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Preface to the Second Edition (2006)

The First Edition (1981) of “Synthetic Differential Geometry” has been
out of print since the early 1990s. I felt that there was still a need for the
book, even though other accounts of the subject have in the meantime
come into existence.

Therefore I decided to bring out this Second Edition. It is a com-
promise between a mere photographic reproduction of the First Edition,
and a complete rewriting of it. I realized that a rewriting would quickly
lead to an almost new book. I do indeed intend to write a new book,
but prefer it to be a sequel to the old one, rather than a rewriting of it.

For the same reason, I have refrained from attempting an account of
all the developments that have taken place since the First Edition; only
very minimal and incomplete pointers to the newer literature (1981–
2006) have been included as “Notes 2006” at the end of each of the
Parts of the book.

Most of the basic notions of synthetic differential geometry were al-
ready in the 1981 book; the main exception being the general notion
of “strong infinitesimal linearity” or “microlinearity”, which came into
being just too late to be included. A small Appendix D on this notion
is therefore added.

Otherwise, the present edition is a re-typing of the old one, with only
minor corrections, where necessary. In particular, the numberings of
Parts, equations, etc. are unchanged. The bibliography consists of two
parts: the first one (entries [1] to [81]) is identical to the bibliography
from the 1981 edition, the second one (from entry [82] onwards) contains
later literature, as referred to in the end-notes (so it is not meant to be
complete; I hope in a possible forthcoming Second Book to be able to
survey the field more completely).

Besides the thanks that are expressed in the Preface to the 1981 edi-
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viii Preface to the Second Edition (2006)

tion (as reprinted following), I would like to express thanks to Prof.
Andrée Charles Ehresmann for her tireless work in running the jour-
nal Cahiers de Topologie et Géométrie Différentielle Catégoriques. This
journal has for a couple of decades been essential for the exchange and
dissemination of knowledge about Synthetic Differential Geometry (as
well as of many other topics in Mathematics).

I would like to thank Eduardo Dubuc, Joachim Kock, Bill Lawvere,
and Gonzalo Reyes for useful comments on this Second Edition.

I also want to thank the staff of Cambridge University Press for techni-
cal assistance in the preparation of this Second Edition. Most diagrams
were drawn using Paul Taylor’s “Diagrams” package.



Preface to the First Edition (1981)

The aim of the present book is to describe a foundation for synthetic
reasoning in differential geometry. We hope that such a foundational
treatise will put the reader in a position where he, in his study of differ-
ential geometry, can utilize the synthetic method freely and rigorously,
and that it will give him notions and language by which such study can
be communicated.

That such notions and language is something that till recently seems
to have existed only in an inadequate way is borne out by the following
statement of Sophus Lie, in the preface to one of his fundamental articles:

“The reason why I have postponed for so long these investigations,
which are basic to my other work in this field, is essentially the
following. I found these theories originally by synthetic conside-
rations. But I soon realized that, as expedient [zweckmässig] the
synthetic method is for discovery, as difficult it is to give a clear
exposition on synthetic investigations, which deal with objects that
till now have almost exclusively been considered analytically. Af-
ter long vacillations, I have decided to use a half synthetic, half
analytic form. I hope my work will serve to bring justification to
the synthetic method besides the analytical one.”

(Allgemeine Theorie der partiellen Differentialgleichungen erster
Ordnung, Math. Ann. 9 (1876).)

What is meant by “synthetic” reasoning? Of course, we do not know
exactly what Lie meant, but the following is the way we would describe
it: It deals with space forms in terms of their structure, i.e. the basic
geometric and conceptual constructions that can be performed on them.
Roughly, these constructions are the morphisms which constitute the
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base category in terms of which we work; the space forms themselves
being objects of it.

This category is cartesian closed, since, whenever we have formed ideas
of “spaces” A and B, we can form the idea of BA, the “space” of all
functions from A to B.

The category theoretic viewpoint prevents the identification of A and
B with point sets (and hence also prevents the formation of “random”
maps from A to B). This is an old tradition in synthetic geometry,
where one, for instance, distinguishes between a “line” and the “range
of points on it” (cf. e.g. Coxeter [8] p. 20).

What categories in the “Bourbakian” universe of mathematics are
mathematical models of this intuitively conceived geometric category?
The answer is: many of the “gros toposes” considered since the early
1960s by Grothendieck and others, – the simplest example being the
category of functors from commutative rings to sets. We deal with these
topos theoretic examples in Part III of the book. We do not begin
with them, but rather with the axiomatic development of differential
geometry on a synthetic basis (Part I), as well as a method of interpreting
such development in cartesian closed categories (Part II). We chose this
ordering because we want to stress that the axioms are intended to reflect
some true properties of the geometric and physical reality; the models in
Part III are only servants providing consistency proofs and inspiration
for new true axioms or theorems. We present in particular some models
E which contain the category of smooth manifolds as a full subcategory
in such a way that “analytic” differential geometry for these corresponds
exactly to “synthetic” differential geometry in E .

Most of Part I, as well as several of the papers in the bibliography
which go deeper into actual geometric matters with synthetic methods,
are written in the “naive” style.1 By this, we mean that all notions,
constructions, and proofs involved are presented as if the base category
were the category of sets; in particular all constructions on the objects
involved are described in terms of “elements” of them. However, it is
necessary and possible to be able to understand this naive writing as
referring to cartesian closed categories. It is necessary because the basic
axioms of synthetic differential geometry have no models in the category
of sets (cf. I §1); and it is possible: this is what Part II is about. The
method is that we have to understand by an element b of an object B a
generalized element, that is, a map b : X → B, where X is an arbitrary
object, called the stage of definition, or the domain of variation of the
element b.
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Elements “defined at different stages” have a long tradition in geom-
etry. In fact, a special case of it is when the geometers say: A circle has
no real points at infinity, but there are two imaginary points at infinity
such that every circle passes through them. Here R and C are two dif-
ferent stages of mathematical knowledge, and something that does not
yet exist at stage R may come into existence at the “later” or “deeper”
stage C. – More important for the developments here are passage from
stage R to stage R[ε], the “ring of dual numbers over R”:

R[ε] = R[x]/(x2).

It is true, and will be apparent in Part III, that the notion of elements
defined at different stages does correspond to this classical notion of
elements defined relative to different commutative rings, like R, C, and
R[ε], cf. the remarks at the end of III §1.

When thinking in terms of physics (of which geometry of space forms
is a special case), the reason for the name “domain of variation” (instead
of “stage of definition”) becomes clear: for a non-atomistic point of view,
a body B is not described just in terms of its “atoms” b ∈ B, that is,
maps 1→ B, but in terms of “particles” of varying size X, or in terms
of motions that take place in B and are parametrized by a temporal
extent X; both of these situations being described by maps X → B for
suitable domain of variation X.

————————–

The exercises at the end of each paragraph are intended to serve as a
further source of information, and if one does not want to solve them,
one might read them.

Historical remarks and credits concerning the main text are collected
at the end of the book. If a specific result is not credited to anybody, it
does not necessarily mean that I claim credit for it. Many things devel-
oped during discussions between Lawvere, Wraith, myself, Reyes, Joyal,
Dubuc, Coste, Coste-Roy, Bkouche, Veit, Penon, and others. Person-
ally, I want to acknowledge also stimulating questions, comments, and
encouragement from Dana Scott, J. Bénabou, P. Johnstone, and from
my audiences in Milano, Montréal, Paris, Zaragoza, Buffalo, Oxford,
and, in particular, Aarhus. I want also to thank Henry Thomsen for
valuable comments to the early drafts of the book.

The Danish Natural Science Research Council has on several occasions
made it possible to gather some of the above-mentioned mathematicians
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for work sessions in Aarhus. This has been vital to the progress of the
subject treated here, and I want to express my thanks.

Warm thanks also to the secretaries at Matematisk Institut, Aarhus,
for their friendly help, and in particular, to Else Yndgaard for her expert
typing of this book.2

Finally, I want to thank my family for all their support, and for their
patience with me and the above-mentioned friends and colleagues.

Notes 2006
1Lavendhomme [131] uses the word ‘naive’ synonymously with ‘synthetic’.

Modelled after Synthetic Differential Geometry, the idea of a Synthetic Do-
main Theory came into being in the late 1980s, cf. [102]. A study of topos
models for both these “synthetic” theories is promised for Johnstone’s forth-
coming “Elephant” Vol. III, [104].

2This refers to the First Edition, 1981; the present Second Edition was
scanned/typed by myself.



PART I

The synthetic theory

Introduction

Lawvere has pointed out that “In order to treat mathematically the de-
cisive abstract general relations of physics, it is necessary that the math-
ematical world picture involve a cartesian closed category E of smooth
morphisms between smooth spaces”.

This is also true for differential geometry, which is a science that
underlies physics. So everything in the present Part I takes place in
such cartesian closed category E . The reader may think of E as “the”
category of sets, because most constructions and notions which exist in
the category of sets exist in such E ; there are some exceptions, like use of
the “law of excluded middle”, cf. Exercise 1.1 below. The text is written
as if E were “the” category of sets. This means that to understand
this part, one does not have to know anything about cartesian closed
categories; rather, one learns it, at least implicitly, because the synthetic
method utilizes the cartesian closed structure all the time, even if it is
presented in set theoretic disguise (which, as Part II hopefully will bring
out, is really no disguise at all).

Generally, investigating geometric and quantitative relationships
brings along with it understanding of the logic appropriate for it. So
it also forces E (which represents our understanding of smoothness) to
have certain properties, and not to have certain others. In particular, E
must have finite inverse limits, and, for some of the more refined inves-
tigations, it must be a topos.

1



2 The synthetic theory

I.1 Basic structure on the geometric line

The geometric line can, as soon as one chooses two distinct points on it,
be made into a commutative ring, with the two points as respectively 0
and 1. This is a decisive structure on it, already known and considered
by Euclid, who assumes that his reader is able to move line segments
around in the plane (which gives addition), and who teaches his reader
how he, with ruler and compass, can construct the fourth proportional
of three line segments; taking one of these to be [0, 1], this defines the
product of the two others, and thus the multiplication on the line. We
denote the line, with its commutative ring structure† (relative to some
fixed choice of 0 and 1), by the letter R.

Also, the geometric plane can, by some of the basic structure, (ruler-
and-compass-constructions again), be identified with R×R = R2 (choose
a fixed pair of mutually orthogonal copies of the line R in it), and simi-
larly, space with R3.

Of course, this basic structure does not depend on having the (arith-
metically constructed) real numbers R as a mathematical model for R.

Euclid maintained further that R was not just a commutative ring,
but actually a field. This follows because of his assumption: for any two
points in the plane, either they are equal, or they determine a unique
line.

We cannot agree with Euclid on this point. For that would imply that
the set D defined by

D := [[x ∈ R | x2 = 0]] ⊆ R

consists of 0 alone, and that would immediately contradict our

Axiom 1. For any‡ g : D → R, there exists a unique b ∈ R such that

∀d ∈ D : g(d) = g(0) + d · b.

Geometrically, the axiom expresses that the graph of g is a piece of a
unique straight line l, namely the one through (0, g(0)) and with slope b

† Actually, it is an algebra over the rationals, since the elements 2 = 1 + 1, 3 =
1 + 1 + 1, etc., are multiplicatively invertible in R.

‡ We really mean: “for any g ∈ RD. . . ”; this will make a certain difference in the
category theoretic interpretation with generalized elements. Similarly for the f in
Theorem 2.1 below and several other places.
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(in the picture, g is defined not just on D, but on some larger set).
Clearly, the notion of slope, which thus is built in, is a decisive abstract

general relation for differential calculus. Before we turn to that, let us
note the following consequence of the uniqueness assertion in Axiom 1:

(∀d ∈ D : d · b1 = d · b2)⇒ (b1 = b2)

which we verbalize into the slogan

“universally quantified ds may be cancelled”

(“cancelled” here meant in the multiplicative sense).
The axiom may be stated in succinct diagrammatic form in terms of

Cartesian Closed Categories. Consider the map α :

R×R
α - RD (1.1)

given by

(a, b) 7→ [d 7→ a+ d · b].

Then the axiom says

Axiom 1. α is invertible (i.e. bijective).

Let us further note:

Proposition 1.1. The map α is an R-algebra homomorphism if we
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make R × R into an R-algebra by the “ring of dual numbers” multi-
plication

(a1, b1) · (a2, b2) := (a1 · a2, a1 · b2 + a2 · b1). (1.2)

Proof. The pointwise product of the maps D → R

d 7→ a1 + d · b1 d 7→ a2 + d · b2

is

d 7→ (a1 + d · b1) · (a2 + d · b2)
= a1 · a2 + d · (a1 · b2 + a2 · b1) + d2 · b1 · b2,

but the last term vanishes because d2 = 0 ∀d ∈ D.

If we let R[ε] denote R × R, with the ring-of-dual-numbers multipli-
cation, we thus have

Corollary 1.2. Axiom 1 can be expressed: The map α in (1.1) gives an
R-algebra isomorphism

R[ε] ∼=
- RD.

Assuming Axiom 1, we denote by β and γ, respectively, the two com-
posites

β = RD α−1
- R×R

proj1- R

γ = RD α−1
- R×R

proj2- R

(1.3)

Both are R-linear, by Proposition 1.1; β is just ‘evaluation at 0 ∈ D’
and appears later as the structural map of the tangent bundle of R; γ
is more interesting, being the concept of slope itself. It appears later
as “principal part formation”, (§7), or as the “universal 1-form”, or
“Maurer–Cartan form” (§18), on (R,+).

EXERCISES AND REMARKS
1.1 (Schanuel). The following construction * is an example of a

use of “the law of excluded middle”. Define a function g : D → R by
putting

g(d) =

{
1 if d 6= 0

0 if d = 0.
(*)

If Axiom 1 holds, D = {0} is impossible, hence, again by essentially
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using the law of excluded middle, we may assume ∃d0 ∈ D with d0 6= 0.
By Axiom 1

∀d ∈ D : g(d) = g(0) + d · b.

Substituting d0 for d yields 1 = g(d0) = 0 + d0 · b, which, when squared,
yields 1 = 0.

Moral. Axiom 1 is incompatible with the law of excluded middle.
Either the one or the other has to leave the scene. In Part I of this
book, the law of excluded middle has to leave, being incompatible with
the natural synthetic reasoning on smooth geometry to be presented
here. In the terms which the logicians use, this means that the logic
employed is ‘constructive’ or ‘intuitionistic’. We prefer to think of it
just as ‘that reasoning which can be carried out in all sufficiently good
cartesian closed categories’.

1.2 (Joyal). Assuming Pythagoras’ Theorem, it is correct to define
the circle around (a, b) with radius c to be

[[(x, y) ∈ R2 | (x− a)2 + (y − b)2 = c2]].

Prove that D is exactly the intersection of the unit circle around (0, 1)
and the x-axis

-

6

&%
'$

+ 1D

•

(identifying, as usual, R with the x-axis in R2).

Remark. This picture of D was proposed by Joyal in 1977. But
earlier than that: Hjelmslev [26] experimented in the 1920s with a ge-
ometry where, given two points in the plane, there exists at least one line
connecting them, but there may exist more than one without the points
being identical; this is the case when the points are ‘very near’ each
other. For such geometry, R is not a field, either, and the intersection in
the figure above is, like here, not just {0}. But even earlier than that:
Hjelmslev quotes the old Greek philosopher, Protagoras, who wanted to
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refute Euclid by the argument that it is evident that the intersection in
the figure contains more than one point.1

1.3. If d ∈ D and r ∈ R, we have d · r ∈ D. If d1 ∈ D and d2 ∈ D,
then d1 +d2 ∈ D iff d1 ·d2 = 0 (for the implication⇒ one must use that
2 is invertible in R).

(In the geometries that have been built based on Hjelmslev’s ideas,
d2
1 = 0 ∧ d2

2 = 0⇒ d1 · d2 = 0, but this assumption is incompatible with
Axiom 1, see Exercise 4.6 below.)

1.4 (Galuzzi and Meloni; cf. [50] p. 6). Assume E ⊆ R contains 0
and is stable under multiplication by −1. If 2 is invertible in R, and if
Axiom 1 holds for E (i.e. when D in Axiom 1 is replaced by E), then
E ⊆ D.

1.5. If R is any commutative ring, and g is any polynomial (with
integral coefficients) in n variables, g gives rise to a polynomial function
Rn → R, which may be denoted gR or just g. For the ring RX (X an
arbitrary object), gRX gets identified with (gR)X . To say that a map
β : R → S is a ring homomorphism is equivalent to saying that for any
polynomial g (in n variables, say)

gS ◦ βn = β ◦ gR.

This is the viewpoint that the algebraic theory consisting of polynomials
is the algebraic theory of commutative rings, cf. Appendix A.

In particular, Proposition 1.1 can be expressed: for any polynomial g
(in n variables, say), the diagram

(R[ε])n αn
- (RD)n ∼= (Rn)D

R[ε]

gR[ε]

?

α
- RD

gRD

?

(1.4)

commutes. In III §4 ff., we shall meet a similar statement, but for
arbitrary smooth functions g : Rn → R, not just polynomials.

I.2 Differential calculus

In this §, R is assumed to satisfy Axiom 1; and we assume that 2 ∈ R is
invertible.
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Let f : R → R be any function. For fixed x ∈ R, we consider the
function g : D → R given by g(d) = f(x + d). There exists, by Axiom
1, a unique b ∈ R so that

g(d) = g(0) + d · b ∀d ∈ D, (2.1)

or in terms of f

f(x+ d) = f(x) + d · b ∀d ∈ D.

The b here depends on the x considered. We denote it f ′(x), so we have

Theorem 2.1 (Taylor’s formula). For any f : R → R and any x ∈
R,

f(x+ d) = f(x) + d · f ′(x) ∀d ∈ D. (2.2)

Formula (2.2) characterizes f ′(x). Since we have f ′(x) for each x ∈ R,
we have in fact defined a new function f ′ : R → R, the derivative of f .
The process may be iterated, to define f ′′ : R→ R, etc.

If f is not defined on the whole of R, but only on a subset U ⊆ R,
then we can, by the same procedure, define f ′ as a function on the set
U ′ ⊆ U given by U ′ = [[x ∈ U | x + d ∈ U ∀d ∈ D]]. In particular,
for g : D → R, we may define g′(0); it is the b occurring in (2.1). Also,
there will in general exist many subsets U ⊆ R with the property that
U ′ = U , equivalently, such that

x ∈ U ∧ d ∈ D ⇒ x+ d ∈ U. (2.3)

For f defined on such a set U , we get f ′ : U → R, f ′′ : U → R, etc. In
the following Theorem, U and V are subsets of R having the property
(2.3).

Theorem 2.2. For any f, g : U → R and any r ∈ R, we have

(f + g)′ = f ′ + g′ (i)

(r · f)′ = r · f ′ (ii)

(f · g)′ = f ′ · g + f · g′ (iii)
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For any g : V → U and f : U → R

(f ◦ g)′ = (f ′ ◦ g) · g′ (iv)

id′ = 1 (v)

r′ ≡ 0 (vi)

(where id : R → R is the identity map and r denotes the constant
function with value r).

Proof. All of these are immediate arithmetic calculations based on
Taylor’s formula. As a sample, we prove the Leibniz rule (iii). For any
x ∈ U ⊆ R, we have

(f · g)(x+ d) = (f · g)(x) + d · (f · g)′(x) ∀d ∈ D,

by Taylor’s formula for f · g. On the other hand

(f · g)(x+ d) = f(x+ d) · g(x+ d)

= (f(x) + d · f ′(x)) · (g(x) + d · g′(x))
= f(x) · g(x) + d · f ′(x) · g(x) + d · f(x) · g′(x);

the fourth term d2 · f ′(x) · g′(x) vanishes because d2 = 0. Comparing
the two derived expressions, we see

d · (f · g)′(x) = d · (f ′(x) · g(x) + f(x) · g′(x)) ∀d ∈ D.

Cancelling the universally quantified d yields the desired

(f · g)′(x) = f ′(x) · g(x) + f(x) · g′(x).

It is not true on basis of Axiom 1 alone that f ′ ≡ 0 implies that f is
a constant, or that every f has a primitive g (i.e. g′ ≡ f for some g), cf.
Part III.

What about Taylor formulae longer than (2.2)? The following is a
partial answer for “series” going up to degree-2 terms. It generalizes in
an evident way to series going up to degree-n terms. Again, f is a map
U → R with U satisfying (2.3).

Proposition 2.3. For any δ of form d1 + d2 with d1 and d2 ∈ D we
have

f(x+ δ) = f(x) + δ · f ′(x) +
δ2

2!
f ′′(x).
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Proof.

f(x+ δ) = f(x+ d1 + d2)

= f(x+ d1) + d2 · f ′(x+ d1)

(by (2.2))

= f(x) + d1 · f ′(x) + d2 · (f ′(x) + d1 · f ′′(x))

(by (2.2) twice)

= f(x) + (d1 + d2) · f ′(x) + d1 · d2 · f ′′(x).

But since d2
1 = d2

2 = 0, we have (d1 +d2)2 = 2 ·d1 ·d2. Substituting this,
and δ = d1 + d2 gives the result.

The reason why this Proposition is to be considered a partial result
only, is that we would like to state it for any δ with δ3 = 0, not just for
those of form d1 + d2 as above. In the models (Part III), δ3 = 0 does
not2 imply existence of d1, d2 ∈ D with δ = d1 + d2. In the next §, we
strengthen Axiom 1, and after that, the result of Proposition 2.3 will be
true for all δ with δ3 = 0; similarly for still longer Taylor formulae.

EXERCISES
2.1. Assume R is a ring that satisfies the following axiom (“Fermat’s

Axiom”) :

∀f : R→ R ∃!g : R×R→ R :

∀x, y ∈ R : f(x)− f(y) = (x− y) · g(x, y)
(2.4)

Define f ′ : R→ R by f ′(x) := g(x, x), and prove (assuming U = R) the
results of Theorem 2.2 (this requires a little skill). – The axiom and its
investigation is mainly due to Reyes.

Use the idea of Exercise 1.1 to prove that the law of excluded middle
is incompatible with Fermat’s Axiom.

Moral. Fermat’s Axiom is an alternative synthetic foundation for
calculus, which does not use nilpotent elements.3 The relationship be-
tween Axiom 1 and (2.4) is further investigated in §13 (exercises), and
models for (2.4) are studied in III §8 and III §9.

I.3 Higher Taylor formulae (one variable)

In this §, we assume that 2, 3, . . . are invertible in R (i.e. that R is a
Q-algebra).
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We let Dk ⊆ R denote the set

Dk := [[x ∈ R | xk+1 = 0]],

in particular, D1 is the D considered in §§1 and 2. The following is
clearly a strengthening of Axiom 1.

Axiom 1′. For any k = 1, 2, . . . and any g : Dk → R, there exist unique
b1, . . . , bk ∈ R such that

∀d ∈ Dk : g(d) = g(0) +
k∑

i=1

di · bi.

Assuming this, we can prove

Theorem 3.1 (Taylor’s formula). For any f : R→ R and any x ∈ R

f(x+ δ) = f(x) + δ · f ′(x) + . . .+
δk

k!
f (k)(x) ∀δ ∈ Dk

(again it would suffice for f to be defined on a suitable subset U around
x).

Proof. We give the proof only for k = 2, (cf. the exercises below, or
[32], for larger k). We have, by Axiom 1′, b1 and b2 such that, for any
δ ∈ D2

f(x+ δ) = f(x) + δ · b1 + δ2 · b2; (3.1)

specializing to δs in D1, we see that b1 = f ′(x). We have, by Proposition
2.3 for any (d1, d2) ∈ D ×D

f(x+ (d1 + d2)) = f(x) + (d1 + d2) · f ′(x) + (d1 + d2)2 ·
f ′′(x)

2!
. (3.2)

For δ = d1 + d2, we therefore have, by comparing (3.1) and (3.2) and
using b1 = f ′(x)

∀(d1, d2) ∈ D ×D : (d1 + d2)2 · b2 = (d1 + d2)2 ·
f ′′(x)

2!
or

∀(d1, d2) ∈ D ×D : 2 · d1 · d2 · b2 = 2 · d1 · d2 ·
f ′′(x)

2!
.

Cancelling the universally quantified d1, and then the universally quan-
tified d2 (and the number 2), we derive

b2 =
f ′′(x)

2!
,
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q.e.d.

Note that the proof only used the existence part of Axiom 1′, not the
uniqueness. But for reasons that will become clear in Part II, we prefer
to have logical formulae which use only the universal quantifier ∀ and
the unique-existence quantifier ∃!; such formulae have a much simpler
semantics, and wider applicability.

EXERCISES
3.1. If d1, . . . , dk ∈ D, then d1 + . . .+ dk ∈ Dk. In fact, prove that

(d1 + . . .+ dk)q =

{
0 if q ≥ k + 1

q! σq(d1, . . . , dk) if q ≤ k,

where σq(X1, . . . , Xk) is the qth elementary symmetric polynomial in k
variables (cf. [77] §29 or [47] V §9). In particular, we have the addition
map Σ : Dk → Dk given by

(d1, . . . , dk) 7→
∑

di.

3.2. If R satisfies Axiom 1′ and contains Q as a subring, prove that if
f : Dk → R satisfies

∀(d1, . . . , dk) ∈ Dk : f(d1 + . . .+ dk) = 0

then f ≡ 0. (We sometimes phrase this property by saying: “R believes
that Σ : Dk → Dk is surjective”.4)

3.3 (Dubuc and Joyal). Assume R satisfies Axiom 1′ and contains
Q as a subring. Then a function τ : Dk → R is symmetric (invariant
under permutations of the k variables (d1, . . . , dk)) iff it factors across
the addition map Σ : Dk → Dk, that is, iff there exists t : Dk → R with

∀(d1, . . . , dk) ∈ Dk : τ(d1, . . . , dk) = t
( k∑

di

)
;

and such t is unique. (Hint: use the above two exercises, and the funda-
mental theorem on symmetric polynomials, [77] §29 or [47] V Theorem
11.)
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I.4 Partial derivatives

In this §, we assume Axiom 1. If we formulate this Axiom in the dia-
grammatic way in terms of function sets:

R×R
∼= - RD

via the map α, then we also have

(R×R)× (R×R) ∼= RD ×RD ∼= (R×R)D ∼= (RD)D ∼= RD×D, (4.1)

because of evident rules for calculating with function sets; more gener-
ally, we similarly get

R2n ∼= RDn

. (4.2)

If we want to work out the description of this isomorphism, it is more
convenient to use Axiom 1 in the elementwise formulation, and we will
get

Proposition 4.1. For any τ : Dn → R, there exists a unique 2n-tuple
{aH | H ⊆ {1, 2, . . . , n}} of elements of R such that

∀(d1, . . . , dn) ∈ Dn : τ(d1, . . . , dn) =
∑
H

aH ·
∏
j∈H

dj ;

in particular, for n = 2

∀(d1, d2) ∈ D2 : τ(d1, d2) = a∅ + a1 · d1 + a2 · d2 + a12 · d1 · d2.

Proof. We do the case n = 2, only; the proof evidently generalizes.
Given τ : D ×D → R. For each fixed d2 ∈ D, we consider τ(d1, d2) as
a function of d1, and have by Axiom 1

∀d1 ∈ D : τ(d1, d2) = a+ a1 · d1 (4.3)

for unique a and a1 ∈ R. Now a and a1 depend on d2, a = a(d2), a1 =
a1(d2). We apply Axiom 1 to each of them to find a∅, a1, a2, and a12

such that

∀d2 ∈ D : a(d2) = a∅ + a2 · d2

∀d2 ∈ D : a1(d2) = a1 + a12 · d2.

Substituting in (4.3) gives the existence. Putting d1 = d2 = 0 yields
uniqueness of a∅. Then putting d2 = 0 and cancelling the universally
quantified d1 yields uniqueness of a1; similarly for a2. Then uniqueness
of a12 follows by cancelling the universally quantified d1 and then the
universally quantified d2.
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We may introduce partial derivatives in the expected way. Let f :
Rn → R be any function. For fixed r = (r1, . . . , rn) ∈ Rn, we consider
the function g : D → R given by

g(d) := f(r1 + d, r2, . . . , rn). (4.4)

By Axiom 1, there exists a unique b ∈ R so that g(d) = g(0) + d · b.
We denote this b by ∂f

∂x1
(r1, . . . , rn), so that we have, by substituting in

(4.4)

∀d ∈ D : f(r1 + d, r2, . . . , rn) = f(r1, . . . , rn) + d · ∂f
∂x1

(r1, . . . , rn)

which thus characterizes a new function ∂f
∂x1

: Rn → R. Similarly, we
define ∂f

∂x2
, . . . , ∂f

∂xn
. The process may be iterated, so that we may form

for instance
∂

∂x2

( ∂f
∂x1

)
, denoted

∂2f

∂x2 ∂x1
.

If f is not defined on the whole of Rn, but only on a subset U ⊆ Rn,
then we can define ∂f

∂x1
on the subset of U consisting of those (r1, . . . , rn)

for which, for all d ∈ D, (r1 + d, r2, . . . , rn) ∈ U . Similarly for ∂f
∂xj

.
In particular, if τ is defined on D × D ⊆ R × R, then ∂τ

∂x1
is defined

on {0} × D, and is in fact the function a1 considered in the proof of
Proposition 4.1; similarly ∂τ

∂x2
is defined on D×{0}, so both ∂2τ

∂x2∂x1
and

∂2τ
∂x1∂x2

are defined at (0, 0); and

∂2τ

∂x2∂x1
(0, 0) =

∂a1

∂x2
(0) = a12.

But in Proposition 4.1, the variables occur on equal footing, so that we
may similarly conclude

∂2τ

∂x1∂x2
(0, 0) = a12.

The following is then an immediate Corollary:

Proposition 4.2. For any function f : U → R, where U ⊆ Rn,

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

in those points of U where both are defined.
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There is a sense in which partial derivatives may be seen as a spe-
cial case of ordinary derivatives, namely by passage to “the category of
objects over a given object”, cf. II §6, and [32].

EXERCISES
4.1. Prove that for any function f : R2 → R, we have

f(r1 + d1, r2 + d2) = f(r1, r2) + d1 ·
∂f

∂x1
(r1, r2) + d2 ·

∂f

∂x2
(r1, r2)

+ d1 · d2 ·
∂2f

∂x1∂x2
(r1, r2)

for any (d,d2) ∈ D ×D.

