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A B S T R A C T

The computation of convex hulls is a major field of study in computa-
tional geometry, with applications in many areas: from mathematical
optimization, to pattern matching and image processing. Therefore,
a large amount of research has gone into developing more efficient
algorithms for solving the convex hull problem.

This thesis tests and compares different methods of computing the
convex hull of a set of points, both in 2D and 3D. It further shows if
using linear programming techniques can help improve the running
times of the theoretically fastest of these algorithms. It also presents a
method for increasing the efficiency of multiple linear programming
queries on the same constraint set.

In 2D, the convex hull algorithms include an incremental approach,
an intuitive gift wrapping algorithm, and an advanced algorithm us-
ing a variant of the divide-and-conquer approach called marriage-
before-conquest. The thesis also compares the effect of substituting
one of the more time-consuming subroutines of the marriage-before-
conquest algorithm, with linear programming.

An extension of the gift wrapping algorithm into 3D is presented
and tested, along with a description of an algorithm for using linear
programming to compute convex hulls in 3D.

Results of various tests are presented and compared with theoreti-
cal predictions. These results show that in some cases, the marriage-
before-conquest algorithm is faster than the other algorithms, but
when the hull size is a large part of the input, the incremental convex
hull algorithm is faster. Additionally, the tests are used to demon-
strate that some of the algorithms are output-sensitive.
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1
I N T R O D U C T I O N

The computation of convex hulls is one of the most fundamental, and
one of the first studied problems, in computational geometry.

The convex hull CH(S) of a set of points S is defined as the mini-
mum set forming a convex shape containing all points in S. A set is
convex if any line segment ~pq between any pair of points p, q ∈ S is
completely contained in S.

A convex hull in the plane can be intuitively described by compar-
ing the set of points to nails hammered into a board. The convex hull
can then be visualized as a rubber band stretched around the nails,
clasping the outer-most nails.

Mathematically, the convex hull of a finite set of points S in n di-
mensions is defined by the following:

CH(S) ≡
{

n

∑
i=1

λi pi : λi ≥ 0 for all i and
n

∑
i=1

λi = 1

}
.

Convex hulls are used in many other areas, such as image process-
ing, path finding and robot motion planning, pattern matching, and
many more. For instance, in situations where the performance of
a ray tracing renderer is important, as in computer games, convex
hulls can help decrease the number of ray-triangle checks, by build-
ing convex hulls of concave models. If a ray does not intersect the
convex hull, there is no need to check the, usually much more com-
plex, model inside of the hull.

Linear programming is a technique for optimizing equations subject
to linear constraints, and dates as far back as Fourier. In linear pro-
gramming, the goal is to optimize a linear equation, subject to a num-
ber of linear constraints. The constraints can be visualized as a set of
halfspaces, each cutting off a part of the valid space. The optimization
is then finding the furthest allowed point in a given direction.
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2
R E L AT E D W O R K

Berg, et al. [2] described a simple, naive algorithm for computing
convex hulls in the plane. Graham [5] described an incremental al-
gorithm running in O(n log n) time, later modified by Andrew [1].
Jarvis [7] described an intuitive approach to computing convex hulls
based on the idea of wrapping a gift. Kirkpatrick and Seidel [8]
used a variant of the divide-and-conquer approach to compute con-
vex hulls in O(n log h) time.

Megiddo [10] described both a deterministic and a randomized ap-
proach to solving linear programs in O(n) time, later summarized by
Berg, et al. [2]. Chan[3] later presented a technique for solving mul-
tiple linear programming queries simultaneously in O(n log k) time,
using a recursive partitioning method to prune a large amount of the
unused points.

2



3

T H E O RY

This chapter introduces the algorithms for computing convex hulls,
which are implemented and tested later. Additionally, the theory
used for the more advanced algorithms is presented. First, the algo-
rithms for computing convex hulls in 2D are described, which include
an algorithm with a naive approach, and a more efficient incremental
algorithm. Two advanced algorithms are also given: a gift wrapping
algorithm, and a marriage-before-conquest algorithm based on a vari-
ant of the divide-and-conquer approach. Afterwards, the algorithms
for 3D convex hulls are described, starting with a 3D gift wrapping
algorithm. Finally, algorithms for solving linear programs effectively
are presented, starting with an incremental algorithm, then a random-
ized algorithm, and ending with an advanced algorithm for solving
multiple linear programs using the randomized algorithm.

In all of the following convex hull algorithms, it is important to be
aware of and handle degenerate cases correctly. In 2D, these include
handling vertical lines, and a hull line intersecting more than two
points. If a vertical line is created through two points, it can, in most
cases, be treated as a special case, where only the highest point is
used, and the line dropped. In a more general situation, the entire
point set can be rotated so vertical lines can not occur. In this thesis,
if a hull line intersects more than two points, all the middle points
are ignored and are not part of the hull. In 3D, these cases persist,
but as a hull in 3D consists of faces, there may be several points on
the plane defining the face. In such a case, it may be necessary to find
the convex hull of these points using a 2D algorithm.

3.1 2d algorithms

In this section, the algorithms for computing convex hulls in two
dimensions are detailed, starting out with the simplest algorithm and
moving up in complexity.

3.1.1 Naive Algorithm

Knowing that for each pair of points, all other points must lie to only
one side of the line through these two points. Therefore, the simplest

3



3.1 2d algorithms

way of solving the convex hull problem is making a list of all possible
(n2 − n) edges from all pairs of points p, q and testing whether all
other (n− 2) points k lie on the right side of this edge, in which case
the edge is part of the hull. This algorithm runs in time:

n2−n

∑
i=1
O(n− 2) = O((n− 2)(n− 1))n = O(n3 − 3n2 + 2n) = O(n3).

As the algorithm can never terminate early, and always checks all
other points, this is both an upper and a lower bound:

Θ(n3).

Pseudocode for this algorithm can be seen in algorithm 1, which is
based on [2]. A special check to see if more than two points were on
a hull line, as only the maximum and minimum of these points were
to be added to the hull.

Algorithm 1 NaiveHull(S)

1: sort(S)
2: a← ∅
3: Lupper = {p1, p2}
4: for All ordered pairs (p, q) ∈ P× P with p 6= q do
5: valid← true
6: for All points r ∈ P, where r 6= p or q do
7: if r lies to the left of the directed line ~pq then
8: valid← f alse
9: end if

10: end for
11: if valid then
12: Add the directed edge ~pq to E
13: end if
14: end for
15: Construct list L of vertices from E, sorted in clockwise order

3.1.2 Incremental Algorithm

Algorithm 2 describes an incremental approach to the convex hull
problem, which is a variant of Graham’s algorithm [5], modified by
Andrew [1]. This algorithm divides the problem into computing the
top and bottom parts of the hull separately. The idea is to iterate
through the points, from the left-most vertex, to the right-most ver-
tex, adding them to the hull, and checking backwards for concavities.
This is illustrated in figure 1. If there are concavities present, the
next-to-last vertex is removed from the hull. When both the top and
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3.1 2d algorithms

bottom hulls are computed, they are simply concatenated, removing
identical endpoints, if present.

Figure 1: Adding a point

Source: www.ics.uci.edu

With a sorted list, each point is added to the hull once, and each
point can be pruned at most once. This means that the algorithm
runs in linear time on an already sorted list. Thus, the running time
of the incremental algorithm is dominated by the running time of
the sorting algorithm used. One of the fastest sorting algorithms is
QuickSort [6], which runs in expected O(n log n) time. Thus, the
incremental algorithm runs in time:

O(n log n) +O(n) +O(n) = O(n log n).

