague where he mentioned that he
implemented a Monte Carlo simulation of an option in Excel that took more
than 11 minutes to execute. More than 11 minutes is a long time to get an
answer for a quantitative analyst which was his role in the company. Actually,
it really was too long time to wait since he completely abandoned the project
and focused his attention elsewhere. Clearly, if one could significantly reduce
the execution time of the algorithm, the waiting time for an employee as my
colleague could be reduced dramatically and actually make him productive in
his efforts to solve his real problem. This is therefore the first scenario we will
benchmark: a single evaluation of one option.

When studying the literature for this thesis, I noted that a lot of literature was
measuring performance in hundreds or thousands of option evaluations rather
than a single one. This was the case since the papers were analysing perfor-
mance from a point of view of a large financial institution. Clearly, people
like my colleague as mentioned above could work in a financial institution, but
rather than evaluating his need for performance, the authors instead took the
entire portfolio of assets of the institution into account for pricing options. Mod-
ern financial institutions, e.g., hedge funds, investment banks, and proprietary

43

trading firms, often have very large portfolios consisting of many different kinds
of assets: stocks, bonds, and financial derivatives. Due to current accounting
rules, daily assessments of these portfolios’ values need to be recalculated every
day – the mark-to-market principle. This is not only necessary for abiding to
national as well as international accounting/financial laws for being solvent, but
also internally to verify that the company is not partaking in trades which are
too risky. The method currently used – the mark-to-market method – simply
dictates that today’s new developments in prices should be reflected in booked
values. Therefore, e.g., all options need to be recalculated every day. Clearly,
this generates a lot of evaluations depending on what kind of assets the institu-
tion has booked. This is the second scenario: evaluation of a large number of
options.

4.3 CPU, GPU, and software setup

While investigating the current scientific literature on GPU acceleration, there
were some premises that did not really make sense when benchmarking a CPU
vs. GPU. As mentioned earlier on page 27, a modern CPU has several cores.
This has been predicted by many observers for some time since increasing single
core performance has been difficult given that there seems to be a limit on
how high the frequency of a CPU can be clocked. This means that CPUs have
instead increased their amounts of cores for multi-threading purposes where true
parallel execution can be realised. However, this fact rarely gets mentioned in
the research papers so these often do not include the multi-threaded performance
of the CPU vs. the GPU. Clearly, this should be unacceptable giving that most
– if not all – modern CPUs have more than a single core. My CPU, as mentioned
earlier in Table 1, has four physical cores, but features hyper-threading. Hyper-
threading means that each physical core can execute two threads meaning that
the CPU has eight logical cores.
The benchmarks in this thesis will therefore include not only single core execu-
tions for the CPU, but also multi-threaded executions to maximize the perfor-
mance of the CPU in an effort to make a fair assessment. The multi-threaded
version will utilize eight threads for a full 100% utilization of the CPU.

44

Software/hardware specifications
OS Microsoft Windows 8.1
IDE Visual Studio 2013
C/C++ compiler Visual C++ 2013
Compiler flags /O2 /openmp
OpenCL version OpenCL 2.0 AMD-APP (1642.5)

OpenCL profiling CL_PROFILING_COMMAND_START
CL_PROFILING_COMMAND_END

OpenCL flags -cl-unsafe-math-optimizations
-cl-mad-enable -cl-fast-relaxed-math

AMD driver AMD Catalyst 14.12
PCI Express version 3.0

4.4 Considerations of Monte Carlo algorithm implemen-
tations

To evaluate a financial option properly, there are some initial considerations
that need to be taken into account. For the Monte Carlo method, in general
one needs a relatively high amount of high quality random numbers. These
random numbers are critical to the Monte Carlo method’s ability to converge to
the true answer. When we have the proper amount of random numbers, we need
to execute the actual Monte Carlo method and, lastly, aggregate and discount
the results of the simulation.

Generate ran-
dom numbers

Execute Monte Carlo
simulation paths

Aggregate simulations
and discount result

Figure 10: Overview of the steps necessary for applying the Monte Carlo method
to financial option evaluation.

In Figure 10, we can see these steps illustrated. However, while the Monte Carlo
method typically calls for random numbers, one can also use quasi-random num-

45

bers – or low-discrepancy sequences – such as Sobol or Halton sequences. Taking
this into account, I have decided to refrain from including random number gener-
ation in timings of execution time. One can argue that random or quasi-random
numbers are crucial to the Monte Carlo method, but since we can choose be-
tween generating random numbers or using static sequences for the input to the
simulations, one can argue how valuable it is to include the random number
generation step. Secondly, pseudo-random number generation is a very complex
subject on its own: a subject that one easily could write a thesis on is CPU
vs. GPU random number generation performance. Complete new algorithms
have been developed for utilizing the parallel nature of a GPU, but they are
still not to be found in standard libraries. These new parallel pseudo-random
number generators, while very fast, show different characteristics than typical
pseudo-random generators such as the Mersenne twister. The Mersenne twister
has actually been implemented for GPU execution, however, it is a poorly per-
forming algorithm on GPUs due to its very large internal state that takes up
more than the locally available memory. Given all this, it is obvious that the
OpenCL API does not include a random function. Please see Figure 11 for an
overview of these considerations.

Generate ran-
dom numbers

Low-discrepancy
sequences

Execute Monte Carlo
simulation paths

Aggregate simulations
and discount result

Included in benchmarks

Figure 11: Overview of the possible steps for applying the Monte Carlo method
to financial option evaluation and which parts that are included in the bench-
marks.

5 Results

Before we review the results for the different algorithms, we first investigate
how the algorithm is split into kernels and which parts are executed on the

46

CPU rather than the GPU.

5.1 Reduction sum

Reduction summing is the relatively trivial problem of aggregating some func-
tion: in this case addition over some numbers. Recall from Figure 10 that
evaluating a financial option superficially consists of two parts:

• Executing Monte Carlo simulations.

• Aggregating simulations and discounting the result.

Hence, before we review the overall results, we need to consider the aggre-
gating part of the algorithm. Recall from Section 3, where we discussed the
major differences in CPU versus GPUs, that CPUs are excellent at sequen-
tial performance since a lot of research has been done to increase single-thread
performance. Consider the following code snippet:

i n t sum = 0 ;
f o r (size_t i = 0 ; i < array_length ; i++) {

sum += array [i] ;
}
sum /= array_length ;

Listing 3: Simple C routine for aggregating an array and computing the mean.

Listing 3 shows how we normally would write a standard routine for aggregating
all values in the array and finding the average by dividing by the length of
the array. This code will execute very fast on modern CPUs because it is a
sequential operation, and since the read from memory is linear, it can pre-fetch
values quickly from the main memory and the sum variable will be cached/saved
locally on the CPU, i.e., in a register.

Intuitively, one would think that this operation is trivial to parallelize because
addition is not only associative, but also commutative. Therefore, if one splits
the array in, e.g., 100 buckets, then each thread could aggregate 1

100 of the total
items splitting up the work equally. One thread could then add the last 100
aggregates and subsequently divide by the arrays total size. This, however, is
easier said than done using a GPU.