4.2. Use Proposition 4.1 (for n = 2) to prove that the following
“Property W” holds for M = R:

For any τ : D ×D → M with τ(d, 0) = τ(0, d) = τ(0, 0)∀d ∈ D,
there exists a unique t : D →M with

∀(d1, d2) ∈ D ×D : τ(d1, d2) = t(d1 · d2).

Prove also that Property W holds for M = Rn (for any n).

4.3. If all d ∈ D were of form d1 · d2 for some (d1, d2) ∈ D × D,
then clearly if M satisfies Property W, then so does any subset N ⊆M .
However, we do not want to assume that (it is false in the models). Prove
that we always have the following weaker result: if M and P satisfy W,
and f, g : M → P are two maps, then the set N (the equalizer of f and
g),

N := [[m ∈M | f(m) = g(m)]]

satisfies W. For a more complete result, see Exercise 6.6.

4.4. Assume R contains Q. Consider, in analogy with the Property W
of Exercise 4.2, the following “Symmetric-Functions-Property” for M :

For any τ : Dn → M with τ symmetric, there exists a unique
t : Dn →M , with

∀(d1, . . . , dn) ∈ Dn : τ(d1, . . . , dn) = t(d1 + . . .+ dn). (4.5)

Prove, assuming Axiom 1′, that R = M has this property (this is just a
reformulation of Exercise 3.3). Also, prove that this property has similar
stability properties as those discussed for Property W in Exercise 4.3.
For a more complete result, see Exercise 6.6.
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4.5. Prove that any function τ : Dn → R with

τ(0, d2, . . . , dn) = τ(d1, 0, d3, . . . , dn) = . . .

= τ(d1, . . . , dn−1, 0) ∀(d1, . . . , dn) ∈ Dn

is of form

τ(d1, . . . , dn) = a+
( n∏
i=1

di

)
b

for unique a, b ∈ R. We phrase this: “Property Wn holds for M = R”.

4.6. Prove that the formula

∀(d1, d2) ∈ D ×D : d1 · d2 = 0

is incompatible with Axiom 1 (Hint: cancel the universally quantified
d1 to conclude ∀d2 ∈ D : d2 = 0.)

4.7 (Wraith). Assume that 2 is invertible in R; prove that the sentence

∀(x, y) ∈ R×R : x2 + y2 = 0⇒ x2 = 0 (4.6)

is incompatible with Axiom 1. (Hint: for (d1, d2) ∈ D × D, consider
(d1 + d2)2 + (d1− d2)2 as the x2 + y2 in (4.6); then utilize Exercise 4.6.)

I.5 Higher Taylor formulae in several variables. Taylor series

In this §, we assume that R is a Q-algebra and satisfies Axiom 1′. We
remind the reader about standard conventions concerning multi-indices:
an n-index is an n-tuple α = (α1, . . . , αn) of non-negative integers. We
write α! for α1! · . . . · αn!, |α| for

∑
αj , and, whenever x = (x1, . . . , xn)

is an n-tuple of elements in a ring, xα denotes xα1
1 · . . . · xαn

n . Also

∂|α|f

∂xα
denotes

∂|α|f

∂xα1
1 . . . ∂xαn

n

Finally, we say α ≤ β if αi ≤ βi for i = 1, . . . , n.
The following two facts are then proved in analogy with the corre-

sponding results (Proposition 4.1 and Exercise 4.1) in §4. Let k =
(k1, . . . , kn) be a multi-index.
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Proposition 5.1. For any τ : Dk1 × . . . × Dkn → R, there exists a
unique polynomial with coefficients from R of form

φ(X1, . . . , Xn) =
∑
α≤k

aα ·Xα

such that ∀(d1, . . . , dn) ∈ Dk1 × . . .×Dkn

τ(d1, . . . , dn) = φ(d1, . . . , dn).

Theorem 5.2 (Taylor’s formula in several variables). Let f : U →
R where U ⊆ Rn . For every r ∈ U such that r + d ∈ U for all
d ∈ Dk1 × . . .×Dkn , we have

f(r + d) =
∑
α≤k

dα

α!
· ∂
|α|f

∂xα
(r) ∀d ∈ Dk1 × . . .×Dkn

. (5.1)

We omit the proofs. Note that (5.1) remains valid even if we include
some terms into the sum whose multi-index α does not satisfy α ≤ k.
For, in such terms dα is automatically zero.

We let D∞ ⊆ R denote
⋃
Dk. (For this naively conceived union to

make sense in E , we need that E has unions of subobjects, and that such
have good exactness properties. This will be the case if E is a topos.)
So we have

D∞ = [[x ∈ R | x is nilpotent ]].

The set D∞n ⊆ Rn is going to play a role in many of the follow-
ing considerations, as the ‘monad’ or ‘∞-monad’ around 0 ∈ Rn. For
functions defined on it, we have

Theorem 5.3 (Taylor’s series). Let f : D∞n → R. Then there exists
a unique formal power series Φ(X1, . . . , Xn) in n variables, and with
coefficients from R, such that

f(d) = Φ(d) ∀d = (d1, . . . , dn) ∈ D∞n.

Note that the right hand side makes sense because each coordinate of
d is nilpotent, so there are only finitely many non-zero terms in Φ(d).

Proof. We note first that

D∞
n = (

⋃
k

Dk)n =
⋃
k

(Dk
n).
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We let the coefficient of Xα in Φ be

1
α!
∂|α|f

∂xα
(0).

If d ∈ D∞n, we have d ∈ Dk
n for some k, and so Theorem 5.2 tells us

that f(d) = Φ(d). To prove uniqueness, if Φ is a series which is zero
on D∞

n, it is zero on Dk
n for each k. But its restriction to Dk

n is
given by a polynomial obtained by truncating the series suitably. From
Proposition 5.1, we conclude that this polynomial is zero. We conclude
that Φ is the zero series (i.e. all coefficients are zero).

EXERCISES
5.1. Prove that D∞ ⊆ R is an ideal (in the usual sense of ring theory).

Prove that D∞n ⊆ Rn is a submodule.

5.2. Prove that a map t : D∞ → R with t(0) = 0 maps Dk into Dk,
for any k.

5.3. Let V be an R-module. We say that V satisfies the vector form
of Axiom 1′ 5 if for any k = 1, 2, . . . and any g : Dk → V , there exist
unique b1, . . . , bk ∈ V so that

∀d ∈ Dk : g(d) = g(0) +
k∑

i=1

di · bi.

Prove that any R-module of form Rn satisfies this, and that if V does,
then so does V X , for any object X.

The latter fact becomes in particular evident if we write Axiom 1′ (for
k = 1, i.e. Axiom 1) in the form

V × V = V D

via α, compare (1.1), because

(V × V )X ∼= V X × V X

and

(V D)X ∼= (V X)D

are general truths about function sets, i.e. about cartesian closed cate-
gories.

5.4. Let V be an R-module which satisfies the vector form of Axiom
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1′. For f : R→ V , define f ′ : R→ V so that, for any x ∈ R, we have

f(x+ d) = f(x) + d · f ′(x) ∀d ∈ D.

Similarly, for f : Rn → V , define ∂f
∂xi

: Rn → V (i = 1, . . . , n), and
formulate and prove analogues of Theorem 3.1 and Theorem 5.2.

I.6 Some important infinitesimal objects

Till now, we have met

D = D1 = [[x ∈ R | x2 = 0]]

and more generally

Dk = [[x ∈ R | xk+1 = 0]],

as well as cartesian products of these, like Dk1× . . .×Dkn ⊆ Rn. We de-
scribe here some further important “infinitesimal objects”. First, some
that are going to be our “standard 1-monads”, and represent the notion
of “1-jet”:

D(2) = [[(x1, x2) ∈ R2 | x2
1 = x2

2 = x1 · x2 = 0]],

more generally

D(n) = [[(x1, . . . , xn) ∈ Rn | xi · xj = 0 ∀i, j = 1, . . . , n]].

We have D(2) ⊆ D ×D, and D(n) ⊆ Dn ⊆ Rn. Note D(1) = D. Next,
the following are going to be our “standard k-monads”, and represent
the notion of “k-jet”:

Dk(n) = [[(x1, . . . , xn) ∈ Rn | the product of any k + 1 of the

xis is zero ]].

Clearly

Dk(n) ⊆ Dl(n) for k ≤ l.

Note D(n) = D1(n). By convention, D0(n) = {0} ⊆ Rn.
We note

Dk(n) ⊆ (Dk)n

and

(Dk)n ⊆ Dn·k(n)
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from which we conclude

D∞
n =

∞⋃
k=1

Dk(n). (6.1)

We list some canonical maps between some of these objects. Besides
the projection maps from a product to its factors, and the inclusion
maps Dk(n) ⊆ Dl(n) for k ≤ l, we have

incli : D → D(n) (i = 1, . . . , n) (6.2)

given by

d 7→ (0, . . . , d, . . . , 0) (d in the ith place)

as well as

∆ : D → D(n) (6.3)

given by

d 7→ (d, d, . . . , d).

We also have maps like

incl12 : D(2)→ D(3) (6.4)

given by (d, δ) 7→ (d, δ, 0), and

∆× 1 : D(2)→ D(3) (6.5)

given by (d, δ) 7→ (d, d, δ). We use these maps in §7.

We have already (Exercise 3.1) considered the addition map
∑

:
Dn → Dn. It restricts to a map∑

: D(n)→ D,

since (d1 + . . . + dn)2 = 0 if the product of any two of the dis is zero.
More generally, the Dk(n)s have the following good property, not shared
by the (Dk)ns:

Proposition 6.1. Let φ = (φ1, . . . , φm) be an m-tuple of polynomials
in n variables, with coefficients from R and with 0 constant term. Then
the map φ : Rn → Rm defined by the m-tuple has the property

φ(Dk(n)) ⊆ Dk(m).
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Proof. Let d = (d1, . . . , dn) ∈ Dk(n). Each term in each φi(d1, . . . , dn)
contains at least one factor dj for some j = 1, . . . , n, since φi has zero
constant term. Any product

φi1(d) · . . . · φik+1(d),

if we rewrite it by the distributive law, is thus a sum of terms each with
k + 1 factors, each of which contains at least one dj .

The Proposition does not imply that any map Dk(n) → R is (the
restriction of) a polynomial map f : Rn → R. Axiom 1′ implies that
this is so for n = 1. For general n, we pose the following Axiom for R
(which implies Axiom 1′, and hence also Axiom 1):6

Axiom 1′′. For any k = 1, 2, . . . and any n = 1, 2, . . . , any map
Dk(n) → R is uniquely given by a polynomial (with coefficients from
R) in n variables and of total degree ≤ k.

Even with this Axiom, there are still “infinitesimal” objects D̃ where
we do not have any conclusion about maps D̃ → R, like for example the
object7

Dc = [[(x, y) ∈ R2 | x · y = 0 ∧ x2 = y2]] ⊆ D2(2). (6.6)

Instead, we give in §16 a uniform conceptual “Axiom 1W ” that implies
Axiom 1′′ as well as most other desirable conclusions about maps from
infinitesimal objects to R.

The Proposition 6.1 has the following immediate

Corollary 6.2. Assume R satisfies Axiom 1′′. Then every map φ :
Dk(n)→ Rm with φ(0) = 0 factors through Dk(m).

We shall prove that Axiom 1′′ implies that the object M = R is
infinitesimally linear in the following sense:

Definition 6.3. An object M is called infinitesimally linear,8 if for each
n = 2, 3, . . ., and each n-tuple of maps

ti : D →M with t1(0) = . . . = tn(0),

there exists a unique l : D(n)→M with l ◦ incli = ti (i = 1, . . . , n).

Proposition 6.4. Axiom 1′′ implies that R is infinitesimally linear.
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Proof. Given ti : D → R (i = 1, . . . , n) with ti(0) = a ∈ R ∀i. By
Axiom 1, ti is of form

ti(d) = a+ d · bi ∀d ∈ D.

Construct l : D(n)→ R by

l(d1, . . . , dn) = a+
∑

di · bi.

Then clearly l ◦ incli = ti. This proves existence. To prove uniqueness,
let l̃ : D(n)→ R be arbitrary with l̃(0) = a. By Axiom 1′′ (for k = 1), l̃
is the restriction of a unique polynomial map of degree ≤ 1, so

l̃(d1, . . . , dn) = a+
∑

di · b̃i ∀(d1, . . . , dn) ∈ D(n)

for some unique b̃1, . . . , b̃n ∈ R. If we assume l ◦ incli = l̃ ◦ incli, ∀i, we
see

a+ d · bi = a+ d · b̃i, ∀d ∈ D,

whence, by cancelling the universally quantified d, bi = b̃i. We conclude
l = l̃.

One would hardly say that a conceptual framework for synthetic dif-
ferential geometry were complete if it did not have some notion of
“neighbour-” relation for the elements of sufficiently good objects M ;
better, for each natural number k, a notion of “k-neighbour” relation
x ∼k y for the elements of M . It will be defined below, for certain M .

A typical phrase occurring in Lie’s writings, where he explicitly says
that he is using synthetic reasoning, is “these two families of curves
have two . . . neighbouring curves p1 and p1 in common”, ([54], p. 49).
“Neighbour” means “1-neighbour”, since the authors of the 19th century
tradition would talk about “two consecutive neighbours” for what in our
attempt would be dealt with in terms of “a 2-neighbour”. These two
notions are closedly related, because of the observation (Exercise 3.2)
that “R believes

∑
: D ×D → D2 is surjective”.

The neighbour relations ∼k in synthetic differential geometry are not
those considered in non-standard analysis [73]: their neighbour relation
is transitive, and is not stratified into “1-neighbour”, “2-neighbour”, etc.,
a stratification which is closely tied to “degree-1-segment”, “degree-2-
segment” of Taylor series.

On the coordinate spaces Rn, we may introduce, for each natural
number k, the k-neighbour relation, denoted ∼k, by

x ∼k y ⇐⇒ (x− y) ∈ Dk(n).
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It is a reflexive and symmetric relation, and it is readily proved that

x ∼k y ∧ y ∼l z ⇒ x ∼k+l z.

We write Mk(x) (“the k-monad around x”) for [[y | x ∼k y]]. Thus
Mk(x) is the fibre over x of

(Rn)(k)

Rn
?

(6.7)

where (Rn)(k) ⊆ Rn ×Rn is the object [[(x, y) | x ∼k y]] and where the
indicated map is projection onto the first factor.

Similarly, we define

x ∼∞ y ⇐⇒ (x− y) ∈ Dn
∞ =

⋃
k

Dk(n),

and M∞(x) = [[y | x ∼∞ y]], “the ∞-monad around x”. The relation
∼∞ is actually an equivalence relation.

From Corollary 6.2, we immediately deduce

Corollary 6.5. Any map f :Mk(x)→ Rm factors throughMk(f(x)) ⊆
Rm (this also holds for k = ∞). Equivalently, x ∼k y implies f(x) ∼k

f(y).

For the category of objects M of form Rm, more generally, for the
category of formal manifolds considered in §17 below, where we also
construct relations ∼k, the conclusion of the Corollary may be formu-
lated: for any f : M → N , the map f × f : M ×M → N ×N restricts
to a map M(k) → N(k).

EXERCISES
6.1. Show that the map R2 → R2 given by (x1, x2) 7→ (x1, x1 · x2)

restricts to a map D×D → D(2). Compose this with the addition map∑
: D(2)→ D to obtain a non-trivial map λ : D ×D → D. (This map

induces the “Liouville vector field”, cf. Exercise 8.6.)

6.2. Show that if 2 is invertible in R, the counter image of D ⊆ D2

under the addition map
∑

: D ×D → D2 is precisely D(2).

6.3. Show that Dk(n)×Dl(m) ⊆ Dk+l(n+m). Show also that

a ∈ Dk(n) ∧ b ∈ Dl(n)⇒ a+ b ∈ Dk+l(n).
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6.4. Let

D̃(2, n) =[[((d1, . . . , dn), (δ1, . . . , δn)) ∈ Rn ×Rn |
di · δj + dj · δi = 0 ∧ di · dj = 0 ∧ δi · δj = 0 ∀i, j = 1, . . . , n]].

Prove that any symmetric bilinear map Rn × Rn → R vanishes on
D̃(2, n), provided the number 2 is invertible in R.

The geometric significance of D̃(2, n), and some analogous D̃(h, n) for
larger h, is studied in §16, notably Proposition 16.5.

6.5. Prove that if M1 and M2 are infinitesimally linear, then so is
M1 ×M2, and for any two maps f, g : M1 → M2, the equalizer [[m ∈
M1 | f(m) = g(m)]] is infinitesimally linear.

In categorical terms: the class of infinitesimally linear objects is closed
under formation of finite inverse limits in E .

Also, if M is infinitesimally linear, then so is MX , for any object X.
The categorically minded reader may see the latter at a glance by

utilizing:
i) M is infinitesimally linear iff for each n

MD(n) ∼= MD ×M . . .×M MD (n-fold pullback).

ii) (−)X preserves pullbacks.
iii) (MD(n))X ∼= (MX)D(n).

6.6. Express in the style of the last part of Exercise 6.5 (i.e. in terms
of finite inverse limit diagrams) Property W on M (Exercise 4.2), as well
as the Symmetric Functions Property (Exercise 4.4), and deduce that
the class of objects satisfying Property W, respectively the Symmetric
Functions Property, is stable under finite inverse limits and (−)X (for
any X) (cf. [71]).9

6.7. Assume that R is infinitesimally linear, satisfies Axiom 1′′ and
contains Q as a subring. Prove that (Dk(n))m and Dn

∞ are infinitesi-
mally linear, have Property W and the Symmetric Functions Property.10

I.7 Tangent vectors and the tangent bundle

In this §, we consider, besides the line R, some unspecified object M
(to be thought of as a “smooth space”, since our base category E is the
category of such, even though we talk about E as if its objects were
sets). For instance, M might be R, or Rm, or some ‘affine scheme’ like
the circle in Exercise 1.1, or Dk(n); or something glued together from
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affine pieces, – the projective line over R, say. It could also be some big
function space like RR (= set of all maps from R to itself), or RD∞ .

There will be ample justification for the following

Definition 7.1. A tangent vector to M , with base point x ∈ M (or
attached at x ∈M) is a map t : D →M with t(0) = x.

This definition is related to one of the classical ones, where a tangent
vector at x ∈M (M a manifold) is an equivalence class of “short paths”
t : (−ε, ε) → M with t(0) = x. Each representative t : (−ε, ε) → M

contains redundant information, whereas our D is so small that a t :
D → M gives a tangent vector with no redundant information; thus,
here, tangent vectors are infinitesimal paths, of “length” D.

This is a special case of the feature of synthetic differential geometry
that the jet notion becomes representable.

We consider the set MD of all tangent vectors to M . It comes
equipped with a map π : MD → M , namely π(t) = t(0). Thus π
associates to any tangent vector its base point; MD together with π is
called the tangent bundle of M . The fibre over x ∈ M , i.e. the set of
tangent vectors with x as base point, is called the tangent space to M

at x, and denoted (MD)x. Sometimes we write TM , respectively TxM ,
for MD and (MD)x.

The construction MD (like any exponent-formation in a cartesian
closed category) is functorial in M . The elementary description is also
evident; given f : M → N , we get fD : MD → ND described as follows

fD(t) = f ◦ t : D →M → N,

equivalently, fD is described by

t 7→ [d 7→ f(t(d))].

Also, π : MD → M is natural in M . Note that if t has base point x,
f ◦ t has base point f(x).

To justify the name tangent vector, one should exhibit a “vector space”
(R-module) structure on each tangent space (MD)x. This we can do
when M is infinitesimally linear. In any case, we have an action of
the multiplicative semigroup (R, ·) on each (MD)x = TxM , namely, for
r ∈ R and t : D →M with t(0) = x, define r · t by putting

(r · t)(d) := t(r · d),

(“changing the speed of the infinitesimal curve t by the factor r”).
Now let us assume M infinitesimally linear; to define an addition
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on TxM , we proceed as follows. We remind the reader of the maps
incli : D → D(2), ∆ : D → D(2) ((6.2), (6.3)). If t1, t2 : D → M

are tangent vectors to M with base point x, we may, by infinitesimal
linearity, find a unique l : D(2)→M with

l ◦ incli = ti , i = 1, 2. (7.1)

We define t1 + t2 to be the composite

D
∆- D(2)

l - M

(“diagonalizing l”); in other words

∀d ∈ D : (t1 + t2)(d) = l(d, d)

where l : D(2)→M is the unique map with

∀d ∈ D : l(d, 0) = t1(d) ∧ l(0, d) = t2(d).

Proposition 7.2. Let M be infinitesimally linear. With the addition
and multiplication-by-scalars defined above, each TxM becomes an R-
module. Also, if f : M → N is a map between infinitesimally linear
objects, fD : MD → ND restricts to an R-linear map TxM → Tf(x)N .

Proof. Let us prove that the addition described is associative. So let
t1, t2, t3 : D → M be three tangent vectors at x ∈ M . By infinitesimal
linearity of M , there exists a unique

l : D(3)→M

with

l ◦ incli = ti (i = 1, 2, 3). (7.2)

We claim that (t1 + t2) + t3 and t1 + (t2 + t3) are both equal to

D
∆- D(3)

l - M. (7.3)

For with notation as in (6.4) and (6.5)

(l ◦ incl12) ◦ incl1 = l ◦ incl1 = t1

(l ◦ incl12) ◦ incl2 = l ◦ incl2 = t2

so that

(l ◦ incl12) ◦∆ = t1 + t2.
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Also

(l ◦ (∆× 1)) ◦ incl1 = l ◦ incl12 ◦∆ = t1 + t2

and

(l ◦ (∆× 1)) ◦ incl2 = l ◦ incl3 = t3

so that

(l ◦ (∆× 1)) ◦∆ = (t1 + t2) + t3.

But the left hand side here is clearly equal to (7.3). Similarly for t1 +
(t2 + t3). This proves associativity of +. We leave to the reader to
verify commutativity of +, and the distributive laws for multiplication
by scalars ∈ R. Note that the zero tangent vector at x is given by
t(d) = x ∀d ∈ D.

Also, we leave to the reader to prove the assertion about R-linearity
of TxM → Tf(x)N .

Let V be an R-module which satisfies the (vector form of) Axiom 1,
that is, for every t : D → V , there exists a unique b ∈ V so that

∀d ∈ D : t(d) = t(0) + d · b

(cf. Exercise 5.3 and 5.4); Rk is an example. We call b ∈ V the principal
part of the tangent vector t.

In the following Proposition, V is such an R-module, which further-
more is assumed to be infinitesimally linear.

Proposition 7.3. Let t1, t2 be tangent vectors to V with same base point
a ∈ V , and with principal parts b1 and b2, respectively. Then t1 + t2 has
principal part b1 + b2. Also, for any r ∈ R, r · t1 has principal part r · b1.

Proof. Construct l : D(2)→ V by

l(d1, d2) = a+ d1 · b1 + d2 · b2.

Then l ◦ incli = t1 (i = 1, 2), so that

∀d ∈ D : (t1 + t2)(d) = l(d, d) = a+ d · b1 + d · b2
= a+ d · (b1 + b2.)

The first result follows. The second is trivial.

One may express Axiom 1 for V by saying that, for each a ∈ V , there
is a canonical identification of TaV with V , via principal-part formation.
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Proposition 7.3 expresses that this identification preserves the R-module
structure, or equivalently that the isomorphism from Axiom 1 (for V )

V × V
α - V D

is an isomorphism of vector bundles over V (where the structural maps
to the base space are, respectively, proj1 and π). The composite γ

γ = V D
∼=- V × V

proj2- V (7.4)

associates to a tangent vector its principal part, and restricts to an R-
linear map in each fibre, by the Proposition.

EXERCISES
7.1. The tangent bundle construction may be iterated. Construct

a non-trivial bijective map from T (TM) to itself. Hint: T (TM) =
(MD)D ∼= MD×D; now use the “twist” map D ×D → D ×D.11

7.2. Assume that M is infinitesimally linear, so that

TM ×M TM ∼= MD(2) (7.5)

(cf. Exercise 6.5). Use the inclusion D(2) ⊆ D×D to construct a natural
map

T (TM)→ TM ×M TM. (7.6)

Because of (7.5) and T (TM) ∼= MD×D, a right inverse ∇ of (7.6) may
be viewed as a right inverse of the restriction map MD×D →MD(2), i.e.
as the process of completing a figure

-
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(a pair of tangent vectors at some point) into a figure
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(a map D×D →M). Such ∇ thus is an infinitesimal notion of parallel
transport: cf. [43].12

7.3. Prove (TM)X ∼= T (MX). Note that this is almost trivial knowing
that TM = MD; for in any cartesian closed category,

(MD)X ∼= (MX)D.

I.8 Vector fields and infinitesimal transformations

The theory developed in the present § hopefully makes it clear why the
cartesian closed structure of “the category E of smooth sets” is necessary
to, and grows out of, natural physical/geometric considerations.

We noted in §7 that the tangent bundle of an object M was repre-
sentable as the set MD of maps from D to M . We quote from Lawvere
[51], with slight change of notation:

“This representability of tangent (and jet) bundle functors by objects
like D leads to considerable simplification of several concepts, construc-
tions and calculations. For example, a first order ordinary differential
equation, or vector field, on M is usually defined as a section ξ̂ of the
projection π : MD →M . . .”, i.e.

M
ξ̂ - MD satisfying π ◦ ξ̂ = idM ,

i.e. with ξ̂(m)(0) = m ∀m ∈M.

(8.1)

“But by the λ-conversion rule ξ̂ is equivalent to a morphism ξ

M ×D →M satisfying ξ(m, 0) = m ∀m ∈M, (8.2)

i.e. to an “infinitesimal flow” of the additive group R”. Also, by one
further λ-conversion, we get

D
ξ̌ - MM satisfying ξ̌(0) = idM , (8.3)

i.e. an infinitesimal path in the space MM of all transformations of M ,
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or an infinitesimal deformation of the identity map. For fixed d ∈ D,
the transformation ξ̌(d) ∈MM ,

M
ξ̌(d)- M,

is called an infinitesimal transformation of the vector field.
We shall see below that often (for instance when M is infinitesimally

linear) the infinitesimal transformations of a vector field are bijective
mappings M → M , i.e. permute the elements of M , (cf. Corollary 8.2
below).

The presence of infinitesimal transformations ξ̌(d) as actual transfor-
mations (permutations of the elements of M) is a feature the classi-
cal analytical approach to vector fields lacks, and which is indispens-
able for the natural synthetic reasonings with vector fields. When the
analytic approach talks about “infinitesimal transformations” as syn-
onymous with “vector fields”, this is really unjustified, called for by
a synthetic-geometric understanding which the formalism does not re-
flect: for a vector field does not, classically, permute anything; only the
flows obtained by integrating the vector field (= ordinary differential
equation) do that; and, even so, sometimes one cannot find any small
interval ]−ε, ε[ such that the flow can be defined on all of M with ]−ε, ε[
as parameter interval, cf. Exercise 8.7.

The use of synthetic considerations about vector fields, in terms of
their infinitesimal transformations as actual permutations, was used ex-
tensively by Sophus Lie. I am convinced also that the Lie bracket of
vector fields (cf. §9 below) was conceived originally in terms of group
theoretic commutators of infinitesimal transformations, but this I have
not been able to document.

In the following, we will call any of the three equivalent data (8.1),
(8.2), and (8.3) a vector field on M ; also we will not always be pedantic
whether to write ξ̂, ξ, or ξ̌, in fact, we will prefer to use capital Latin
letters like X,Y, . . ., for vector fields.

Proposition 8.1. Assume M is infinitesimally linear. For any vector
field X : M ×D →M on M , we have (for any m ∈M)

∀(d1, d2) ∈ D(2) : X(X(m, d1), d2) = X(m, d1 + d2). (8.4)

Proof. Note that the right-hand side makes sense, since d1 +d2 ∈ D for
(d1, d2) ∈ D(2). Both sides in the equation may be viewed as functions
l : D(2) → M , and they agree when composed with incl1 or incl2, e.g.
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for incl2:

X(X(m, 0), d2) = X(m, d2) = X(m, 0 + d2).

This proves the Proposition. Note that we only used the uniqueness
assertion in the infinitesimal-linearity assumption.

The Proposition justifies the name “infinitesimal flow of the additive
group R”, because a global flow on M would traditionally be a map
X : M ×R→M satisfying (for any m ∈M)

X(X(m, r1), r2)) = X(m, r1 + r2) (8.5)

for any r1, r2 ∈ R, (as well as X(m, 0) = m).

Corollary 8.2. Assume M is infinitesimally linear. For any vector field
X on M , we have

∀d ∈ D : X(X(m, d),−d) = m.

In particular, each infinitesimal transformation X̌(d) : M → M is in-
vertible, with X̌(−d) as inverse.

For any M , the set of vector fields on M is in an evident way a module
over the ring RM of all functions M → R. For, if X is a vector field and
f : M → R is a function, we define f ·X by

(f ·X)(m, d) := X(m, f(m) · d),

in other words, by multiplying the field vector X(m,−) at m with the
scalar f(m) ∈ R.

Similarly, if M is infinitesimally linear, we can add two vector fields X
and Y on M by adding, for each m ∈M , the field vectors X(m,−) and
Y (m,−) at m. By applying Proposition 7.2 pointwise, we immediately
see, then:

Proposition 8.3. If M is infinitesimally linear, the set of vector fields
on it is in a natural way a module over the ring RM of R-valued functions
on M .

EXERCISES

8.1. Prove that a map X : M × R → M is a flow in the sense of
satisfying (8.5) and X(m, 0) = m if and only if its exponential adjoint

R→MM
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is a homomorphism of monoids (the monoid structure on R being addi-
tion, and that of MM composition of maps M →M).13

8.2. (Lawvere). Given objects M and N equipped with vector fields
X : M ×D →M and Y : N ×D → N , respectively. A map f : M → N

is called a homomorphism of vector fields if

M ×D
f ×D- N ×D

M

X

?

f
- N

Y

?

commutes. Objects-equipped-with-vector-fields are thus organized into
a category. Let ∂

∂x denote the vector field on R given by ∂
∂x (x, d) = x+d.

Prove (assuming Axiom 1) that a map f : R → R is an endomorphism
of this object iff f ′ ≡ 1.