If the vertices are only sorted by their x-coordinates, and there are
several minimum points, the order of them matter. If a lower point
is added first, the upper point will not fail, and a lower point will
be part of the upper hull. This can be solved either by sorting by y
secondarily, or do a special case test. An equivalent case is possible
for multiple maxima, with the same solution.

Algorithm 2 IncHull(S)

1: sort(S) by x-coordinate
2: a← median(x)
3: Lupper = {p1, p2}
4: for i← 3 to n do
5: Add pi to Lupper

6: while size(Lupper) > 2 and last three points of Lupper do not
make right turn do

7: Delete next-to-last point of Lupper

8: end while
9: end for

5



3.1 2d algorithms

3.1.3 Gift Wrapping Algorithm

Algorithm 3 describes the gift wrapping algorithm, also referred to
as Jarvis March. It involves starting from one end of the point set and
”folding” a line around the points, as one would wrap a gift [7]. To
give more details, the algorithm starts by finding the left-most vertex.
Starting out with a vertical line through this vertex, it then checks
all other points, to find the point it would hit when rotating this line
around the first vertex, i.e. the one with the smallest angle. This
point is then added to the convex hull, and the process is repeated
until it hits the starting vertex again. An example of running the gift
wrapping algorithm can be seen in figure 2.

Figure 2: Gift Wrapping

Source: www.tcs.fudan.edu.cn

Each time the algorithm looks for a new edge it checks all the ver-
tices, and it ends when hitting the initial vertex. Adding the time it
takes to find the initial vertex, the running time is:

O(n) +
h

∑
i=1
O(n) = O(nh).

Where h is the size of the convex hull.

3.1.4 Kirkpatrick-Seidel Algorithm

Kirkpatrick and Seidel [8] presented an algorithm that reverses the
idea of divide-and-conquer, into a concept they dubbed marriage-
before-conquest. Normally, a divide-and-conquer algorithm would
split the input, recursively perform a set of operations on each part,
and merge the parts. The marriage-before-conquest algorithm splits
the input, and instead of just recursing on each set, the algorithm first

6



3.1 2d algorithms

Algorithm 3 GWHull(S)

L = ∅
min← min(S)
L.add(min)
direction← (0, 1)
while next 6= L.last do

nextPoint = ∅
smallestAngle = ∞
for all p : points do

angle← angle(direction, p)
if angle < smallestAngle then

smallestAngle← angle
nextPoint = p

end if
end for
L.add(nextPoint)

end while

figures out how the parts should be merged, and then recurses on the
subsets. This algorithm only focuses on finding the upper part of the
convex hull, but the lower hull can be found by flipping or rotating
all points. These hulls can then be concatenated to form the complete
convex hull.

The algorithm works by finding a vertical line xm through the
median x-coordinate of the input points S. It then finds the bridge
through xm, that is, the edge of the upper hull crossing xm, seen in
figure 3, where xm is called L. As per the definition of a convex hull,
all vertices beneath this bridge can not be a part of the upper hull,
and they are pruned from the set. The remaining points are split into
two sets, Sle f t and Sright, containing the points to the left and right of
this bridge. The points in the bridge are added to the hull and the
algorithm is called recursively on each subset.

3.1.4.1 Finding the bridge

The main idea when looking for a bridge is pruning points from the
set S, until only the two points forming the bridge remain. To do this,
it divides S into bS/2c pairs, and calculates the slopes of the lines
intersecting the points from each pair. It then finds the median K
of these slopes, approximated by picking the median of one or more
slopes at random, and separates all the pairs into three groups: those
with a higher slope than K, those with a lower slope, and those with
the same slope. The line with slope K is then moved up, to where
it hits the top points, maximizing py − Kpx, while keeping track of
the minimum and maximum point on this line. If there are more
than one point on the line, and the points are on different sides of

7



3.1 2d algorithms

Algorithm 4 KSHull(S)

xm ← median(x)
(i, j)← Bridge(S, xm)

Sle f t ← pi ∪ {p ∈ S|x(p) < x(pi)}
Sright ← pj ∪ {p ∈ S|x(p) > x(pj)}
if i = min(S) then

print i
else

KSHull(Sle f t)

end if
if j = max(S) then

print j
else

KSHull(Sright)

end if

xm, the minimum and maximum points form the bridge, and they
are returned. If there is only one point on the line, it lies either to the
left, on, or to the right of xm. Based on the relation between the sets,
K, and on which side of xm the points lie, up to one point from each
pair may be pruned. This runs recursively until only one point on
each side of xm remains. Pseudocode for this subroutine can be seen
in algorithm 5.

Figure 3: Bridge

Source: Kirkpatrick, Seidel [8]

This algorithm is output-sensitive, in that the running time de-
pends on both the size of the input and the size of the computed
hull.

For finding the median, randomized selection is used, as it will give
a reasonable approximation of the real median. It is also assumed
that the bridge finding algorithm runs on O(n) time. The running
time of the function is determined by f (|S| , h) where f must satisfy
the following recurrence relation:

f (n, h) ≤

cn if h = 2,

cn +
hl+hr=h
max

{
f ( n

2 , hl), f ( n
2 , hr)

}
if h > 2,

.

where c is a positive constant and 1 < h ≤ n.

8



3.1 2d algorithms

Algorithm 5 Bridge(S, xm)

candidates← ∅
if |S| = 2 then

return (i, j), where S =
{

pi, pj
}

and x(pi) < x(pj).
end if
pairs ←

⌊
|S|
2

⌋
disjoint pairs of points from S, ordered by x-

coordinate.
if |S| is uneven then

Add unpaired point to pairs.
end if
Calculate slope for all pairs.
for all pairs in pairs do

if Any slopes are vertical then
Add point with highest y-coordinate to candidates.
Remove pair from pairs.

end if
end for
K ← median of slopes
small ← pairs with slope < K.
equal ← pairs with slope = K.
large← pairs with slope > K.
max ← the set of points on the line maximizing y(pi)− x(pi)K
pk ← the point in max with minimum x-coordinate.
pm ← the point in max with maximum x-coordinate.
if x(pk) ≤ xmandx(pm) > xm then
(pk, pm) is the bridge, return (k, m).

end if
if x(pm) ≤ xm then

Insert right point from all pairs in large ∪ equal into candidates
Insert both points from all pairs in small into candidates

end if
if x(pk) > xm then

Insert left point from all pairs in small ∪ equal into candidates
Insert both points from all pairs in large into candidates

end if
return Bridge(candidates, xm)

9



3.2 3d algorithms

To prove the running time of the algorithm, it is initially assumed
that the running time is O(n log h). Then f (n, h) = cn log h must
satisfy the recurrence relation. For h = 2 this is trivial, but for h > 2,
substituting f (n, h) with this assumed running time yields:

f (n, h) ≤ cn +
hl+hr=h
max

{
c n

2 log hl + c n
2 log hr

}
= cn + 1

2 cn
hl+hr=h
max {log (hlhr)} .

The maximum of log(hlhr) occurs when hl = hr = n/2, therefore,
it is substituted into the equation:

f (n, h) ≤ cn + c n
2 log(hlhr)2 = cn + cn log h

2

= cn + cn log h− cn = cn log h.

Thus resulting in the wanted O(n log h) bound.