Actually, it is impossible to implement this efficiently using a GPU. The reason

47

is that the GPUs are typically memory bound for most problems and that is
definitely also the case for the reduction sum problem. Consider the following
example of implementing a naive reduction in an OpenCL kernel:

__kernel void ReductionSum (global f l o a t ∗ input ,
v o l a t i l e global f l o a t ∗ output) {
f l o a t inc = input [get_global_id (0)] ; // get va lue
atomic_xchg (&(output [0]) , inc) ; // increment a tomica l l y

}

Listing 4: Simple naive reduction sum kernel.

In listing 4, each thread loads a value from the input array and adds this value
to the global sum "variable". However, the code above performs poorly by only
utilizing a single digit percentage of the theoretical performance. Assume the
input array has a size of 219 =524,288 floats. Then we will launch a kernel with
the corresponding 524,288 threads. Each thread will read from the input array
(which is fast), but each thread will have to wait in line for incrementing the
global sum value in output[0]. This is by definition a sequential operation since
each thread has to wait in a queue, and thus we get no parallelism. Secondly, the
threads are executed in wavefronts of 64 threads in each workgroup so scheduling
will limit execution as well since it might reschedule a wavefront that is idling
due to all threads waiting in queue for execution. Therefore, thread scheduling
will consume a significant time slice as well.

A much better solution that performs acceptably requires that we first and
foremost accept the limitations of the GPU hardware. Since the work items on
the GPU are organized in workgroups of up to 256 work items, and since there
exists local memory available to these work items, it would be better to split
the aggregation up in buckets of 256 work items at a time. When a complete
workgroup is done, we will write the value to a unique global memory cell that is
only available to this workgroup – and thus we limit the pressure on the global
memory.

There are several limitations to the optimized version that need to be taken into
consideration. The first one is that it actually does not really do a complete sum
reduction; instead it sums only in chucks each as large as the work size – which
on modern AMD GPUs at maximum can be 256 – and, thus, only reduces the

48

complete sum reduction by a factor of 256. Hence, one has to either run another
sum reduction kernel or, if that is not possible, transfer the results back and let
the CPU aggregate the rest efficiently making this an algorithm that combines
both the usage of the CPU and the GPU. The second limitation is that the
global work size of the kernel needs to be a multiple of 256 and thus the input
buffer as well since each workgroup will be of a size of 256 work items. However,
this limitation could be circumvented by either including some conditionals in
the kernel for testing if we are out of bounds or one could make a fixed-size
input buffer and pad it with dummy values that then naturally need handling
after the kernel has been executed. Lastly, the input buffer size needs to be at
least of a reasonable size, e.g., using an input buffer size of 256 will only spawn
one workgroup on the GPU and thus utilize a maximum of 1

32 of the GPU’s 32
compute units. Either way, for the purposes of this thesis, I have decided not
to include these features since all sizes of the inputs to the reduction sum kernel
will be divisible by 256.

Elements Buffer size CPU GPUtotal GPUtotal > 1x
216 =65,536 0.26 MB 0.050 ms 0.150 ms N/A
221 =2,097,152 8.39 MB 1.650 ms 3.562 ms 3.476 ms
227 =134,217,728 536.87 MB 108.4 ms 133.4 ms 130.9 ms

Table 6: Benchmark results of reduction sum where GPU time is total execution
time including aggregating on the CPU.

For benchmarking purposes, I have included the possibility of several kernel
executions (GPUtotal > 1x) versus only one kernel execution and then let the
CPU aggregate the rest. The idea is to find the sweet spot where we gain most
from the GPU and do the rest using the CPU.

In Table 6, we can see the preliminary benchmark results. The CPU execution
is faster for any sizes of inputs to the reduction sum algorithm than that of
the GPU. This might be surprising, but in reality it is expected since the GPU
is at a huge disadvantage due to memory transfers. Recall from the hardware
analysis in Section 3 that the GPU has the disadvantage of having to first
transfer kernel arguments and data over the PCI Express bus before beginning
the kernel execution. However, if we analyze the execution timing data more
thoroughly, we can get a deeper overview over the individual steps. Table 7
clearly show the overhead of transferring input data to the GPU from the host.

49

Step Time Relative time
Memory transfer to GPU 113.144 ms 86.30%
Kernel execution #1 17.690 ms 13.51%
Kernel execution #2 0.025 ms 0.01%
Kernel execution (total) 17.715 ms 13.52%
Memory transfer to host 0.003 ms < 0.01%
CPU execution on host 0.117 ms 0.08%
GPUtotal + CPU 130.9 ms 100%

Table 7: A detailed overview of every step in the execution process of 227

elements where the reduction sum kernel is executed twice.

This process consumes ∼86.5% of the total execution time. Time spent on actual
execution amounts to 17.690ms + 0.025ms + 0.117ms = 17.832ms including the
execution spent on the CPU. 17.832ms amounts to a total of ∼13.6%: we can
clearly see how little time is actually spent on the computations in the GPUtotal.
Recall from Figure 11, that we need to execute the reduction sum kernel as the
last step of evaluating an option.

Absolute time in ms
Elements Buffer size CPU GPUkernel GPUkernel > 1x
216 =65,536 0.26 MB 0.054 ms 0.013 ms N/A
221 =2,097,152 8.39 MB 1.650 ms 0.369 ms 0.368 ms
227 =134,217,728 536.87 MB 109.1 ms 20.87 ms 17.53 ms

Relative performance (Speedup)
Elements Buffer size CPU GPUkernel GPUkernel > 1x
216 =65,536 0.26 MB 1x 4.15x N/A
221 = 2,097,152 8.39 MB 1x 4.47x 4.48x
227 =134,217,728 536.87 MB 1x 5.23x 6.22x

Table 8: Benchmark results of the reduction sum algorithm where GPUkernel
is the total execution time on the GPU including aggregating the rest on the
CPU.

This means that the input data for the reduction is already available on the
GPU which implies that the memory transfer overhead from the benchmark
results in Table 6 is irrelevant. Let us conduct a new benchmark where we
exclude the initial memory transfer from host to the GPU, but include all kernel
executions, memory transfer back to the host, and the remaining reduction sum

50

execution conducted by the CPU. The benchmark results from Table 8 clearly
shows the performance gain of using the GPU for reduction sum of the output
from the Monte Carlo simulations. Also, note that the performance increases
proportionally as we increase the amount of elements that need to be aggregated.

51

5.2 Vanilla European call option

Algorithm 1: Monte Carlo vanilla European call option.
Data: expiration time T , initial stock price S, strike price K, risk-free

rate r, volatility σ, paths (sample size) M .
Result: Call value of an vanilla European option.
begin

// Step 1: Initialization
Sum←− 0
Paths←− S * Array[M]
dt←− T
// Step 2: Compute paths
for i = 1 to M do

εi ←− Compute a random N(0,1) sample

Paths[i] ←− S · e(µ−
1
2σ

2)dt+σ√dtεi

// Step 3: Calculate option value
for i = 1 to M do

Paths[i] ←− e−rt · Max (Paths[i]−K, 0)
Sum←− Sum + Paths[i]

Sum←− Sum
M

return Sum

The vanilla European call option is not a path dependent option like the Asian
and barrier options. Instead, it can be solved directly using the analytical
solution to the Black-Scholes equation which can be verified in Section 1.2.2.
However, it can of course still be evaluated using the Monte Carlo method just
like any other option can. In general though, one would not want to use Monte
Carlo methods for analytically solvable options like the vanilla European option,
but for verification of the correctness of the algorithm I have included it. Also,
the barrier and Asian option can be thought of as extensions to the vanilla
European option. One major difference between the vanilla European option
and the exotics is the lack of time steps required. The exotic options require
some kind of time steps since the very evaluations of them depend on the daily
movements of the underlying assets.