8.3.14 Assume M satisfies the Symmetric Functions Property (4.5), as
well as Property W.15 Let X be a vector field on M . Prove that X̌(d1)
commutes with X̌(d2) ∀(d1, d2) ∈ D × D. Prove that we may extend
X̌ : D →MM to X̌n : Dn →MM in such a way that the diagram

Dn - MM

Dn

∑
?

X̌n

-

commutes, where the top map is

(d1, . . . , dn) 7→ X̌(d1) ◦ . . . ◦ X̌(dn).

Prove that the restriction of X̌n+1 to Dn is X̌n, and hence that we
get a well-defined map X̌∞ : D∞ → MM having the various X̌n’s as
restrictions.

Prove that X̌∞ is a homomorphism of monoids (D∞ with addition as
monoid structure).

Thus X̌∞ is a flow in the sense that the equation (8.5) is satisfied
for the exponential adjoint X∞ : M × D∞ → M of X̌∞ (for r1, r2 ∈
D∞). The process X 7→ X∞ described here is in essence equivalent to
integration of the differential equation X by formal power series.
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8.4.16 (Lawvere [50]). Let Es be the subcategory of objects in E which
satisfy Symmetric Functions Property and Property W; if R ∈ Es, then
so does Dn, Dn, and D, by Exercise 6.7. Prove that Dn/n! ∼= Dn, where
n! denotes the symmetric group in n letters, and Dn/n! denotes its
orbit space in Es (a certain finite colimit in E). Reformulate the result
of Exercise 8.3 by saying that

D∞ =
∑

n

Dn/n! (“ = eD”)

is the free monoid in Es generated by the pointed set (D, 0) (the “sum”
here is ascending union, rather than disjoint sum); and it is commutative.

8.5. Express the conclusion of Corollary 8.2 as follows: for any vector
field X on M

(−X)∨ (d) = X∨ (−d) = (X∨ (d))−1,

where we use the ∨ notation as in (8.3).

8.6. Consider the map λ : D×D → D given by (d1, d2) 7→ (d1+d1 ·d2)
(cf. Exercise 6.1). It induces a map

Mλ : MD →MD×D = (MD)D.

Prove that Mλ via the displayed isomorphism, is a vector field on MD.
(This is the Liouville vector field considered in analytical mechanics, cf.
[19], IX.2.4.)

8.7 (Classical calculus). Prove that the differential equation y′ = y2

has the property that there does not exist any interval ] − ε, ε[ (ε > 0)
such that, for each x ∈ R, the unique solution y(t) with y(0) = x

can be extended over the interval ] − ε, ε[. (For, the solution is y(t) =
−1/(t − x−1), and for x > 0, say, this solution does not extend for
t > x−1 .)

This can be reinterpreted as saying that the vector field x2 ∂
∂x is not

the “limit case” of any flow on R; so there are no finite transformations
R→ R giving rise to the “infinitesimal transformation” x2 ∂

∂x .
(Compare e.g. [74] Vol. I Ch. 5 for the classical connection between

vector fields and differential equations.)

I.9 Lie bracket – commutator of infinitesimal transformations

In this §, M is an arbitrary object which is infinitesimally linear and has
the Property W:



I.9 Lie bracket 33

For any τ : D ×D →M with τ(d, 0) = τ(0, d) = τ(0, 0) ∀d ∈ D,
there exists a unique t : D →M with
τ(d1, d2) = t(d1 · d2) ∀(d1, d2) ∈ D ×D

(the same as in Exercise 4.2).
Assume that X and Y are vector fields on M ; for each (d1, d2) ∈

D×D, we consider the group theoretic commutator of the infinitesimal
transformations X̌(d1) and Y̌ (d2), i.e.

Y̌ (−d2) ◦ X̌(−d1) ◦ Y̌ (d2) ◦ X̌(d1) (9.1)

(utilizing Corollary 8.2: X̌(−d) is the inverse of X̌(d), and similarly for
Y̌ ). If d1 = 0, X̌(d1) = X̌(−d1) = idM , so that (9.1) is itself idM .
Similarly if d2 = 0. Thus (9.1) describes a map

D ×D
τ - MM

with τ(0, d) = τ(d, 0) = idM ∀d ∈ D. Since MM has property W if M
has (cf. Exercise 6.6), there exists a unique t : D →MM with

t(d1 · d2) = τ(d1, d2) = Y̌ (−d2) ◦ X̌(−d1) ◦ Y̌ (d2) ◦ X̌(d1),

∀(d1, d2) ∈ D×D. Clearly t(0) = idM , so that t under the λ-conversion

D −→MM

M ×D −→M

(cf. (8.3)–(8.2)) corresponds to a vector field M × D → M which we
denote [X,Y ]. Thus the characterizing property of [X,Y ] is that ∀m ∈
M , ∀(d1, d2) ∈ D ×D

[X,Y ](m, d1 · d2) = Y (X(Y (X(m, d1), d2),−d1),−d2),

which in turn can be rigourously represented by means of a geometric
figure (the names n, p, q and r for the four “new” points are for later
reference)
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(9.3)
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It is true, but not easy to prove (cf. §11 for a partial result, and [71])
that the set of vector fields on M is acutally an R-Lie algebra under the
bracket operation here.17 However, at least the following is easy:

Proposition 9.1. For any vector fields X and Y on M , [X,Y ] =
−[Y,X].

Proof. For any (d1, d2) ∈ D ×D

[X,Y ]∨(d1, d2) = Y̌ (−d2) ◦ X̌(−d1) ◦ Y̌ (d2) ◦ X̌(d1)

= (X̌(−d1) ◦ Y̌ (−d2) ◦ X̌(d1) ◦ Y̌ (d2))−1,

by X̌(d1)−1 = X̌(−d1), and similarly for Y̌ , and using the standard
group theoretic identity (b−1a−1ba)−1 = a−1b−1ab,

= ([Y,X]∨(d2 · d1))−1

= (−[Y,X])∨(d1 · d2),

by Corollary 8.2 (in the formulation of Exercise 8.5). Since this holds
for all (d1, d2) ∈ D × D, we conclude from the uniqueness assertion in
Property W for MM that [X,Y ]∨ = (−[Y,X])∨, whence the conclusion.

In classical treatments, to describe the geometric meaning of the Lie
bracket of two vector fields, one first has to integrate the two vector fields
into flows, then make a group-theoretic commutator of two transforma-
tions from the flows, and then pass to the limit, i.e. differentiate; cf. e.g.
[61] §2.4 (in particular p. 32). In the synthetic treatment, we don’t have
to make the detour of first integrating, and then differentiating.

Alternatively, the classical approach resorts to functional analysis
identifying vector fields with differential operators, thereby abandon-
ing the immediate geometric content like figure (9.3). The ‘differential
operators’ associated to vector fields are considered in the next §.

EXERCISES
In the following exercises, M and G are objects that are infinitesimally

linear and have Property W; R is assumed to satisfy Axiom 1.

9.1. Let X and Y be vector fields on M , and let (d1, d2) ∈ D × D.
Prove that the group theoretic commutator of X̌(d1) and Y̌ (d2) equals
that of X̌(d2) and Y̌ (d1). Also, prove that X̌(d) commutes with Y̌ (d)
for any d ∈ D.18

9.2. Assume G has a group structure. A vector field X on G is called
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left invariant if for any g1, g2 ∈ G, and d ∈ D

g1 ·X(g2, d) = X(g1 · g2, d).

Prove that the left-invariant vector fields on G form a sub-Lie-algebra
of the Lie algebra of all vector fields.

9.3. Let G be as in Exercise 9.2, and let e ∈ G be the neutral element.
Prove that if t ∈ TeG, then the law

X(g, d) := g · t(d)

defines a left invariant vector field on G, and that this establishes a
bijective correspondence between the set of left invariant vector fields
on G, and TeG. In particular, TeG inherits a Lie algebra structure.

9.4. Generalize Exercises 9.2 and 9.3 from groups to monoids. Prove
that the Lie algebra Te(MM ) may be identified with the Lie algebra of
vector fields on M . In particular, general properties about Lie structure
for vector fields may be reduced to properties of the Lie algebra TeG.
(This is the approach of [71].)

9.5. Let X and Y be vector fields on M . Prove that the follow-
ing conditions are equivalent (and if they hold, we say that X and Y

commute)

(i) [X,Y ] = 0
(ii) any infinitesimal transformation of the vector field X commutes

with any infinitesimal transformation of the vector field Y
(iii) any infinitesimal transformation of the vector field X is an endo-

morphism of the object (M,Y ) in the catetory of vector fields (cf.
Exercise 8.2 for this terminology).

9.6 (Lie [53]; cf. [34]). Let X and Y be vector fields on M and assume
each field vector of X is an injective map D →M (X is a proper vector
field). Also, we say m1 and m2 in M are X-neighbours if there exists
d ∈ D (necessarily unique) such that X(m1, d) = m2. Prove that the
following conditions are equivalent (and if they hold, we say that X
admits Y )

(i) [X,Y ] = ρ ·X for some ρ : M → R

(ii) the infinitesimal transformations of Y preserve the X-neighbour
relation.
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I.10 Directional derivatives

In this § we assume that R satisfies Axiom 1; V is assumed to be an
R-module satisfying the vector form of Axiom 1, the most important
case being of course V = R.

Let M be an object, and X : M × D → M a vector field on it. For
any function f : M → V , we define X(f), the directional derivative of f
in the direction of the vector field, by (for fixed m ∈M)

f(X(m, d)) = f(m) + d ·X(f)(m) ∀d ∈ D. (10.1)

This defines it uniquely, by applying Axiom 1 to the map D → V given
by f(X(m,−)).

Diagrammatically, X(f) is the composite

M
X̂ - MD fD

- V D γ - V (10.2)

where γ(t) = principal part of t = the unique b ∈ V such that t(d) =
t(0) + d · b ∀d ∈ D.

Consider in particular M = R, V = R, and the vector field

∂

∂x
: R×D → R

given by (x, d) 7→ x + d. Then the process f 7→ X(f) is just the differ-
entiation f 7→ f ′ described in §2. The rules proved there immediately
generalize; thus we have

Theorem 10.1. For any f, g : M → V , r ∈ R, and φ : M → R, we
have

X(r · f) = r ·X(f) (i)

X(f + g) = X(f) +X(g) (ii)

X(φ · f) = X(φ) · f + φ ·X(f) (iii)

Clearly X(f) ≡ 0 if f is constant. More generally, a function f : M →
V such thatX(f) ≡ 0 is called an integral or a first integral ofX. Clearly,
by (10.1), X(f) ≡ 0 iff for all m ∈ M and d ∈ D, f(X(m, d)) = f(m).
This condition can be reformulated:

f ◦ X̌(d) = f,

in other words, f is invariant under the infinitesimal transformations of
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the vector field X. (This, in turn, might suggestively be expressed: “f
is constant on the orbits of the action of X”.)

The following result will be useful in stating and proving linearity
conditions. It is not so surprising, since in classical calculus, the cor-
responding result holds for smooth functions between coordinate vector
spaces.

Proposition 10.2. Let U and V be R-modules (V satisfying Axiom 1).
Then any map f : U → V satisfying the “homogeneity” condition

∀r ∈ R ∀u ∈ U : f(r · u) = r · f(u)

is R-linear.

Proof. For y ∈ U , we denote by Dy the vector field U ×D → U given
by

Dy(u, d) = u+ d · y;

in particular, for g : U → V , we have as a special case of (10.1)

g(u+ d · y) = g(u) + d ·Dy(g)(u), ∀d ∈ D.

In particular, for d ∈ D

d · f(x+ y) = f(d · x+ d · y)
= f(d · x) + d ·Dyf(d · x)

= f(d · x) + d · (Dyf(0) + d ·DxDyf(0))

= f(d · x) + d ·Dyf(0)

(since d2 = 0)

= f(d · x) + f(d · y)
= d · f(x) + d · f(y),

the first and the last equality sign by the homogeneity condition. Since
this holds for all d ∈ D, we get the additivity of f by cancelling the
universally quantified d. Thus f is R-linear.

Note that to prove additivity, only homogeneity conditions for scalars
in D were assumed. This observation is utilized in Exercise 10.2.
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In the following theorem, we assume that M is infinitesimally linear
and has Property W.

Theorem 10.3. For any vector fields X,X1, X2, Y on M , any φ : M →
R, and any f : M → V , we have

(φ ·X)(f) = φ ·X(f) (i)

(X1 +X2)(f) = X1(f) +X2(f) (ii)

[X,Y ](f) = X(Y (f))− Y (X(f)) (iii)

Proof. Using the definition of φ ·X, and (10.1), we have, for ∀m ∈M ,
∀d ∈ D:

f((φ ·X)(m, d)) = f(X(m,φ(m) · d)) = f(m) + (φ(m) · d) ·X(f)(m)

(noting that φ(m) · d ∈ D). On the other hand, directly by (10.1)

f((φ ·X)(m, d)) = f(m) + d · (φ ·X)(f)(m).

Comparing these two equations, and cancelling the universally quantified
d, we get φ(m) ·X(f)(m) = (φ ·X)(f)(m), proving (i). To prove (ii), let
f : M → V be fixed. The process

X 7→ X(f)

is a map g : V ect(M)→ V M , where V ect(M) is the set of vector fields
on M ; V ect(M) is an R-module, since M is infinitesimally linear. Also,
V M satisfies the vector form of Axiom 1 since V does. From (i) follows
that g(r ·X) = r · g(X) ∀r ∈ R, and (ii) then follows from Proposition
10.2.

Let us finally prove (iii). For fixed m, d1, d2, we consider the circuit
(9.3) and the elements n, p, q, r described there. We consider f(r)−f(m).
First

f(r) = f(q)− d2 · Y (f)(q)

= f(p)− d1 ·X(f)(p)− d2 · Y (f)(q)

using the “generalized Taylor formula” (10.1) twice. Again, using gen-
eralized Taylor twice, (noting m = X(n,−d1), and n = Y (p,−d2) by
Corollary 8.2)

f(m) = f(n)− d1 ·X(f)(n)

= f(p)− d2 · Y (f)(p)− d1 ·X(f)(n).

Subtracting these two equations, we get
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f(r)− f(m) = d1 · {X(f)(n)−X(f)(p)}+ d2 · {(Y (f)(p)− Y (f)(q)}
= −d1 · d2 · Y (X(f))(p) + d1 · d2 ·X(Y (f))(p)

(10.3)

using generalized Taylor on each of the curly brackets. Now we have,
for any g : M → V ,

d2 · g(p) = d2 · g(n),

since

d2 · g(p) = d2 · g(Y (n, d2)) = d2 · (g(n) + d2 · Y (g)(n)),

and using d2
2 = 0. Similarly we have

d1 · g(n) = d1 · g(m),

so that, combining these two equations, we have

d1 · d2 · g(p) = d1 · d2 · g(m),

Applying this for g = Y (X(f)) and g = X(Y (f)), we see that the
argument p in (10.3) may be replaced by m; so (10.3) is replaced by

f(r)− f(m) = d1 · d2 · ((X(Y (f))(m)− Y (X(f))(m)). (10.4)

On the other hand

[X,Y ](m, d1 · d2) = r,

so that, by generalized Taylor,

f(r)− f(m) = d1 · d2 · [X,Y ](f)(m). (10.5)

Comparing (10.4) and (10.5), we see that

d1 · d2 · (X(Y (f))(m)− Y (X(f))(m)) = d1 · d2 · [X,Y ](f)(m),

and since this holds for all (d1, d2) ∈ D ×D, we may cancel the d1 and
d2 one at a time, to get (iii).

EXERCISES
10.1. Let ∂

∂xi
(for i = 1, . . . , n) denote the vector field on Rn given,

as a map Rn ×D → Rn, by

((x1, . . . , xn), d) 7→ (x1, . . . , xi + d, . . . , xn).

(i) Prove that ∂
∂xi

commutes with ∂
∂xj

(terminology of Exercise 9.6).



40 The synthetic theory

(ii) Prove that directional derivative along ∂
∂xi

equals the ith partial
derivative (§4). Note that (i) makes sense, and is easy to prove, without
any consideration of directional derivation, in fact does not even depend
on Axiom 1.

10.2 (Veit.) Assume that V has the property that any g : R→ V with
∂g
∂x (= g′) ≡ 0 is constant. Prove that the assumption in Proposition 10.2
can be weakened into

∀d ∈ D ∀u ∈ U : f(d · u) = d · f(u).

(Hint: to prove the homogeneity condition for arbitrary scalars r ∈ R,
consider, for fixed u, the function g(r) := f(ru)− r · f(u).)

10.3. For X a vector field on M , and f : M → V a function, ex-
press the condition X(f) ≡ 0 as the statement: f is a morphism in the
category of objects-with-a-vectorfield from (M,X) to (V, 0).

I.11 Some abstract algebra and functional analysis.
Application to proof of Jacobi identity

Recall that an R-algebra C is a commutative ring equipped with a ring
map R → C (which implies an R-module structure on C). The ring
RM of all functions from M to R (M an arbitrary object) is an evident
example.

Recall also that if C1 and C2 are R-algebras, and i : C1 → C2 is
an R-algebra map, an R-derivation from C1 to C2 (relative to i) is an
R-linear map

δ : C1 → C2

such that

δ(c1 · c2) = δ(c1) · i(c2) + i(c1) · δ(c2) ∀c1, c2 ∈ C1.

They form in an evident way an R-module, denoted Deri
R(C1, C2). If

C1 = C2 = C and i = identity map, we just write DerR(C,C).
It is well known, and easy to see, that, for C an R-algebra, the R-

module

D = DerR(C,C)

has a natural structure of Lie algebra over R, meaning that there is an
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R-bilinear map

D ×D
[−,−]- D (11.1)

(given here by

[δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1)

such that [−,−] satisfies the Jacobi identity

[δ1, [δ2, δ3]] + [δ2, [δ3, δ1]] + [δ3, [δ1, δ2]] = 0 (11.2)

as well as

[δ1, δ2] + [δ2, δ1] = 0 (11.3)

for all δ1, δ2, δ3 ∈ D (trivial verification, but for (11.2), not short).
Also there is a multiplication map

C ×D
· - D (11.4)

as well as an evaluation map

D × C
−(−)- C, (11.5)

due to the fact that D is a set of functions C → C. Both these maps
are R-bilinear, and furthermore, for all δ1, δ2 ∈ D and c ∈ C, we have

[δ1, c · δ2] = δ1(c) · δ2 + c · [δ1, δ2] (11.6)

The R-bilinear structures (11.1), (11.4), and (11.5) form what is called
an R-Lie-module19 (more precisely, they make D into a to a Lie module
over C), cf. [61] §2.2. (The defining equations for this notion are (11.2),
(11.3), and (11.6).)

We now consider in particular C = RM , where R is assumed to sat-
isfy Axiom 1, and M is assumed to be infinitesimally linear and have
Property W. By Theorem 10.1 we then have a map

Vect(M)→ D = DerR(RM , RM ), (11.7)

(where Vect(M) is the RM -module of vector fields on M), given by

X 7→ [f 7→ X(f)].

This map is RM linear, by Theorem 10.3 (i) and (ii); and (iii) tells us
that it preserves the bracket operation.
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Theorem 11.1. If the map (11.7) is injective, then Vect(M), with its
RM -module structure, and the Lie bracket of §9, becomes an R-Lie alge-
bra. It becomes in fact a Lie module over RM , by letting the evaluation
map Vect(M) × RM → RM be the formation of directional derivative,
(X, f) 7→ X(f).

Proof. We just have to verify the equations (11.2), (11.3), and (11.6);
(11.2) and (11.3) follow, because (11.7) preserves the R-linear structure
and the bracket; to prove (11.6) means to prove for X1, X2 ∈ Vect(M)
and φ : M → R

[X1, φ ·X2] = X1(φ) ·X2 + φ · [X1, X2]. (11.8)

By injectivity of (11.7), it suffices to prove for arbitrary f : M → R

[X1, φ ·X2](f) = (X1(φ) ·X2)(f) + (φ · [X1, X2])(f)

but this is an immediate calculation based on Theorem 10.3, and The-
orem 10.1 (iii).

Note that (11.3) was proved also in §9 (Proposition 9.1) by “pure
geometric methods”; also, the Jacobi identity (11.2) can be proved this
way (cf. [71]), using P. Hall’s 42-letter identity in the theory of groups.
I don’t know whether (11.8) can be proved without resort to functional
analysis, i.e. without resort to (11.7), except in case where M is an
infinitesimally linear R-module satisfying Axiom 1, or if M is a “formal
manifold” in the sense of §17 below.20

Classically, for M a finite dimensional manifold, the analogue of the
map (11.7) is bijective, so that vector fields here are identified by the
differential operators to which they give rise. This has computational
advantages, but the geometric content (“infinitesimal transformations”)
seems lost.

We interrupt here the naive exposition in order to present a strong
comprehensive axiom (of functional-analytic character), which at the
same time will throw some light (cf. Proposition 12.2) on the question
when the ring RM is big enough to recover M , Vect(M), etc. Also the
assumption of (11.7) being injective is an assumption in the same spirit.
For a more precise statement, cf. Corollary 12.5.

EXERCISES
11.1. In any group G, let {x, y} := x−1y−1xy, and xy := y−1xy.
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Prove

{xy, {y, z}} · {yz, {z, x}} · {zx, {x, y}} = e

(P. Hall’s identity).

I.12 The comprehensive axiom

Most of the present § is not required in the rest of Part I, except in
Theorem 16.1. The reader who wants to skip over to §13, may in §16 take
the conclusion (“Axiom 1W ”) of Theorem 16.1 as his “comprehensive
axiom” instead.

Let k be a commutative ring in Set.
A finitely presented k-algebra is a k-algebra B of form

B = k[X1, . . . , Xn]/(f1(X1, . . . , Xn), . . . , fm(X1, . . . , Xn)) (12.1)

where the fis are polynomials with k-coefficients. Examples:

k[X] (i)

k[X]/(X2) (denoted k[ε]) (ii)

k[X,Y ]/(X2 + Y 2 − 1). (iii)

(Note: B is a ring in the category Set.) Each such presentation (12.1)
should be viewed as a prescription for carving out a sub“set” of Cn for
any commutative k-algebra (-object) C in any category E with finite
inverse limits. The “subsets carved out” by (i), (ii), and (iii) are

C itself (i′)

[[c ∈ C | c2 = 0]] (which, if C = R, is just D ) (ii′)

[[(c1, c2) ∈ C × C | c21 + c22 − 1 = 0]], the “unit circle” in C × C. (iii′)

We denote the object carved out from Cn by B by the symbol SpecC(B).
The notation is meant to suggest that we (for fixed C) associate a
“geometric” object in E to the algebraic object B (e.g. to the ring B

in (iii) associate “the circle” in (iii′)). If we denote the category of
finitely presented k-algebras by FPTk, then SpecC is a finite-inverse-
limit-preserving functor (FPTk)op → E with k[X] 7→ C, and, taking the
k-algebra structure on C suitably into account, this in fact determines
it up to unique isomorphism, see Appendix A. Also, if E is cartesian
closed,

SpecRX (B) = (SpecR(B))X ,
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for any X ∈ E .
We henceforth in this § assume that E is cartesian closed and has finite

inverse limits.
Then we can state the comprehensive Axiom for our commutative k-

algebra object R in E . (A related Axiom B.2 will be considered in III
§9.)

Axiom 2k. For any finitely presented k-algebra B, and any R-algebra
C in E, the canonical map (cf. below)

homR -Alg(R
SpecR(B), C)

νB,C- SpecC(B) (12.2)

is an isomorphism.

Here, RSpecR(B), like any RM , is an R-algebra, and homR -Alg denotes
the object (in E) of R-algebra maps.

For the case where B = k[X] so that SpecR(B) = R, SpecC(B) = C,
the map νB,C

homR -Alg(R
R, C) - C (12.3)

is: evaluation at idR ∈ RR. This determines it by Appendix A, (Theo-
rem A.1). The map νB,C occurs, in a more general context, in (A.1) in
Appendix A.

It is easy to see that if k → K is a ring-homomorphism, then for any
K-algebra object R, Axiom 2K implies Axiom 2k.

We have

Theorem 12.1. Axiom 2k implies Axiom 1 (as well as Axiom 1′, Ax-
iom 1′′, . . . ).

We postpone the proof until §16, where we prove a stronger result (Theo-
rem 16.1), involving the notion of Weil algebra, to be described there.

We derive now some further consequences of Axiom 2k. In the rest of
this §, R is a k-algebra object in a cartesian closed category E with finite
inverse limits, and is assumed to satisfy Axiom 2k. We use set theoretic
notation.

By an affine scheme (relative to R) we mean an object of form
SpecR(B) for some B ∈ FPTk. We then have

Theorem 12.2. Affine schemes M have the property that for any object
X ∈ E, the canonical map

MX η- homR -Alg(R
M , RX)
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given by

f 7→ [g 7→ g ◦ f ]

for f : X →M and g : M → R, is an isomorphism.

Proof. For each M = SpecR(B), we have the canonical map ν from
(12.2), with C = RX

homR -Alg(R
SpecR(B), RX)

ν- SpecRX (B),

and it is an isomorphism, by Axiom 2k. But SpecRX (B) ∼= (SpecR(B))X .
To see ν ◦ η = idMX , it suffices, by naturality of both, and by Appendix
A (Theorem A.1, last statement), to see this for the case B = k[Y ] (so
M = SpecR(k[Y ]) = R). For f ∈ RX = (Spec(k[Y ]))X ,

η(f) = [g 7→ g ◦ f ]

and applying ν means ‘evaluation at idR’. So

ν(η(f)) = idR ◦f = f.

Corollary 12.3. Each affine scheme M is reflexive in the sense that
the canonical map to the double dual, relative to R,

M - homR -Alg(R
M , R)

(sending m to ‘evaluation at m’) is an isomorphism.

Proof. Take X = 1 in the Theorem.

Corollary 12.4. Each affine scheme M has the property that its tan-
gent space TmM can he identified with the object of R-derivations from
RM to R relative to the R-algebra map evm (‘evaluation at m’).

Proof. In Theorem 12.2, take X = D = SpecR(k[ε]), and utilize
RD ∼= R[ε] (Corollary 1.2 of Axiom 1, which we may apply now, since
Axiom 1 holds in virtue of Theorem 12.1). The theorem then gives an
isomorphism

MD −→ homR -Alg(R
M , R[ε]). (12.5)

Now an R-algebra map from an R-algebra C into R[ε] is well known (cf.
[23] §20) to be the same as a pair of R-linear maps C → R, where the
first is an R-algebra map and the second is a derivation relative to the
first.

A related consequence is
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Corollary 12.5. Each affine scheme M has the property that the com-
parison map (11.7)

Vect(M)→ DerR(RM , RM )

is an isomorphism.

Proof. The right hand side sits in a pullback square

DerR(RM , RM )- - homR -Alg(R
M , RM [ε])

1
?

pidRM q
- homR -Alg(R

M , RM ),
?

where the right hand vertical map is induced by that R-algebra map
RM [ε] → RM which sends ε to 0. On the other hand, we have identifi-
cations (the middle one by Axiom 1)

RM [ε] ∼= (R[ε])M ∼= (RD)M ∼= RM×D,

and under these identifications, the right hand vertical map gets identi-
fied with the right hand vertical one in the commutative diagram

Vect(M)- - MM×D
∼=- homR -Alg(R

M , RM×D)

1
?

pidMq
- MM

?

∼=
- homR -Alg(R

M , RM )
?

Here the vertical maps are induced by the map M → M ×D given by
m 7→ (m, 0), and the horizontal isomorphisms are those of Theorem 12.2.
The left hand square is a pullback. Thus Vect(M) ∼= DerR(RM , RM ).
We leave to the reader to keep track of the identifications.

Proposition 12.6. The R-algebra RR is the free R-algebra on one gene-
rator, namely idR ∈ RR.

(By this we mean that for any R-algebra C, the map “evaluation at idR”

homR -Alg(R
R, C)→ C

is an isomorphism.)
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Proof. We have

homR -Alg(R
R, C) = homR -Alg(R

SpecR(k[X]), C) ∼= SpecC(k[X]) = C,

the isomorphism being a case of the ν of Axiom 2k.

Note that if we letX denote the identity map of R, which is a standard
mathematical practice, then the Proposition may be expressed

RR = R[X].

Proposition 12.7. The functor FPTk → R -Alg given by

B 7→ RSpecR(B)

preserves finite colimits.

Proof. For any R-algebra C, and any finite colimit lim−→i
(Bi), we have

(writing Spec for SpecR), by Axiom 2k

homR -Alg(R
Spec(lim−→Bi), C) ∼= SpecC(lim−→Bi)

∼= lim←−SpecC(Bi)

(because SpecC : (FPTk)op → E is left exact); and then, by Axiom 2
again,

∼= lim
←

homR -Alg(R
Spec(Bi), C)

= homR -Alg(lim−→RSpec(Bi), C),

naturally in C. By Yoneda’s lemma, and keeping track of the identifi-
cations, the result follows.

EXERCISES
12.1. It will be proved in §16 that Axiom 2k implies that R has the

properties: it is infinitesimally linear and has Property W as well as the
Symmetric Functions Property, (provided k is a Q-algebra).21 Assuming
this result, prove that Axiom 2k implies that any reflexive object, and
in particular, any affine scheme, has these three properties.

Hint: RX has for any X, these properties. Now use that
homR -Alg(R

M , R) is carved out of RRM

by equalizers with values in R,
and use Exercise 6.6.

12.2. Construct, on basis of Axiom 1 alone, a map like (12.5) (not
necessarily an isomorphism). Use this to construct a map

MD → homR−lin(RM , R)× homR−lin(RM , R)
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where homR−lin denotes the object of R-linear maps. Prove that if M
is reflexive, then this map is injective.