3.1.5 Kirkpatrick-Seidel Algorithm Using Linear Programming

As later tests will prove, the normal Kirkpatrick-Seidel algorithm has
a large running time constant hidden in the O-notation, partly caused
by the bridge finding algorithm, resulting in it being much slower
than the O(n log n) incremental algorithm, in almost all cases. An-
other issue is that the method of comparing the slopes of pairs of
points and pruning based on the slopes only works in 2D. Another
technique exists for finding the bridge that can be extended to higher
dimensions. This technique is based on linear programming, which
a later chapter will focus on.

3.2 3d algorithms

In this section, the 3D gift wrapping algorithm is presented, along
with a short description of how to use linear programming to find a
convex hull in 3D.

3.2.1 Gift Wrapping Algorithm

The gift wrapping algorithm for computing convex hulls in 3D in-
cludes and expands on the 2D algorithm variant. Instead of folding
a line around the point set, it folds a plane. Initially, the algorithm
uses the 2D algorithm on the point set, projected to two dimensions,
to find an initial edge. It then folds a plane around this edge, until it
hits a set of points. Using these points, it forms a polygon, which is
used as a base for the complete hull. The algorithm then recursively

10



3.3 linear programming

picks an edge, uses a plane through the polygon to fold around the
chosen edge until it hits a new set of points, and forms a new polygon
from the edge and this new set of points.

Similar to the 2D algorithm, this algorithm finds an initial face and,
for each face, tries to find a new face, based on newly added edges.
Finding the initial extreme takes O(n) time. For each point or edge in
the hull, finding new points takes O(n) time. Thus, the total running
time of the algorithm is the same as the 2D algorithm:

h

∑
i=1
O(n) = O(nh).

3.2.2 3D Linear Programming Algorithm

Extending the bridge finding subroutine from the Kirkpatrick-Seidel
algorithm to 3D would be difficult, but when using linear program-
ming instead, this is very simple, as it only involves adding another
dimension to the linear program. In 2D, the algorithm looked for the
edge of the upper hull above a given vertical line xm. In 3D, this ex-
tends to finding a face of the upper hull above a given vertical line
(xm, ym).

3.3 linear programming

In this section, the concept of linear programming is introduced. A
description of duality explains how to use a point set as a series of
constraints. An algorithm for solving linear programs is presented,
its running time is analysed, and an addition to the algorithm that
greatly reduces its time bound is described. Finally, an in-depth ex-
planation of how to use this algorithm to solve linear programs in
both 2D and 3D is presented.

3.3.1 General

Linear Programming(LP) is a method for optimizing a linear function,
a maximization or minimization problem, subject to a number of lin-
ear constraints. When represented in standard form, the program has
the following structure:

Minimize c1x1 + · · ·+ cdxd

Subject to a1,1x1 + · · ·+ a1,dxd ≥ b1
...

an,1x1 + · · ·+ an,dxd ≥ bn

Where ci, ai,j, and bi are real numbers, which form the input to the
problem. The function to be maximized or minimized is the objective

11



3.3 linear programming

function, and is together with the constraints called a linear program.
The number of variables d is called the dimension of the linear pro-
gram. Each constraint can be interpreted as a halfspace dividing the
d-dimensional space in two, and the intersection of all the half-spaces
is called the feasible region, which is the set of all points satisfying
all the constraints. Points inside the feasible region are called feasible
points, and points outside are called infeasible. If the feasible region
is empty, the linear program itself is infeasible.

Figure 4: Linear Program Solutions

Source: Berg et al.[2]

When solving a linear program, the solution is not always unique.
The constraints can cause any possible solutions to be invalid, ren-
dering the whole linear program infeasible. The solution could also
be completely unbounded in the direction of the objective function.
Even when bounded and valid, the solution v may still not be unique,
as it could be a line instead of a points. These possible solutions are
illustrated in figure 4. For the rest of this thesis, it is assumed that if
a solution exists, it is always a point.

3.3.2 Duality

In 2D, both a point p and a line ` are represented by two variables,
p := (px, py) and ` := (y = ax + b). Therefore, a set of points can
be mapped to a set of lines, and a set of lines can be mapped to a
set of points. A mapping like this is called a duality transform, and in
one such mapping, a point p := (px, py) is mapped to a line p∗ :=
(y = pxx − py), and a line ` := (y = ax + b) is mapped to a point
`∗ := (a,−b). This mapping retains the following properties: p ∈ ` if
and only if `∗ ∈ p∗, and p is above ` if and only if `∗ lies above p∗[4].
This is illustrated in figures 5.

As vertical lines can not be represented in the form of y = ax + b,
they must either be handled separately as special cases, or the entire
scene must be rotated so no vertical lines remain.

3.3.3 Incremental Algorithm

As the point set used to compute a convex hull is not a series of con-
straints, duality can be used to interpret them as constraints. This

12



3.3 linear programming

Figure 5: Duality

Source: Berg et al.[2]

changes the problem into the solving of the following LP:

find a, b
min. axm + b

s.t. ax1 + b ≥ y1
...

axi + b ≥ yi
...

axn + b ≥ yn

As the linear program contains a large number of input points,
equating to constraints, and only a few dimensions, the algorithms
described by Timothy M. Chan [3] and Berg et al. [2], first described
by Megiddo [10], can be used. Very simplified pseudocode for this
approach can be seen in algorithm 6.

Algorithm 6 Linear Program

if yi+1 ≤ axi+1 + b then
go to step i + 1

else
find a, b
min. ax + b
s.t. axi + b ≥ yis

end if

Algorithm 7 keeps track of the current optimal vertex vi for each
step i. In each step i + 1, it uses constraint ci+1 from the set of con-
straints C := {c1, . . . , cn}, and checks whether vi is still valid, that is,
if vi ∈ {c1, . . . , ci+1}. If this is true, then vi+1 ← vi, but if not, the new
optimal vertex must lie somewhere on the constraint ci+1. This point
can be found by reducing the problem to solving a 1D linear program

13



3.3 linear programming

on ci+1 using the same constraints c1, . . . , ci:

find a
min. axm

s.t. ax1 ≥ y1
...

axi ≥ yi

Algorithm 7 IncrementalLP(H, ~c)

for i← 1 to n do
if vi−1 ∈ hi then

vi ← vi−1

else
vi ← the point p on li that maximizes fc(p), subject to the
constraints in Hi−1.
if p does not exist then

Report that the linear program is infeasible and quit.
end if

end if
end for
return vn

The running time of this algorithm is dominated by the O(i) time
of solving the 1D linear program, and as a result, the algorithm has
the following time bound:

n

∑
i=1
O(i) = O(n2).

As this bound is worse than many other techniques, other methods
must be considered.

3.3.4 Randomized Algorithm

When adding the constraints one by one, there is a probability that
the added constraint will not change the previous optimal solution.
In this case, a new solution does not need to be found. As such, a
new linear program need only be solved when a newly added con-
straint fails, rendering the previous solution invalid. Because of this,
the algorithm is dependent on the order of the constraints, as there is
both a possibility of finding the optimal solution first, and only need-
ing to solve a single LP, but also the possibility of finding the worst
possible solution each time, and needing to solve n linear programs.
In situations where a lot of similar LPs have to be solved under the
same constraints, a bad order would give the algorithm a very poor
running time for each LP. Using a randomized algorithm, the proba-
bility that the constraints are in a ”bad” order, that is, an order where

14



3.3 linear programming

many constraints fail and forces the algorithm to find a new solution,
is decreased. Algorithm 8 is very simple, as it simply shuffles the list
of constraints and calls algorithm 7.