This is reflected in Algorithm 1 where we can see that it only features one for loop
in the second step where it computes the simulation paths. This means that the
algorithm is not iterating over the time steps and, therefore, computation-wise
makes it much lighter than the exotic options. However, a single time step is

52

still necessary so we simply set dt = T , i.e., the expiration of the option is simply
the time step. Also note, that in Algorithm 1 we need a random variable, εi;
we do not generate this random variable in either of the GPU or CPU versions
of the algorithm. Instead, as discussed earlier, we generate the random values
before the execution of the algorithm simply to limit the variability in execution
speed of the Monte Carlo part of the algorithm.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

Number of paths / 104

St
an

da
rd

er
ro
r

Figure 12: Plot showing the relationship between the number of simulation
paths and the Standard Error.

In Figure 12, we see the relationship of the Standard Error of the Monte Carlo
simulated values as a function of the number of simulation paths. As we would
have expected, we see a nice decrease in the standard error as we increase the
number of paths. It can be observed that the Standard Error approximately
halves every time we double the amount of simulation paths.
In Figure 13, we clearly see that the Monte Carlo method’s expected value
converges to the true value as we increase the amount of simulation paths. The
plot starts with 1,000 simulation paths and doubles the amount of paths for
every point on the plot and ends with 128,000 simulation paths. It is worth
noting that we actually sometimes see a worsening in the expected result by
doubling the amount of paths. For example, observe that going from 8,000 to
16,000 paths actually makes the Monte Carlo estimate deviate more from the
exact result. This is, however, the nature of the Monte Carlo method and is

53

210 211 212 213 214 215 216

15

16

17

18

Number of paths (log2)

O
pt
io
n
va
lu
e

Monte Carlo value
Exact value

Figure 13: Plot showing that the results of Monte Carlo simulating converge to
the true value as we increase the number of simulation paths.

simply due to the fact that we are using too few simulation paths to begin
with which makes the standard error too large. In the figure, we can also
see the 95% confidence interval brackets, i.e., MCvalue ± 1.96 · StdErr. The
confidence interval of course explains why it is possible to estimate a worse
result by going from 8,000 to 16,000 paths since both confidence intervals are
still including the exact value. Clearly, it can also be observed that a lot of paths
is necessary for the estimate being within the exact value. Using, for instance,
only 1,000 paths could with a 95% probability yield anything in the interval
[15.83− 1.96 · StdErr, 15.83 + 1.96 · StdErr] = [14.75, 16.91] which clearly is too
wide a range considering that the true value of the option is 16.69.

For the benchmarks, I have decided to go with 221 =2,097,152 paths (unless
otherwise stated) since this yields a standard error of 0.012 which generates a
much narrower confidence interval and, hence, an estimation much closer to the
exact result.
In Table 9, we see an overview of the performance gained utilizing a GPU
for varying numbers of simulation paths. For GPUtotal, we get a speedup of
11x−23x compared to single-thread performance of the CPU depending on the
amount of simulation paths we use. However, for the multi-threaded version of
the CPU, we get a more limited speedup of 2.5x−6.9x using a GPU for evaluat-

54

Absolute time in ms
Simulation paths CPUsingle CPUmulti GPUtotal GPUkernel
216 =65,536 1.885 ms 0.424 ms 0.162 ms 0.025 ms
221 =2,097,152 51.31 ms 11.20 ms 3.629 ms 0.727 ms
227 =134,217,728 1646.8 ms 492.8 ms4 71.7 3ms 12.49 ms

Relative performance (GPUtotal)

Simulation paths CPUsingle CPUmulti GPUtotal GPUtotal
CPUmulti

216 =65,536 1x 4.45x 11.63x 2.61x
221 =2,097,152 1x 4.58x 14.14x 3.09x
227 =134,217,728 1x 3.34x4 22.96x 6.87x

Relative performance (GPUkernel)

Simulation paths CPUsingle CPUmulti GPUkernel GPUkernel
CPUmulti

216 =65,536 1x 4.45x 75.4x 16.96x
221 =2,097,152 1x 4.58x 70.58x 15.41x
227 =134,217,728 1x 3.34x4 131.85x 39.46x

Table 9: Benchmark results of the reduction sum algorithm where GPUkernel
is the total execution time on the GPU including aggregating the rest on the
CPU.

ing a single option. In both cases, we clearly see that the performance increases
as a function of the number of simulation paths. Just like in the reduction sum
case, we have a large overhead of transferring random data to the GPU before
execution and this overhead significantly reduces the total performance when
using the GPU. If we reviewing the results for GPUkernel, we observe a much
greater speedup in the area of 70x-132x versus the single-thread CPU version
and 15x-40x versus the multi-threaded CPU version.

These results clearly suggest that the GPU is excellent for accelerating the
computations, but unfortunately is severely limited by the memory transferring
speeds of the PCI Express bus. Also, it is worth noting that hyper-threading,
that Intel incorporates in some of its processors, are actually not just a market-
ing fad since the multi-threaded CPU performance is around 4.5x that of the
single-thread version. Recall from Table 1, that the Intel i7-3770 only has four
physical cores: we would expect a speedup of a maximum of 4x compared to

4For some reason, I was unable to execute this one with more than four threads. It might
be an issue with Microsoft’s implementation of OpenMP or it might be that Intel’s Hyper-
Threading is causing troubles. Needless to say, performance suffered greatly due to this error.

55

the single-thread version. However, hyper-threading actually gives an extra 25%
performance boost in these Monte Carlo simulations. To continue the bench-
marks, we will also evaluate scenario two where we evaluate many independent
options in one go.

Options GPUtotal GPUkernel GPUtotal
options

GPUkernel
options

5 7.487 ms 4.368 ms 1.497 ms 0.873 ms
10 8.702 ms 5.386 ms 0.870 ms 0.539 ms
20 12.38 ms 9.196 ms 0.619 ms 0.459 ms
40 16.52 ms 13.56 ms 0.413 ms 0.339 ms
80 31.84 ms 28.76 ms 0.398 ms 0.359 ms
160 56.39 ms 53.48 ms 0.352 ms 0.334 ms
320 86.47 ms 83.55 ms 0.270 ms 0.261 ms

Table 10: Benchmark results of evaluating more than one option. The number
of simulation paths is fixed at 221 =2,097,152.