12.3. Generalize Exercise 12.2: assuming Axiom 1′, construct a map

MDk →
∏

homR−lin(RM , R)

(k+1-fold product), and prove that ifM is reflexive, this map is injective.
The object homR−lin(RM , R) should be considered the object of dis-

tributions on M with compact support. It reappears in §14.22

I.13 Order and integration

The geometric line has properties and structure not taken into account in
the preceding §’s, namely its ordering, and the possibility of integrating
functions. The axiomatizations of these two things are best introduced
together, even though it is possible to do it separately; thus, an obvious
Axiom for integration would be to require existence of primitives (anti-
derivatives):

∀f : R→ R ∃!g : R→ R with g′ ≡ f and g(0) = 0 (*)

Then the number
∫ b

a
f(x) dx (say) would be defined as g(b)− g(a). But

to define this number, it should suffice for f to be defined on the interval
[a, b] only, not on the whole line. So (*) is too weak an axiom because
it has too strong assumption on f .23 So, essentially, we want to have
an axiom giving antiderivatives for functions f : [a, b]→ R for [a, b] any
interval, and to define the notion of interval, we need to make explicit
the ordering ≤ of the geometric line R. Besides the commutative ring
structure on R, we consider therefore its ‘order’ relation ≤ which is
assumed

transitive : x ≤ y ∧ y ≤ z ⇒ x ≤ z,
reflexive : x ≤ x,

and

compatible with the ring structure : (13.1)

x ≤ y ⇒ x+ z ≤ y + z

x ≤ y ∧ 0 ≤ t⇒ x · t ≤ y · t
0 ≤ 1.
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Furthermore, we assume

d nilpotent ⇒ 0 ≤ d ∧ d ≤ 0. (13.2)

Note that we do not assume ≤ to be antisymmetric (“ x ≤ y ∧ y ≤
x⇒ x = y”) because that would force all nilpotent elements to be 0, by
(13.2). In other words, ≤ is a preorder, not a partial order.

Intervals are then defined in the expected way:

[a, b] := [[x ∈ R | a ≤ x ≤ b]].

Note that a and b cannot be reconstructed from [a, b], since for any
nilpotent d, [a, b] = [a, b + d], by (13.2). (For this reason, [a, b] will in
§15 be denoted |[a, b]|, to reserve the notation [a, b] for something where
the information of the end points is retained.)

Note also that, by (13.2), any interval [a, b] = U has the property (2.3)

x ∈ [a, b] ∧ d ∈ D ⇒ x+ d ∈ [a, b],

so that, if g : [a, b] → R, then g′ can be defined on the whole of [a, b]
(assuming Axiom 1, of course).

Finally, note that (13.1) implies that any interval is convex: x, y ∈
[a, b] ∧ 0 ≤ t ≤ 1⇒ x+ t · (y − x) ∈ [a, b].

In the rest of this §, we assume such an ordering ≤ on R; and we
assume Axiom 1 as well as the

Integration Axiom. For any f : [0, 1] → R, there exists a unique
g : [0, 1]→ R such that g′ ≡ f and g(0) = 0.

We can then define∫ 1

0

f(t) dt := g(1) (= g(1)− g(0)).

Several of the standard rules for integration then follow from the cor-
responding rules for differentiation (Theorem 2.2) purely formally. In
particular, the process

f 7→
∫ 1

0

f(t) dt

depends in an R-linear way on f , so defines an R-linear map

R[0,1] → R.

Also, for any h : [0, 1]→ R,
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∫ 1

0

h′(t) dt = h(1)− h(0). (13.3)

From these two properties, we can deduce

Proposition 13.1 (“Hadamard’s lemma”). † For any a, b ∈ R, any
f : [a, b]→ R, and any x, y ∈ [a, b], we have

f(y)− f(x) = (y − x) ·
∫ 1

0

f ′(x+ t · (y − x)) dt.

Proof. (Note that the integrand makes sense because of convexity of
[a, b]). For any x, y ∈ [a, b], we have a map φ : [0, 1] → [a, b] given by
φ(t) = x+ t · (y − x). We have φ′ ≡ y − x. So

f(y)− f(x) = f(φ(1))− f(φ(0)

=
∫ 1

0

(f ◦ φ)′(t) dt

(by (13.3))

=
∫ 1

0

(y − x) · (f ′ ◦ φ)(t) dt

(chain rule, Theorem 2.2)

= (y − x) ·
∫ 1

0

(f ′ ◦ φ)(t) dt,

the last equaltiy by linearity of the integration process. But this is the
desired equality.

It is possible to prove several of the standard rules for integrals and
antiderivatives, like “differentiating under the integral sign”. . . . Also,
one may prove, essentially using the same technique as in the proof of
Proposition 13.1, the following

Theorem 13.2. For any a ≤ b and any f : [a, b]→ R, there is a unique
g : [a, b]→ R with g′ = f and g(a) = 0.

We refer the reader to [44] for the proof. If f and g are as in the theorem,
we may define

∫ b

a
f(t) dt as g(b). This is consistent with our previous

definition of
∫ 1

0
f(t) dt.

† For the categorical interpretation of this, and the rest of the §, we need that the
base category is stably cartesian closed, cf. II §6.
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We quote from [44] some results concerning
∫ b

a
f(t) dt:

∫ b

a

f(t) dt depends in an R-linear way on f (where a ≤ b); (13.4)

∫ b

a

f(t) dt+
∫ c

b

f(t) dt =
∫ c

a

f(t) dt (where a ≤ b ≤ c). (13.5)

Let h : [a, b]→ R be defined by h(s) :=
∫ s

a
f(t) dt. Then

h′ ≡ f (where a ≤ b). (13.6)

Let φ : [a, b] → [a1, b1] have φ(a) = a1, φ(b) = b1 (where a ≤ b and
a1 ≤ b1). Then, for f : [a1, b1]→ R,∫ b1

a1

f(t) dt =
∫ b

a

f(φ(s)) · φ′(s) ds. (13.7)

EXERCISES
13.1 (Hadamard). Assume Axiom 1 and the Integration Axiom. Prove

that

∀f : R→ R ∃g : R×R→ R with

∀(x, y) ∈ R×R : f(x)− f(y) = (x− y) · g(x, y).
(13.8)

13.2 (Reyes). Prove that the g considered in (13.8) is unique provided
we have the following axiom24

∀h : R→ R : (∀x ∈ R : x · h(x) = 0)⇒ (h ≡ 0). (13.9)

Hint: to prove uniqueness of g, it suffices to prove

(x− y) · g(x, y) ≡ 0⇒ g(x, y) ≡ 0;

if (x − y) · g(x, y) ≡ 0, substitute z + y for x, to get z · g(z + y, y) ≡ 0.
Deduce from (13.9) that g(z + y, y) ≡ 0.

For models of (13.8) and (13.9), cf. III Exercise 9.4.

13.3 (Reyes). Assume Axiom 1, (13.8) and (13.9). Prove that f ′(x) =
g(x, x), where f and g are related as in Exercise 13.1; prove also (without
using integration) that

f(y)− f(x) = (y − x) · f ′(x) + (y − x)2 · h(x, y) (13.10)
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for some unique h. (Further iteration of Hadamard’s lemma is also
possible.) Prove that h(x, x) = 1

2f
′′(x).

13.4. Note that
∫ b

a
f(t) dt is defined only when a ≤ b. Why did we

not have to make any assumptions of that kind in Proposition 13.1?

13.5. Prove∫ b1

a1

∫ b2

a2

f(x1, x2) dx2 dx1 =
∫ b2

a2

∫ b1

a1

f(x1, x2) dx1 dx2.

I.14 Forms and currents

There are several ways of introducing the notion and calculus of dif-
ferential forms in the synthetic context; for many objects, they will be
equivalent. One way is a direct translation of the ‘classical’ one, others
are related to form notions occurring in modern algebraic geometry. The
various notions also have varying degree of generality in so far as the
value object is concerned.

Let M be an arbitrary object, and V an object on which the mul-
tiplicative monoid (R, ·) acts. Let n ≥ 0 be a natural number. The
following form notion is the one that (for V = R) mimicks the classical
notion.

Definition 14.1. A differential n-form ω on M with values in V is a
law which to any n-tuple (t1, . . . , tn) of tangents to M with common base
point associates an element ω(t1, . . . , tn) ∈ V , in such a way that for any
λ ∈ R and i = 1, . . . , n,

ω(t1, . . . , λ · ti, . . . , tn) = λ · ω(t1, . . . , ti, . . . , tn) (14.1)

and such that for any permutation σ of {1, . . . , n}, we have

ω(tσ(1), . . . , tσ(n)) = sign(σ) · ω(t1, . . . , tn). (14.2)

In case V is an R-module satisfying the vector form of Axiom 1,
it follows from Proposition 10.2 that (14.1) is actually the expected
multilinearity condition, in cases where each tangent space TmM is an
R-module, in particular when M is infinitesimally linear. Hence we may
refer to (14.1) as ‘multilinearity’. Also, (14.2) says that ω is alternating.

So an n-form on M with values in V is a fibrewise multilinear alter-
nating map
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TM ×M TM ×M . . .×M TM → V

where the left-hand side as usual denotes the ‘n-fold pullback’:

[[(t1, . . . , tn) ∈ TM × . . .× TM | ti(0) = tj(0) ∀i, j]].

The object of n-forms on M with values in V is then a subobject of

V TM×M ...×M TM

carved out by certain finite inverse limit constructions.
Note that if M is infinitesimally linear, then

TM ×M . . .×M TM ∼= MD(n),

so that an n-form is a map

MD(n) → V (14.3)

satisfying certain conditions. The object of n-forms on M with values
in V is thus a subobject of

V (MD(n)).

Note that 0-forms are just functions M → V .
We shall, however, mainly consider another form-notion. Let M be

an arbitrary object, and n ≥ 0 an integer. A map

Dn τ - M

will be called an n-tangent at M . The object of these is MDn

. It carries
n different actions of the multiplicative monoid, (R, ·), denoted γi:

γi : MDn

×R→MDn

(i = 1, . . . , n)

where, for λ ∈ R and τ ∈ MDn

, γi(τ, λ) is the composite of τ with the
map Dn → Dn which multiplies on the i’th coordinate by the scalar λ
and leaves the other coordinates unchanged.

Let V be an object with an action of the multiplicative monoid (R, ·).
The form-notion we now present is not always, but often (for many
objects M), equivalent to the one given in Definition 14.1. For the rest
of this §, we shall be dealing with this new notion.

Definition 14.2. A differential n-form ω on M with values in V is a
map

MDn ω - V
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such that, for each i = 1, . . . , n,

ω(γi(τ, λ)) = λ · ω(τ) ∀τ ∈MDn

, ∀λ ∈ R (14.4)

and such that for any permutation σ of {1, . . . , n} we have

ω(τ ◦Dσ) = sign(σ) · ω(τ) (14.5)

(where Dσ permutes the n coordinates by σ).

Note that the inclusion i : D(n) ⊆ Dn induces a restriction map MDn →
MD(n). If M is infinitesimally linear, any differential form ω in the sense
of Definition 14.1 gives rise (by viewing it as a map (14.3) and composing
it with the restriction map) to a differential form ω̃ the sense of Definition
14.2: for τ an n-tangent

ω̃(τ) := ω(τ ◦ i) = ω(τ ◦ incl1, . . . , τ ◦ incln)

where incli : D → Dn injects D as the ith axis.

The object of n-forms will be a subobject of V (MDn
) carved out by cer-

tain finite-inverse-limit constructions, corresponding to the equational
conditions (14.4) and (14.5). We introduce the notation En(M,V ) for
it, like in [17] p. 355; En(M,R) is just denoted En(M). It is in an evident
way an R-module. Note that E0(M,V ) = V M .

The object V MDn

itself will be considered later (§20) under the name:
the object of infinitesimal (singular, cubical) n-cochains on M with val-
ues in V . A differential n-form in the sense of Definition 14.2 is such a
cochain (with special properties).

A map f : M → N gives, by functorality, rise to a map fDn

: MDn →
NDn

, namely τ 7→ f ◦ τ , for τ ∈MDn

, and this map is compatible with
the n different actions of (R, ·) and of the permutation group in n letters.
Therefore, if ω is a differential n-form on N , we get a differential n-form
on M by composing with fDn

; we denote it f∗ω. We actually get a map

E(N,V )
f∗- E(M,V ).

In case V is an R-module, this f∗ is R-linear.

Let V be an R-module.

Definition 14.3. A (compact) n-current on M (relative to V ) is an
R-linear map

En(M,V )→ V.
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Thus, the object of n-currents on M (relative to V ) is a subobject of
V E

n(M,V ), denoted En(M,V ).

The pairing

En(M,V )× En(M,V )→ V

will be denoted
∫

. Thus
∫

γ
ω = γ(ω) if γ is an n-current and ω is an

n-form. The contravariant functorality of the form notion gives immedi-
ately rise to covariant functorality of the current notion: if f : M → N ,
and γ is an n-current on M , then f∗ω is the n-current on N given by∫

f∗γ

ω :=
∫

γ

f∗ω

for any n-form ω on N .
Note that a 0-current (relative to R) is a distribution in the sense of

Exercise 12.3.
Among the n-currents are some which we shall call ‘infinitesimal sin-

gular n-rectangles’. They are given by pairs

(τ, d) (14.6)

where τ : Dn → M is an n-tangent, and d = (d1, . . . , dn) ∈ Dn. Such a
pair gives rise to the n-current

En(M,V )→ V

given by

ω 7→ d1 · . . . · dn · ω(τ). (14.7)

It will be denoted 〈τ, d〉, so that in particular∫
〈τ,d〉

ω := d1 · . . . · dn · ω(τ). (14.8)

Let 〈τ, d〉 be such an infinitesimal singular n-rectangle on M . If i =
1, . . . , n and α = 0 or 1, we define an infinitesimal singular (n − 1)-
rectangle on M ,

Fi,α〈τ, d〉,

“the iα’th face of 〈τ, d〉”, to be the pair consisting of the (n−1)-tangent

τ(−,−, . . . , α · di, . . . ,−)

and the (n− 1)-tuple (d1, . . . , d̂i, . . . , dn) ∈ Dn−1 (di omitted).
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We define the boundary ∂〈τ, d〉 of 〈τ, d〉 to be the (n− 1)-current

n∑
i=1

∑
α=0,1

(−1)i+αFi,α〈τ, d〉, (14.9)

“the (signed) sum of the faces of the rectangle”. The formula will be
familiar from the singular cubical chain complex in algebraic topology.

We shall utilize the geometrically natural boundary (14.9) to define
coboundaries of forms; for this, we shall assume that V is an R-module
which satisfies Axiom 1. As a preliminary, we consider functions φ :
MDn × Dn → V which have the properties (for all i = 1, . . . , n, all
λ ∈ R, etc.):

φ(γi(λ, τ), d) = λ · φ(τ, d) (i)

φ(τ, λ ·i d) = λ · φ(τ, d) (ii)

φ(τ ◦Dσ, d) = sign(σ) · φ(τ, d). (iii)

Clearly, the law (14.7) has these properties. But conversely

Proposition 14.4 Given φ : MDn ×Dn → V with properties (i), (ii),
(iii), then there exists a unique differential n-form ω : MDn → V with

φ(τ, d) =
∫
〈τ,d〉

ω (= d1 · . . . · dn · ω(τ)) ∀(τ, d) ∈MDn

×Dn.

Proof. By (ii), φ(τ, d) = 0 if one of the coordinates of d is 0, so it is of
form

φ(τ, d) = d1 · . . . · dn · ω(τ)

for some unique ω(τ) ∈ V , by “Property Wn” for V (Exercise 4.5). The
fact that ω as a function of τ is multilinear and alternating (in the sense
of (14.4) and (14.5)) follows from (i) and (iii) above, together with the
uniqueness assertion in Wn .

Let now θ be an (n − 1)-form on M with values in V . The map
φ : MDn ×Dn → V given by

(τ, d) 7→
∫

∂〈τ,d〉
θ

is quite easily seen to have the properties (i), (ii), and (iii) in Proposition
14.4. We therefore have
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Theorem 14.5. Given an (n − 1)-form θ on M (with values in V ).
Then there exists a unique n-form (with values in V ), denoted dθ (the
‘coboundary of θ’) so that for any current γ of form 〈τ, d〉 with τ ∈
MDn

, d ∈ Dn, ∫
∂γ

θ =
∫

γ

dθ. (14.10)

We have not yet defined the boundary ∂γ for arbitrary currents γ,
only for those of the form 〈τ, d〉. But now, of course, we may use (14.10)
to define ∂γ for any current γ. This will be considered in the next §.

Let us finally analyze more explicitly the 1-form df derived from a
0-form (= a function) f : M → V . For an infinitesimal 1-rectangle
〈τ, d〉, where τ : D →M , we have by (14.10)∫

〈τ,d〉
df =

∫
∂〈τ,d〉

f

= f(τ(d))− f(τ(0))

= d · (f ◦ τ)′(0).

(14.11)

Since also ∫
〈τ,d〉

df = d · df(τ), (14.12)

and (14.11) and (14.12) hold for all d ∈ D, we conclude, by cancelling
the universally quantified ds, that

(df)(τ) = (f ◦ τ)′(0), (14.13)

the principal part of f ◦ τ . So df itself is the composite

df = MD fD
- V D γ - V (14.14)

where γ is principal-part formation as in (7.4).

EXERCISES
14.1. Prove that the γ occurring in (7.4) and (14.14) may be viewed as

the coboundary of the identity map V → V (which may itself be viewed
as a V -valued 0-form on V ).

Thus, the fact that for arbitrary f : M → V , we have df = γ ◦ fD can
be deduced from naturality of the coboundary operator d:

df = d(idV ◦f) = d(f∗(idV )) = f∗(d(idV )) = f∗(γ) = γ ◦ fD.

14.2. Let M be an R-module satisfying the vector form of Axiom 1.
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IdentifyMD2
withM4 , via the mapM4 →MD2

given by (a, b1, b2, c) 7→
[(d1, d2) 7→ a + d1 · b1 + d2 · b2 + d1 · d2 · c]. So a differential 2-form ω

on M gets identified with a map M4 → V . The bilinearity of ω then
implies that ω, for fixed a, b1 depends linearily on (b2, c), and for fixed
a, b2, depends linearily on (b1, c). So

ω(a, b1, b2, c) = ω(a, b1, b2, 0) + ω(a, b1, 0, c)

= ω(a, b1, b2, 0) + ω(a, b1, 0, 0) + ω(a, 0, 0, c).

The second term vanishes. Hint: ω(a, b1, b2, 0) depends linearily on b2.
The third term vanishes. Hint: ω is alternating.

This exercise contains the technique for proving equivalence of the
form notions of Definitions 14.1 and 14.2 for suitable objects M .

I.15 Currents defined using integration. Stokes’ Theorem

In this §, we shall assume a preorder relation ≤ on R, and the Integration
Axiom of §13 (plus, of course, Axiom 1). We shall find it convenient to
write |[a, b]| for the set [[x ∈ R | a ≤ x ≤ b]] rather than [a, b], as in
§13. The notation [a, b] will denote certain currents (“intervals”) closely
related to |[a, b]|, but with the information of the end points a and b

retained.
Any R-valued n-form ω on a subset U ⊆ Rn, stable under addition of

nilpotents in all n directions, determines a function f : U → R, namely
the unique one which satisfies

ω((d1, . . . , dn) 7→ (x1 + d1, . . . , xn + dn)) = f(x1, . . . , xn) (15.1)

∀(x1, . . . , xn) ∈ U . It can be proved (see [45]) that the function f

determines ω completely; so let us write f dx1 . . . dxn for ω.
Given an n-tuple of pairs a1 ≤ b1, . . . , an ≤ bn, we define a “canonical”

n-current, denoted

[a1, b1]× . . .× [an, bn] (15.2)

on the set |[a1, b1]| × . . .× |[an, bn]|, by putting∫
[a1,b1]×...×[an,bn]

ω :=
∫ bn

an

. . .

∫ b1

a1

f(x1, . . . , xn) dx1 . . . dxn.

From (13.5) follows an ‘additivity rule’ for currents of form (15.2); e.g.
for a1 ≤ c1 ≤ b1 that the current (15.2) equals

[a1, c1]× [a2, b2]× . . .× [an, bn]+ [c1, b1]× [a2, b2]× . . .× [an, bn]. (15.3)
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The n-current (15.2) has 2 · n (n − 1)-currents as ‘faces’, defined much
in analogy with §14. Specifically, the iαth face (i = 1, . . . , n, α = 0, 1)
is obtained as

g∗([a1, b1]× . . .× [ai, bi]︸ ︷︷ ︸
omitted

× . . .× [an, bn]),

where

g(x1, . . . , xi−1, xi+1, . . . , xn) = (x1, . . . , xi−1, ai, xi+1, . . . , xn)

if α = 0, and similarly with bi instead of ai if α = 1. A suitable
alternating sum (in analogy with (14.9)) of these 2 · n (n − 1)-currents
is the ‘geometric’ boundary of the current (15.2).

Theorem 15.1 (Stokes). The geometric boundary ∂ of the current
(15.2) agrees with its current-theoretic boundary ∂ (recall that the latter
was defined in terms of coboundary of forms).

Proof. We shall do the case n = 2 only. We first consider the case
b2 = a2 + d2 (with d2 ∈ D). Let θ be any (n− 1)-form, i.e. a 1-form, on
|[a1, b1]| × |[a2, b2]|. We consider two functions g and h : |[a1, b1]| → R,
given by, respectively

g(c1) =
∫

∂([a1,c1]×[a2,b2])

θ

h(c1) =
∫

∂([a1,c1]×[a2,b2])

θ =
∫

[a1,c1]×[a2,b2]

dθ.

Clearly

g(a1) = h(a1) = 0. (15.4)

We claim that, furthermore, g′ ≡ h′. From the additivity rule (15.3) it
is easy to infer

g(c1 + d1)− g(c1) =
∫

∂([c1,c1+d1]×[a2,a2+d2])

θ,

(recalling b2 = a2 + d2), as well as

h(c1 + d1)− h(c1) =
∫

[c1,c1+d1]×[a2,a2+d2]

dθ.

But now we may note that we have an equality of currents

[c1, c1 + d1]× [a2, a2 + d2] = 〈τ, (d1, d2)〉,

where τ : D × D → R × R is just ‘parallel transport’ to (c1, a2) (i.e.
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(δ1, δ2) 7→ (c1 + δ1, a2 + δ2)); for, they take on a 2-form f(x, y) dx dy
value, respectively ∫ c1+d1

c1

∫ a2+d2

a2

f(x, y) dx dy

and

d1 · d2 · f(c1, a2)

by (15.1); these two expressions agree, by twofold application of “the fun-
damental theorem of calculus” (13.6). We conclude that g′(c1) = h′(c1),
and from the uniqueness assertion in the integration axiom and (15.4)
we conclude g ≡ h, in particular g(b1) = h(b1). This proves Stokes’
Theorem for “long thin” rectangles [a1, b1] × [a2, a2 + d2]. The passage
from these to arbitrary rectangles proceeds similarly by the uniqueness
in the integration axiom, now using the result proved for the long thin
rectangles to deduce equality of the respective derivatives.

In the following, In denotes both |[0, 1]| × . . . × |[0, 1]| as well as the
n-current [0, 1]× . . .× [0, 1].

Let f : In →M be an arbitrary map (a “singular n-cube in M”). We
may define an n-current (also denoted f) on M by putting∫

f

ω :=
∫

In

f∗ω

for ω an n-form on M ; – equivalently, f = f∗(In). The geometric
boundary ∂f of f is defined by∫

∂f

θ =
∫

∂(In)

f∗θ

or equivalently ∂f = f∗(∂(In)). It is a sum of 2n (n − 1)-currents of
form In−1 →M .

Corollary 15.2. Let θ be an (n − 1)-form on M , and f : In → M a
map. Then ∫

f

dθ =
∫

∂f

θ.

Proof. We have ∫
f

dθ =
∫

f∗(In)

dθ =
∫

∂(f∗(In))

θ
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(by definition of boundary of currents)

=
∫

f∗(∂(In))

θ =
∫

∂(In)

f∗θ

=
∫

∂(In)

f∗θ,

the last equality by the theorem.

In summary: we first defined the geometric boundary for infinitesimal
currents, and then defined coboundary of forms in terms of that, in other
words, so as to make Stokes’ Theorem true-by-definition for infinitesi-
mal currents. Then we defined boundary of arbitrary currents in terms
of coboundary of forms. So Stokes’ Theorem for the current-theoretic
boundary is again tautological. The nontrivial Stokes’ Theorem then
consists in proving that the current-theoretic boundary agrees with the
geometric boundary, and this comes about by reduction to the infinites-
imal case where it was true by construction.

I.16 Weil algebras

Let k be a commutative ring in the category Set. In the applications, k
will be Z, Q, or R. A Weil algebra structure on kn is a k-bilinear map

µ : kn × kn → kn

making kn (with its evident k-module structure) into a commutative
k-algebra with (1, 0, . . . , 0) as multiplicative unit, and such that the set
I of elements in kn with first coordinate zero is an ideal and has In = 0
(meaning: the product under µ of any n elements from I is zero). In
particular, each element of form (0, x2, . . . , xn) is nilpotent.

A Weil algebra over k is a k-algebra W of form (kn, µ) with µ a Weil
algebra structure on kn. Each Weil algebra comes equipped with a k-
algebra map

π : W → k

given by (x1, . . . , xn) 7→ x1, called the augmentation. Its kernel is I.
The basic examples of Weil algebras are k itself and k[ε] = k × k.
Since the map µ is k-bilinear, it is described by an n × n2 matrix
{γijk} with entries from k, namely

µ(ej , ek) =
n∑

i=1

γijkei
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where ei = (0, . . . , 0, 1, 0, . . . , 0) (1 in the ith position). Equivalently

µ((x1, . . . , xn), (y1, . . . , yn)) =
(∑

jk

γ1jkxjyk, . . . ,
∑
jk

γnjkxjyk

)
. (16.1)

The condition In = 0 is a purely equational condition on the ‘structure
constants’ γijk.

Suppose now that R is a commutative k-algebra object in a category
E with finite products. Then the description (16.1) defines an R-bilinear
map µR : Rn × Rn → Rn making Rn into a commutative R-algebra
object with (1, 0, . . . , 0) as multiplicative unit; we denote it R⊗W ,

R⊗W := (Rn, µR).

There is a canonical R-algebra map π, the augmentation, namely pro-
jection to 1st factor. Its kernel is canonically isomorphic to Rn−1 and is
denoted R⊗ I (‘the augmentation ideal’). The composite

(R⊗ I)n-- (R⊗W )n µR- R⊗W (16.2)

where µR is iterated multiplication, is the zero map, because it is de-
scribed entirely by a certain combination of the structure constants
which is zero by the assumption In = 0.

Each Weil algebra W = (kn, µ) is a finitely presented k-algebra (n
generators will suffice; sometimes fewer will do, like for k[ε] where one
generator ε suffices).

If R is a k-algebra object in a category with finite inverse limits,
objects of form SpecR(W ), for some Weil algebra over k, are called
infinitesimal objects (relative to R), (or formal-infinitesimal objects25,
more precisely). Each such has a canonical base point b

1
b = SpecR(π)- SpecR(W )

induced by the augmentation W → k (note SpecR(k) = 1). If W = k[ε],
SpecR(W ) = D, and the base point is

1
0- D = SpecR(k[ε]).

Of course 1, being SpecR(k), is also infinitesimal.
If E is furthermore cartesian closed, we shall prove, for any R-algebra

C

homR -Alg(R⊗W,C) ∼= SpecC(W ), (16.3)
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in a way which is natural in C. For,

homR -Alg(R⊗W,C) ⊆ homR−lin(Rn, C) ∼= Cn

and the subobject here is the extension of the formula “multiplication
is preserved”, i.e. is the sub“set”

[[(c1, . . . , cn) ∈ Cn | cjck =
∑

γijkci ∀j, k]]

(using set-theoretic notation for the equalizer in question), where the γijk

are the structure constants. This object, however, is also SpecC(W ), as
is seen by choosing the following presentation of W :

k[X1, . . . , Xn]→W = kn

with Xi 7→ ei and with kernel the ideal generated by

XjXk −
∑

i

γijkXi ∀j, k.

If R furthermore satisfies Axiom 2k, we have also the isomorphism ν:

homR -Alg(R
SpecR(W ), C) ∼= SpecC(W ),

whence we (by Yoneda’s lemma) get an isomorphism

α : R⊗W ∼= RSpecR(W ).

The isomorphism α here is a straightforward generalization of the α :
R[ε] → RD of Axiom 1. In fact, the exponential adjoint α̌ of α makes
the triangle

(R⊗W )× SpecR(W )
α̌ - R

(R⊗W )× homR -Alg(R⊗W,R)

∼=
6

ev

-

(16.4)

commutative, where the vertical isomorphism is derived from (16.3)
(with C = R), and ev denotes evaluation.

In the case where there is given an explicit presentation of W

p : k[X1, . . . , Xh] � W = kn

with kernel I, and if the polynomials φj = φj(X1, . . . , Xh) (j = 1, . . . , n)
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have p(φj) = ej , then, with D′ = SpecRW ⊆ Rh, the α̌ may be descri-
bed explicitly as

((t1, . . . , tn), (d1, . . . , dh)) 7→
n∑

j=1

tjφj(d1, . . . , dh). (16.5)

We may summarize:

Theorem 16.1. Axiom 2k for R implies Axiom 1W
k for R,

where we pose

Axiom 1W
k . For any Weil algebra W over k, the R-algebra homomor-

phism

R⊗W
α- RSpecR(W )

is an isomorphism (where α is the exponential adjoint of the α̌ described
in (16.4)).

The Axiom implies Axiom 1 (take W = k[ε]), Axiom 1′ (take W =
k[X]/(Xk+1), and even Axiom 1′′ (see Exercise 1).

Using the explicit description (16.5) of α̌, and with W and D′ as there,
Axiom 1W

k , for this Weil algebra, may be given the naive verbal form
(where the φjs are certain fixed polynomials with coefficients from k):

“Every map f : D′ → R is of form

(d1, . . . , dh) 7→
n∑

j=1

tj · φj(d1, . . . , dh) ∀(d1, . . . , dh) ∈ D′

for unique t1, . . . , tn ∈ R.”

Proposition 16.2. Axiom 1W
k for R implies that R is infinitesimally

linear, has Property W, and, if k contains Q, the Symmetric Functions
Property (4.5).26

Proof. Property W follows from Axiom 1 alone, as noted in Exercise
4.2, and the Symmetric Functions Property follows from Axiom 1′, by
Exercise 4.4 (provided Q ⊆ k). Finally, infinitesimal linearity follows
from Axiom 1′′, by Proposition 6.4.

