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The representation ring RE(G) of a finite group is the
commutative ring with one additive generator for each complex
irreducible representation of G . The multiplication is in-
duced by the tensor product operation of representations. One
well known universal property of it is that it is the Grothen-
dieck ring Ko of the category of (finite dimensional) com-
plex G-representations (see e.g. [ 5] 12.1 ). We are exhibi-
ting here another universal property of the complexification
C e Rm (G) = FC(G) of this ring. The ring FC(G) may be de-
scribed in more elementary terms as the C-algebra of complex
valued central functions £f:G — € on G (see [ 5] 9.1 ).

Recall that a function £f:G — € 1is central (or a class

function) if

The universal property we have in mind is that FC(G) be-

comes a Trace-object for the &-vector space valued hom-functor

for G-representations.
We discuss this notion in § 1. In § 2 we prove the asser-
tion about FC(G) ; § 3 contains some remarks on the notion

dual of trace, "center" .



T Trace objects

The notion of "trace objects for endo-profunctors" on
enriched categories has been around at least since 1971, where
Lawvere and I jointly investigated some properties of the notion,
as well as some examples. Some of these are described in [ 3 ],
§ 5. Lawvere also calculated the Trace for the category of finite
sets (it is a semiring). I calculated the Trace for the category
of G-representations on @ . (This result was announced in a talk
at the University of Chicago, May 1972.). The notion of trace has
also been -considered by Kelly and Laplaza [ 1] .

We shall here only describe the trace notion for "identily
profunctors", that is, for hom-functors. Suppose M 1is a small
category whose hom-functor takes value in a category CWL (techni-
cally: M 1is enriched over 'TQ_). By the trace object for M we

understand the coend (formed in ML )

JMGD_’I

Tr (M) = hom (M,M)

together with the "inclusion" maps (morphisms in 1)

trM : hom (M,M) —— Tr (M) (YMEM),
see [4] for the notion of coend. For the case where the set-
valued hom functor for M comes about from the ‘M-valued hom
functor via a faithful "] — set, the notion can be described

in elementary terms as follows. Call a family of maps in M

M
hom (M,M) ——— T VMEM

compatible if for any pair of maps in M

—

Eh

M N

we have

(1.1) ;M(hof) = tN(foh)



A trace object for M is an object Tr(M)eM and a compa-

tible family

trM
hom(M,M) ———— Tr (M) VMEM

which is universal : to any compatible family {tM : hom(M,M)=— T/
M €M} there exists a unique s:Tr(M) — T so that
tM = s otrM VM € M . Clearly Tr(M) together with the trM's
is unique up to unique isomorphism.
If M is the category of vector spaces over a field K ,
and M the category of finite dimensional vector spaces over K ,

the hom sets hom(M1,M2) are in a natural way vector spaces, so

we have a hom functor into 7h. and can form Tr(g) .

Proposition 1 The family

trM
(1.2) hom (M,M) — K MEM

(where trM(f) is the ordinary trace of the endomorphism

f:M — M) is the trace object in the sense above.

Proof First, "taking trace" is a linear proces, so the
maps trM do live in 771, as required.
Secondly, the property (1.1) is well known for the 'ordinary'
trace formation. So (1.2) 1is a compatible family. To see its
universal property, let {tMI MEM} be some compatible family
with value in T . We claim that for any endomorphism f£f:M — M,

we have

(1.3) tM(f) = trM(f)- tK(idK)

so that the s: K — T to be produced is just the one that

corresponds to the vector tK(idK) € T .To see (1.3) choose



a basis for M , and denote by proji ' incli the evident

linear maps

proj,
M €«<— K i=1,...,dim(M)
incl,
i
If {aij} is the matrix of f with respect to this basis,
we have
£= ) a4 » (incl; o prOJj) ’
i'j
Thus
t (£) = } a; 5 * tylincl, e proj,)

i,]

(by K-linearity of tMJ

Z aij-tK(projjo incli)
ij
(by (1.17))

= ) a,.*t (8,.+id,)

ij "K'Tij K
ij

) aij-aij o tp(idp)
ij

) a4 g idy)
i

trM{f) otK(idK) .

This prove the proposition. A more elegant argument, due to

Brian Day (1972) goes as follows

J M hom (M,M)

I

[ L hom(M,K) 8 M
= K,

The first isomorphism sign by hom(M,M) M*@M , and the second

by density of finite dimensional vector spaces in P1.



2. The ring of central functions as a trace object

Let G be a finite group and K a field. Let M
denote the category of finite dimensional representations
of G over K . Let FC(G) denote the ring (K-algebra)
of central functions on G with values in K . For each
MEM we have a map
(2.1) hom (M, M) —X, £ (q)
given by

f ——— {g b+ Trace of f£fePg}

where Pg : M — M is the action of g € G on M .