In OpenCL terms, we simply enqueue the kernels necessary for execution and
then execute them all one at a time. In Table 10, we can observe the benchmark
results. Notice how increasing the amount of options decreases the amount of
time necessary per option evaluation. This is expected as we reuse the random
data initially transferred from the host to the GPU so that this initial over-
head gets averaged out by the amount of options being evaluated. Secondly,
it is worth noticing that the difference in the evolution of times per option
(GPUtotal

options vs. GPUkernel
options) are quite different, but this is also to be expected since

the GPUtotal
options includes the penalty of the initial random data transfer. Another

observation worth noticing is that the more options we evaluate, the faster the
evaluation gets per option so there does not seem to be a plateau. However, at
320 options with 2,097,152 paths and four bytes per path (float), we generate
2,097,152·4 · 320 = 2.7 GB of simulation output that needs to be aggregated by
the reduction sum kernel. Increasing the amount of options from 320 to say 640
would again clearly double the output amount to 2 ·2.7 = 5.4 GB, and since my
GPU is only equipped with 3 GB of RAM, 320 options is the limit of what we
can execute at maximum simultaneously. It is possible to execute even more,
but then it would simply be a multiple of the numbers in Table 10.
In Table 11, we have an overview of the relative performances we get by increas-
ing the amount of options that need to be evaluated. The results are based on
those from Table 10 and Table 9. It should by now be clear that the amount of
options evaluated has a large impact on what performance one can expect. The

56

Options CPUsingle
GPUtotal

CPUmulti
GPUtotal

CPUsingle
GPUkernel

CPUmulti
GPUkernel

5 35.28x 7.48x 58.77x 12.83x
10 58.98x 12.87x 95.19x 20.78x
20 82.89x 18.09x 111.79x 24.40x
40 124.24x 27.12x 151.36x 33.04x
80 128.92x 28.14x 142.93x 31.20x
160 145.77x 31.82x 153.62x 33.53x
320 190.03x 41.48x 196.59x 42.91x

Table 11: Benchmark results of evaluating more than one option. The number
of simulation paths is fixed at 221 = 2, 097, 152.

GPUtotal versus the CPU for single-thread performance ranges from 35x-190x
in speedup going from 5 to 320 options, and likewise for CPU multi-threaded
performance, we also see a very large range from 7.5x-41.5x speedup. What
might be difficult to observe from Table 11 is that there seems to be a plateau
at 40-160 options where no significant speedup is observed – or at least not the
same speedup increase as in the other option ranges. Secondly, performance
actually decreases when going from 40 to 80 options in the GPUkernel case. I
have not been able to explain this behavior other than it might have something
to do with the scheduling mechanism on the GPU. The phenomena is easier
to see when looking at Figure 14. From the figure, we can also easily see how
GPUtotal and GPUkernel converge as a function of amount of options that need
to be evaluated.

57

22 23 24 25 26 27 28

0

20

40

60

80

100

120

140

160

180

200

Options (log2)

Sp
ee
du

p
(x

)

CPUsingle
GPUtotal

CPUmulti
GPUtotal
CPUsingle
GPUkernel
CPUmulti
GPUkernel

Figure 14: Plot showing the relative performances of GPUtotal, GPUkernel ver-
sus the CPU performance for single-thread and multi-threaded.

58

5.3 Arithmetic Asian option

The arithmetic Asian option is a path dependent option meaning that no known
analytical solution exists, and, thus, the Monte Carlo method should be applied.
The primary difference between the Vanilla European option and the arithmetic
Asian option is that we increase the number of time steps from a single timestep
to many timesteps. This is necessary since the Asian option uses the arithmetic
average of every value generated between the time of writing the option and its
expiration date.

Algorithm 2: Monte Carlo arithmetic Asian call option.
Data: expiration time T , initial stock price S, strike price K, risk-free

rate r, volatility σ, paths (sample size) M , time steps N .
Result: Call value of an arithmetic Asian option.
begin

// Step 1: Initialization
Sum←− 0
Incs←− S * Array[M]
Paths←− S * Array[M]
dt←− T

N
// Step 2: Compute paths
for j = 1 to N do

for i = 1 to M do
εi ←− Compute a random N(0,1) sample

Incs[i] ←− Incs[i] · e(µ−
1
2σ

2)dt+σ√dtεi
Paths[i] ←− Paths[i] + Incs[i]

// Step 3: Calculate option value
for i = 1 to M do

Paths[i] ←− Paths[i]
N

Paths[i] ←− e−rt · Max (Paths[i]−K, 0)
Sum←− Sum + Paths[i]

Sum←− Sum
M

return Sum

This can be observed by noticing the differences between Algorithm 2 and Algo-
rithm 1. Notice that in Algorithm 2 we have an extra argument, the number of
time steps N , which is used in the new for loop in step 2 as we discussed above.
How one chooses to implement the time steps can vary depending on what kind
of asset we are modelling. For the purposes of this thesis, I have implemented
the time step mechanism such that there exists one time step for each working

59

day in a given period. Other possibilities could be to count every day as a time
step in any given time period.

0 2 4 6
0

5 · 10−2

0.1

0.15

0.2

Number of paths / 104

St
an

da
rd

er
ro
r

Figure 15: Plot showing the relationship between the number of simulation
paths and the standard error.

In Figure 15, we can see the relationship between the number of paths and
the corresponding standard error of the estimate. It follows that we have the
same asymptotic relationship for the standard error as in Figure 12, although the
absolute standard errors are somewhat smaller than that of the vanilla European
option. However this can easily be explained with the averaging nature of the
Asian option’s time steps, which smooths each pricing simulation path.
In Figure 16, we again see a plot of the exact value of the option as well as the
Monte Carlo estimated value as functions of the number of paths. Again, the
data points are supplied with the 95% confidence interval, i.e., MCvalue± 1.96 ·
StdErr, which again clearly shows that the standard error is declining as we
increase the amount of simulation paths – as in Figure 15. What is noteworthy
again is that the convergence is faster for the arithmetic Asian option than for
the vanilla European option which we already discussed in relation to Figure 15.
However, this allows us to change the amount of paths necessary for getting
the same precision as in the vanilla European option – i.e., we can use fewer
simulation paths to generate the same relative 95% confidence interval. To get
the same relative 95% confidence as in the vanilla European option, it is only
necessary to have 217 =131,072 simulation paths. Thus, unless otherwise stated,

60

29 210 211 212 213 214 215

10

10.2

10.4

10.6

10.8

Number of paths (log2)

O
pt
io
n
va
lu
e

Monte Carlo value
Exact value

Figure 16: Plot showing that the results of the Monte Carlo simulation processes
converge to the true value as we increase the number of simulation paths.

131,072 will be the default amount of paths used for the arithmetic Asian option
for benchmarking purposes.
In Table 12, we see a performance overview of using varying amounts of time
steps. Recall that the amount of time steps should reflect the expiration time in
that 20-22 time steps would be the equivalent of an expiration of one month, and
40-44 time steps would be the equivalent of two months and so on. Clearly, one
would expect that an increase in time steps would result in a slower performance
vis-a-vis dealing with fewer time steps since more simulations need to be done.
This adds another dimension to the performance evaluation of the arithmetic
Asian option than for, e.g., the vanilla European option.

The implementation strategy for the GPU version is that we spawn a work
item for each simulation path M and then iterate through a small for loop over
the N time steps. This means that we have eliminated one of the for loops in
Algorithm 2. Another strategy, more like the one used for vanilla European
options, could be to use one work item for each path M and time step N and,
thus, unwinding both for loops in step 2 of Algorithm 2. However, it turns out
that the former solution in general is faster that the latter; therefore I have
chosen the latter for further benchmarks. The primary reason that this one is
faster than the latter has to do with memory optimizations.