Proposition 16.3. Axiom 1W
k for R implies that any map

SpecR(W )→ R,

taking the base point b to 0, has only nilpotent values, i.e. factors through
some Dk.
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Proof. Under the identification R ⊗ W ∼= RSpecR W , the maps
SpecRW → R with b 7→ 0 correspond to the elements r ∈ R ⊗ W

with π(r) = 0, i.e. to the elements of the augmentation ideal R⊗ I. But
such elements are nilpotent, since the composite (16.2) is zero.

(The Proposition is also true in ‘parametrized’ form: for any object
X, and any map g : X × SpecR(W )→ R such that the composite

X
〈X, b〉- X × SpecR(W )

g- R

is constant 0, g has only nilpotent values.)

We finish this § by describing a class of Weil algebras that will be used
in §18, and whose spectra will be denoted D̃(p, q) ⊆ Rp·q (p ≤ q). We
assume that k is a Q-algebra. Let W (p, q) be the Weil algebra given by
the presentation (i ranging from 1 to p, j from 1 to q)

W (p, q) = k[Xij ]/(Xij ·Xi′j′ +Xij′ ·Xi′j).

Note that since 2 is invertible, we may deduce that

Xij ·Xij′ = 0 in W (p, q) (16.6)

(and also Xi′j ·Xij = 0).

Theorem 16.4. A k-linear basis for W (p, q) is given by those polyno-
mials that occur as minors (= subdeterminants) of the p × q matrix of
indeterminates {Xij} (including the “empty” minor, which is taken to
be 1).

A proof will be given in Exercise 16.4 below.

Because of (16.6), the D̃(p, q)(= SpecRW (p, q)) is contained in D(q)×
. . .×D(q) ⊆ Rp·q (p copies of D(q) )

Axiom 1W for W (p, q), expresses, in view of the explicit linear basis
given above, that any map D̃(p, q)→ R is given by a linear combination,
with uniquely determined coefficients from R, of the ‘subdeterminant’
functions Rp·q → R. In particular, for p = 2, it is of form, for unique
a, αj , βj , and γjj′ ,{
d11 . . . d1q

d21 . . . d2q

}
7→ a+

∑
αjd1j +

∑
βjd2j +

∑
j<j′

γjj′ ·
∣∣∣∣ d1j d1j′

d2j d2j′

∣∣∣∣ ,
so that a function D̃(2, n) → R which vanishes on the two “copies of
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D(n)”, D(n)× {0} and {0} ×D(n) in D̃(2, n), is of form{
d11 . . . d1n

d21 . . . d2n

}
7→

∑
j<j′

γjj′ ·
∣∣∣∣ d1j d1j′

d2j d2j′

∣∣∣∣
with unique γjj′ . More generally, a function D̃(p, n) → Rm vanishing
on the p copies of D̃(p− 1, n) is of form

D 7→
∑
L

γL · ( L’th minor of D)

where L ranges over the set
(
n
p

)
of p× p minors of D. The subobject of

such functions is denoted [D̃(p, n), Rm]; thus

[D̃(p, n), Rm] = homp-linear; alternating(Rn × . . .×Rn︸ ︷︷ ︸
p

, Rm) (16.7)

The geometric significance of D̃(p, n) ⊆ D(n)× . . .×D(n) (p copies)
is the following

Proposition 16.5. Let di ∈ D(n) (i = 1, . . . , p). Then

(d1, . . . , dp) ∈ D̃(p, n)

iff

di − di′ ∈ D(n) ∀i, i′ = 1, . . . , p.

Proof. The latter condition expresses (writing di = (di1, . . . , din)) that
for any j, j′ = 1, . . . , n

(dij − di′j) · (dij′ − di′j′)

which, in view of dijdij′ = 0 (because di ∈ D(n)), and similarly for i′,
means

−dijdi′j′ − di′jdij′ = 0

which are exactly (minus one times) the equations definining D̃(p, n).

EXERCISES
16.1. Describe Weil algebras (over Z) whose SpecR are the infinitesi-

mal objects considered in §6:

Dk(n), D̃(2, n), Dc.

Using the Weil algebra for Dk(n), prove that Axiom 1W
Z implies Axiom

1′′.
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16.2. Prove that if W1 and W2 are Weil algebras over k, then so is
W1 ⊗k W2. Conclude that the product of two infinitesimal objects is
infinitesimal.

16.3. Let k be a field of characteristic 0. Make k[X1, . . . , Xn] into
a module over k[ ∂

∂X1
, . . . , ∂

∂Xn
] by letting ∂

∂Xi
act on polynomials by

partial differentiation. Prove that any finitely generated submodule E ⊆
k[X1, . . . , Xn] is finite dimensional as a vector space.

According to Emsalem [16], if φ1, . . . , φm is a k-basis for such E, the
k-linear dual E∗ of E has as a k-basis the functionals

Q 7→ φi(
∂

∂X1
, . . . ,

∂

∂Xn
)(Q)(0) i = 1, . . . ,m

(where Q ∈ k[X1, . . . , Xn]). Verify this for the case of one variable, i.e.
for n = 1.

Prove (Emsalem) that if J ⊆ k[ ∂
∂X1

, . . . , ∂
∂Xn

] is the ideal of those
elements whose action on E is zero, then k[ ∂

∂X1
, . . . , ∂

∂Xn
]/J is a Weil

algebra W of k-linear dimension m.
So as an algebra, W can be interpreted as an algebra of differential

operators E → E.
Prove that if n = 1 and E is the k[ ∂

∂X ]-submodule generated by Xm,
the resulting W is the one defining Dm.

Similarly, if n = 2, and E is the submodule generated by X1 ·X2, we
get D ×D. Also X2

1 +X2
2 yields the Dc of (6.6).

Finally, if n = 2, and E is the submodule generated by X1 and X2,
we get D(2).

16.4. (I am indebted to H.A. Nielsen for providing the following proof
of Theorem 16.4.) We use multilinear algebra as described in, say [47],
Chapter XVI. Let k be a commutative Q-algebra (in Set); ⊗ denotes
⊗k. Let E and F denote the k-modules kp and kq, respectively.

Identify the ring k[X11, . . . , Xpq] in a p · q matrix of indeterminates
with the symmetric k-algebra S•(E⊗F ), and the Weil algebra W (p, q),
considered above, with the quotient ring

S•(E ⊗ F )/I

where I is the ideal generated by the image of the embedding

S2E ⊗ S2F → S•(E ⊗ F )

given by

(e1 ⊗ e2)⊗ (f1 ⊗ f2) 7→ (e1 ⊗ f1) · (e2 ⊗ f2) + (e1 ⊗ f2) · (e2 ⊗ f1).
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Consider also the k-module L:⊕
r

Λr(E)⊗ Λr(F ),

and prove that it becomes a commutative k-algebra by putting

((e1 ∧ . . . ∧ er)⊗ (f1 ∧ . . . ∧ fr)) · ((e′1 ∧ . . . ∧ e′s)⊗ (f ′1 ∧ . . . ∧ f ′s))
=(e1 ∧ . . . ∧ er ∧ e′1 ∧ . . . ∧ e′s)⊗ (f1 ∧ . . . ∧ fr ∧ f ′1 ∧ . . . ∧ f ′s).

Define a k-algebra homomorphism ψ : S•(E ⊗ F )→ L by putting

ψ(e⊗ f) = e⊗ f ∈ Λ1E ⊗ Λ1F,

and prove that it vanishes on the ideal I, definining a k-algebra homo-
morphism ψ : S•(E ⊗ F )/I → L.

Define a k-module map φ : L→ S•(E ⊗ F )

φ((e1 ∧ . . . ∧ er)⊗ (f1 ∧ . . . ∧ fr)) =
1
r!
·

∣∣∣∣∣∣∣
e1 ⊗ f1 . . . e1 ⊗ fr

...
er ⊗ f1 . . . er ⊗ fr

∣∣∣∣∣∣∣ ,
and prove that the composite

L
φ- S•(E ⊗ F ) - S•(E ⊗ F )/I

is a k-algebra homomorphism φ.
Identifying S•(E ⊗ F ) with k[X11, . . . , Xpq], prove that the canonical

basis for ΛrE ⊗ ΛrF by φ goes into the set of r × r subdeterminants of
the Xijs (except for an invertible scalar factor), and deduce the validity
of Theorem 16.4.

I.17 Formal manifolds

We would like a class of geometric objects where one can define a k-
neighbour relation ∼k generalizing that of §6 for the Rn, and on which
one ‘locally’ can prove things by choosing local coordinate charts. For
this purpose we introduce the notion of formal-étale inclusion, and later
the stronger notion of open inclusion; out of these notions, one arrives at
the notion of formal manifold, respectively manifold. On formal mani-
folds, and in particular on manifolds, the neighbour relation and local
coordinate calculations make sense.

The notion of ‘formal manifold’ to be introduced here is slightly
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stronger than the one of [35], since we here shall consider external cov-
ering families. This is done in order to keep the categorical logic at a
lower level.

If D is a class of maps in a cartesian closed category E , we say that a
map f : M → N is D-étale if for each j : J → K in D, the commutative
square

MK fK
- NK

MJ

M j

?

fJ
- NJ

N j

?

(17.1)

is a pullback. (If D is small in a suitable sense, and E is suitably left
complete, we may even form the ‘object of D-étale maps from M to N ’
as a certain subobject of NM ; this is needed for the approach of [35], but
in the present set up, it suffices to be able to talk about the (external)
class of D-étale maps from M to N .)

If f1 : M1 → N1 and f2 : M2 → N2 are D-étale, then using that (−)K

and (−)J preserve products, it is easy to see that f1 × f2 : M1 ×M2 →
N1 ×N2 is likewise D-étale. Similarly for several factors.

The composite of twoD-étale maps isD-étale. Also, from a well-known
box lemma about pullback diagrams, and the fact that (−)J and (−)K

preserve pullbacks, it follows that in a pullback diagram
-

-

g

?

f

?

(17.2)

we have: f D-étale ⇒ g D-étale, (“D-étaleness is stable under pull-
back”).

In set-theoretic terms, the condition that (17.1) is a pullback says:
given g ∈ NK and h ∈ MJ so that g ◦ j = f ◦ h, there exists a unique
l ∈MK with

f ◦ l = g and l ◦ j = h;

diagrammatically, given a commutative square as below, there exists a
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unique diagonal fill-in (dotted arrow) making the two triangles commute:

J
j - K

M

h

?

f
-

l

�...
.....

.....
.....

.....
.....

...

N

g

?

This description of D-étaleness is adequate only in the naive approach.
The full description without exponentials is that for any object X (“pa-
rameter object”) and any j ∈ D, any commutative square

J ×X
j ×X- K ×X

M
?

f
-

�...
.....

.....
.....

.....
.....

....

N
?

has a unique diagonal fill-in (dotted arrow).
For the rest of this §, R is a k-algebra object in a finitely complete

cartesian closed category E , and is assumed to satisfy Axiom 2 or at least
Axiom 1W ; D is the class of base points 1 → SpecRW of infinitesimal
objects, in the sense of §16. The D-étale maps are then called formal-
étale. We assume that E has good exactness properties, say, is a topos.
In particular, we can form D∞ as in §5.

Proposition 17.1. The inclusion (D∞)n � Rn is formal-étale.

Proof. Since the product of D-étale maps is D-étale, it suffices to
consider D∞ � R. Arguing naively, the result is then contained in
Proposition 16.3. Arguing generally (with generalized elements, as in
Part II), one needs the “parametrized form” of Proposition 16.3.

We now agree to say that an object U that appears as domain of
a formal-étale monic map into Rn is an n-dimensional model object.
Examples are Dn

∞ (by Proposition 17.1), or Rn; also, for n = 1, the
object Inv(R) � R ‘of invertible elements in R’ will be a 1-dimensional
model object, giving rise to many other model objects, as we shall see
in §19.

A formal n-dimensional manifold is now defined to be an object M
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for which there exists a jointly epic class of monic formal-étale maps

{Ui � M | i ∈ I}

with each Ui an n-dimensional model.
Clearly, any n-dimensional model U , and in particular Rn itself, is a

formal n-dimensional manifold.
For each integer k ≥ 0, and each formal n-dimensional manifold M ,

we shall introduce a binary ‘k-neighbour’ relation ∼k, generalizing the
one considered in §6 for Rn. As a subobject of M×M , it will be denoted
M(k) ⊆M ×M ,

M(k) = [[(x, y) ∈M ×M | x ∼k y]].

It will be convenient to think in terms of the following completely general
notions. Suppose M and N are objects in a category with finite inverse
limits, and that SM ⊆M ×M and SN ⊆ N ×N are binary relations on
M and N , respectively. We say, then, that a map φ : M → N

preserves the S-relation if SM ⊆ (φ× φ)−1(SN )
reflects the S-relation if SM = (φ× φ)−1(SN )
creates the S-relation if φ preserves the S-relation and the follow-
ing square is a pullback:

SM
φ× φ- SN

M

p1

?

φ
- N.

p1

?

Here, p1 denotes projection to the first factor. Clearly, if φ is monic and
creates the S-relation, then it reflects it. In set theoretic terms

φ preserves S: ∀x, y ∈M xSy ⇒ φ(x)Sφ(y)
φ reflects S: ∀x, y ∈M xSy ⇔ φ(x)Sφ(y)
φ creates S: φ preserves S, and
∀x ∈M ∀z ∈ N : φ(x)Sz ⇒ ∃!y ∈M with xSy and φ(y) = z.

Recall the binary relation ∼k on Rn, considered in §6. The subobject
(Rn)(k) ⊆ Rn ×Rn may be identified with

Rn ×Dk(n)-
〈proj1,+〉- Rn ×Rn.

Lemma 17.2. Assume φ : U � Rn is a formal-étale monic, and define
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the binary relation ∼k on U so that φ reflects it, i.e. U(k) = (φ ×
φ)−1(Rn

(k)). Then φ creates the relation ∼k.

Proof. Consider the commutative diagram

U × U ⊇U(k)

U ×Dk(n)--

............................-

Rn ×Dk(n)

φ× φ

-

= Rn
(k)

U

proj1

?
-

φ
-

proj1

-

Rn

proj1

?

The inner square is evidently a pullback, whence we have the (monic)
comparison map (dotted arrow). We want to produce an inverse for it.
Since U(k) ⊆ U ×U , we should produce two maps U ×Dk(n)→ U . One
of them is just proj1. The other one we get by using the formal-étaleness
condition (“the parametrized form”) for φ on the commutative diagram

U
〈id, 0〉- U ×Dk(n)

Rn ×Dk(n)
?

U

id

?

φ
-

�..
....

....
....

....
....

....
....

....
....

....
....

....
....

....
.

Rn

+

?

to produce the dotted arrow.

From the Lemma we deduce in particular that if we view U as a
subobject of Rn via φ, then in naive terms,

x ∈ U ∧ d ∈ Dk(n)⇒ x+ d ∈ U.

Combining this with Corollary 6.5, it is easy to see that the relation
∼k on an n-dimensional model object U does not depend on the monic
formal-étale U � Rn chosen, so it is canonical.
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The following Lemma is now almost trivial:

Lemma 17.3. If V � U is a monic formal-étale map and U is an n-
dimensional model object, then so is V , and the map creates the relation
∼k.

Proposition 17.4. Let M be a formal n-dimensional manifold. Then
there exists precisely one binary relation ∼k on M such that for any
formal-étale monic φ : U � M with U an n-dimensional model, φ
creates the relation ∼k.

Proof. This is now a purely formal category-theoretic consequence of
the previous part of the §, and of the exactness properties assumed for
the ambient category E , which allow us to give the proof as if E were the
category of sets. We first prove the uniqueness. Suppose ∼ and ∼′ both
have the property. Let x ∼ y. By assumption, there is a formal-étale
monic φ : U � M from a model object U with x ∈ φ(U), so x = φ(ξ)
with ξ ∈ U . Since φ creates the relation ∼, there exists an η ∈ U with
φ(η) = y and ξ ∼k η. Since φ takes the relation ∼k on U to the relation
∼′ on M , we conclude that x ∼′ y.

To prove the existence, we define M(k) ⊆M ×M to be⋃
i∈I

(ψi × ψi)(U i
(k))

where ψi : U i � M is a covering class of formal-étale monics with each
U i a model object. We claim that each ψj then creates ∼k. For, suppose
x ∼ y in M (writing everywhere ∼ for ∼k). So there is a ψi : U i → M

with ψ−1
i (x) ∼ ψ−1

i (y) in Ui. Let ξ ∈ U j have ψj(ξ) = x. Consider
U i ×M U j . The inclusion of this into U i is formal-étale (formal-étale
maps being stable under pullback), so it creates ∼ by Lemma 17.3. So
not only do we, by assumption, have ξ there, going to ψ−1

i (x), but also
an η going to ψ−1

i (y), and with ξ ∼ η. Since the inclusion of U i ×M U j

into U j preserves ∼, the image of η in U j witnesses that ψj creates ∼.
The argument that an arbitrary formal-étale monic φ : U →M creates
∼k is similar (U a model object).

In analogy with the notation of §6 we may, for any formal manifold
M and any x ∈M , write Mk(x) for “the k-monad around x”,

Mk(x) := [[y ∈M | x ∼k y]]

which is useful when thinking naively (cf. the remarks in §6 about these
monads). For instance, saying that a monic map f : M → N creates
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∼k can be expressed: f maps Mk(x) bijectively onto Mk(f(x)). Also,
Mk(x) is isomorphic to Dk(m) (where m = dim(M)).

Proposition 17.5. Let f : M → N be any map between formal mani-
folds (not necessarily of same dimension). Then f preserves the k-
neighbour relation ∼k.

Proof. Since formal-étaleness is stable under pullback, we see, using
Lemma 17.3, that we may use a formal-étale monic covering of N by
models Vj , j ∈ J , to find a formal-étale monic covering of M by models
Ui, such that f maps each Ui into some Vj . Since Ui � M creates
and Vj � N preserves ∼k, it is enough to see the Proposition for the
restriction of f to Ui, which is a map φ : Ui → Vj . Using monic formal-
étale inclusions Ui ↪→ Rm, Vj ↪→ Rn (which create ∼k , by Lemma 17.3),
the result follows from Corollary 6.5.

In naive terms, the Proposition can be stated:

∀x ∈M : f(Mk(x)) ⊆Mk(f(x)).

Proposition 17.6. Any formal manifold M is infinitesimally linear,
and satisfies condition W and the symmetric functions property.27

Proof. We prove this first for the model objects U ⊆ Rn. The proofs
are so similar that we shall only give it for the property W, and we
give it naively, only. Let τ : D ×D → U be constant on the axes. By
property W for Rn, there exists a unique t : D → Rn making

D ×D
· - D

U

τ

?
- - Rn

t

?

commute; but by formal-étaleness of U � Rn, t factors through U .
For a general formal manifold M , suppose that τ : D × D → M is

constant on the axes, with value x ∈M , say. Let φ : U � M be monic
formal-étale with U a model and x in the image of φ. Since D × D is
infinitesimal and φ is formal-étale, τ factors across φ, τ = φ ◦ τ ′, and
using property W for U , we get a factorization of τ ′ over D ×D ·→ D,
hence also of τ . The uniqueness follows because any factorization of
τ : D × D → M over D × D ·→ D will map 0 into x, and hence by
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formal-étaleness of φ factor through U ; now use the uniqueness assertion
of property W for U .

EXERCISES
17.1. Assume f : M → N is D-étale. Prove that for any X ∈ E ,

fX : MX → NX is D-étale.

17.2. Assume E has the exactness property that jointly epic families
are stable under pullback (cf. Appendix B) (every topos has this prop-
erty). Prove that if 1 → D is a map in D, and {Ui → M | i ∈ I} is a
jointly epic class of D-étale maps, then the class {UD

i →MD | i ∈ I} is
jointly epic.

The result is reflected into the following naive argument: “If {Ui ↪→
M | i ∈ I} is a covering by formal-étale maps, any tangent vector
t : D →M is a tangent of one of the Uis; for since the family is covering,
t(0) ∈ Ui for some i ∈ I, and thus since Ui →M is étale, t factors across
it.”

17.3. Assume exactness properties like in Exercise 17.2, or equiva-
lently, validity of the mode of reasoning presented in naive terms there.
Prove that if U is a model object, then so is TU (and its dimension is
the double as that of U).

Prove also that if M is a formal manifold, then so is TM .

17.4. Assume exactness properties like in Exercise 17.2. Let M be a
formal manifold of dimension n. Prove that for x ∈ M , the R-module
TxM is isomorphic to Rn, and in particular satisfies the vector form of
Axiom 1W .

In non-naive formulation: TM →M , as an R-module object in E/M ,
is locally isomorphic to Rn (meaning to Rn ×M →M).

I.18 Differential forms in terms of 1-neighbour simplices28

Whenever we have a formal manifold M , we may use the binary relation
∼1 to form a simplicial object

M
�
� M(1)

��� M(1,1)

��
�� . . . (18.1)

where M(1) ⊆ M × M is as considered in the previous §, M(1,1) ⊆
M ×M ×M is given by

M(1,1) = [[(x, y, z) | x ∼1 y ∧ y ∼1 z ∧ z ∼1 x]]
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etc: (M(1,...,1) = [[(x1, . . . , xn) | xi ∼1 xj ∀i, j]]). The elements of M ,
M(1), and M(1,1) may be visualized as 0-, 1-, and 2-simplexes

• , • • ,
• •

JJ
• ,

where the lines indicate the relation of being 1-neighbours. The “face”
operators ∂i, i.e. the maps appearing in (18.1), are the operators “omit-
ting the ith vertex”. A degenerate simplex is one in which two vertices
are equal, e.g. (x, y, x) is a degenerate 2-simplex, and (x, y, z, y) is a
degenerate 3-simplex.

Note that there is an evident diagonal map ∆ : M → M(1) given
by x 7→ (x, x) (and in higher dimensions, there are many; they are the
“degeneracy operators”).

We assume in the following Axiom 1W .

Theorem 18.1. Given a map h : M → N between formal manifolds.
Then there is a bijective correspondence between

maps h : M(1) → N with h ◦∆ = h (i)

and

fibrewise R-linear maps H : TM → TN over h (ii)

(meaning H maps TxM linearily to Th(x)N for ∀x ∈ M ; both of these
tangent spaces are R-modules, since formal manifolds are infinitesimally
linear).

Proof. We shall give the correspondence only for the case where M and
N are model objects; the rest is straightforward patching. So assume
M ⊆ Rm, N ⊆ Rn with the inclusions being formal-étale. Then we have
isomorphisms

M(1) →M ×D(m)

(x, y) 7→ (x, y − x)

and

MD = TM
〈π, γ〉- M ×Rm

as well as

ND = TN
〈π, γ〉- N ×Rn
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where γ denotes principal-part formation. To abbreviate some termi-
nology in the following, we say that a map η : M ′ → N ′ from an object
M ′ →M over M to an object N ′ → N over N is lifting if the diagram

M ′
η - N ′

M
?

...................- N
?

can be completed (dotted arrow) in a commutative way. The dotted
arrow is said to be one by means of which η is lifting. By the above
isomorphisms, we then have the following string of conversions

M(1) −→ N (1)

M ×D(m) −→ N (2)

M −→ ND(m) (3)

M −→ N × homR-lin(Rm, Rn) (4)

M ×Rm −→ N ×Rn which is lifting and fibrewise linear (5)

TM −→ TN which is lifting and fibrewise linear (6)

In each of the 6 stages, there is an obvious condition concerning h, e.g.
for (1): the composite with ∆ : M →M(1) is h, and for (6): the map is
lifting by means of h. All these data correspond under the conversions.
Note that the passage from (3) to (4) is bijective in virtue of Axiom 1W

(actually Axiom 1′′ suffices). Thus we get a bijective correspondence
between data (i) and (ii). The fact that it does not depend on the formal-
étale embeddings of M and N into Rm and Rn, respectively (which
is what makes patching possible), follows because we can describe the
passage from (i) to (ii) explicitly without using the embeddings: Given
h : M(1) → N . We describe the resulting H : TM → TN (naively) as
follows: given (t : D → M) ∈ TM , with π(t) = x ∈ M . Since t(0) = x,
x ∼1 t(d) ∀d ∈ D, so h(x, t(d)) ∈ N makes sense ∀d ∈ D. Now

(d 7→ h(x, t(d)) ∈ TN

is a tangent vector at N , and it sends 0 to h(x, x) = h(x), so that its
base point is h(x).
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Corollary 18.2. Assume that V is an R-module which satisfies the vec-
tor form of Axiom 1W , and let M be a formal manifold. Then there is
a natural bijective correspondence between

maps h : M(1) → V with h ◦∆ ≡ 0 (i)

and

differential 1-forms on M with values in V. (ii)

Proof. If V is furthermore a formal manifold, this is a straightforward
consequence of the Theorem. In the general case, one must adapt the
proof rather than the theorem.

There is a related Theorem for higher forms. The n0 appearing is
typically the unit element of a group object G.

Theorem 18.3. Let M and N be formal manifolds and n0 ∈ N an
element, 1→ N . There is a natural bijective correspondence between

maps h : M(1,...,1) → N , taking value n0

on all degenerate simplices (i)

and

maps TM ×M . . .×M TM → Tn0N which are

k-linear and alternating. (ii)

(In (i), the index contains k 1s; in (ii), there are k factors TM .)

Proof. Again, we first assume that we have formal-étale inclusions
M ⊆ Rm and N ⊆ Rn; and assume n0 = 0 ∈ Rn. Then by Proposition
16.5,

M(1,...,1)
∼= M × D̃(k, n)

so that we have the following conversions:
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M(1,...,1) −→ N taking all degenerate simplices to 0

M × D̃(k,m) −→ N taking (x, d̃) to 0 whenever d̃ belongs to
any of the k copies of D̃(k − 1, n) in D̃(k, n)

M −→ [D̃(k,m), Rn] (recall the notation of (16.7))

M −→ homk−linear alternating(Rm × . . .×Rm, Rn)

M ×Rm × . . .×Rm −→ Rn fibrewise k-linear alternating

TM ×M . . .×M TM −→ Rn = T0N fibrewise k-linear alternating

The proof of the well-definedness of this passage, i.e. independence
of the choice of formal-étale embeddings of M and N (and hence the
patching argument) is less immediate than for the case k = 1 carried
out in the proof of Theorem 18.1, and depends on standard multilinear
algebra. We omit it.

Corollary 18.4. Let M be a formal manifold, and V an R-module
which satisfies the vector form of Axiom 1W . Then there is a natural
1–1 correspondence between

maps h : M(1,...,1) → V taking value 0 on degenerate simplices

and

differential k-forms on M with values in V

(differential forms taken in the sense of Definition 14.1).

Proof. This is proved the same way as Corollary 18.2 was proved from
Theorem 18.1.

An important example of a module which satisfies Axiom 1W without
being a formal manifold is Vect(M), the object of vector fields on a
formal manifold M . This is a consequence of Exercise 17.4.

We shall finish this § with some remarks without proofs (they can be
found in [37]) about a very natural and directly geometric differential-
form notion29 that becomes possible in virtue of the Theorems 18.1 and
18.3 (not their respective Corollaries). LetG be a group which is a formal
manifold. It is not assumed commutative, so we write multiplicatively;
e ∈ G is the neutral element. Let M be a formal manifold. A k-cochain
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on M with values in G is a map

ω : M(1, . . . , 1)︸ ︷︷ ︸
k times

→ G

(not to be confused with the cubical cochains considered in §14), and it
is called normalized if its value is e on any degenerate simplex (whence
its value on any simplex is “infinitesimal”, i.e. 1-neighbour to e ∈ G).
Normalized 1-cochains occur naturally in geometry: M might for in-
stance be a curve in physical space, and ω might associate to a pair of
neighbouring points on it the rotation ∈ SO(3) which the Frenet frame
gets by going from one of the points to the other.

It is not difficult to prove (by working in coordinates) that for a nor-
malized 1-cochain ω

ω(x, y) · ω(y, x) = e ∀x ∼1 y. (18.2)

Given a 1-cochain ω, we may define a 2-cochain dω by

(dω)(x, y, z) := ω(x, y) · ω(y, z) · ω(z, x)

(which one might think of as the ‘curve integral’ of ω around the edges
of the infinitesimal triangle xyz). From (18.2), it is immediate that if ω
is a normalized 1-cochain, then dω is a normalized 2-cochain.

Also, if j : M → G is any function (= 0-cochain), we may define a
normalized 1-cochain dj on M by putting

(dj)(x, y) := j(x)−1 · j(y),

and an immediate calculation shows that d(dj) = 0, the 2-cochain with
constant value e ∈ G.

Furthermore, if f : N →M is a map between formal manifolds, then
since f preserves the relation ∼1, we get immediately maps f∗ from the
set of k-cochains on M to the set of k-cochains on N , and

d(f∗j) = f∗(dj),

d(f∗ω) = f∗(dω),

whenever j, respectively ω, is a 0-, respectively 1-cochain on M .
In particular, consider i : G → G, the identity map on G; it is a G-

valued 0-cochain on G. Thus, di is a (normalized) 1-cochain on G, and,
for any j : M → G

dj = d(i ◦ j) = d(j∗i) = j∗(di) (18.3)
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so that the 1-cochain di on G plays a special universal role.
Now, by Theorem 18.3, for k = 1 and 2, normalized 1- and 2-cochains

on M with values in G correspond bijectively to differential 1- and 2-
forms on M with values in TeG. Let us by ω denote the differential form
corresponding to the normalized cochain ω, and also let us denote the
coboundary operator for differential forms by d. It is then possible (by
working in coordinates) to prove the following Comparison Theorem be-
tween d and d. It is not surprising that it should involve the Lie bracket
(Exercise 9.3) on TeG, since the definition of d utilizes the group struc-
ture on G, whereas TeG only remembers that G had a group structure
via the Lie bracket.

Theorem 18.5. For any normalized 1-cochain ω,

dω =
1
2
(
dω +

1
2
[ω, ω]

)
.

(Here, [ω, ω] is a certain 2-form on M with values in TeG defined using
the Lie bracket on TeG; generally

[ω, θ](u, v) = [ω(u), θ(v)]− [ω(v), θ(u)],

where ω and θ are 1-forms with values in a Lie algebra, and u and v are
tangent vectors at the same point of M .)