Algorithm 8 RandomizedLP(H, ~c)

Shuffle(H)
IncrementalLP(H, ~c)

3.3.5 Solving Linear Programs in 2D and 3D

In all dimensions, the solution to an LP is a point, with each con-
straint being a hyperplane. Adding the constraints one by one, every
time a constraint fails, the new solution is a point on the most recently
added hyperplane. Because of this, the problem can be reduced to
linear program of dimension d − 1 instead. In two dimensions, the
linear program has the form:

find a, b
min. axm + b

s.t. ax1 + b ≥ y1
...

axi + b ≥ yi
...

axn + b ≥ yn

When one of the constraints fail, the new solution must lie some-
where on the newly added constraint line. Finding the point on this
line requires solving a 1D linear program. Assuming that the con-
straints ci is violated at step i, the constraint is an equality instead of
a halfspace:

axi + b = yi.

To find the variables a and b, b is first isolated:

b = yi − axi.

Substituted into the objective function:

axm + yi − axi.

And arranged into a more fitting form:

a(xm − xi) + yi.

Also inserted into the constraints c1, . . . , cj
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3.3 linear programming

axj + yi − axi ≥ yj

a(xj − xi) ≥ yj − yi.

Which can then be used to solve a 1D linear program:

find a
min. a(xm − xi)

s.t. a(x1 − xi) ≥ y1
...

a(xj − xi) ≥ yj
...

a(xi−1 − xi) ≥ yi−1

This method can be extended to higher dimensions. In 3D, the linear
program to solve is the following:

find a, b, c
min. axm + bym + c

s.t. ax1 + by1 + c ≥ z1
...

axn + byn + c ≥ zn

Like in 2D, when adding a constraint ci that invalidates the current
solution (a, b, c), the new optimal point lies somewhere on ci, which
in 3D is a plane instead of a line. To find this, it is necessary to use
ci, solve for c, and substitute c into all of the previous constraints.
Because the new optimum is on the plane, the inequality of the half-
space can be set to an equality instead:

axi + byi + c = zi.

Solve for c:

c = −axi − byi + zi.

Substitute back into the objective function:

axm + bym − axi − byi + zi.

Arrange it into the correct form, but ignore the zi term:

a(xm − xi) + b(ym − yi).

Do the same for the constraints c1, . . . , cj, . . . , ci−1:
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3.3 linear programming

axj + byj − axi − byi + zi ≥ zj

a(xj − xi) + b(yj − yi) ≥ (zj − zi).

As the objective function and the constraints can be rearranged into
this form, the 2D linear program can be solved as any other:

find a, b
min. a(xm − xi) + b(ym − yi)

s.t. a(x1 − xi) + b(y1 − yi) ≥ (z1 − zi)
...

a(xj − xi) + b(yj − yi) ≥ (zj − zi)
...

a(xi−1 − xi) + b(yi−1 − yi) ≥ (zi−1 − zi)

Similar to 2D, where the LP involved finding the optimal point
along a line, this LP also involves finding the optimal along a line,
but a line in 3D space instead of the 2D plane. Like in 3D, where the
LP could be reduced to a 2D LP, this 2D LP can be reduced to a 1D
LP. To simplify notation a bit, and to show a more general situation,
xm = xm − xi, xi = xj − xi will be used, and similarly for y and z, in
the following LP:

axi + byi ≥ zi.

Isolate b:

b =
zi − axi

yi
.

Substitute this into the objective function and the constraints c1, . . . , ci−1:

axm +
zi − axi

yi
ym

a(xm −
xiym

yi
) +

ymzi

yi
.

Disregarding the products not including a:

a(xm −
xiym

yi
).

Also inserting b into the constraints:

axj +
zi − axi

yi
yj ≥ zj

a(xj −
xiyj

yi
) ≥ zj −

yjzi

yi
.

17



3.3 linear programming

Resulting in the following linear program:

find a
min. a(xm − xiym

yi
)

s.t. a(x1 − xiy1
yi

) ≥ z1 − y1zi
yi

. . .
a(xj −

xiyj
yi
) ≥ zj −

yjzi
yi

. . .
a(xi−1 − xiyi−1

yi
) ≥ zi−1 − yi−1zi

yi

Solving this is trivial, and the result can be inserted into the 2D LP,
where the result from that can be inserted into the 3D LP, yielding
the correct result.

3.3.5.1 Running Time Analysis

By randomizing the LP algorithm its running time becomes signifi-
cantly better as shown here. When adding a constraint that does not
change vi, it takes O(1) time. Therefore, only the constraints that do
change vi matter, as they each take O(i) time.

Define Xi to be a random variable, with value 1 if vi−1 /∈ hi, and
0 if vi−1 ∈ hi. The time spent adding the constraints that change vi
amounts to:

n

∑
i=1
O(i) · Xi.

According to linearity of expectation, the sum of random variables is
the sum of the expected values of the variables. Therefore, the total
time to solve all the 1D linear programs is:

E

[
n

∑
i=1
O(i) · Xi

]
=

n

∑
i=1
O(i) · E [Xi] .

To find E[Xi], backwards analysis is used: assuming that the algo-
rithm has already finished, and analysing backwards from that point.
The optimal vertex vn must lie on at least one constraint from C. In
step n− 1, for the optimal to have changed, at least one of the con-
straints on which vn lies, must be removed. If vn lies on more than
two constraints, removing one constraint may not be enough to al-
low vn to change. Therefore, the chance of removing a constraint that
changes the optimum vi is at most 2/n. This means, that for each step
i, the probability of adding a constraint that changes the optimum is
2/i and therefore E[Xi] ≤ 2/i. Thus, the total expected time bound
on solving all the 1D linear programs is:

n

∑
i=1
O(i) · 2

i
= O(n).
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3.4 multiple linear programming

The same bound holds for the algorithm in 3D with a similar proof.
The only difference is that the solution is bounded by at least three
constraints instead.

In situations where the input is in a ”bad” order, the order will
persist in each d− 1-dimensional linear program when using the in-
cremental method, but when shuffling the input for each new linear
program, the same ”bad” order is unlikely to occur again.

3.4 multiple linear programming

When using linear programming to find the bridges in the Kirkpatrick-
Seidel algorithm, it becomes evident that for all of the linear pro-
grams, the same constraints are used. This chapter describes an algo-
rithm for solving multiple linear programs on the same constraints.

3.4.1 General

The algorithm for solving multiple linear programs works by recur-
sively dividing the point set into subsets, solving linear programs on
one point from each subset, and removing subsets lying underneath
these bounds. When a sufficient amount of subsets have been re-
moved, normal linear programming is used to find the optimal points.
This algorithm achieves a running time of O(n log k), where k is the
number of objective functions, instead of the O(nk) running time of
solving the linear programs sequentially.