61

Absolute time in ms
Paths M ; Steps N CPUsingle CPUmulti GPUtotal GPUkernel
217 =131,072; 10 26.252 ms 4.623 ms 2.079 ms 0.072 ms
217 =131,072; 40 112.11 ms 20.566 ms 6.610 ms 0.352 ms
217 =131,072; 160 589.64 ms 101.67 ms 19.824 ms 1.823 ms

Relative performance (GPUtotal)

Paths M ; Steps N CPUsingle CPUmulti GPUtotal GPUtotal
CPUmulti

217 =131,072; 10 1x 5.68x 12.63x 2.22x
217 =131,072; 40 1x 5.45x 16.96x 3.11x
217 =131,072; 160 1x 5.79x 29.74x 5.13x

Relative performance (GPUkernel)

Paths M ; Steps N CPUsingle CPUmulti GPUkernel GPUkernel
CPUmulti

217 =131,072; 10 1x 5.68x 364.61x 64.21x
217 =131,072; 40 1x 5.45x 318.49x 58.43x
217 =131,072; 160 1x 5.79x 323.44x 55.77x

Table 12: Benchmark results of the reduction sum algorithm where GPUkernel
is the total execution time on the GPU including aggregating the rest on the
CPU.

Assume we are using 217 =131,072 paths and 40 time steps. Evaluating one
option, we would need 131,072·40 =5,248,880 random input values, but would
only generate 5,248,880

40 =131,072 output values (before reduction sum) due to
the averaging of the 40 time steps. This yields a total of 5,248,880 + 131,072 =
5,379,952 read/writes to the GPU’s main memory. This means that the write
requirements to the GPU’s main memory generally is much lower, inversely
proportional to the time step factor, than that for, e.g., the vanilla European
option.
Consider the vanilla European option with 221 = 2,097,152 simulation paths.
The Algorithm 1 maps exactly one input to one output and, hence, we get
2,097,152·2 = 4,194,304 read/writes to main memory. Thus, the arithmetic
Asian option with 40 time steps only uses 5,379,952

4,194,304 − 1 = 28, 3% more memory
read/writes than the vanilla European option – however, the performance of
the arithmetic Asian option is still more than twice that of the European option(0.727ms

0.352ms = 207%
)
for the GPUkernel running times. There are, however, two

explanations for this result: the first one is that we have fewer work items
for the arithmetic Asian option, but each work item does considerably more

62

Options GPUtotal GPUkernel GPUtotal
options

GPUkernel
options

2 6.645 ms 0.680 ms 3.323 ms 0.340 ms
4 7.353 ms 1.601 ms 1.838 ms 0.400 ms
8 9.093 ms 2.984 ms 1.137 ms 0.373 ms
16 11.51 ms 5.63 ms 0.719 ms 0.352 ms
32 17.30 ms 10.94 ms 0.541 ms 0.342 ms
64 27.91 ms 21.87 ms 0.436 ms 0.342 ms
128 49.60 ms 43.662 ms 0.387 ms 0.341 ms

Table 13: Benchmark results of evaluating more than one option. The number
of simulation paths is fixed at 217 = 131, 072, and the number of time steps is
fixed at 40.

work per work item than those for the vanilla European option, and, thus, the
scheduler on the GPU can more easily hide memory reading latencies. Secondly,
we know from Section 5.1 that the reduction sum kernel is rather expensive so
the smaller the inputs, the faster it runs. The arithmetic Asian option outputs
only 131,072 values for the reduction sum kernel meaning that the reduction
sum kernel runs with a significant lower amount of inputs 2,097,152

131,072 = 16 than
that of the vanilla European option.

Options CPUsingle
GPUtotal

CPUmulti
GPUtotal

CPUsingle
GPUkernel

CPUmulti
GPUkernel

2 33.74x 6.19x 329.74x 60.49x
4 61.00x 11.19x 280.28x 51.42x
8 98.60x 18.09x 300.56x 55.14x
16 155.92x 28.60x 318.49x 58.43x
32 207.23x 38.01x 327.81x 60.13x
64 257.13x 47.17x 327.81x 60.13x
128 289.69x 53.14x 328.77x 60.31x

Table 14: Benchmark results of evaluating more than one option. The number
of simulation paths is fixed at 217 = 131, 072, and the number of time steps is
fixed at 40.

It is also noteworthy that the multi-threaded version (CPUmulti) is approx-
imately 5.5 times faster than the single-thread version (CPUsingle): Intel’s
Hyper-Threading is generating a 5.5

4 − 1 = 37.5% performance boost. In Ta-
ble 13 and Table 14, we have an overview of the benchmark results of running
multiple consecutive option evaluations. Notice that CPUmulti

GPUtotal and CPUmulti
GPUkernel

converge as we would expect due to averaging of the initial memory transfer
with the total amount options evaluated. For the CPUsingle

GPUkernel and CPUmulti
GPUkernel , the

63

performance is relatively stable independently of the amount of options being
evaluated although we do observe a minor speed bump around evaluating 4 to
16 options, and I have not found a reasonable explanation other than it might
be due to some scheduling or the reduction sum kernel. In Figure 17, we see the
results from Table 14 and can clearly see visualized that the GPUtotal converges
to GPUkernel as we increase the total amount of options being evaluated.

21 22 23 24 25 26 27

0

50

100

150

200

250

300

350

400

Options (log2)

Sp
ee
du

p
(x

)

CPUsingle
GPUtotal

CPUmulti
GPUtotal
CPUsingle
GPUkernel
CPUmulti
GPUkernel

Figure 17: Plot showing the relative performances of GPUtotal, GPUkernel ver-
sus the CPU performances for single-thread and multi-threaded.

64

5.4 Monte Carlo barrier Up-and-Out put option

Algorithm 3: Monte Carlo barrier Up-and-Out put option.
Data: expiration time T , initial stock price S, strike price K, risk-free

rate r, volatility σ, paths (sample size) M , time steps N , barrier
B.

Result: Put value of a barrier Up-and-Out option.
begin

// Step 1: Initialization
Sum←− 0
Paths←− S * Array[M]
BarriersBroken←− 0 * Array[M]
dt←− T

N
// Step 2: Compute paths
for j = 1 to N do

for i = 1 to M do
if BarriersBroken[i] ! = 1 then

εi ←− Compute a random N(0,1) sample

Paths[i] ←− Paths[i] · e(r−
1
2σ

2)dt+σ√dtεi
if Paths[i] ≥ B then

BarriersBroken[i] ←− 1
Paths[i] ←− 0
break

// Step 3: Calculate option value
for i = 1 to M do

if BarriersBroken[i] = 0 then
Paths[i] ←− e−rt · Max (K - Paths[i], 0)
Sum←− Sum + Paths[i]

Sum←− Sum
M

return Sum

The barrier option looks on the surface a lot like the arithmetic Asian option,
however, it deviates on two noteworthy points: first, the barrier option has an-
other parameter used for the barrier, i.e., the value for which the option value
(in this case) is out. Secondly, we do not average any of the values correspond-
ing to the time steps. With the introduction of the barrier, we also introduce
necessary conditional if statements that can be a challenge for the GPU.

Regarding the precision of the algorithm, a few aspects need to be considered.