The universal role of the 1-cochain di on G is transferred to a similar
universal role for the 1-form di on G with values in the Lie algebra TeG;
di is the so-called Maurer–Cartan form Ω. Since ddi = 0, the theorem
has as immediate Corollary (take ω = di) the Maurer–Cartan formula

dΩ = −1
2
[Ω,Ω].

Several conditions get a more natural statement when expressed in
terms of G-valued normalized cochains rather than in terms of Lie-
algebra valued forms. For instance, the condition for a TeG-valued
1-form θ on M to be of form f∗Ω for some f : M → G then simply be-
comes the statement that the corresponding 1-cochain θ is a coboundary
θ = df , for some f . For,

θ = df

iff

θ = f∗di (by (18.3))
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iff

θ = f∗di = f∗di = f∗Ω.

Some of the notions above, and the comparison theorem, also hold
for cochains with values in groups G that are not themselves formal
manifolds, but are transformation groups on formal manifolds N . For
the full transformation group Diff(N) of all bijective maps N → N , TeG

is the Lie algebra Vect(N) of vector fields on N .

EXERCISES

18.1. Prove that if G = (R,+), then, identifying T0R with R, the
form Ω is just the γ of (1.3).

18.2. Prove that for any group object (G, ·) which is a formal manifold,
the Maurer–Cartan form Ω may be described by

Ω(t)(d) = t(0)−1 · t(d).

I.19 Open covers

In this §, we introduce a notion of open30 inclusion in any sufficiently
exact category E equipped with a k-algebra object R; the subobject
Inv(R) � R “of invertible elements” will be open, and, assuming Axiom
1W

k for R, also formal-étale. We shall furthermore introduce an Axiom
(Axiom 3) which will allow us to conclude: any open inclusion is formal-
étale. As a Corollary, we may conclude that certain specific objects
constructed out of R, like the projective plane over R, more generally,
any Grassmannian, are formal manifolds.

Assume in the rest of this § that E is a cartesian closed category with
finite inverse limits. The subobject Inv(R) � R can be defined using
the latter; it is the composite

[[(x, y) ∈ R2 | x · y = 1]] ⊂ - R×R
proj1- R,

which is always monic.

Proposition 19.1. Assume R satisfies Axiom 1W
k . Then the subobject

Inv(R) � R is formal-étale.

Proof. Let W = (kn, µ) be a Weil-algebra, and J = SpecR(W ) the
infinitesimal object it defines. We must prove the following square to be
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a pullback
(Inv(R))J- - RJ

Inv(R)
?

- - R.
?

Since (−)J commutes with inverse limits, it commutes with the forma-
tion of Inv, so that the question is whether

Inv(RJ)- - RJ

Inv(R)
?

- - R
?

is a pullback. By Axiom 1W , this diagram in turn is isomorphic to

Inv(R⊗W )-- R⊗W = Rn

Inv(R)
?

- - R

proj1

?

.

To see that this is a pullback amounts to proving that if
a = (a1, . . . , an) ∈ R ⊗W has a1 invertible in R, then a is invertible in
R ⊗W . We may divide through by a1, or equivalently, let us assume
a1 = 1. Let u denote −(0, a2, . . . ...an). Then since W is a Weil algebra,
un = 0. Then a = 1− u, and

(1− u) · (1 + u+ u2 + . . .+ un−1) = 1

so a is invertible.

We shall consider some stability properties which the class of formal-
étale maps has (under suitable assumptions on E); in conjunction with
formal-étaleness of Inv(R) � R, this will give us many new formal-étale
maps.

Let U denote the class of formal-étale maps. Then:

Proposition 19.2.
(i) U is closed under composition and contains all isomorphisms.31
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(ii) U is stable under pullbacks (cf. (17.2)).

Proof. Both follow from well-known diagrammatic lemmas about pull-
backs, and the fact that any functor (−)J (for any object J) preserves
pullbacks.

For the stability properties of U which involve colimits, we need more
exactness properties of E (satisfied whenever E is a topos), and

Axiom 3k. For any Weil algebra W over k, the functor (−)J : E → E
has a right adjoint (where J = SpecRW ).

We express this property of J by saying: J is an atom. Note that
(−)J always has a left adjoint, J × −. The existence of a right adjoint
is ‘amazing’: In the category of sets, only J = 1 has this property. Note
also that the axiom implies that (−)J preserves epics and colimits.

The category of Sets (in fact any topos) has the following exactness
property: given a commutative diagram

- -

?
γ

-- ? - ?

in which the left-hand square and the composite square are pullbacks,
and γ is epic, then the right-hand square is a pullback.

Proposition 19.3. Assume this exactness property for E, and assume
Axiom 3. Then we have the following stability property for the class U
of formal-étale maps:

(iii) Given a pullback square
-

v

?
g

--

u

?

with g epic and v ∈ U ; then u ∈ U (“U descends”).

Proof. As in the previous proof, let J = SpecRW , and consider the
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box

gJ
-

-

vJ

-

uJ

-

? g - ?

? -

v

-

?

u

-

Since (−)J preserves epics by Axiom 3, gJ is epic. The left-hand square
is a pullback since v is formal-étale, and the bottom is a pullback by
assumption. Hence the total diagram

vJ
-

?
u

- ?

is a pullback. It factors as the top square followed by the right-hand
square. The top square is a pullback since (−)J preserves pullbacks.
Now we just have to invoke the exactness property assumed for E , with
γ = gJ , to conclude that the right hand square is a pullback, which is
the desired formal-étaleness property for u with respect to J .

Assuming further “set-like” exactness properties of E (in particular,
if E is a topos), it is possible, in the same spirit as in the proof of
Proposition 19.3, to prove that Axiom 3 implies that the class U of
formal-étale maps, besides the stability properties (i), (ii) and (iii) of
Propositions 19.2 and 19.3 also has the properties:
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(iv) The epi-mono factorization of a map in U has each of the two
factors in U .

(v) If g ◦ p ∈ U , p ∈ U , and p is epic, then g ∈ U .

(vi) The inclusions into a coproduct incli : Ai �
∑
A belong to

U ; and a map f :
∑
Ai → B belongs to U if each f ◦ incli does.

(vii) If f : A→ B ∈ U , then ∆A : A→ A×B A ∈ U .

The class of stability properties (i)–(vii) were considered by Joyal
to define the concept of an abstract étaleness notion.32 The class of
formal-étale maps thus is an abstract étaleness notion, and it contains
Inv(R) � R. The smallest abstract étaleness notion containing this map
may be called the class of (strongly) étale maps; the monic strongly étale
maps are called open inclusions. What is important is that the natural
atlases in algebraic geometry (for Grassmannians relative to R, say) are
open inclusions with domain Rk for suitable k. These open coverings of
the Grassmannians, being coverings by formal-étale maps from Rk, allow
one to conclude that the Grassmannians are formal manifolds. (See e.g.
[42]; it contains a weaker theorem, but the proof will easily carry the
stronger result also.)

EXERCISES
19.1. Prove that the class U of formal-étale maps has the properties

(iv)–(vii) (for E a topos). Note: The proof of (v) may be found in [36]
Lemma 3.3, the second assertion in (vi) may be found in [42] Lemma
4.6.

19.2. Let R/ ≡ denote the set of orbits of the multiplicative action
of Inv(R) on R. Assume Axiom 1W and Axiom 3. Prove that “R/ ≡
believes that the addition map D × D → D2 is surjective”, i.e. that if
f i : D2 → R/ ≡ (i = 1, 2) has

f1(d1 + d2) = f2(d1 + d2) ∀(d1, d2) ∈ D ×D, (19.1)

then f1 = f2.
Hint (for a naive argument). Use that D2 is an atom to lift the f i

(i = 1, 2) to maps fi : D2 → R. Use next the assumption (19.1) and the
fact that D ×D is an atom to find h : D ×D → Inv(R) with

f1(d1 + d2) = h(d1, d2) · f2(d1 + d2) ∀(d1, d2) ∈ D ×D.

Prove that h may be chosen symmetric and with h(0, 0) ∈ Inv(R). Use
symmetric functions property for R and formal étaleness for Inv(R) to
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find k : D2 → Inv(R) with h(d1, d2) = k(d1 + d2) ∀(d1, d2) ∈ D × D.
Use symmetric functions property for R to conclude

f1(δ) = k(δ) · f2(δ) ∀δ ∈ D2,

and conclude f1 = f2 on D2.

19.3. Prove that the product of two atoms is an atom.

19.4. Prove that if D is an atom and B and X are arbitrary objects,
then (XD)B ∼= (X(BD))D.33 (Hint: the two functors E → E given by

(−)D ◦ (−×B) and (−×BD) ◦ (−)D

are isomorphic; now take their right adjoints.)34

I.20 Differential forms as quantities

The Axiom 3 introduced in the previous § is very radical: whereas Axi-
om 1 in its various forms, and its generalization, Axiom 2, lead to a
reformulation of the classical differential concepts (which is close to the
reasoning employed by Lie and others), Axiom 3 leads into new “pre-
viously undreamed-of” land where a “drastic simplification of the usual
differential form calculus may be in the offing” (to quote [51]).35

The simplification arises from the fact that Axiom 3 allows one to
replace differential n-forms on M , which are functionals, i.e. functions
defined on function spaces (namely the MDn

), by certain functions or
“quantities” defined on M itself,

M → Λn,

where the codomain is a highly non-classical object, constructed in virtue
of Axiom 3. (Since it classifies the cochains of the deRham complex,
it plays a role analogous to Eilenberg–Mac Lane complexes L(π, n) in
simplicial algebraic topology.36)

Let E be a cartesian closed category. We say that an object J ∈ E
is an atom if the functor (−)J : E → E has a right adjoint, which we
denote (−)J . Besides the usual “λ-conversion” rule

A× J → B

A → BJ ,
(20.1)

we thus have the further conversion

BJ → C

B → CJ
(20.2)
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Whereas the categorical logic, as we presently know it, and as it is
expounded in Part II, is well suited to express the λ-conversion (20.1)
in set-theoretic terms, it fails completely for the rule (20.2). An aspect
of the reason for this failure is that in the category of sets, J = 1 is
the only atom. (More generally, in toposes, (20.1) is an indexed, or
locally internal adjointness, [28], Appendix, whereas (20.2) is not, unless
J = 1.37)

Let now E be a cartesian closed category with finite inverse limits,
and let R be a k-algebra object in E satisfying Axiom 3.

Let V be an object on which (R, ·) acts (in the applications, V is an
R-module, typically R itself). By (20.2), there is a 1-1 correspondence
between (singular infinitesimal cubical) n-cochains on an object M , with
values in V ,

MDn ω - V

and maps

M
ω̂ - VDn .

Proposition 20.1. There exists a subobject Λn(V ) ⊆ VDn such that
for any M,ω, as above, ω̂ factors through Λn(V ) if and only if ω is a
differential n-form (in the sense of Definition 14.2).

Proof. We give it for the case n = 1 only. We construct two maps
a, b : VD → (VD)R, and take Λ1(V ) to be their equalizer; we construct
them by constructing for each X ∈ E , two maps (natural in X)

homE(X,VD)→ homE(X, (VD)R),

and apply Yoneda’s lemma. Now, the domain object here is identified
via (20.2) with

homE(XD, V ),

and the codomain object (via (20.1) and (20.2)) with

homE((X ×R)D, V ),

so we should construct processes a and b leading from V -valued 1-
cochains on X to V -valued 1-cochains on X ×R. The process a assigns
to a 1-cochain θ : XD → V the 1-cochain on X ×R which to

D
〈t, λ〉- X ×R (20.3)
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associates

θ(λ(0) · t) ∈ V.

The process b assigns to θ the 1-cochain on X × R which to (20.3)
associates

λ(0) · θ(t) ∈ V.

(Both these descriptions of a and b are naive, but they fall under the
scope of the categorical logic of Part II, since no right adjoints (−)D are
involved for a and b). Now it is easy to see that ω : MD → V is a 1-form
if and only if a(ω) = b(ω) : (M ×R)D → V . For, if a(ω) = b(ω), we get
in particular two equal composites

MD ×R
1×∆- MD ×RD ∼= (M ×R)D

a(ω) -

b(ω)
- V

which is the desired homogeneity condition. Conversely, the homogene-
ity condition implies the equality a(ω) = b(ω), because both these as
maps MD ×RD → V factor across

MD ×RD 1× π- MD ×R

(π = evaluation at 0 ∈ D), by construction.
Thus ω : MD → V is a 1-form iff a(ω) = b(ω), which is the case iff

a(ω̂) = b(ω̂) (by construction of a and b in terms of a and b), that is, iff
ω̂ factors across the equalizer of a and b.

For the case where V = R, we write Λn for Λn(V ). It represents, by
the Proposition, differential n-forms,

homE(M,Λn) ∼= set of differential n-forms on M, (20.4)

but we do not have (Λn)M ∼= object of differential n-forms on M ; see
Exercise 20.1.

The exterior derivative for differential n-forms introduced in Theo-
rem 14.5 is natural in M , and thus, by Yoneda’s lemma and (20.4), is
represented by a map

Λn−1 d - Λn.

We shall describe this d explicitly for n = 1. Clearly, Λ0 = R. The d in
question is the map

R
d- Λ1 ⊆ RD
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corresponding under (20.2) to the “principal-part” map (1.3) or (7.4):

RD γ - R.

For, if we denote the conversion (downwards) in (20.2) by ∧ , we have,
for any f : M → R

(df)∧ = (γ ◦ fD)∧ = γ∧ ◦ f,

the first equality sign by (14.14) and the second one by naturality of
(20.2) in the variable B.

Thus, if we rethink the differential-form notion via the Λns, we have
in particular

df = d ◦ f

(where d = γ∧), which surely is an amazing way to get the differential
(or gradient) df of a function f . Note also that for ω an n-form on M ,
and g : N →M ,

g∗ω = ω ◦ g,

as soon as we consider forms as maps into Λn (“quantities with values
in Λn”).

EXERCISES
20.1. For n ≥ 1, the only n-form on 1 is the form 0. So the object

of n-forms on 1 is 1. Conclude that (Λn)1(∼= Λn) is not the object of
n-forms on 1.

I.21 Pure geometry

It is natural to ask which axiomatizations of, say, projective geometry
are compatible with the present theory? Let us first look at plane pro-
jective geometry. Besides the primitive notions ‘point’ and ‘line’, we
would put a binary relation ‘distinct’ as a primitive. It is incompatible
with our theory to have “non-distinct implies equal” even though it is
compatible to have “non-equal implies distinct”. In particular, “equal”
will be stronger than “not unequal”.

Basic axioms are then “two distinct points determine a unique line”,
and “two distinct lines intersect in a unique point”. In Hjelmslev’s work
(as quoted in §1), two points always are connected by at least one line
(which is unique iff the points are distinct), whereas, in our context, we
do not want to assert even the existence of a connecting line, except



I.21 Pure geometry 91

for a pair of distinct points. We can argue for this feature in the affine
plane R ×R as follows. Let (d1, d2) ∈ D ×D. If we had a line through
(0, 0) and (d1, d2), say the line with slope α relative to the x-axis, then
d2 = α · d1, and hence d1 · d2 = 0; similarly if (0, 0) and (d1, d2) lie on a
line with a slope relative to the y-axis. In both cases d2 · d2 = 0, so we
arrive at the conclusion D(2) = D ×D, which contradicts Axiom 1, cf.
Exercise 4.6.

So, also in the projective plane we give up “any two points are con-
nected by at least one line” as well as the dual “any two lines have at
least one point in common”.

If we now turn to projective space, we have of course the phenomenon
of mutually skew lines l and m (every point on l is distinct from every
point on m), so they do not intersect, but for a more positive reason
than that which may cause two lines in the projective plane not to have
any point in common. It becomes imperative to have a notion “two lines
intersect” which is weaker than “having a point in common”. So “l and
m intersect” is not going to mean

∃P : P ∈ l ∧ P ∈ m, (21.1)

but rather

“the volume of the tetrahedron spanned by any two

distinct points on l and any two distinct points

on m is zero”

(21.2)

Now, of course, ‘volume’ of tetrahedra is not well-defined in the
projective space, but it is well-defined modulo multiplication by invert-
ible scalars.

More precisely, let R/ ≡ denote R modulo the action of the multi-
plicative group Inv(R) of units in R. It contains at least two distinct
elements {0} and {1}, but it also contains things like {d}, for any d ∈ D
(equivalence classes, or orbits, being denoted by curly brackets). For
any two lines l and m in projective space, the volume of the tetrahedron
spanned by two distinct points on l and two distinct points on m is
well-defined as an element of R/ ≡; let us denote it S(l,m) ∈ R/ ≡.

l and m intersect ⇔Def. S(l,m) = 0. (21.2′)

With this definition, any two coplanar lines intersect. It is clear that
(21.1) implies (21.2).

Having R/ ≡ (a kind of “truth value object” for geometry), we try
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to see to what extent some synthetic modes of speaking in classical dif-
ferential geometry become captured: – in particular, we ask whether
it is true that “the neighbouring generators of a ruled surface are in
general mutually skew, but there exist a special kind of ruled surface
in which they “intersect”, namely the developpables [Torsen]” (Klein
[29], p. 113)? Klein explains what he means by “intersect” in analytic
terms: “When two generators of a developpable ruled surface converge,
then their shortest distance becomes infinitely small in higher than first
order”. With the intersection notion we introduced above, this is para-
phrased: on any 1-parametrized family l(t) of lines in projective 3-space,
S(l(t), l(t + d)) = 0 ∀d ∈ D, but only for the developpables do we have
S(l(t), l(t + d)) = 0 ∀d ∈ D2. Calculations with Plücker coordinates
substantiate the correctness of the paraphrasing.

When axiomatizing projective space geometry, we would, besides the
distinctness relation, and the incidence relation (for points on lines and
planes), introduce the ‘intersection’ relation (21.2) for lines in space as
a primitive. However, for many arguments of geometrical-combinatorial
nature, the stronger ‘incidence-theoretic’ condition (21.1) can be used
instead, as will be illustrated now.

It is a geometric fact that the family of tangents of a space curve form
a developpable. How do we prove this synthetically? Let the space curve
be parametrized by the line R,

R
K - P3.

We are required to prove

S(l(t), l(t+ δ)) = {0} ∀δ ∈ D2, (21.3)

where l(s) denotes the line in P3 which is tangent to the curve K at the
point K(s). Now R/ ≡ has the property that it believes the addition
map D×D → D2 is surjective (cf. Exercise 19.2), i.e. it suffices to prove
(21.3) for all δ of form d1 +d2 with (d1, d2) ∈ D×D). Now consider the
point K(t+ d1). Since K(t) ∼1 K(t+ d1), we have

K(t+ d1) ∈ l(t)

(the tangent to K in K(t) may be defined as the unique line containing
K(t) and all its 1-neighbours on the curve). Similarly, since K(t+d1) ∼1

K(t+ d1 + d2), we have

K(t+ d1) ∈ l(t+ d1 + d2).
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But this means that the two lines l(t) and l(t + δ) (with δ = d1 + d2)
have a point, namely K(t+ d1), in common; so (21.1) and hence (21.2)
holds.

Leaving the problem of lifting R/ ≡-valued functions over R aside,
one can similarly make use of the principle, satisfied in many mod-
els: “R believes Inv(R) ↪→ R is surjective”, or the weaker “R believes
Inv(R) ∪ {0} ↪→ R is surjective”. In this way one recaptures the way
of reasoning often applied in “statements with truth value in R/ ≡ ”:
Namely that, for a statement involving two points, one may assume
these distinct (respectively, may assume them distinct or equal). All in-
cidence statements in geometry are such statements with “quantitative
truth values”.38

Notes 2006
1Re Exercise 1.2: A contrasting of our theory with Hjelmslev’s can be found

in [115].
2Re remark after Proposition 2.3: According to Lawvere, [136] Ex. 4, there

are models in which any δ ∈ D2 is of the form d1 + d2 with the di’s in D.
3Re Exercise 2.1: It is fair to say that some of the calculus in Convenient

Vector Space theory runs along similar lines; cf. [100], [99], [107], [110].
4Re Exercise 3.2: We now prefer to say that “R perceives Σ to be surjec-

tive”.
5Re Exercise 5.3: Some authors have used the terminology: “V is a Eu-

clidean R-module”.
6Re Axiom 1′′ in §6: These four lines were in my manuscript for the 1981

edition, but disappeared during the typing process.
7Re Formula (6.6): This object, and its higher dimensional analogues, form

the backbone in [114], [119].
8Re Definition 6.3 (infinitesimal linearity): This notion was subsumed (F.

Bergeron, [83]) into the more comprehensive notion of microlinear, cf. also
[121] (where the notion is called strong infinitesimal linearity), [142] V.1, [130]
2.3; see also Appendix D. This notion subsumes the “infinitesimal linarity”
considered here, as well as “Condition W”, and the “Symmetric Functions
Property” and some further properties utilized in [121], and in the writings of
Nishimura, ([143], [144], and the references therein).

9Re Exercise 6.6: In fact, microlinearity in the modern sense (Appendix
D) is stable under the processes mentioned.

10Re Exercise 6.7: In fact, these objects are microlinear in the modern sense
(Appendix D).

11Re Exercise 7.1: The combinatorics of the higher iterated tangent bundles
have been investigated by several people; notably White[152] and Nishimura,
[143].

12Re Exercise 7.2: The synthetic theory of connections has been elaborated
further in several subsequent papers. There are two approaches; one, like here,
where “parallel transport” is along a tangent vector, cf. [43], [121], [91], [142],
[144], and the other, where parallel transport takes place from a point to a
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neighbour point, cf. [109], [111], [117]. For both approaches, connections can
be considered in general bundles, nor just in tangent bundles. The neighbour
approach is also well suited to the Ehresmann notion of connection, which is
a structure in a groupoid; for this, see notably [111].

13Re Exercises 8.1-8.6: These exercises are elaborated on in [125], where
it is also utilized that the category of vector fields actually form a cartesian
closed category.

14Re Exercise 8.3: This exercise would be more adequately placed in the
next §9.

15Re Exercise 8.3: Assume also that M is infinitesimally linear.
16Re Exercise 8.4: This exercise would be more adequately placed in the

next §9.
17Re §9: A different proof of the Jacobi identity has been given by Lavend-

homme, cf. [129], or [132]; Nishimura [146] has given a completely different
proof, exploiting some new instances of microlinearity.

18Re Exercise 9.1: or even that X̌(d1) commutes with Y̌ (d2) for any (d1, d2) ∈
D(2).

19Re §11: Lavendhomme [132] Chapter 6 and 7 deal extensively with this
method (which is quite classical, see the survey of Mackenzie [137]).

20Re §11: R. Lavendhomme [129] has given a geometric proof of (11.8), just
assuming infinitesimal linearity and Condition W for M .

21Re Exercise 12.1: In fact, Axiom 2k implies microlinearity in the sense of
Appendix D.

22Re Exercise 12.3: A synthetic theory of distributions with not-necessarily-
compact support have been considered in [126]; it is less straightforward, but
it relates well to the classical theory, via the category of convenient vector
spaces, [100], [127].

23Re §13 (preamble): This is not quite true: in our [124], we are able to
reproduce the classical theory of the Wave Equation in dimensions 1, 2, and
3, without any assumption of ordering on R.

24Re Exercise 13.2: Lavendhomme has pointed out that this axiom can be
deduced from the Integration Axiom, cf. [132] Proposition 1.15.

25Re §16: Bunge, Dubuc, and Penon, see e.g. [88], study some (generally)
larger infinitesimal objects ∆, which are not to be considered formal infinites-
imal, since they, in suitable models like B, represent the notion of germ.

26Re Proposition 16.2: In fact, Axiom 1W
k implies that R is microlinear in

the sense of Appendix D, see Lavendhomme’s [131] or [132] Ch. 2 Proposition
8, where Axiom 1W

k is called “the general Kock axiom”.
27Re Proposition 17.6: In fact, any formal manifold is microlinear in the

sense of Appendix D.
28Re §18: The theory begun here has developed substantially, in particular

during the last decade; see [106], [94], [112], [117], [118], as well as [84], [85].
It goes well in hand with a combinatorial theory of connections, see notably
[111], [117] and [84].

29Re §18 (group-valued forms): This viewpoint, first studied in [37], has
been in the forefront recently, cf. my [111], [117], and Breen and Messing’s
[84], [85].

30Re §19 (preamble): more precisely Zariski-open; a different, “finer”, open-
ness notion, the logical opens, play a fundamental role in the advances made
by Bunge, Dubuc, and Penon, cf. the Notes for III §10.
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31Re Proposition 19.2: Note that we also have: if g ◦ p ∈ U and g ∈ U , then
p ∈ U .

32Re abstract étaleness notion: see [105].
33Re Exercise 19.4: Here, (−)D denotes the assumed right adjoint for (−)D.
34Re Exercise 19.4: Further categorical properties of atoms are in [153],

[134], and [123].
35Re §20 (preamble): see also [134].
36Re §20 (Eilenberg-Mac Lane complex): cf. Seminaire Cartan 1958/59,

Exposé 8 (by A. Douady).
37Re §20: The account of Local Internal Categories in Johnstone’s [28] is

quite condensed; a more elaborate account, by the same author, is in [103],
Chapter B.1 and B.2. A proof of the assertion “the only atom J , where
(−)J a (−)J is an indexed adjointness, is J = 1” may be found in Yetter’s
[153], or in my [120].

38Re §21: This is a too rash assertion. Recent work in pure incidence
geometric considerations in differential geometry do not utilize such truth
values, [113] and [116]. See also [82] for some synthetic considerations in pure
differential geometry and even mechanics.



PART II

Categorical logic

Introduction

It was stressed in the introduction to Part I that the Axioms and con-
cepts of synthetic differential geometry need to be interpreted in other
categories than the category of sets (notably in certain Grothendieck
toposes).

To this end, and because it in itself crystallizes some ideas, we for-
mulate them in diagrammatic terms, like when we express Axiom 1 by
saying that a certain map R×R→ RD is invertible. Such formulations
amount from a syntactic viewpoint to formulating things without use of
variable-symbols.

Thus, for instance, the associativity of the addition + on R is ex-
pressed variable-free by saying that

R×R×R
R×+- R×R

R×R

+×R

?

+
- R

+

?

is commutative, and expressing the other algebraic conditions on R simi-
larly, we arrive at the well-known notion of ring-object in a category with
finite products.

However, the use of variables is so useful a tool that one does not want
to abandon it even when working in categories. Variables range over sets
of elements. What are the elements of the objects in a category E , and
how are statements involving variables interpreted systematically?

96
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The answer is by no means new, but it is not easy to find a reasonable
account,1 so we try to give one. It will be essential for Part III.

II.1 Generalized elements

Definition 1.1. Let R be an object in a category E. An element of R
is an arrow (map) in E with codomain R. The domain of the map is
called the stage of definition of the element.

If r is an element of R, defined at stage X

X
r - R,

we also write r ∈X R or `X r ∈ R. One may even write r ∈ R if there
is no confusion.

If α : Y → X and r ∈X R, we get an element

r ◦ α ∈Y R,

also denoted α∗(r), which we think of as “r, but considered at the ‘later’
stage Y ”. An important abuse of notation is to write r instead of α∗(r),
thus omitting the change-of-stage map α from notation.

If the category E has a terminal object 1, then an element r of R
defined at stage 1 is called a global element of R (or a global section of
R). Given any Y ∈ E , we have the element r◦α ∈Y R, (where α : Y → 1
is the unique such map); or, by the abuse of notation just introduced,
r ∈Y R. (This is the reason for the name global element: we have the
element r at all stages Y .)

If R is a ring object (say) in a category E with finite products, then it is
well known (see e.g. [55] III.6, replacing the word ‘group’ with the word
‘ring’) that the ring object structure on R gives rise, for each X ∈ E , to
a ring structure, on the set homE(X,R). The additive neutral element
of R is a global element

1
0 - R.

For each X ∈ E , it gives rise to 0 ∈X R (omitting the change of stage
X → 1 from notation), and this is the additive neutral element in the
ring homE(X,R). (In fact, for any α : Y → X, α∗ : homE(X,R) →
homE(Y,R) is a ring homomorphism.) Thus, the abuse of notation
‘omitting the change of stage’ is related to the standard convention of
denoting by the same symbol 0 the zero elements of all rings.
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We note that if E = Set, and R ∈ E , then there is a bijective corre-
spondence between the set R and the set of global elements of the object
R: to r ∈ R, associate that unique map

1
prq - R

which sends the unique element of 1 (=the one-element set) to r. Thus,
the element-notion of Definition 1.1 is more general than the ordinary
one. Therefore, one sometimes calls elements in the sense of Definition
1.1 for generalized elements. (Perhaps, ‘parametrized elements’ would be
better; the stage-of-definition, X, is then to be viewed as the domain of
parameters.)

There exists a technique by which one can assume that any given
(generalized) element r : X → R is a global element, namely by replac-
ing the category E by the comma-category E/X of objects-over-X; this
works provided the ‘pullback functor’ E → E/X preserves the structure
in question. We return to this method in §6.

Note that there is a natural bijective correspondence between

elements of A×B (1.2)

and

pairs of elements of A and B with common stage of definition. (1.3)

Namely, to c : X → A × B, associate the pair of elements proj1 ◦c,
proj2 ◦c. Similarly for several factors.

II.2 Satisfaction (1)

We describe here how one talks about (generalized) elements by means
of mathematical language. To be specific, let us assume that R carries
some algebraic structure, say that of a commutative ring object.

If a, b, c, . . . now are elements of R, defined at same stage, X, say, then
we know what we mean by saying

a2 · b+ 2c = 0,

say (and similarly for other polynomial equations with integral coef-
ficients), simply because a, b, and c are elements in the ordinary ring
homE(X,R). We shall write

`X a2 · b+ 2c = 0 (2.1)
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to remind ourselves that the elements a, b, and c are defined at stage X,
and to make it conform with similar notation to be introduced now for
more complicated formulas.

We read `X as ‘at stage X, the following is satisfied’.2

The satisfaction relation ` is now defined by induction: suppose X ∈
E and suppose φ(x) is a mathematical formula, for which we, for any
α : Y → X and any element b ∈Y R, have already defined what we
mean by

`Y φ(b). (2.2)

Then we define

`X ∀x φ(x)

to mean that for any α : Y → X and any b ∈Y R, (2.2) holds. Note
that α will occur implicitly in (2.2), even though it may not be visible
due to the abuse of notation consisting in omitting change of stage from
notation.