3.4.2 Partitioning

The point set is recursively partitioned into four subsets based on
a vertical line, and a single non-vertical line cutting each of these
subsets in two as follows: Divide S into two subsets Pl and Pr of size
|S|
2 by a vertical line xm. Find a single non-vertical line ` := (y =

ax + b) dividing both Pl and Pr into two equal sized subsets. Recurse
on the dataset until the size of the subset is less than n

r where r is an
appropriately chosen constant. The result will be r polygons covering
the plane. Pseudocode for this algorithm can be seen in algorithm 9

and algorithm 10.
To find xm, it is possible to use a median finding algorithm with

an O(n) running time1. To find the non-vertical cutting line, an O(n)
time algorithm exists for solving the ham sandwich theorem, which is
applicable in this situation[9]. Approximating the median can also be
done in constant time by picking a few random points of the set and
finding the median of these. Likewise, solving the ham sandwich
theorem can also be done by picking an uneven number of points

1 en.cppreference.com/w/cpp/algorithm/nth element
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3.4 multiple linear programming

Algorithm 9 partition(P, r)

B, E
size = 0, crossingNumber = 0
B.push(P)
while |B| > 0 do

S← B.pop()
if |S| < n

r then
E.push(S)

else
B.push(quarter(S))
size+ = 4
crossingNumber+ = 3

end if
end while
return E, size and crossingNumber

Algorithm 10 quarter(P)

Divide P into two subsets P` and Pr of size |S|/2 around a vertical
line xm

Divide P` and Pr into two subsets of size |S|/4 around a single
non-vertical line `.
return The four subsets

from each set, and finding the line through two points, dividing the
samples into two equal sized sets. Formal proofs of the validity of
these methods are beyond the scope of this thesis, but in the next
section it is assumed that this is equivalent to using a deterministic
approach. This partitioning algorithm takes O(n log r) time.

3.4.3 Algorithm

The algorithm works by subdividing the input point set into r subsets.
It then takes a single point from each of these subsets, and calls the
algorithm recursively with this subset of points as a parameter. The
result of this recursive call is k lines. These lines are tested against
the subsets, and if a subset is not intersected by any lines, the points
contained in that subset are pruned from the point set. The algorithm
is then recursively called with the point set. When the algorithm
has run this step until a set amount of points are pruned, the linear
programs are solved sequentially on the remaining points.

3.4.4 Running Time Analysis

In this algorithm there are two paths to take: One involves simply
solving the linear programs one by one. Using the previously de-
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3.4 multiple linear programming

scribed randomized algorithm, this can be done in O(nk) time. The
other path is more complicated: First, partitioning the set P into r
subsets P1, . . . , Pr will take O(n log r) time. Finding the lines `1, . . . , `k
is a recursive call. Define the crossing number Cr to be the maximum
number of partitions intersected by a single line. When pruning par-
titions, this is the number of partitions that will not be pruned by a
given line. The crossing number follows the following recursion in
the partitioning algorithm:

f (n) = 3 f
(n

4

)
+O(n).

Pruning partitions involves checking all r partitions against all k
lines. These partitions each have size O(log r), as they are created by
a recursive algorithm that cuts each partition in four pieces with a
vertical and a non-vertical line. Each such recursion can add only a
constant number of vertices to the boundary, so their worst-case size
will be O(log r). This results in a running time of O(rk log r) for the
pruning step. Any partition not intersecting any of the lines `1, . . . , `k
can be pruned, as this means that the partition is entirely below all
the lines `1, . . . , `k, and none of its vertices can be part of any bridge,
for any of the k queries. This leaves kCr partitions, each with n

r points.
These remaining points are used for a recursive call. These elements
result in the following two running times, depending on the path
chosen:

f (n) = O(nk)
f (n) = O(n log r) + f (r) + O(rk log r) + f ( n

r kCr).

Depending on the relationship of some of these variables, either of
the paths may be the fastest. For each recursion step, n gets smaller,
but the other variables are constant. To maximize running speed, it
is preferable to hit the recursive part of the algorithm many times,
bringing n down as much as possible, before sequentially solving
the LPs. Using the pruning path also assumes that some points get
pruned. If no points are pruned, or if only a few points are pruned,
this path will be a waste of time.

3.4.5 Termination Condition

It needs to be decided when to end the recursion and solve the linear
programs sequentially. Assuming that the set is always recursively
divided into four equal sized sets, the crossing number is:

Cr = crlog4 3.

Where c is a constant. Inserting this into the recursive path of the
recurrence relation results in:
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3.4 multiple linear programming

f
(n

r
kcrlog4 3

)
= f

(
n

r1−log4 3 ck
)
= f

( n
r0.2075 ck

)
Which will be bounded by the following approximation:

O
(

n
r1/5

ck
)

f (n) = O(n log r) + f (r) +O(rk log r) +O
(

n
r1/5

ck
)

.

Isolate r. Assuming that n
3 points are pruned at each level of recursion

will give a simple and reasonable bound. This can be ensured by
picking r appropriately:

n
r1/5

ck ≤ n
3

(3ck)5 ≤ r.

The running time of the recursive path can be simplified if r = (3ck)5

is chosen. This makes an analysis easier:

O(rk log r)⇒ O(k6 log k).

It is assumed that k ≥ 3(3c)5. If n ≥ k6 then r ≤ n
3 . This means that

to get the desired amount of pruning, there must be at least n ≥ k6

input points.
Under these assumptions, the running time can be simplified:

f (n) = O(n log r) + f (r) +O(k6 log k) +O
(

n
r1/5

k
)

⇓

f (n) = O(n log r) + 2 f
(n

3

)
.

As there must be at least n ≥ k6 input points to get the desired
amount of pruning, this path can only be taken if this condition holds.

Algorithm 11 multiLP(P, k)

if n ≥ k6 then
Solve LPs sequentially

else
P1, . . . , Pr ← r - partition(P)
P′ ← one point from each subset/partition
Lines `1, . . . , `k ← multiLP(P′, k)
Prune any partition that does not cross any of the lines
Solve multiLP(P, k)

end if
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3.4 multiple linear programming

When moving from step i to step i + 1, the algorithm must evaluate
if the cost of another level of recursion is less than the cost of solving
the linear programs sequentially. In figure 6 the recursion tree for the
algorithm is shown, along with the running time costs of each level.
In this tree, each node is a recursion call and each leaf is solving
the LPs sequentially. Pseudocode for this algorithm can be seen in
algorithm 11.

Figure 6: Recursion Tree

Consider an example: Assuming n = k9, the cost of each node on
level i is:

k9

3i = k6.

Then the cost of level i + 1, if it was chosen to be a leaf, is:

i = log3 k3

n
3i+1 2i+1k ≈ 2

3
nk−0.11.

Assuming n = k8 instead, to show how this size affects the node cost:

i = log3 k2

n
3i+1 2i+1k ≈ 2

3
nk0.26.
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3.5 pruning

As seen in these examples, when the input size relative to the size
of k gets larger, the more of a gain can be achieved by performing a
pruning step. This means that a larger part of the input gets pruned,
which, in the end, decreases the cost of solving the k linear programs
on the final set. In the example for n = k9, the cost of the leaf step is
less than the O(n log k) price of the pruning steps. This means, that
when n ≥ k9, with this algorithm, k linear programs can be solved
simultaneously on the same n constraints in time O(n log k).

3.5 pruning

A technique for improving the running time of any convex hull algo-
rithm is pruning, that is, removing points from the point set that can
never be part of the hull. Define p and q as the vertices with the small-
est x-coordinate and the largest x-coordinate, respectively. Assuming
the convex hull algorithm is searching for the upper hull, if two or
more vertices share the highest or lowest x-value, the point with the
highest y-value is chosen. Drawing a line ` through two points p and
q, a point beneath this line can never be part of the upper hull. As the
hull must start at p and end at q, by the definition of a convex hull,
no points below this line can be part of the hull. If a point v beneath
this line were to be considered as part of the hull and a line l through
v and p, then the point q would lie above the line, thus rendering
the solution invalid. The same goes for a line going through v and
q. This technique can also work in a divide-and-conquer algorithm,
where additional points would be pruned with each recursion.
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4

I M P L E M E N TAT I O N

In this chapter, the implementation of the different algorithms are
described. A general explanation of design choices, as well as some of
the problems encountered along the way, are described first, followed
by similar discussions for the individual convex hull algorthms and
the linear programming algorithms.