65

With the introduction of the barrier, we get a challenge if we pick a barrier very
close to the current spot price. In Figure 18, we can clearly see that a barrier
very close to the spot price reduces the standard error significantly, especially
with a lower amount of simulation paths.

0 2 4 6
0

5 · 10−2

0.1

0.15

Number of paths /
(
104)

St
an

da
rd

er
ro
r

Barrier = 150
Barrier = 101

Figure 18: Plot showing the relationship between the number of simulation
paths and the standard error.

Since the complexity of the standard error is the same as in all Monte Carlo
simulations, we would expect that the errors converge as we increase the amount
of simulation paths – which we clearly can see in Figure 18. The reason for the
standard error difference in relation to the barrier level is that if the barrier is
very close to the spot price, then close to half of all simulation paths will reach
the barrier and, thus, become void. If all upwards movement in the underlying
price is permitted due to the narrow barrier, we reduce the possible variance
and, ultimately, the standard error as well.

In Figure 19, we can easily see the narrowing of the 95% confidence interval
as we increase the amount of simulations paths and also that the Monte Carlo
simulated value converges to the exact value. As in Figure 18, we could also
have made a plot of the convergence with the 95% confidence interval for the
same parameters except the barrier set at 101. This would yield the same
convergence, but with a narrower 95% confidence interval.
For the purposes of benchmarking, the same amount of simulation paths, 217 =

66

29 210 211 212 213 214 215
2.2

2.4

2.6

2.8

3

Number of paths (log2)

O
pt
io
n
va
lu
e

Monte Carlo value
Exact value

Figure 19: Plot showing that the results of the Monte Carlo simulation processes
converge to the true value as we increase the number of simulation paths. In
this case the barrier is 150.

131, 072 as in the arithmetic Asian option case, is used since this amount of
simulations paths yield approximately the same level of confidence. However,
the benchmarks this time reflect a change in the barrier level instead of the
amount of time steps as in the arithmetic Asian option benchmark. As is ex-
pected, as we increase the barrier level away from the spot price, the absolute
time to evaluate the option increases. This is related to the same argument as
in the case for the standard error in that increasing the barrier from the spot
price decreases the amount of simulations reaching the barrier, and therefore
more calculations are needed.

The results of the benchmarks are somewhat discouraging as can be seen in
Figure 15. We can see that the results are much more modest than those of the
arithmetic Asian option. For GPUtotal, the increase in absolute running time
is purely related to the increase of the GPUkernel execution time since we do
not change the amount of data transferred from the host to the GPU. However,
GPUtotal ranges between 6.5x−15.5x versus the single-thread CPU version and
only 1.26x − 3.03x versus the multi-threaded CPU version. In the GPUkernel
case, we obviously see somewhat faster performance than in the GPUtotal case
due to the exclusion of the initial memory transfer. However, it is quite dis-

67

couraging that the relative performance is decreasing as we increase the barrier
level.

Absolute time in ms
Paths M ; Barrier B CPUsingle CPUmulti GPUtotal GPUkernel
217 = 131, 072; 101 41.218 ms 7.908 ms 6.266 ms 0.589 ms
217 = 131, 072; 104 77.595 ms 16.042 ms 7.599 ms 1.311 ms
217 = 131, 072; 150 128.636 ms 25.978 ms 8.255 ms 2.231 ms

Relative performance (GPUtotal)

Paths M ; Barrier B CPUsingle CPUmulti GPUtotal GPUtotal
CPUmulti

217 = 131, 072; 101 1x 5.21x 6.58x 1.26x
217 = 131, 072; 110 1x 4.84x 10.26x 2.14x
217 = 131, 072; 150 1x 4.95x 15.49x 3.03x

Relative performance (GPUkernel)

Paths M ; Barrier B CPUsingle CPUmulti GPUkernel GPUkernel
CPUmulti

217 = 131, 072; 101 1x 5.21x 69.98x 13.43x
217 = 131, 072; 110 1x 4.84x 59.49x 12.41x
217 = 131, 072; 150 1x 4.95x 57.33x 11.21x

Table 15: Benchmark results of the Monte Carlo simulated barrier algorithm
where GPUkernel is the total execution time of the GPU including aggregating
the rest on the CPU.

These poor performance metrics should not be surprising at all. The OpenCL
kernel implementation of the algorithm is implemented as a scalar kernel rather
than a vector kernel as in the arithmetic Asian option. The reason for using a
scalar kernel is out of necessity rather than a preference. In the barrier option
case, we have conditionals, and for each conditional we change the program
flow and terminate the loop skipping the rest of the time steps – i.e., we hit
the barrier. However, if we used a vector kernel, it would not be possible since
vectorized versions of booleans do not exist in OpenCL. Thus, we get hit on
the performance from two sides: first, the expensive conditionals that in this
case cause thread divergence when a lot of threads hit the barrier. If we set
the barrier high enough so that only few work items hit the barrier, thread
divergence is only a limited issue. Secondly, using a scalar kernel severely limits
the usage of SIMD cores on the GPU device which limits the performance gains
one could expect.
In Table 16 and Table 17, we see the benchmark results of evaluating more

68

Options GPUtotal GPUkernel GPUtotal
options

GPUkernel
options

2 10.467 ms 4.394 ms 5.234 ms 2.197 ms
4 14.926 ms 8.974 ms 3.732 ms 2.244 ms
8 23.772 ms 17.820 ms 2.972 ms 2.228 ms
16 41.519 ms 35.567 ms 2.595 ms 2.223 ms
32 77.282 ms 71.330 ms 2.415 ms 2.229 ms
64 147.363 ms 141.411 ms 2.303 ms 2.210 ms
128 289.777 ms 283.825 ms 2.264 ms 2.217 ms

Table 16: Benchmark results of evaluating more than one option. The number
of simulation paths is fixed at 217 = 131, 072, and the number of time steps is
fixed at 40.

than one option at a time. The results reflect the discussion above in that
performance metrics are not that great compared to those of the arithmetic
Asian option as well as those of the vanilla European option. We still get
close to or above one order of magnitude for the CPUmulti

GPUtotal so for the second
benchmark scenario it would still generate a nice speedup by using a GPU
rather that a CPU. Note also that since the barrier is fixed at 150, we do not
see any noticeable performance increments or decrements of the GPUkernel as we
increase the amount of options being evaluated – just like the arithmetic Asian
option. We can see that CPUmulti

GPUkernel sets the upper bound at around 11.5x− 12x.

Options CPUsingle
GPUtotal

CPUmulti
GPUtotal

CPUsingle
GPUkernel

CPUmulti
GPUkernel

2 24.58x 4.96x 58.55x 11.82x
4 34.47x 6.96x 57.32x 11.58x
8 43.28x 8.74x 57.74x 11.66x
16 49.57x 10.01x 57.87x 11.69x
32 53.27x 10.76x 57.71x 11.66x
64 55.86x 11.28x 58.21x 11.75x
128 56.82x 11.47x 58.02x 11.72x

Table 17: Benchmark results of evaluating more than one option. The numbers
of simulations paths and time steps are fixed at 217 = 131, 072 respectively 40.

The convergence of CPUmulti
GPUtotal and CPUmulti

GPUkernel is relatively fast since CPUmulti
GPUtotal

already yields a speedup of > 10x at 16 options. For comparison, the arithmetic
Asian option converges much slower as a function of the amount of options being
evaluated. These results can easily be identified in Figure 20.