We give an example. Assume for the sake of the argument that R is a
non-commutative ring object. We have, for any a : X → R (i.e. a ∈X R)
the formula

φ(x) = “x commutes with a”. (2.3)

For α : Y → X and b ∈Y R, we know what we mean by saying φ(b),
namely “b commutes with a (more precisely, with a ◦ α) in the ring
homE(Y,R)”. Now consider the formula

`X ∀x φ(x),

that is, the formula

`X ∀x : x commutes with a.

By the above definition of ` ∀x, this means

∀α : Y → X ∀b : Y → R, a · b = b · a in homE(Y,R).

(note again: a here really stands for a ◦ α). So to say

`X a is central

means more than saying that a is a central element in the ring
homE(X,R); it means that it remains central in all homE(Y,R), i.e. at
all later stages α : Y → X.
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As a particular case of the satisfaction relation for the universal quan-
tifier defined above, we note the following. If we can make sense to
` φ(b) for no matter which stage b is defined at, then the meaning of

`1 ∀x φ(x)

is simply that `Y φ(b) is true for all Y and all elements b defined at
stage Y , or simply: ` φ(b) holds for all generalized elements, no matter
what stage.

We next consider the logical construction ∃! (“there exists a unique”).
Suppose X ∈ E , and suppose φ(x) is a mathematical formula for which
we, for any α : Y → X and any element b ∈Y R have already defined
what we mean by

`Y φ(b). (2.4)

Then we write

`X ∃!x φ(x)

if for any α : Y → X, there exists a unique b ∈Y R for which (2.4) holds.

Finally, suppose X ∈ E , and suppose φ and ψ are mathematical for-
mulae for which we, for any α : Y → X, have already defined what we
mean by

`Y φ as well as by `Y ψ.

Then we write

`X (φ⇒ ψ)

if for any α : Y → X so that `Y φ, we also have `Y ψ; and we write

`X (φ ∧ ψ)

if `X φ and `X ψ. Also, of course,

`X (φ⇔ ψ)

is defined to mean

`X (φ⇒ ψ) ∧ (ψ ⇒ φ).

The relation (2.1) has the property: for any α : Y → X,

`X a2 · b+ 2c = 0 implies `Y (α∗(a))2 · α∗(b) + 2α∗(c) = 0

because α∗ : homE(X,R) → homE(Y,R) is a ring homomorphism. In
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the abuse of notation where we omit the α∗, this reads more simply: for
any α : Y → X

`X a2 · b+ 2c = 0 implies `Y a2 · b+ 2c = 0.

We express this property by saying that the formula a2 · b + 2c = 0 is
stable. Generally, a formula φ is called stable if `X φ and α : Y → X

imply `Y φ. The following is now a trivial observation:

Proposition 2.1. For any formulas φ and ψ, the formulas

∀x φ(x), ∃!x φ(x), φ⇒ ψ

are stable; and if φ and ψ are stable, then so is φ ∧ ψ.

If we are dealing with more than one object, say a ring object R and
a module object V over it, we may indicate what objects the elements
and variables are intended to range over in the standard way, e.g. by
writing

`1 ∀a ∈ R ∀u ∈ V ∀v ∈ V : a · (u+ v) = a · u+ a · v

for one of the distributive laws.
What would have happened if we in the last formula had written
∀(u, v) ∈ V × V instead ∀u ∈ V ∀v ∈ V ? No ambiguity would occur,
due to

Proposition 2.2. Assume `Y φ(a, b) is defined whenever α : Y → X

and a ∈Y A, b ∈Y B. Then

`X ∀x ∈ A : (∀y ∈ B : φ(x, y)) (2.5)

if and only if

`X ∀z ∈ A×B : φ(z). (2.6)

Proof. Assume (2.5). Let α : Y → X and let c : Y → A × B be
arbitrary; c is of form

(a, b) : Y → A×B

for a ∈Y A, b ∈Y B. By (2.5)

`Y ∀y ∈ B : φ(a, y), (2.7)

and in particular

`Y φ(a, b),

that is, `Y φ(c). This proves (2.6). Conversely, assume (2.6). We must
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prove (2.7) for arbitrary α : Y → X and a : Y → A. So let β : Z → Y

and b : Z → B be arbitrary. We must prove

`Z φ(a ◦ β, b),

but this follows by applying (2.6) for the stage change α ◦ β and the
element (a ◦ β, b) : Z → A×B.

Since we have given a semantics for expressions of type `X φ(a), it is
clear what is meant by saying that one such expression can be deduced
(= deduced semantically) from another. The proof of the Proposition
given is an example of two such deductions. There is also the possibility
of describing a notion of formal deduction, operating entirely with the
`X φ(a) as syntactic entitites; this we shall not go into.

EXERCISES
2.1. Prove that `X ∀x ∈ R (φ(x) ⇒ ψ(x)) if and only if for any

α : Y → X and any a : Y → R, `Y φ(a) implies `Y ψ(a).

2.2. Let R1 and R2 be ring objects in E . Let f : R1 → R2 be a map.
Describe in terms of elements of R1 and R2 what it means for f to be a
homomorphism of ring objects. Also, describe this by means of `.

2.3. Let R1 and R2 be ring objects in E , and let B be an arbitrary
object. Describe in terms of elements and ` what it means for a map
f : B×R1 → R2 to be a ring homomorphism with respect to the second
variable.

2.4. Exercises 8.1 and 8.5 below may be solved now.

II.3 Extensions and descriptions

Suppose φ(x) is a mathematical formula about elements of an object
R ∈ E , for which we, for any X ∈ E and any element a : X → R have
defined when

`X φ(a),

and assume φ is stable, i.e. for any α : Y → X, `X φ(a) implies `Y φ(a).
An extension for φ is a monic map

e : F � R

with `F φ(e), and universal with this property, meaning: for any X and
any b : X → R,

` φ(b) iff b factors through e.
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(The implication ‘⇐’ follows from stability of φ.) Clearly, if e′ : F ′ � R

is another extension for φ, there is a unique map f : F → F ′ with
e′ ◦ f = e, and this f is invertible; so the extension of φ is well-defined
as a subobject of R (cf. [55] V §7).

Assume that for each subobject of each object, we choose a represent-
ing monic map, which we denote ↪→ or ⊆ rather than �. (Frequently,
such maps are omitted from notation.) Monic maps of form ↪→ are called
inclusions. If the formula φ considered above has an extension, it has a
unique extension which is an inclusion, and this inclusion is denoted

[[φ]] ↪→ R

or

[[x ∈ R | φ(x)]] ↪→ R.

Not all formulas need have extensions, but if E has finite inverse limits,
and R is a ring object (say), any purely equational formula has one. For
example, the D considered in I.§1 is the extension of the formula x2 = 0.

If C � R is monic, and b : X → R is an arbitrary element of R,
we define `X b ∈ C to mean: b factors through C � R. (Clearly, this
is incomplete notation also, since the name of the map C → R, rather
than the name of its domain, should have been used.) So in particular,
with φ as above,

`X b ∈ [[x ∈ R | φ(x)]] iff `X φ(b).

Also, we see that any inclusion C ↪→ R may be considered as an exten-
sion, namely of the formula x ∈ C.

We have the following

Proposition 3.1 (Extensionality principle for subobjects).
Assume C1 ↪→ R and C2 ↪→ R are subobjects. Then C1 ⊆ C2 (meaning
C1 ↪→ R factors through C2 ↪→ R) iff

`1 ∀x ∈ R : x ∈ C1 ⇒ x ∈ C2.

Proof. The implication ⇒, is evident. For ⇐, use the assumption for
the specific element (C1 ↪→ R) ∈C1 R.

Extensions for formulas φ which are defined only for elements b defined
at stages later than a given stage X, i.e. for configurations
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Y
α - X

R
b q

also play a certain role; they require consideration of the comma category
E/X, cf. §6 below.

Suppose Φ is a mathematical law which to elements b of an object
R1 of E associates elements Φ(b) of an object R2 ∈ E , with Φ(b) being
defined at the same stage as b, and assume Φ commutes with change-of-
stage:

α∗(Φ(b)) = Φ(α∗(b))

for any α : Y → X, where X is the stage of definition of b. Then Φ is
nothing but a natural transformation

homE(−, R1)→ homE(−, R2),

and thus by Yoneda’s lemma (see e.g. [55] Corollary p. 61) of form

Φ(b) = f ◦ b

for some unique f : R1 → R2. We say that f is described by the law
Φ, or that Φ is a description of f . We shall refer to this principle for
constructing maps f in E from laws Φ as the Yoneda map construction
principle.

For example, if R is a ring object, the law

(a, b, d) 7→ a+ d · b

which to an element of R×R×R associates an element of R (using, for
any given stage X the ring structure on the set homE(X,R) ) describes
a map R×R×R→ R. (Note that we implicitly use the correspondence
(1.2) ↔ (1.3), (for three factors).)

Maps described by laws which are only defined for elements b defined
at stages later than a given stage X, i.e. laws which to configurations
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Y - X

R1
b q

associate elements Φ(b) ∈Y R2, also play a role, and can be treated using
the comma category E/X, cf. §6. However, if E has products, such a
law is clearly equivalent to a law which to elements of X×R1 associates
elements of R2 and thus describes a map

X ×R1 → R2

which one may think of as an X-parametrized family of maps from R1

to R2.

The fact that the map described by a given description is unique can
be formulated as

Proposition 3.2 (Extensionality principle for maps). Assume f

and g are maps R1 → R2. Then f = g iff

`1 ∀x ∈ R1 : f ◦ x = g ◦ x. (3.3)

Thinking of f and g as laws that to elements of R1 associate elements
of R2 and thus writing f(x) instead of f ◦x, we may of course write (3.3)
in the following way, which looks even more like the standard condition:

`1 ∀x ∈ R1 : f(x) = g(x) (3.4)

The notations have been chosen so as to remind one as much as pos-
sible of the ones well tested in the category of sets, so that one is lead to
expect certain properties well known from there. Such properties usually
turn out to hold also in the general situation. We give four examples
(Proposition 3.3–3.6); more follow in §4.

Consider arbitrary objects B and C in E .

Proposition 3.3. Let f : B → C be a map. Then f is invertible iff

`1 ∀y ∈ C ∃!x ∈ B : f(x) = y,

(where f(x), as in the remark after Proposition 3.2, denotes f ◦ x).

Proof. The implication⇒ is trivial. For the other implication, consider
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the element y = idC ∈C C. By assumption, there is a unique x ∈C B

with

f ◦ x = y (= idC). (3.5)

This x is a map C → B, which is, by (3.5), a right inverse for f . On the
other hand, by (3.5) we have

f ◦ x ◦ f = f = f ◦ idB .

Thus x ◦ f ∈B B and idB ∈B B are elements which satisfy

f ◦ z1 = f ◦ z2

when substituted for z1 and z2 respectively; such element is unique, by
the assumption, hence x ◦ f = idB . So x is a two-sided inverse for f .

We may introduce a name, say g, for the inverse of f , in the case the
conditions of Proposition 3.3 are satisfied. Then

`1 ∀y ∈ C ∀x ∈ B : (g(y) = x)⇔ (y = f(x)).

There is a more general situation where names can be introduced. Sup-
pose that B and C are arbitrary objects in E , and that φ(x, y) is a
formula, where x and y range over elements of B and C, respectively.

Proposition 3.4. Assume `1 ∀x ∈ B ∃!y ∈ C : φ(x, y). Then there
exists a unique g : B → C with

`1 ∀x ∈ B ∀y ∈ C : φ(x, y)⇔ y = g(x).

With the g thus defined,

`1 ∀x ∈ B : φ(x, g(x)).

We omit the proof which is similar to that of Proposition 3.3.

What is the condition for satisfaction of a formula in which enters the
symbol g, as introduced in this Proposition? Assume b ∈X B, and let
ψ(y) be a formula with y ranging over elements of C, defined at stages
later than X. Then, with φ and g as in Proposition 3.4, we have

Proposition 3.5. We have `X ψ(g(b)) if and only if

`X ∃!c ∈ C : ψ(c) ∧ φ(b, c). (3.6)

Proof. Assume `X ψ(g(b)). Take c = g(b); then certainly, `X ψ(c);
and `X φ(b, c), since `1 ∀x ∈ B : φ(x, g(x)). Also, c is the unique
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element ∈X C with this property, by the assumption of uniqueness in
Proposition 3.4.

Conversely, assume c : X → C satisfies (3.6). Since `X φ(b, c), and
`X φ(b, g(b)), we get by uniqueness c = g(b); by `X ψ(c), we conclude
`X ψ(g(b)).

For the final example, let φ1 and φ2 be formulae talking about ele-
ments of objects R1 and R2, respectively. Suppose they both have ex-
tensions:

H1 = [[x ∈ R1 | φ1(x)]] ↪→ R1

and

H2 = [[x ∈ R2 | φ2(x)]] ↪→ R2.

Then we have

Proposition 3.6. To describe a map H1 → H2, it suffices to describe
a map f : R1 → R2 with description r 7→ Φ(r), say, such that

`1 ∀x ∈ R1 : φ1(x)⇒ φ2(Φ(x)).

(Then the desired map H1 → H2 is the restriction of f to H1.)

EXERCISES
3.1. Prove that a map f : R1 → R2 is monic iff

`1 ∀x, y ∈ R1 : (f(x) = f(y))⇒ (x = y).

3.2. Let G be a monoid object in E (i.e. there is an associative G×G ·→
G with a two sided unit e : 1→ G). Prove that G is a group object (i.e.
construct an inversion map G→ G) if and only if

`1 ∀x ∈ G ∃!y ∈ G : x · y = e ∧ y · x = e.

II.4 Semantics of function objects

We assume now that E is a cartesian closed category. For any pair of
objects, R and D, we have the exponential object RD, and the bijective
correspondence (“λ-conversion”) for any X ∈ E

X −→ RD

X ×D → R
.
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In particular, taking X = RD, and taking the top map to be the identity
of RD, we get for the bottom map a map, denoted ev (for ‘evaluation’),

RD ×D
ev- R,

(the ‘end adjunction for the exponential adjointness’).
Now let f : X → RD and d : X → D be elements of RD and D,

respectively, defined at same stage X. We define a certain element f(d)
of R (defined at stage X) by

f(d) := (X
(f, d)- RD ×D

ev- R). (4.1)

Note that ev has description

(f, d) 7→ f(d).

We have to face that we in Proposition 3.2 also introduced the notation
f(x), there with another meaning, namely f ◦ x. This double use of
notation is, by experience, known not to cause serious confusion. The
situation where both meanings of the notation occur simultaneously is
the following: there is given

Y
x - X

f - RD

D.d - (4.2)

We then have the element

Y
(f ◦ x, d)- RD ×D

ev- R, (4.3)

which, by (4.1), is denoted (f ◦x)(d). Interpreting x as an element of X
(defined at stage Y ), and utilizing the notation of Proposition 3.2, i.e.
writing f(x) for f ◦ x, we arrive then at the notation f(x)(d) for (4.3).
Finally, interpreting x : Y → X as a change of stage from stage X to
stage Y , and omitting it from notation, we have that f ◦ x is denoted
just f , and so (4.3) is denoted f(d); summarizing

(f ◦ x)(d) = f(x)(d) = f(d). (4.4)

The exponential adjoint f∨ : X × D → R of f : X → RD may be
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described as the composite

X ×D
f ×D- RD ×D

ev- R.

So, for (x, d) ∈Y X ×D (i.e. for the situation (4.2)), we have

f∨(x, d) = ev ◦(f ◦ x, d) = (f ◦ x)(d) = f(x)(d).

This result, i.e.

f∨(x, d) = f(x)(d) (4.5)

justifies the double use of the f(·) notation, because it is the standard
way of rewriting a function in two variables x and d into a function in
one variable x whose values are functions in the other variable d, and
vice versa (i.e. λ-conversion).

The third notation f(d) occurring in (4.4) is essential in connection
with the `-notion. For instance, we have:

Proposition 4.1. (Extensionality principle for elements of func-
tion objects). Let fi ∈X RD, (i = 1, 2). Then

`X ∀d ∈ D : f1(d) = f2(d)

implies

`X f1 = f2.

(The converse implication is trivially true.)

Proof. It suffices to see f∨1 = f∨2 : X ×D → R. By the extensionality
principle for maps (Proposition 3.2), it suffices to see f∨1 (x, d) = f∨2 (x, d)
for an arbitrary pair (x, d) like in (4.2). But f∨1 (x, d) = f1(d), by (4.5)
and (4.4), and similarly for f2. The result now follows from the as-
sumption `X ∀d : f1(d) = f2(d), by considering the change of stage
x : Y → X.

How does one describe maps into function objects like RD ? To de-
scribe a map f : X → RD is equivalent, by exponential adjointness, to
describing a map f∨ : X ×D → R. If f∨ is described by a law Φ which
to an element

(x, d) ∈Y X ×D

associates an element

Φ(x, d) ∈Y R
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(at same stage), then we agree to use the following notation to describe
f itself:

x 7→ [d 7→ Φ(x, d)].

In other words, the conversion

X ×D −→ R

X −→ RD

looks as follows in terms of descriptions

(x, d) 7→ Φ(x, d)
x 7→ [d 7→ Φ(x, d)]

(4.6)

We note that if f : X → RD has description x 7→ [d 7→ Φ(x, d)], and we
have given a d of D defined at a later stage x : Y → X, i.e. we have a
configuration (4.2), then (4.6) and (4.5) imply

f(x)(d) = Φ(x, d) ∈Y R. (4.7)

If A and B are objects with some algebraic structure, say group ob-
jects, in a cartesian closed category with finite inverse limits, it is well
known (cf. Exercise 4.2) that one out of BA by an equalizer can carve
‘the subobject HomGr(A,B) ⊆ BA of group homomorphisms’, (and
similarly for ring objects, module objects, etc.). We shall now describe
these constructions using the technique introduced.

Let f ∈X BA. Then

`X f ∈ HomGr(A,B)

if and only if

`X ∀(a1, a2) ∈ A×A : f(a1 · a2) = f(a1) · f(a2). (4.8)

If A and B are abelian group objects, and R is a ring object acting on
A and B, making them into R-modules, then we can form a subobject
of HomGr(A,B), denoted HomR-mod(A,B), having the property

`X f ∈ HomR-mod(A,B)

if and only if

`X f ∈ HomGr(A,B) ∧ ∀r ∈ R ∀a ∈ A : f(r · a) = r · f(a). (4.9)

Similarly, if R is a ring object, and R → C1, R → C2 are R-algebra
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objects, we may form HomR-Alg(C1, C2), and give an elementwise de-
scription of this object in the style of (4.8) or (4.9).

We note that the description (4.8) of HomGr(A,B) may be interpreted
as saying: HomGr(A,B) ⊆ BA is the extension of the formula ∀(a1, a2) :
f(a1 · a2) = f(a1) · f(a2) (which is a formula with one free variable, f ,
ranging over BA), and similarly for the other Hom-objects.

One typical use of the method of describing maps by the element-
wise description of §3 is when we make HomGr(A,B) (for A and B

abelian group objects, written additively) into an abelian group object,
by defining the addition

HomGr(A,B)×HomGr(A,B)
+- HomGr(A,B)

by the description

(f1, f2) 7→ [a 7→ f1(a) + f2(a)].

By the convention used in (4.6), this describes at first only a map

BA ×BA → BA;

we want to apply Proposition 3.6 to get the desired map. We should
thus prove

`1 ∀f1, f2 ∈ BA ×BA : f1 and f2 are homomorphisms

⇒ f1 + f2 is a homomorphism.

This is a straightforward exercise using (4.6). Also Exercise 2.1 should
be used, to shorten the proof.

EXERCISES
4.1. Let R be a ring object in a cartesian closed category E . Describe

(using elements and descriptions as in §§1,3,4) a ring structure on RB

(where B is an arbitrary object).
If B → C is a map, prove that the induced map

RC → RB

is a homomorphism of ring objects (cf. Exercise 2.2).
Prove also that the composite

HomRing(R1, R2)×R1↪→ RR1
2 ×R1

ev- R2
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is a ring homomorphism with respect to the second variable (cf. Exercise
2.3).

4.2. Let A and B be abelian group objects. Consider the maps

BA ∆- BA ×BA

BA ×BA Bproj1 ×Bproj2
- (BA×A ×BA×A) ∼= (B ×B)A×A

(B ×B)A×A (+)A×A
- BA×A.

Prove that the composite of these three maps is a map BA → BA×A

with description

f 7→ [(a1, a2) 7→ f(a1) + f(a2)].

Similarly, construct in diagrammatic terms the map BA → BA×A with
description

f 7→ [(a1, a2) 7→ f(a1 + a2)]

(this is easier !). Argue that the equalizer of the two maps thus described
is HomAb(A,B).

In a similar vein, if A and B are equipped with actions µ : R×A→ A

and µ : R × B → B of an object R, construct in diagrammatic terms
two maps BA → BR×A whose equalizer is the extension of the formula

∀r ∈ R ∀a ∈ A : µ(r, f(a)) = f(µ(r, a))

(whose only free variable is f ranging over BA).

4.3. Let σ : R1 → RD
2 (R1, R2, and D arbitrary objects). Prove that

σ is monic iff

`1 ∀x, y ∈ R1 : (∀d ∈ D : σ(x)(d) = σ(y)(d))⇒ x = y.

(Hint: use Exercise 3.1 and Proposition 4.1.)

II.5 Axiom 1 revisited

Basic in the diagrammatic (= variable free) formulation of Axiom 1 is
the map

R×R
α - RD (5.1)

with description

(a, b) 7→ [d 7→ a+ d · b]. (5.2)
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We want to prove that the diagrammatic form of Axiom 1 (“α is invert-
ible”) is equivalent to the naive form (“every map D → R is uniquely of
form d 7→ a+d ·b”), provided we read the latter as talking about (gener-
alized) elements of RD , D and R, as in the previous four paragraphs. To
be precise, assume R is a commutative ring object in a cartesian closed
category E with finite inverse limits, and define D as the extension

D = [[x ∈ R | x2 = 0]].

Then we have

Proposition 5.1. The map α in (5.1) is invertible if and only if

`1 ∀f ∈ RD ∃!(a, b) ∈ R×R : ∀d f(d) = a+ d · b. (5.3)

Proof. By Proposition 3.3, α is invertible iff

` ∀f ∈ RD ∃!(a, b) ∈ R×R : α(a, b) = f.

Thus, it suffices to prove, for arbitrary elements f of RD and (a, b) of
R×R, defined at same stage (X, say), that

`X α(a, b) = f iff `X ∀d ∈ D : f(d) = a+ d · b.

Now, by the extensionality principle (Proposition 4.1)

`X α(a, b) = f iff `X ∀d ∈ D α(a, b)(d) = f(d).

But α(a, b)(d) = a+ d · b, by (4.7) and (5.2).

It is easy to deduce from (5.3) the other elementwise form of Axiom
1:

`1 ∀f ∈ RD ∃!b ∈ R : ∀d ∈ D f(d) = f(0) + d · b (5.4)

and vice versa. Combining (5.4) with Proposition 3.4 produces exactly
the map γ : RD → R (“principal part formation”) of I.(1.3).

We now revisit some of the differential calculus which is based directly
on Axiom 1.

First, if U ↪→ R is a subobject satisfying I (2.3), that is, `1 ∀x ∈
U,∀d ∈ D : x+ d ∈ U , then one can deduce from (5.3) or (5.4) that

`1 ∀f ∈ RU ∀x ∈ U ∃!b ∈ R : ∀d ∈ D f(x+ d) = f(x) + d · b. (5.5)

By Proposition 3.4, we therefore have a unique map

RU × U −→ R, (5.6)



114 Categorical logic

whose value at (f, x) ∈X RU × U we denote f ′(x); f ′(x) ∈X R, and
which satisfies

`1∀f ∈ RU ∀x ∈ U ∀b ∈ R :

(∀d ∈ D : f(x+ d) = f(x) + d · b)⇔ (b = f ′(x)),

and, as argued generally in Proposition 3.4, we then also have

`1 ∀f ∈ RU ∀x ∈ U : ∀d ∈ D f(x+ d) = f(x) + d · f ′(x), (5.7)

which is Taylor’s formula, Theorem 1.2.1.

EXERCISES
5.1. Prove that Axiom 1 can be formulated in a way which neither

uses the cartesian closed structure of E , nor any of the categorical logic
introduced, as follows:

“For any X ∈ E and any f : X × D → R, there exists a unique
(a, b) : X → R × R such that for any β : Y → X and any
d : Y → D, we have

f ◦ (β, d) = a ◦ β + d · (b ◦ β)

in homE(Y,R)”.

5.2. Prove that Axiom 1 implies

`1 ∀x, y ∈ R : (∀d ∈ D : d · x = d · y) ⇒ x = y.

II.6 Comma categories

Recall that if E is a category and X ∈ E , then the category E/X (or
(E ↓ X), [55] II.6) of objects over X has for its objects the arrows in E
with codomain X, and for morphisms commutative triangles

• - •

X
�

-

.

E/X always has a terminal object, namely idX : X → X. If E has a
terminal object 1, then E ∼= E/1 (letting R ∈ E correspond to R → 1 ,
the unique such map).

We henceforth assume that E has finite inverse limits. By making a
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choice of pullback diagrams, we can to every α : Y → X associate a
functor α∗ (“pullback functor”),

α∗ : E/X → E/Y,

which to an object f ∈ E/X associates that arrow which sits opposite
to f in the chosen pullback diagram

• - E

Y

α∗f

?

α
- X.

f

?

For the case where X = 1, and E/1 is identified with E , and α : Y → 1
is the unique such map, the functor α∗ : E → E/Y can be described, on
objects, by

R× Y

R 7→

Y

proj2

?

(6.1)

for R ∈ E .
It is well known that, for any X, E/X has finite inverse limits (con-

structed in terms of those of E), and that the pullback functors α∗ :
E/X → E/Y preserve these limits.

Now, if α : Y → X is an object of E/X, then there is a canonical
isomorphism of categories

(E/X)/α ∼= E/Y.

Thus, any result about functors of the type (6.1), which holds for arbi-
trary E with finite inverse limits, holds for any pullback functor α∗.

Also, if not only E , but also all the E/X, are cartesian closed (in which
case we say that E is stably cartesian closed), the pullback functors α∗

preserve exponential objects,

α∗(RD) ∼= α∗(R)α∗(D),

for any R,D ∈ E/X and α : Y → X.
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From these facts follows in particular that if R is a ring object in E ,
then R × X → X is a ring object in E/X, and if R satisfies Axiom 1
in E (or Axiom 1′,. . . , Axiom 2), then so does R × X → X as a ring
object in E/X (note that because D � R is formed by means of finite
inverse limits and the pullback functor preserves such, the D-object for
R×X → X is just D ×X → X).

Note also that if f ∈X R in E , then we may reinterpret f as a global
element of the object R×X → X corresponding to R in E/X:

X
(f, idX) - R×X

X

proj2
�

idX -

and conversely.
This means, as a general principle, that if one wants to study some

properties of generalized elements (of R, say), and the properties and the
notions entering are preserved by all pullback functors (“stable properties
and notions”), then it suffices to study the property for global elements,
(but in general categories).

For instance, if one wants to prove, say

`1 ∀f, g ∈ RR ×RR : (f · g)′ = f ′ · g + f · g′, (6.2)

this means proving something for arbitrary generalized elements f, g :
X → RR, but since Axiom 1, and also the differentiation process (as
can readily be proved) are stable, it suffices to prove (6.2) for global
elements f, g : 1→ RR, or by exponential adjointness, for f, g : R → R

actual maps; however, now the proof should be valid in any model E ′, R′
for Axiom 1, since we want to apply it for the case E ′ = E/X.

Under this viewpoint, for putting `1 in front of a sentence, it suffices
that the sentence (the notions in it) are stable and satisfied for global
elements in arbitrary models for the axiom.

It is clear from the preceding that the pullback functors α∗ : E/X →
E/Y are closely related to “change of stage” along α as considered in §1,
and, as there, it is a well tested abuse of notation to omit the symbol
α∗. Thus, if we consider a ring object R ∈ E , the ring object

R×X
proj2- X in E/X (6.3)
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may also just be denoted R. If E → X is an object in E/X which is
equipped with structure of module over the ring object (6.3), this abuse
of notation allows us to express this by just saying: it is an R-module
object in E/X.

For instance, if M is infinitesimally linear, the tangent bundle TM →
M in E/M is an R-module object there.

If we think of an α : Y → X as an element of X (defined at stage Y )

rather than as a change of stage, and (E
f→ X) ∈ E/X, then we would

call α∗(f) (or its domain object in E) for Eα, “the fibre of E over the
element α”.

We note that E → M gives rise to a family of objects Em (= m∗E)
indexed by the generalized elements m : Y →M of M .

It is immediate to analyze that, for (E → M) and (F → M) objects
of E/M , an element, defined at stage m : Y → M , of (F → M)(E→M)

is the same thing as (corresponds naturally to) a map in E

Em → F

commuting with the given maps to M . In particular, if F = (R×M →
M), such maps, in turn, correspond bijectively to maps Em → R in E .

The way to interpret those formulas in the naive approach, where one
variable ranges over objects indexed by a previous variable m (ranging
over M , say), is by ‘comprehending’ the M -indexed family of objects
into one object E →M in E/M , and then use the previously introduced
semantics, but now applied in the category E/M . An example is Theo-
rem I.13.2, and we shall by way of example refer to the theory of I §13
on order and integration. We assume that R is a ring object in a stably
cartesian closed category E with finite inverse limits, and that there is
given a subobject

≤i↪→ R×R;

we assume that elements of R are preordered by means of this, that is,
for x ∈X R and y ∈X R, we put

`X x ≤ y iff (x, y) factors through ≤i.
Of course, then, ≤i is the extension [[(x, y) ∈ R × R | x ≤ y]]. We
assume that the relation ≤ satisfies the hypotheses of I §13, like `1
∀(x, y, z) ∈ R×R×R : x ≤ y ∧ y ≤ z ⇒ x ≤ z, etc.

If b is a global element, b : 1→ R, it makes sense to ask, for any Y ∈ E
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and any a ∈Y R, whether

`Y a ≤ b,

and in fact, there is an extension for the formula x ≤ b, namely the top
composite in

[[x ∈ R | x ≤ b]] - ≤i proj1- R

X
?

b
- R

proj2

?