4.1 general

All algorithms and tests were implemented in C++ 11 using Microsoft
Visual Studio and JetBrains CLion EAP. C++ was the programming
language of choice, as it is run directly on the CPU, instead of being
run through a virtual machine, making it more reliable for time mea-
suring. The code was designed with an object-oriented approach, to
make it more transparent and easier to manage. All convex hull algo-
rithms implemented the same interface, and similarly for all the point
distribution generators. This made it easier to test a list of algorithms
against a list of distributions.

Both points and lines were represented by a Vector3D class, with
points being represented as their coordinates (x, y, z), and lines being
represented as (a, b, c). Each variable was defined as a double preci-
sion floating points number, amounting to a total size of 24 bytes.

An LPSolver class was created to handle the solving of linear pro-
grams in d dimensions. Internally, it uses a Halfspace struct, which
is similar to the Vector3D class, but with an added Bound enum, ex-
pressing which side the halfspace cuts.

In the optimization of K in the Kirkpatrick-Seidel algorithm, it had
to be tested whether a point was on the line, in rare circumstances
a problem occured. As computers work with finite precision arith-
metic, small errors could cause a point on the line not to intersect
the line. In this situation, the check was made with a small measure
of error instead. As finite precision only caused a problem under
rare circumstances in the bridge finding subroutine of the standard
Kirkpatrick-Seidel algorithm, and as this would be replaced with lin-
ear programming, this was deemed an acceptable approximation.
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4.2 convex hull algorithms

4.2 convex hull algorithms

4.2.1 Naive Algorithm

The naive algorithm was simple to implement, as it was possible to
strictly follow the pseudocode. A double for-loop was used for all
possible pairs of points, where p 6= q, with an additional for-loop to
test if all other points were on, or to the right, of the line defined by
the two points. Finally, the pairs of points were sorted clockwise, and
the points put in the vector to be returned.

4.2.2 Incremental Algorithm

The incremental algorithm was even simpler to implement, as it sim-
ply involved sorting the points, iterating through the points, and, in
some cases, looping back to remove points. Sorting was done using
the C++ standard sort() which has a guaranteed running time of
O(n log n)1. No significant issues arose in implementing or testing
this algorithm.

4.2.3 Gift Wrapping Algorithms

The 2D gift wrapping algorithm starts out by finding the point with
the lowest x, and adds it to the hull list, represented by a vector<Vector3D>.
Starting out with the direction straight east (0, 1), it searches all the
points to find the point which, together with the previous point,
forms a line with the smallest angle from the current direction. This
point is added to the hull list, and the previous step is repeated until
the initial point is hit again.

The 3D gift wrapping algorithm is more complex, given the added
layer of complexity of an additional dimension. It starts out by using
the 2D algorithm to find the first edge on a projection of the data
points simply by disregarding the z-coordinate. It then tests all planes
spanned by the the first edge and the remaining points, and findes
the one with the lowest angle from the starting position. This was
very complicated to implement, as it was necessary to create a local
coordinate space when rotating the plane, to make it easier to test the
angle. This was created by using the reverse of the unit vector from
the first point to the second points. Then, projecting all the points to
a plane perpendicular to the vector. This reduced the angle finding
to the same problem in 2D. As far as special cases, more attention
had to be given paid to situations where the rotated plane hit several
points, as this added a new edge and face for each extra point.

1 en.cppreference.com/w/cpp/algorithm/sort
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4.3 linear programming

4.2.4 Kirkpatrick-Seidel Algorithms

The Kirkpatrick-Seidel algorithm was by far the most time-consuming
algorithm to implement. Not because of the complexity of the imple-
mentation, as the pseudocode could be followed very closely, but
simply because of the sheer amount of code needed. One of the only
deviations from the pseudocode in the article, was the return value
of a vector containing the indices of the hull points in the input vec-
tor. This helped ensuring correctness both by manually verifying the
hull for smaller inputs, but also by comparing the result to the results
from the other algorithms.

In the first iteration of the algorithm no pointers were used, which
caused massive memory usage. Because of the recursive nature of
the algorithm, and because C++ by default copies all parameters in
function calls, the entire point set would be copied each time a new
level of recursion would be added. This was eventually fixed by hav-
ing a single vector with the points, and all access to it was restricted
to references and indices.

4.3 linear programming

The linear programming solver was fairly complicated to write, but
eventually worked.

Because of time constraints, the 3D linear program solver remains
unfinished. Many problems were encountered when trying to imple-
ment this. E.g. in situations where the solutions were unbounded,
the temporary maximum was a point an infinite distance along a con-
straint hyperplane. Assigning the values of ∞ or −∞ to the (x, y, z)
coordinates would not retain useful info about the constraint, so ad-
ditional information had to be saved about the unbounded constraint
hyperplane.

4.4 tests

To make it easier to run all the algorithms on a number of different
point set distributions, polymorphism was used to have all the con-
vex hull algorithms implement a single convex hull interface. This
made it easier to have a list of function pointers to the point distri-
bution generation functions, and test it against a list of convex hull
algorithms.

The input distributions were all generated using one of the new
pseudo-random number generators from the C++11 STL: the 64-bit
Mersenne Twister, with both a uniform real number distribution, and
a normal distribution.
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4.5 visualiser

4.5 visualiser

For easier debugging, a very simple program was written in OpenGL
to visualize the large amount of points, edges and polygons, when
working with convex hulls. It only has the very basic functionalities
of rendering a single point set, a single line loop, and a single set of
faces. A screenshot of this application is shown in figure 7.

Figure 7: The OpenGL Visualiser
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5

A N A LY S I S

In this chapter, the tests conducted, and the results obtained from
these tests are presented and discussed. All of the implemented algo-
rithms have been run with a series of different point distributions
as input, designed to showcase specific strengths and weaknesses
of the different algorithms. The test data is presented in two ways:
in graphs comparing all the distributions for one algorithm, and in
graphs comparing all algorithms for a specific input distribution.

All tests were conducted on a Windows PC with an i5 3570K CPU
and 24GB RAM. The C++ implementation was tested using a timer
based on the clock from the <chrono> header of the C++11 STL. All
the tests are the averages of 10.000 iterations of the tests.

5.1 2d distributions

In this section the different point distributions will be described, and
the test data will be analysed, with accompanying graphs illustrating
the results.

The previously described naive algorithm has been omitted from
these tests, both because the algorithm performed so poorly that its
results made the graphs much harder to read, and because the run-
ning time increased very rapidly with even a fairly small input size
on the test setup.

5.1.1 Uniform Square distribution

A uniform square distribution test is chosen to be a baseline test.
As the points in this distribution are distributed uniformly across a
square plane, the hull won’t be too large, as the majority of the points
will be inside the hull. Pruning will also be reasonably effective, as it
will probably remove about half of the points on average.

Figure 8 shows that the Kirkpatrick-Seidel algorithm performs as
slow as the gift wrapping algorithm, even though its theoretical bound
is better. This is most likely caused by a very large constant factor. All
the algorithms seem to run in very close to O(n) time in this situation.
Up to around an input of size n = 210 the very simple incremental
algorithm is fastest, as the Kirkpatrick-Seidel algorithm has a large
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5.1 2d distributions
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Figure 8: Uniform Square Distribution 2D

overhead. After this, the Kirkpatrick-Seidel algorithm using linear
programming takes over, because of its very fast bridge finding algo-
rithm. Comparing the two Kirkpatrick-Seidel algorithms shows very
clearly, that using linear programming instead of the standard bridge
finding algorithm, gives us a massive reduction in running time.