69

21 22 23 24 25 26 27

0

10

20

30

40

50

60

70

80

Options (log2)

Sp
ee
du

p
(x

)
CPUsingle
GPUtotal

CPUmulti
GPUtotal
CPUsingle
GPUkernel
CPUmulti
GPUkernel

Figure 20: Plot showing the relative performances of GPUtotal and GPUkernel
versus the CPU performances for single-thread and multi-threaded versions.

5.5 Implementing the kernels

Implementing and optimizing OpenCL kernels can be a challenging task. One
needs to understand the hardware for a proper performance optimized result.
Consider the reduction sum case, where the primary bottleneck was the global
memory on the GPU. If we develop this algorithm naively, then the performance
would be abysmal. However, in the case for this thesis, we decided on using the
maximum workgroup size allowed on the AMD 7970 GPU. This choice, was
however, specifically related to the particular hardware executing the kernel.
Nvidia GPUs are known for allowing a workgroup size of 512 work items, and

70

thus on a Nvidia GPU we could aggregate in buckets of 512 rather than 256 on
the AMD GPU.

For the evaluation of the options, several considerations needs to be taken into
account for achieving maxmimum performance. First is the consideration of
work item configuration, e.g., how should we map the for loops in the arith-
metic Asian option work items. Should we unwind both loops or just the outer
loop? We found that leaving the inner loop iterating over the time steps in-
tact, resulted in greater performance than unwinding it. Compiled code by the
OpenCL compiler is already quite optimized, since adding compiler flags, e.g.,
-cl-fast-relaxed-math, does not increase execution speed significantly. This
is in contrast with my earlier experiences with Nvidias CUDA platform, where
compiler optimization flags were necessary for achieving adequate performance.

Whether one should use vector kernels or scalar kernels depends on the algo-
rithm. Ideally, the kernel should be vectorized but for some algorithms, e.g.,
the barrier option, it is not possible. However, the degree of vectorization one
should use has to be determined through tweaking and simply trying different
kernels. The vanilla European option kernel achieves best performance, when
using 4-wide float vectors, whereas the arithmetic Asian option performs best
using 16-wide float vectors.

When implementing OpenCL kernels and performance optimizing for AMD
GPUs, then one should use AMDs CodeXL tools. These tools allows for kernel
profiling which can show numerous statistics, e.g., register usage, kernel occu-
pancy, SIMD utilization, etc. With these tools I discovered the so called kernel
"warm-up", i.e., the first time a kernel is executed it performs 25% worse than
the following executions. This phenomena might explain why some benchmarks
might show odd results, especially when executing a kernel a single time.

Also having a analytical solution at hand to verify the algorithms result is handy.
It is very difficult to debug on a GPU, so having an analytical solution at hand,
or a reference implementation will greatly reduce uncertainty of the correctness
of the algorithm. In this thesis the CPU versions was implemented first and
verified to be correct, before implementing the algorithm in a OpenCL kernel.

71

6 Conclusions and Future Work

In this thesis, we have implemented the following financial options: vanilla Eu-
ropean Option, arithmetic Asian Option, and the barrier Option. The purpose
was to utilize a GPU for evaluation and maximizing performance compared to a
high quality single-thread and multi-threaded CPU implementation. We tested
two scenarios with the following results:

For the scenario of a single option evaluation, the vanilla European option
achieved a speedup of 14x and 3x, the arithmetic Asian option achieved a
speedup of 17x and 3x, and the barrier option achieved a speedup of 10x and
2x versus the single-thread CPU and multi-threaded CPU implementation re-
spectively.

For the scenario of multiple options evaluation, the vanilla European option
achieved a speedup of 190x and 41x (320 options), the arithmetic Asian op-
tion achieved a speedup of 290x and 53x (128 options), and the barrier option
achieved a speedup of 56x and 11x (128 options) versus the single-thread CPU
and multi-threaded CPU implementation respectively.

These results clearly shows that the Monte Carlo method is an excellent candi-
date for GPU acceleration within the domain of financial options – and possible
other domains as well. However, care must be taken on what kind of option
is evaluated, since results can vary dramatically, e.g., the speedup of the arith-
metic Asian option is much greater than that of the barrier option, which can
be explained by the barriers’ conditionals as well as lack of vectorization. In this
thesis we did not include random number generation in the benchmarks, which
should be investigated further in future work, since random data is so critical
for the Monte Carlo method. The Quasi-Monte Carlo method could possibly
reduce the absolute running times drastically, thus researching its’ application
in relation to evaluation of financial options is obvious. Also, there exists several
optimizations techniques that can reduce the variance of the input data, theses
techniques could reduce the running times as well. Lastly, a review of different
options and their applicability for GPU accelerated Monte Carlo simulations
needs further investigation.

72

7 Bibliography

[1] L.A. Abbas-Turki, S. Vialle, B. Lapeyre, and P. Mercier. Pricing derivatives
on graphics processing units using monte carlo simulation. Concurrency
and Computation: Practice and Experience, 26(9):1679–1697, 2014.

[2] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485,
New York, NY, USA, 1967. ACM.

[3] Søren Asmussen and Peter W. Glynn. Stochastic Simulation: Algorithms
and Analysis, volume 57 of Stochastic Modelling and Applied Probability.
Springer New York, 2007.

[4] Fishcer Black and Myron Scholes. The pricing of options and corporate
liabilities. Journal of political economy, 81(3):637, 1973.

[5] P. Boyle. Options: a Monte Carlo approach. Journal of Financial Eco-
nomics, 4:323–338, 1977.

[6] P. Boyle, M. Broadie, and P. Glasserman. Monte Carlo methods for security
pricing. Journal of Economic Dynamics and Control, 21(8-9):1267–1321,
1997.

[7] C. de Schryver, I. Shcherbakov, F. Kienle, N. Wehn, H. Marxen, A. Kostiuk,
and R. Korn. An energy efficient fpga accelerator for monte carlo option
pricing with the heston model. In Reconfigurable Computing and FPGAs
(ReConFig), 2011 International Conference on, pages 468–474, Nov 2011.

[8] Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, and Dana
Schaa. Heterogeneous Computing with OpenCL: Revised OpenCL 1.2 Edi-
tion. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2 edi-
tion, 2013.

[9] J. H. Halton. Algorithm 247: Radical-inverse quasi-random point sequence.
Commun. ACM, 7(12):701–702, December 1964.

[10] SL Heston. A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Review of Financial Studies,
6(2):327–343, 1993.

73

[11] J. C. Hull. Options, Futures, and Other Derivatives. Prentice-Hall, Upper
Saddle River, N.J., sixth edition, 2006.

[12] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun
Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas
Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. De-
bunking the 100x gpu vs. cpu myth: An evaluation of throughput com-
puting on cpu and gpu. SIGARCH Comput. Archit. News, 38(3):451–460,
June 2010.

[13] William J. Morokoff and Russel E. Caflisch. Quasi-monte carlo integration.
JOURNAL OF COMPUTATIONAL PHYSICS, 122:218–230, 1995.