Note that

XM(idM) = {g b— Trace (pg)} = character of M .
Clearly the XM in (2.1) depends in a K-linear way on
f €hom(M,M) . We claim that the family of maps {XM | M€ M}

is a compatible family, in the sense of §1. Let f: M — N

and h: N —> M be morphism in M . To prove

Xy (he £) = xy(f°h),

we have, for any g € G ,

Xy (he£) (g) try (hefePg)

= try(he(Pgof))

(since f 1is G-equivariant)
= trg((Pgef)oh)

= trN(fohepg)

(since feh 1is G-equivariant)

Xy (£oh) (9)

so that xN(foh) = XM(hof) , as required.



Theorem. If K=C , then the family of maps (2.1)
makes FC(G) into the trace object for M (with respect
to the (-vector space structure on the hom sets of M ).
Alternatively, the family Xy (MEM) is a universal compa-

tible family of C-linear maps.

Proof. Given any other compatible family

tM : hom(M,M) ——— T MEM

of (€-linear maps. To define
s FC(G) ———> T

we use the fact (see e.g. [ 5] Theorem 6) that FC(G) has a
C-basis consisting of the finitely many irreducible charac-

ters of G . Let Xy be such. Put

slxy) = = tylidy)
where N 1is an irreducible representation with Xy @s cha-
racter. If N' is another such, N=N' in M , which by the
compatibility condition for the tM's is easily seen to imply
the independence of the choice of N . Having defined s on

the basis, we extend by linearity, to get s

It just remains to be proved that, for ME€M , the triangle

Xm
hom(M,M) ———— FC(G)
(2.2) s
t
o T
commutes.

Let the canonical decomposition of M be
M = M1 @ ...$1Mh
(see [5] 2.7) so that each Mj is direct sum of mutually iso-

morphic irreducible representations. If f:M — M , it fol-



lows from Schur's lemma that f is actually of form
f1$... $Eh ; wWhere fj . Mj _—> Mj . Also, the identity
map of M can be decomposed

incl. o roj.
inc 5 P JJ ’

I~

j=i
and f = Zincljo fj° projj . Then
tM(f) = tM(E_: incl:.I ° fj oprojj)

J

= Z tM({incljo fj)° projj)
J

= ) tM_(projj ° inclj ofj) =]t (fj)
] S J

using additivity and (1.1) for the tﬂ's . Similarly for the
XM's. Thus, it suffices to prove the commutativity for the

case when M = Mj G=1,...,h) , that is, M is "isotypic",

M=N&® ...8N (k copies, say)

with N irreducible. An endomorphism f of M in M is
thus given by a kxk matrix with entries from the ring K' =
hom(N,N) which, however, using Schur's lemma ([517, Propo-

sition 4) equals € .

By the same sort of calculation as the one employed in the

proof of Proposition 1, we see that

(2.3) ty(£) =} ay;-tglidy) .
i

But this equals, by construction of s

(2.4) Tajq - slxy) = Zaii- s (xy(1dg)) = s(lay; xy(idy)) .
i i il



Now (2.3) holds also when t 1is replaced by X since the

XM's are also (C-linear and compatible. Thus, using (2.3)
for X

Zai.i.x-N(idN) = xy(f)

il

whence the right hand side of (2.4) equals s(xM(f)) :
This proves SoXy = tM . Uniqueness of s with this
property is clear, since elements of form XM(f) (MEM ,

f € hom(M,M) generate the vector space FC(G) .

The theorem is proved.

3. The center of a category.

Let M and 77 be as in §1. We define the center of
M to the categorical dual notion of the trace of M , that
is,

Cent (M) = hom(M,M) ,

Jne

taking "end" instead of coend. Thus, Cent(M) comes equipped
with a compatible family of "projections" in %7,

ag Cent(M) —— hom(M,M) ,

MG
with fﬁ°0M = h*ocN for any £:tM -5 N, h:N— M, in M,
and is universal with this property.

For the case considered in §2 : M = finite dimensional
complex representations of a finite group G , ‘M = complex
vector spaces, one can easily see that the center in the sense
above is Z(G) , the center of the group algebra C[G], with
the o¢'s

oy ¢ %(G) —— hom(M,M) , MEM

-



given by l—— (action by A). Note that action by A is a
morphism in M because A commutes with everything in the

group algebra.

I believe one may obtain an alternative proof of the
Theorem of §2 by observing : (i) M is self-dual (asso-
ciate to a representation M its "contragredient" represen-
tation, M* , [ 51, 2.1 ex.3); (ii) the dual Z(G)* of
Z(G) can be identified with FC(G) in a natural way (cf.

[2] , XVIII. Theorem 5)
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