5.1.2 Square Uniform Bounding triangle

This bounding box test is similar to the square distribution test, ex-
cept for the addition of a three-vertex bounding triangle encasing all
the other points. This will help demonstrate the effectiveness of the
output-sensitive algorithms, such as the gift wrapping algorithm and
the Kirkpatrick-Seidel algorithm, as the hull is always of a constant
size h = 3.

Figure 9 shows how some of the output-sensitive algorithms over-
take the incremental algorithm as the fastest, when the input size
gets larger. The only algorithm remaining on top of the incremen-
tal is the Kirkpatrick-Seidel standard algorithm, whose slow bridge
finding subroutine holds it back. The algorithm using linear program-
ming starts being the fastest at around n = 29, and the gift wrapping
algorithm overtakes the incremental algorithm at around n = 221.

5.1.3 Uniform Circle distribution

A uniform distribution inside of a circle, almost similar to the square
distribution is also used. This should ensure that the hull contains
more points than the square distribution, but still contain most of
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5.1 2d distributions
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Figure 9: Uniform Distribution 2D w/ Minimal Hull

the points on the inside. The pruning step will have an easier time
using a line through the middle of the point set, as the min and max
point will be further towards the center of the y-axis, compared to the
square distribution.
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Figure 10: Circle Distribution 2D

In figure 10, the incremental algorithm has overtaken the Kirkpatrick-
Seidel algorithm a bit. This is caused by the slight increase in the
number of points in the hull, as the incremental algorithm is not af-
fected by it, but the Kirkpatrick-Seidel algorithm is.
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5.1 2d distributions

5.1.4 Donut

The donut distribution puts more points in the proximity of the hull,
but not on the hull. As with the circle distribution, the angle is uni-
formly distributed, but the radius is generated with a normal distri-
bution with mean 3 and standard deviation 1

5 . This would make the
work of pruning algorithms sensitive to points’ distance to the hull
less effective. None of the methods presented in this thesis have this
property. Therefore, this test will act as an additional test for input-
sensitivity and general performance.
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Figure 11: Donut Distribution 2D

In figure 11, the incremental algorithm and the Kirkpatrick-Seidel
algorithm achieve quite similar performance in the upper part of the
scale, indicating that this hull size could be the dividing line between
which algorithm is the fastest.

5.1.5 Polynomial Parabola Distribution

In this polynomial distribution, the random points are distributed
along the function y = x2. This parabola shape ensures that every sin-
gle point is part of the convex hull, thus putting the output-sensitive
algorithms under the worst conditions. By forcing the size of the
hull to be equal to the input size h = n, the output-sensitive algo-
rithms will have the worst worst-case running times, e.g. the O(nh)
gift wrapping algorithm will be O(n2) instead, and this algorithm is
expected to be one of the worst performing algorithms under these
circumstances. Depending on whether the algorithm is looking for
the upper or lower hull, pruning in this case will either remove no
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5.1 2d distributions

points at all from the input, or be reducing n to 2, making the subse-
quent algorithm find the hull in constant time.
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Figure 12: Polynomial y = x2 Distribution 2D

Not surprisingly, figure 12 shows that the output-sensitive algo-
rithms lose out completely to the incremental algorithm, with the gift
wrapping algorithm reaching a catastrophic running time.

5.1.6 Hull Sizes

In figure 13 the tested average hull sizes of the 2D point distributions
is shown. These are tested to give a more clear idea of the correlation
between hull size and running time, in analysing the output-sensitive
convex hull algorithms. The results of these tests are not surprising
and corresponds to the previous predictions. An interesting point
is that from input size 219 and up, the uniform distribution and the
donut distribution have roughly the same hull sizes. But in the tests
for these two distributions, the Kirkpatrick-Seidel algorithm was only
fastest with the uniform distribution. This could both because of few
points being pruned for each recursion step, but also caused by the
number of points near the hull, equating to a larger number of close
constraints for the linear program.

5.1.7 Section Summary

A general trend in many of these tests is that the incremental algo-
rithm, because of its simplicity and low overhead, and in spite of its
running time not being output-sensitive, it is still one of the best in
most situations. The Kirkpatrick-Seidel algorithm is fastest until the
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Figure 13: Average 2D Hull Sizes

hull size, compared to the input size, reaches a certain point, where
the minimal overhead of the incremental algorithm gives it an advan-
tage.

5.2 2d algorithms

In this section, the results of the tests run on the 2D algorithms are
presented and discussed.

5.2.1 Incremental Algorithm

Figure 14 shows the results of running the incremental algorithm on
the five different point distributions. As observed, the performance
of the incremental algorithm does not change much based on the dis-
tribution, as the running time is dominated by the sorting algorithm,
which does not care about distribution. The circle distribution runs
marginally slower than the other distributions, and that may be at-
tributed to the fact that more points are clustered towards the center,
and this forces the algorithm to do more recalculations.

5.2.2 Gift Wrapping Algorithm

Figure 15 shows that the gift wrapping algorithm is more sensitive to
the point distribution. It also demonstrates the output-sensitivity, by
placing the uniform distribution with minimal hull much lower than
the other distributions. The polynomial distribution forces every sin-
gle input point to be part of the final hull, thus reducing the running
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Figure 14: Incremental 2D Algorithm

time of the gift wrapping algorithm to O(n2), and that clearly shows.
The other distributions correspond perfectly to the average hull sizes.
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Figure 15: Gift Wrapping 2D Algorithm

5.2.3 Kirkpatrick-Seidel Algorithm

As seen in figure 16, the polynomial distribution is the slowest, which
is to be expected from the output-sensitive Kirkpatrick-Seidel algo-
rithm, as h = n for this distribution. In this situation, the asymptotic
running time will be O(n log n) like the incremental algorithm, but
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5.2 2d algorithms

due to the complexity of the Kirkpatrick-Seidel algorithm, it has a
much higher running time constant. The circle and donut distribu-
tions are second-worst, with the circle distribution being fastest for
the smallest half of the graph, before being overtaken by the donut
distribution. This makes perfect sense when compared to the graph
for average hull sizes, as it is around the same place where the hull
size of the donut distribution becomes smaller than the the hull size
of the circle distribution. After this it is the uniform distributions,
both of which demonstrates the output-sensitivity of the algorithm.
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Figure 16: Kirkpatrick-Seidel 2D Algorithm

5.2.4 Kirkpatrick-Seidel Algorithm using Linear Programming

The graph in figure 17 shows the exact same relative performance
as in the previous algorithm, which makes sense, as the only thing
changed is a running time constant. The main difference is that the
algorithm runs significantly faster across all distributions.

5.2.5 Running Time Ratios

The ratio of tested running time and theoretical running time is also
interesting to investigate. The graphs 18, 19, 20 and 21 show this
ratio for the 2D algorithms. If the measured running times follow the
theoretical running times, they are expected to have a horizontal line
through the graph, and the further up in the graph they are, the larger
the running time constant. For the output-sensitive algorithms, the
theoretical running time is calculated based on the measured average
hull sizes.
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Figure 17: Kirkpatrick-Seidel 2D Algorithm w/ Linear Programming
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Figure 18: Incremental 2D Algorithm Ratio

Figure 18 shows that the incremental algorithm is initially very di-
vergent from the theoretical O(n log n) running time, but as the input
gets larger, it settles nicely with a small running time constant.