[14] C. Niramarnsakul, P. Chongstitvatana, and M. Curtis. Parallelization of
european monte-carlo options pricing on graphics processing units. In Com-
puter Science and Software Engineering (JCSSE), 2011 Eighth Interna-
tional Joint Conference on, pages 247–249, May 2011.

[15] Brian D. Ripley. Stochastic Models. John Wiley and Sons, Inc., 2008.

[16] S. Sawilowsky and G. Fahoome. Statistics Through Monte Carlo Simulation
with Fortran. JMASM, 2002.

[17] I. M. Sobol’. On the distribution of points in a cube and the approximate
evaluation of integrals. 7(4):86–112, 1967. English translation of Russian
original published in Zh. vychisl. Mat. mat. Fiz. 7(4), 784–802, 1967.

[18] Xiang Tian and Khaled Benkrid. High-performance quasi-monte carlo fi-
nancial simulation: Fpga vs. gpp vs. gpu. ACM Trans. Reconfigurable
Technol. Syst., 3(4):26:1–26:22, November 2010.

[19] Wikipedia. Wikipedia, the free encyclopedia, 2015.

[20] Paul Wilmott. Paul Wilmott Introduces Quantitative Finance. Wiley-
Interscience, New York, NY, USA, 2 edition, 2007.

[21] N.A. Woods and T. VanCourt. Fpga acceleration of quasi-monte carlo in
finance. In Field Programmable Logic and Applications, 2008. FPL 2008.
International Conference on, pages 335–340, Sept 2008.

[22] Stavros A. Zenios. High-performance computing in finance: The last 10
years and the next. Parallel Computing, 25(13-14):2149–2175, December
1999.

74

Appendices
A OpenCL kernels

__kernel void MC_EuropeanVanillaScalar (f l o a t t , f l o a t s , f l o a t k ,←↩

f l o a t r , f l o a t sigma , i n t paths_M ,
const __global f l o a t ∗randoms , __global f l o a t ∗ results) {

i n t posX = get_global_id (0) ;
f l o a t St = 0.0 f ;
f l o a t discount = exp(−r ∗ t) ;

St = s ∗ exp ((r − (sigma ∗ sigma / 2 . 0)) ∗t + (sigma ∗sqrt (t) ∗ ←↩

randoms [posX])) ;
St = discount ∗ max (St − k , 0 . 0 f) ;
results [posX] = St ;

}

Monte Carlo pricer for vanilla European option scalar kernel.

__kernel void MC_EuropeanVanillaVector (f l o a t t , f l o a t s , f l o a t k ,←↩

f l o a t r , f l o a t sigma , i n t paths_M ,
const __global float4 ∗randoms , __global float4 ∗ results) {

i n t posX = get_global_id (0) ;
float4 St ;
f l o a t discount = exp(−r ∗ t) ;

St = s ∗ exp ((r − (sigma ∗ sigma / 2 . 0)) ∗t + (sigma ∗sqrt (t) ∗ ←↩

randoms [posX])) ;
St = discount ∗ max (St − k , 0 . 0 f) ;
results [posX] = St ;

}

Monte Carlo pricer for vanilla European option 4-wide vector kernel.

__kernel void MC_Asian_Scalar (f l o a t t , f l o a t s , f l o a t k , f l o a t r ,←↩

f l o a t sigma , i n t paths_M , i n t timesteps_N ,
const __global f l o a t ∗randoms , __global f l o a t ∗ results) {

75

i n t posX = get_global_id (0) ;
f l o a t xinc = s ;
f l o a t xpath = s ;
f l o a t delta = t / ((f l o a t) timesteps_N − 1 . 0) ;
f l o a t discount = exp(−r ∗ t) ;

f o r (i n t i = 1 ; i < timesteps_N ; i++)
{

xinc = xinc ∗ exp ((r − (sigma ∗ sigma / 2 . 0)) ∗ delta + (sigma ∗←↩

sqrt (delta) ∗ randoms [posX ∗ timesteps_N + i])) ;
xpath = xpath + xinc ;

}

xpath = xpath / (f l o a t) timesteps_N ;
xpath = discount ∗ max (xpath − k , 0 . 0 f) ;
results [posX] = xpath ;

}

Monte Carlo pricer for arithmetic Asian option scalar kernel.

__kernel void MC_Asian_Vector (f l o a t t , f l o a t s , f l o a t k , f l o a t r ,←↩

f l o a t sigma , i n t paths_M , i n t timesteps_N ,
const __global float16 ∗randoms , __global float16 ∗ results) {

i n t posX = get_global_id (0) ;
float16 xinc = s ;
float16 xpath = s ;
float16 delta = t / ((f l o a t) timesteps_N − 1 . 0) ;
float16 discount = exp(−r ∗ t) ;

f o r (i n t i = 1 ; i < timesteps_N ; i++)
{

xinc = xinc ∗ exp ((r − (sigma ∗ sigma / 2 . 0)) ∗ delta + (sigma ∗←↩

sqrt (delta) ∗ randoms [posX ∗ timesteps_N + i])) ;
xpath = xpath + xinc ;

}

xpath = xpath / (f l o a t) timesteps_N ;
xpath = discount ∗ max (xpath − k , 0 . 0 f) ;
results [posX] = xpath ;

}

Monte Carlo pricer for arithmetic Asian option 16-wide vector kernel.

76

__kernel void MC_Barrier_Scalar (f l o a t t , f l o a t s , f l o a t k , f l o a t ←↩

r , f l o a t sigma , i n t paths_M , i n t timesteps_N ,
f l o a t barrier , const __global f l o a t ∗randoms , __global f l o a t ∗←↩

results) {

i n t posX = get_global_id (0) ;
f l o a t xpath = s ;
f l o a t delta = t / ((f l o a t) timesteps_N) ;
f l o a t discount = exp(−r ∗ t) ;
bool barrierBroken = f a l s e ;

f o r (i n t i = 0 ; i < timesteps_N ; i++)
{

i f (! barrierBroken)
{

xpath = xpath ∗ exp ((r − (sigma ∗ sigma / 2 . 0)) ∗ delta + (←↩

sigma ∗sqrt (delta) ∗ randoms [posX ∗ timesteps_N + i])←↩

) ;
i f (xpath >= barrier)
{

xpath = 0.0 f ;
barrierBroken = true ;
break ;

}

}
}

xpath = discount ∗ max (k − xpath , 0 . 0 f) ;
results [posX] = xpath ;

}

Monte Carlo pricer for Up-and-out barrier option scalar kernel.

__kernel void reduce (__global float4 ∗ input , __global float4 ∗ ←↩

output , __local float4 ∗ sdata)
{

unsigned i n t tid = get_local_id (0) ;
unsigned i n t bid = get_group_id (0) ;
unsigned i n t gid = get_global_id (0) ;

unsigned i n t localSize = get_local_size (0) ;
unsigned i n t stride = gid ∗ 2 ;

77

sdata [tid] = input [stride] + input [stride + 1] ;

barrier (CLK_LOCAL_MEM_FENCE) ;
f o r (unsigned i n t s = localSize >> 1 ; s > 0 ; s >>= 1)
{

i f (tid < s)
{

sdata [tid] += sdata [tid + s] ;
}
barrier (CLK_LOCAL_MEM_FENCE) ;

}

i f (tid == 0) output [bid] = sdata [0] ;
}

Reduction sum kernel.

78