In figure 19 the two extreme running times have the lowest running
time constants. This could be attributed to such low-level optimiza-
tions as branch predictions, as the algorithm always picks the same
path.

The results of the Kirkpatrick-Seidel algorithms in figures 20 and 21

show wildly varying running time constants. This is likely caused by
the very large overhead of the algorithms.
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Figure 19: Gift Wrapping 2D Algorithm Ratio
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Figure 20: Kirkpatrick-Seidel 2D Algorithm Ratio

5.3 3d algorithms

In this chapter, tests on the 3D convex hull algorithms are described
and discussed. Since the only 3D algorithm implemented is the gift
wrapping algorithm, there are no other algorithms to compare to.
Thus, this chapter will focus solely on relating the test results to the
theoretical bounds. The point distributions on which the algorithm is
tested, are similar to the distributions for 2D algorithms, but extended
into 3D.

38



5.3 3d algorithms

21 25 29 213 217 221 225

2−7

2−5

2−3

2−1

21

Input Size

R
un

ni
ng

Ti
m

e
T

he
or

et
ic

al
R

un
ni

ng
Ti

m
e

Uniform
Uniform Minimum Hull
Circle
Donut
Polynomial

Figure 21: Kirkpatrick-Seidel 2D Algorithm w/ Linear Programming
Ratio

5.3.1 Sphere

A simple distribution with points uniformly distributed inside of a
sphere with radius 1, using uniformly distributed polar coordinates,
is used. This acts as a baseline test, as the hull size shouldn’t be a too
large part of the input set.

5.3.2 Uniform Box

A simple distribution with points uniformly distributed on the inter-
val [−1; 1] in all three dimensions, is also used. With this distribution,
the hull should be a little smaller than with the sphere distribution.

5.3.3 Uniform Bounding Box

In this distribution, the random points are encased in a cube, giving
us a hull of constant size, no matter the input. As with the bounding
triangle test in 2D, this ensures optimal performance of the output-
sensitive algorithms. This always adds eight extra points to the distri-
bution.

5.3.4 Paraboloid

The points in this polynomial distribution is distributed along a paraboloid
with function Z = −X2 −Y2. Equivalent to the parabola distribution
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5.4 linear programming

in 2D, the purpose of this distribution is to examine the worst-case
performance of the output-sensitive algorithms.
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Figure 22: Gift Wrapping 3D Algorithm

5.3.5 Results

The results of running the gift wrapping algorithm on these distri-
butions can be seen in figure 22. As was expected, the paraboloid
distribution increases the size of the hull to h = n, making the algo-
rithm run in O(n2) time. The bounding box distribution is far faster
than the other distributions, demonstrating the output-sensitivity, as
this distribution effectively makes the algorithm run in O(n) time. At
n = 21, the bounding box distribution is slightly slower than some of
the other distributions. This is caused by the adding of the bounding
box, no matter the size of the input. The sphere and box distributions
are very close in performance, with the box distribution being a bit
faster. This is also due to the box distribution having slightly fewer
points on the hull. Incidentally, both the sphere and box distribu-
tions are much closer in performance to the best-case bounding box
distribution, than the worst-case paraboloid distribution.

5.4 linear programming

In this section, the results of tests comparing the incremental method
of solving linear programs to the randomized method, will be pre-
sented. The results will show that the average performance of the ran-
domized algorithm lies extremely close to the best-case performance
of the incremental algorithm.
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Figure 23: Legal Constraint Hits

When a new constraint is added, and it does not change vi, this
is counted as a legal constraint. Similarly a constraint that changes
vi is counted as an illegal constraint. As illegal constraints causes
the algorithm to solve a new 1D algorithm, the number of illegal
constraints should be minimized. In figure 23 and 24 it is observed
that the number of legal constraints in the best-case input is n− 2, and
two illegal constraints for all n. The worst case input has n illegal
constraints and 0 legal constraints, so it does not show up in the
graph for legal constraints, as it has logarithmic axes. It shows that
for the randomized algorithm, the number of illegal constraints are
very low, as expected as per the theory for the likelyhood of hitting
an illegal constraint. Figure 25 shows the ratio between the legal and
the illegal constraints. Again, the number of legal constraints are very
close to the best-case.

Figure 26 shows the running times of best- and worst-case input
to an incremental algorithm, along with the running time of the ran-
domized algorithm. The figure shows that the worst-case running
time fits the theorical bound proven earlier, along with the random-
ized algorithm only being slower than the best-case by a constant
factor, showing the expected O(n) running time.

Figure 27 shows the percentage of the added constraints where the
constraint does not fail. As seen, the randomized approach follows
the best-case percentage by a small factor, illustrating that the ran-
domized approach is close to the best-case in legal hits.
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Figure 24: Illegal Constraint Hits

21 25 29 213 217 221 225
21

26

211

216

221

226

Input Size

Le
ga

l/
Il

le
ga

lr
at

io

Best-case
Randomized

Figure 25: Randomized LP Legal/Illegal ratio
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Figure 26: Incremental vs. Randomized LP Running Time
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Figure 27: Randomized LP Legal/Illegal Percent
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6
C O N C L U S I O N

In this thesis, the problem of computing the convex hull of a set of
points have been described, and a number of algorithms for comput-
ing convex hulls have been presented, primarily for two dimensions,
but also for three dimensions. The majority of these algorithms have
been implemented and tested, and the results of the tests have been
presented, analysed and discussed. The results have also been com-
pared with theoretical analyses of the algorithms.

The concept of linear programming has been introduced, and a
deterministic algorithm, as well as a randomized algorithm, has been
presented for solving these linear programs. These algorithms have
been analysed, implemented and tested, and the results compared to
the analysis and discussed. An algorithm was presented for solving
multiple linear programs on the same constraints at the same time,
faster than solving them one by one.

Based on the test results of the 2D convex hull algorithms, the
fastest algorithms are the Kirkpatrick-Seidel algorithm with linear
program, and the incremental algorithm. Based on the relative size
of the hull, either of the algorithms performed better than the other.
Although the Kirkpatrick-Seidel algorithm was the fastest in some
cases, additional work should go into optimizing it before it will be
a clearly superior algorithm to the incremental algorithm, given its
heavy layer of complexity.

The test results of the incremental versus randomized linear pro-
gramming algorithm showed that simply shuffling the input ran-
domly can give a performance boost to a worst-case input.
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6.1 future work

6.1 future work

The next step in extending these algorithms for convex hulls could be
to prove that the randomized partitioning scheme is expected to as
good as the deterministic approach.

Another possibility could be to extend the the multiple linear pro-
gramming algorithm into 3D. This would involve extending the parti-
tioning algorithm into 3D as well, where it would work by cutting the
eight sets instead of four by using cutting planes instead of cutting
lines. It would involve cutting the set into two by the median of the
x-values, cutting the sets into two subsets using the ham sandwich
approach twice, to achieve the eight subsets.

Further effort could be applied to implementing and testing both
the 2D and 3D approach to multiple linear programming, and other
algorithms in 3D. This would first involve extending the LPSolver

with the capability of solving linear programs in 3D.
Dealing with the problem of finite precision arithmetic could also

be an interesting area of research, as this could potentially be an issue
in all the situations where dealing with mathematical optimizations
and line-point tests is crucial.
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