(6.4)

where X = 1 and where the square is formed as a pullback.
Now, if X is not necessarily 1, the top composite is not monic in

general, so it does not define a subobject [[x ∈ R | x ≤ b]] of R in the
category E . However. the top composite, together with the displayed
map [[x ∈ R | x ≤ b]] → X, define a monic map into R × X, and the
triangle

[[x ∈ R | x ≤ b]]- - R×X

X

proj2

?-

is then a subobject of R×X → X in E/X, or, with the abuse of notation
introduced, a subobject of R in E/X.

(We would have arrived at the same subobject by considering b as a
global element of R in E/X and applying the construction of extension
for the formula x ≤ b for this case.)

We conclude that the object proj2 : ≤i→ R in E/R is the compre-
hension of the family of objects [[x ∈ R | x ≤ b]] , where b ranges over
elements of R; for, by the pullback diagram in (6.4) above, it is seen to
have the desired fibre for any b ∈X R (X arbitrary). We denote this
object in E/R by the symbol [[x ∈ R | x ≤ b]]b∈R.

Similarly, we may form an object in E/R×R (respectively in E/ ≤i)
which is the comprehension of the family of objects [[x ∈ R | a ≤ x ≤ b]],
where (a, b) ranges over elements of R × R (respectively, over elements
(a, b) of R×R with a ≤ b). They are denoted similarly

[[x ∈ R | a ≤ x ≤ b]](a,b)∈R×R or [a, b](a,b)∈R×R
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and

[[x ∈ R | a ≤ x ≤ b]]a≤b or [a, b]a≤b (6.5)

respectively.
Now, if E is stably cartesian closed, we may in E/ ≤i form the expo-

nential object RC where C is short for (6.5). Its fibre over (a, b) ∈X ≤i
is just R[a,b] (since pullback functors preserve exponentials), so that RC

in E/ ≤icomprehends the family of objects R[a,b] indexed by all elements
(a, b) of ≤i.

This is the prerequisite for being able to interpret categorically the
integration Theorem I.13.2, which involves this family of objects. The
complete interpretation is:

“For any X ∈ E , and any (a, b) ∈X R ×R with `X a ≤ b, we have in
E/X

`1 ∀f ∈ R[a,b] ∃!g ∈ R[a,b] : g(a) = 0 ∧ g′ = f.” (6.6)

Note that for given a, b as here, R[a,b] is a definite object in E/X, so
that (6.6) can be interpreted by applying the semantics of §2 for the
category E/X.

Another example where objects indexed by elements of another object
is considered is in I §6, where we consider the monadsMk(x) for x ∈ Rn.
The exposition given there is so as to immediately describe this family
of objects in comprehended form, namely as the object I.(6.7) in E/Rn.
The complete interpretation of Corollary I.6.5 is then

“For any X and any x ∈X Rn, we have in E/X

`1 ∀f ∈ (Rm)Mk(x) ∀z ∈Mk(x) : f(z) ∈Mk(f(x)).” (6.7)

Note that, for given x, all three objects (Rm)Mk(x), Mk(x), and
Mk(f(x)) are definite objects in E/X (where X is the stage of defi-
nition of x), so that (6.7) can be interpreted by the semantics of §2 for
the category E/X.

Also, at some other places in Part I, indexed families of objects were
considered, but always in terms of the comprehending object. Thus, the
“individual tangent spaces TxM for x ∈ M” are comprehended in (are
the fibres of) the tangent bundle TM →M . And in I §17, we considered,
for any formal manifold M , the “monadsMk(x) for x ∈M”. They are
comprehended by the object M(k) → M (and were in fact introduced
in terms of this). In I §17 and §18, we worked anyway, as the primary
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formulation, with diagrams, not requiring the semantics of §2 or the
present §.

EXERCISES
6.1. Let E be a category with finite inverse limits. We say that an

object D ∈ E is exponentiable if −×D : E → E has a right adjoint (−)D.
(So E is cartesian closed iff all its objects are exponentiable.) Prove
that if f is exponentiable in E/X, then, for any α : Y → X, α∗(f) is
exponentiable in E/Y , and

α∗(gf ) = α∗(g)α∗(f).

II.7 Dense class of generators

It is useful to have a more restricted notion of generalized element of
an object R in a category E , namely elements whose stage of definition
belong to a suitable subclass. For instance, in the category Set of sets,
it is well known that “it suffices” in some sense to consider only global
elements, i.e. elements defined at stage 1.

Let E be a category and A a subclass of the class |E| of objects of E .
If R ∈ E , an A-element of R is a generalized element r : Y → R with
Y ∈ A. We may redefine the ‘satisfaction’-notion of §2 by looking at
A-elements instead of arbitrary generalized elements.

Let us temporarily write `X,A φ to mean: for any α : Y → X with
Y ∈ A, we have `Y φ. Clearly for stable φ, `X φ implies `X,A φ, but
we are interested in cases where this implication can be reversed.

The following definition can easily be seen to be equivalent to the
classical definition, in [55] V.7, say.

Definition 7.1. We say that A is a class of generators if whenever f, g
are maps with common domain (R1, say), and with common codomain,
then f = g iff

`1,A ∀x ∈ R1 : f ◦ x = g ◦ x.

In the following, A is assumed to be a class of generators. Comparing
then the Definition (which one might call: the A-extensionality princi-
ple) with Proposition 3.2 (the extensionality principle), we see that for
a formula of type f ◦ x = g ◦ x, `X and `X,A are equivalent for any X.
Also, it is easy to give an induction argument for equivalence of `X and
`X,A for certain formulae:
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Proposition 7.2. If φ1 and φ2 are stable formulae, for which, for any
α : Y → X, `Y φi iff `Y,A φi, (i = 1, 2), then

`X (φ1 ⇒ φ2) iff `X,A (φ1 ⇒ φ2), (7.1)

and similarly for φ1 ∧ φ2 and ∀x φ1(x) .

Proof. We do the case φ1 ⇒ φ2 only. The left hand side of (7.1) implies
the right, because φ1 ⇒ φ2 is known to be stable. Conversely, assume
`X,A (φ1 ⇒ φ2). To prove `X (φ1 ⇒ φ2), let α : Y → X be such that
`Y φ1. For every β : A → Y with A ∈ A, we have `A (φ1 ⇒ φ2) by
assumption (applied to A→ Y → X). Since φ1 is stable, we have from
`Y φ1 also `A φ1. So we conclude `A φ2. Since this holds for every
β : A→ Y , we conclude `Y,A φ2. By assumption, then, `Y φ2.

Note that in this proof, we did not use thatA was a class of generators.
Note also that we did not deal with formulae ∃!x φ(x). This requires
more on A, namely density, a classical category theoretic notion which
we may formulate as follows: A is dense if the Yoneda map construction
principle of §3 holds when instead of arbitrary generalized elements only
A-elements are considered.

Proposition 7.3. Let A be a dense class of generators. Let φ(x) be a
stable formula about elements of an object R. Let X be an object such
that for any α : Y → X and b ∈Y R, we have `Y φ(b) iff `Y,A φ(b).
Then

`X ∃!x φ(x) iff `X,A ∃!x φ(x).

Proof. The left hand side immediately implies the right, by stability.
On the other hand, assume `X,A ∃!x φ(x). For each α : A → X with
A ∈ A, we thus have `A ∃!x φ(x), so we have a unique element b(α) ∈A

R with `A φ(b(α)). So we have a law Φ which to an A-element α of X
associates anA-element b(α) of R with ` φ(b(α)), and by the uniqueness,
and stability of φ, we see that the law Φ is natural in A ∈ A. So by
the Yoneda map construction principle for A-elements, Φ(α) = f ◦ α
for some (unique) f : X → R. For this f , we have `X,A φ(f); for, let
α : A→ X with A ∈ A. Then f ◦ α = Φ(α) = (the unique) b : A→ R

with `A φ(b), so that `A φ(f ◦α). By the assumption, `X,A φ(f) implies
`X φ(f). The uniqueness of f follows because A is a class of generators.

Let us note that if C1 and C2 are subobjects of R, and A is dense,
then the extensionality principle Proposition 3.1 holds even when only
A-elements are considered, because if every A-element of C1 is also an
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element of C2, we can use the Yoneda map construction principle for
A-elements, to construct a map C1 → C2.

EXERCISES
7.1. Prove that in the category Set, the class consisting of the only

object 1 (= terminal object) is a dense class of generators.

7.2. Prove that a dense class A is automatically a class of generators,
provided E has equalizers.

7.3. Assume A ⊆ |E| is a dense class of generators, and let A also
denote the full subcategory of E consisting of the objects from A. Prove
that the composite functor

E
y- SetE

op r- SetA
op

(7.2)

is full and faithful (where y is the Yoneda embedding, and where r is the
restriction functor along the inclusion Aop ↪→ Eop). Conversely, if (7.2)
is full and faithful, the objects of A form a dense class of generators.
(This is Isbell’s adequacy notion for A ↪→ E .)

7.4. If A is any category, the representable functors in SetA
op

form a
dense class of generators.

7.5. Assume A is a dense class of generators in a cartesian closed
category E , and that R is a commutative ring object in E . Strengthen
Exercise 5.1 in the following way: prove that Axiom 1 can be formulated:

“For any X ∈ A and any f : X ×D → R, there exists a unique
(a, b) : X → R×R such that for any β : Y → X with Y ∈ A and
any d : Y → D, we have

f ◦ (β, d) = a ◦ β + d · (b ◦ β)

in homE(Y,R).”

II.8 Satisfaction (2), and topological density

The satisfaction relation ` described in §2 dealt only with the logical
constructs

∀,∃!,∧, and ⇒,

and the whole of Part I except §21 was designed so that only these logical
constructs were used. There does, however, exist synthetic considera-
tions where the logical constructs

∃,∨, and ¬ (negation)
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are used, and some of these will occur in Part III (notably §10). To give
a satisfaction relation ` for these logical constructs is less elementary,
and requires that the category E in which the interpretation takes place
is equipped with the further structure of a Grothendieck topology, or
equivalently that E is made into a site (see e.g. [28] 0.3 for these notions);
we shall assume that E is equipped with a Grothendieck pretopology
which is a slightly stronger notion, and we describe that explicitly in
Appendix B. In particular, for each X ∈ E we are given a class Cov(X)
of families

{αi : Xi → X | i ∈ I} (8.1)

of ‘coverings’ of X.
We shall be interested in the case where there is given a dense class A

of generators in E . A covering (8.1) will be called an A-covering if each
Xi ∈ A. We shall assume furthemore that each X has an A-covering
(“A is topologically dense”). (These assumptions are satisfied for the
case where E = C̃ (= sheaves on a small category C equipped with a
sub-canonical Grothendieck topology, (see Appendix B)), with A = class
of representables, {y(C) | C ∈ C}.)

For E a category equipped with a Grothendieck pretopology and a
dense class of generators, A, which is topologically dense, we now de-
scribe the satisfaction relation for ∃ , ∨, and negation, in continuation
of §2. For the sake of illustration, we consider a fixed object R, as there.

Suppose X ∈ E and suppose φ(x) is a mathematical formula for which
we for any α : Y → X and any element b ∈Y R have already defined
what we mean by

`Y φ(b). (8.2)

Then we write

`X ∃x φ(x)

if there exists an A-covering {ai : Xi → X | i ∈ I} such that, for each
i ∈ I, there exists an element bi ∈Xi R with `Xi φ(bi).

Similarly, suppose X ∈ E and suppose φ and ψ are mathematical
formulae for which we, for any α : Y → X have already defined when

`Y φ and when `Y ψ.

Then we write

`X (φ ∨ ψ)
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if there exists an A-covering {αi : Xi → X | i ∈ I1 ∪ I2} such that

`Xi φ for all i ∈ I1

and

`Xi
ψ for all i ∈ I2.

We can make an analogous description of

`X

∨
j

φj

for arbitrary, even infinite disjunctions; we leave that to the reader.
Finally, we write

`X ¬φ

if, whenever α : Y → X is such that `Y φ, then the empty family is a
covering of Y .

With the stability concept of §2, it is possible to prove

Proposition 8.1. If φ and are stable, then so are

∃x φ(x), φ ∨ ψ, and ¬φ.

We omit the proof which is a straightforward consequence of the sta-
bility properties which a covering notion must satisfy to qualify as a
Grothendieck pretopology; cf. [30] or [67].

Besides the stability concept for formulae, we have a localness-concept:
we say that φ is local if for any A-covering {αi : Xi → X | i ∈ I},

(`Xi
φ for all i ∈ I) implies `X φ.

Proposition 8.2. If φ and ψ are local and stable, then so are

∀x φ(x), ∃x φ(x), φ⇒ ψ, φ ∧ ψ, φ ∨ ψ, and ¬φ.

Again, we refer to [30] or [67] for a proof.

It is also easy to see (using Propositions 7.2 and 7.3, and the fact that
the composite of two coverings is a covering): if A1 and A2 are both a
dense set of generators and topologically dense, then then resulting `
notion is the same.

For Proposition 8.2 to be useful as an induction principle, we need
to have some local and stable formulas to start with. For this, we need
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to add the further assumption that each covering family is jointly epic,
because this immediately implies that the formula x = y is local. For, if

X
a -

b
- R

(with X and R arbitrary) are such that there is a covering {Xi → X |
i ∈ I} with `Xi

a = b, then since the family is jointly epic, we conclude
a = b, i.e. `X a = b.

Also, we have the problem to compare the ∃!-notion of §3 with the
∃-notion in the present §. This turns out to hinge exactly on the classical
notion of the Grothendieck topology being subcanonical (cf. Appendix
B), which implies also that covering families are jointly epic. We have

Proposition 8.3. Assume we have a subcanonical Grothendieck topo-
logy on E. Then the following two assertions are equivalent:

`X ∃!x φ(x)

and

`X ∃x φ(x) ∧ (∀x, y : φ(x) ∧ φ(y)⇒ (x = y)).

Also ∃!x φ(x) is stable if φ is.

EXERCISES (“Propositional logic”)3

8.1. Prove that if `X φ⇒ ψ and `X ψ ⇒ θ, then `X φ⇒ θ.

8.2. Assume that φ1 and φ2 are stable and ψ is local. Prove that if
`X φ1 ⇒ ψ and `X φ2 ⇒ ψ, then `X (φ1 ∨ φ2) ⇒ ψ. (The converse is
easy, by 8.1.)

8.3. Prove that ` ¬(φ1 ∨ φ2) is equivalent to `X ¬φ1 ∧¬φ2 (this may
be seen as a special case of 8.2). This is one of the de Morgan rules. The
other de Morgan rule ¬(φ1 ∧ φ2) iff ¬φ1 ∨¬φ2 does not hold in general.

8.4. Prove that `X φ implies `X ¬¬φ.

8.5. Prove that `X φ⇒ (ψ ⇒ θ) iff `X (φ ∧ ψ)⇒ θ.

8.6. Prove that `X φ ⇒ ¬ψ iff `X ¬(φ ∧ ψ) (this may be seen as a
special case of 8.5).

8.7. Prove that if `X φ⇒ ψ then `X (¬ψ)⇒ (¬φ).

8.8. Prove that

`X (
∨
i

φi)⇒ ¬(
∧
j

ψj) i = 1, . . . , n, j = 1, . . . ,m
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if and only if

`
∧
i

¬
(
φi ∧

∧
j

ψj

)
,

and that the latter is implied (for n = m) by

`X ¬(φ1 ∧ ψ1) and . . . and `X ¬(φn ∧ ψm)

and likewise, (for n = m), by

`X

n∧
i=1

(φi ⇒ ¬ψi).

Hint: use Exercises 8.2 and 8.6.

II.9 Geometric theories

We consider formulas which are built from polynomial equations with
coefficients from k (an arbitrary commutative ring in Set) by means of
conjunctions ∧ , disjunctions

∨
(possible infinite), and ∃. Such are in [28]

called geometric formulae4 (in the language of the theory of k-algebras).
Examples: The formula “x is invertible” (i.e. ∃y : x · y = 1) is

geometric; the formula “x is nilpotent” (i.e.

(x = 0) ∨ (x2 = 0) ∨ (x3 = 0) ∨ . . .)

is geometric. Both these examples have one free variable, x.
A geometric sentence is a sentence (without free variables) of form

∀x1, . . . , xn : φ(x1, . . . , xn)⇒ ψ(x1, . . . , xn) (9.1)

where φ and ψ are geometric formulae in n free variables x1, . . . , xn; n
may be 0. Also

∀x1, . . . , xn : ¬φ(x1, . . . , xn) (9.2)

as well as

∀x1, . . . , xn : ψ(x1, . . . , xn) (9.3)

are counted as geometric sentences if φ and ψ are geometric formulae.
(These may be seen as special cases of (9.1), by taking ψ to be ‘false’
and φ to be ‘true’, respectively, i.e. an empty disjunction and an empty
conjunction, respectively.)

A geometric theory (in the language of the theory of k-algebras) is one
whose axioms are geometric sentences.

If the formulas are built not only from polynomial equations, but also
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from inequalities ≤ between polynomials, we get similarly the notion
of geometric formula/sentence/theory in the language of the theory of
preordered k-algebras.

Here are some examples of geometric sentences (“x is invertible” is
short for “∃y : x · y = 1”):

¬(0 = 1) (9.5)

∀x : (x is invertible ) ∨ (1− x is invertible ) (9.6)

∀x : (x is invertible ) ∨ (x = 0) (9.7)

∀x : (x is invertible )⇒ ((∃z : z2 = x) ∨ (∃z : z2 = −x)) (9.8)

in the language of the theory of Z-algebras (commutative rings). An
example of a geometric sentence in the language of preordered rings is

∀x : ((x ≤ 0) ∨ (x ≤ 1) ∨ (x ≤ 2) ∨ . . . ). (9.9)

An example of a sentence, which is not geometric, is

∀x : (¬(x = 0)⇒ x is invertible), (9.10)

more generally, the sentence occurring in III.(2.2) below.
The sentences (9.5) and (9.6) (together with the equational sentences

that define the notion of commutative ring) are the axioms for the theory
of local rings, which is thus a geometric theory. Similarly, (9.5) and (9.7)
give a theory of fields which is geometric; whereas (9.10) describes a
different, non-geometric, field notion. This non-geometric field notion is
compatible with Axiom 1, and will be studied in Part III, §10.

When we say that a ring object R in a category E with a Grothendieck
topology, is a local ring object we of course mean that we have

`1 ¬(0 = 1) (9.12)

and

`1 (x is invertible ) ∨ (1− x is invertible ) (9.13)

(where the variables range over elements of R). Similarly for any other
1st order theory T . We shall also say: “R is a model of T ”. In the appli-
cations, E will be a topos, where there is an easily described canonical
topology: a family {Xi → X | i ∈ I} is covering if it is jointly epic. This
topology is subcanonical, i.e. the conclusion of Proposition 8.3 holds.

It is of course possible to describe the notion of ‘local ring object’ in
a topos E without using the systematic approach of the semantics of §8.
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Thus, a ring object R ∈ E is local iff 0 : 1 → R and 1 : 1 → R have
empty interesection (this is the semantics-free way of saying ¬(0 = 1)),
and

Inv(R) ∪ (Inv(R) + 1) = R,

where

Inv(R) = [[x | ∃!y : x · y = 1]]

and

Inv(R) + 1 = [[x | ∃!y : (x− 1) · y = 1]]

= [[x | x− 1 ∈ Inv(R)]].
(9.14)

(These objects can also be described diagrammatically, without using
the concept of extension; cf. III §3 below.)

Notes 2006
1Re Introduction to Part II: By now (2006), several good accounts exist,

see e.g. [138] VI.6, [140], Ch. 18, or [103], Part D.
2Re satisfaction `: one uses now also the phrase “the following is forced”.
3Re Exercises for §8: assume all the given formulae are stable.
4Re §9 (preamble): [28] requires disjunctions to be finite, whereas the ter-

minology of [103] Chapter D.1 agrees with ours.



PART III

Models

Introduction

The question of models should be viewed from two angles. One is the
purely synthetic: we consider some property or structure which we out
of experience think the geometric line has, and we experiment with the
property to see whether it is logically consistent with other desirable or
true properties. To this end we construct models (which are often of
quite algebraic character).

The other angle from which we view the question of models is to
compare the synthetic theory with the analytic, for the benefit of both.
The mutual benefit may for instance take form of a definite comparison
theorem to the effect that properties proved or constructions performed
synthetically hold or exist in the analytic theory, too, or vice versa. The
models that give rise to the comparisons usually contain the category
of smooth manifolds as a full subcategory, and are called well-adapted
models (= well adapted for the comparison).1

In §§1–2 we treat algebraic models, and in the rest the well-adapted
ones. The latter are treated by a quite algebraic method, namely using
the “algebraic theory of smooth functions”.

III.1 Models for Axioms 1, 2, and 3

All models we present will be closely related to categories of form E =
SetR, where R is some small category of rings, and with R the forget-
ful functor R → Set; it carries a canonical ‘argumentwise’ ring object
structure, whose addition, say, R × R +→ R, has for its B-component
(B ∈ R)

129
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(R×R)(B)→ R(B)

the addition map B×B → B (note (R×R)(B) = R(B)×R(B) = B×B,
and R(B) = B).

We have the Yoneda embedding y : Rop → SetR, which is full and
faithful, and the objects of form yB for B ∈ R (i.e. the representable
functors) form a dense set of generators.

Let k be a commutative ring in Set. We use the notation FPTk,
FGTk, and Tk -Alg for the category of finitely presented, finitely gen-
erated, and all (commutative) k-algebras, respectively. If E is a cat-
egory with finite inverse limits, Tk -Alg(E) denotes the category of k-
algebra objects in E . Finally, if R ∈ Tk -Alg(E), the comma-category
(R ↓ Tk -Alg(E)) of “objects under R” (cf. [55], II.6) is denoted R -Alg.
All this is consistent with the usage in I §12. The reader acquainted with
finitary algebraic theories (in the sense of Lawvere [49]; cf. Appendix A)
will see that in the present §, and in the next, Tk may be replaced by
any other finitary algebraic theory T, and in §8, this will be essential.

If E is cartesian closed with finite inverse limits, we may form the hom-
object HomR -Alg(C,C

′) for any C,C ′ ∈ R -Alg (where R ∈ Tk -Alg(E)),
as in I §12, and we have the functor SpecC : (FPTk)op → E , as there.
If further E is proper left exact (cf. Appendix A), SpecC extends to a
proper left exact functor (FGTk)op → E , also denoted SpecC .

Let R be a small full subcategory of the category Tk -Alg. Let E ↪→
SetR be a full subcategory such that

(i) all representables y(B′) for B′ ∈ R, are in E ,
(ii), the inclusion functor is proper left-exact, and preserves
formation of exponential objects
(iii) the forgetful functor R → Set belongs to E .

(Example: E = R̃op for some subcanonical topology on Rop for which R
is a sheaf). Then SpecR : (FGTk)op → SetR , and y : Rop → SetR factor
through E , and because of (ii), the formation of HomR -Alg is preserved
by the inclusion functor.

Note that, for fixed B′′ ∈ R, the functor “evaluation at B′′ ” :
SetR → Set preserves all inverse limits, and C being anR-algebra implies
that C(B′′) is a B′′-algebra; from this we conclude

SpecC(B)(B′′) = SpecC(B′′)(B).

We say that an object B ∈ FGTk is stable with respect to R if B′ ∈ R
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implies B′ ⊗k B ∈ R (where ⊗k is the coproduct in Tk -Alg). We have,
with E and R as above:

Lemma 1.1. If B is stable with respect to R, then for any B′ ∈ R,

y(B′)× SpecR(B) ∼= y(B′ ⊗k B).

Proof. The values of the two sides on a fixed B′′ ∈ R are, respectively,

homR(B′, B′′)× SpecB′′(B)

and

homk -Alg(B′ ⊗k B,B
′′)(∼= homk -Alg(B′, B′′)× homk -Alg(B,B′′)).

For fixed B′ and B′′, these expressions describe proper left exact functors
(with values in Set/homR(B′, B′′)) in B ∈ (FGTk)op. Also they have
the same value on B = F (n), since

homR(B′, B′′)× (B′′)n ∼= homk -Alg(B′, B′′)× homk -Alg(F (n), B′′)
∼= homk -Alg(B′ ⊗k F (n), B′′).

Naturality, in connection with the result of Appendix A, yields the result.

For any C ∈ R- Alg, and any B ∈ FGTk, we have a canonical map in
E

HomR -Alg(R
SpecR(B), C)

νB,C- SpecC(B) (1.1)

as in I.(12.2).

Theorem 1.2. For any B ∈ FGTk which is stable with respect to R,
the map νB,C in (1.1) is an isomorphism for all C ∈ R -Alg.

Proof. Since all constructions involved are preserved by E ↪→ SetR,
we may as well assume E = SetR, so both sides in (1.1) are functors
R → Set. For each B′ ∈ R, we analyze the B′-component of the natural
transformation νB,C as follows. Using the universal property of Spec-
functors, we easily see

SpecC(B)(B′) = SpecC(B′)(B) ∼= homTk -Alg(B,C(B′)); (1.2)

on the other hand

HomR -Alg(R
SpecR(B), C)(B′) ∼= homE(yB′,HomR -Alg(R

SpecR(B), C)),

by Yoneda’s lemma; by exponential adjointness, this set in turn is
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∼= set of maps in E

yB′ ×RSpecR(B) τ - C

which-are R-algebra homomorphisms in the 2nd variable

∼= set of R-indexed natural families of maps

(yB′)(B′′)×RSpecR(B)(B′′)
τB′′- C(B′′), B′′ ∈ R (1.3)

which are B′′-algebra homomorphisms in the 2nd variable.

Now, if B is stable with respect to R,

RSpecR(B)(B′′) ∼= homE(yB′′, RSpecR(B))
∼= homE(yB′′ × SpecR(B), R)
∼= hom(y(B′′ ⊗k B), R) (by Lemma 1.1)
∼= B′′ ⊗k B,

so the data of the τB′′ (for B′′ ∈ R) can equivalently be described

set of R-indexed natural families of maps

homR(B′, B′′)× (B′′ ⊗k B)
τB′′- C(B′′), B′′ ∈ R

which are B′′-algebra homomorphisms in the 2nd variable.

But the data: B′′-algebra homomorphisms B′′ ⊗k B → C(B′′) is equiv-
alent (by composing with the inclusion B → B′′ ⊗k B) to: Tk-algebra
homomorphims B → C(B′′), so that the data of the τB′′ can equivalently
be described

∼= set of R− indexed natural families of maps

homR(B′, B′′)×B τB′′→ C(B′′), B′′ ∈ R (1.4)

which are Tk-algebra homomorphisms in the 2nd variable.

Out of this data, we can get a Tk-algebra map t : B → C(B′), namely
t(b) := τB′(idB′ , b). On the other hand, given a Tk-algebra map t : B →
C(B′), we construct a family (1.4) by putting, for β : B′ → B′′ and
b ∈ B

τB′′(β, b) := C(β)(t(b)),

and it is immediate to check that these two processes are mutually in-
verse.

The fact that the passage from the set (1.2) to the set (1.4) really
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comes about from the νB,C (which was given an independent description)
is left to the reader, who may get help from Exercises 1.1-1.4.

Corollary 1.3. Let R = FPTk (= finitely presented k-algebras). Then
E = SetR, with R = forgetful functor R → Set, satisfies Axiom 2k and
in particular Axiom 1W

k .

Proof. Since FPTk is closed under the formation of ⊗k-products in
Tk -Alg, the result follows immediately from the Theorem.

The same result holds with FGTk instead of FPTk, or with the cate-
gory of all k-algebras of cardinality < α for some suitable large cardinal
number α (this is essentially the category studied in [9]), but R = FPTk

has the nice feature of SetR being the classifying topos for the theory of
(commutative) k-algebras, and R is the generic k-algebra, cf. [25], [56].

We next study the validity of Axiom 3. As in I §§19 and 20, we shall
call an object J in a cartesian closed category E an atom if (−)J : E → E
has a right adjoint.

In functor categories SetR (R any small category), there are many
atoms:

Proposition 1.4. If B ∈ R has the property that a coproduct B + B′

exists in R for any B′ ∈ R, then the representable functor y(B) ∈ SetR

is an atom.

Proof. For any F ∈ SetR

(F yB)(B′) = hom(yB′, F yB) = hom(yB × yB′, F )

= hom(y(B +B′), F ) (1.5)

(since the Yoneda embedding Rop → SetR preserves those limits that
exist)

= F (B +B′)

so that

F yB = F ◦ (B +−).

It is well known (cf. e.g. [55] X.3, Corollary 2) that functors between
categories of form SetC, which are induced by functors between the
index categories, have adjoints on both sides. But the above calculation
shows that (−)yB is induced by B +− : R → R.
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Proposition 1.5. If R and R are as in Theorem 1.2, and E = SetR,
then, for any B ∈ FGTk which is stable with respect to SetR, SpecR(B)
is an atom.

Proof. Even though B is not an object of R, we still have the functor
B⊗k − : R → R, by the stability. The proof is now almost as the proof
of the preceding Proposition; now we have to see that

F SpecR(B) = F ◦ (B ⊗k −),

and this calculation is as (1.5) above, except we have to utilize Lemma
1.1.

Proposition 1.4 has the following Corollary:

Theorem 1.6. The model considered in Corollary 1.3 satisfies Axiom
3k.

Whereas it was easy to transfer validity of Axioms 1 and 2 from SetR

to suitable subcategories, it is usually more subtle and requires more
assumptions to produce atoms in such subcategories, in particular to
prove Axiom 3k. We refer the reader to [42] to see how it sometimes
may be done; cf. also the end of §8.

We finish this § with some remarks that are intended to clarify how the
notion of ‘elements defined at different stages’ (cf. Part II) in categories
of form SetR (with R a category of rings) are related to ‘elements of
geometric objects, elements which are defined at various rings, or with
varying degree of reality’. We do it with an example.

Let B = Z[X,Y ]/(X2 + Y 2 − 1). For any ring object R in a category
E with finite inverse limits,

SpecR(B) = [[(x, y) ∈ R×R | x2 + y2 = 1]],

“the circle over R”; denote it S1(R). For the special case where E =
SetR, where R is any suitable category of rings and R the forgetful
functor R → Set, an element a of S1(R), defined at stage yC,

a ∈yC S1(R),

is the same thing, by Yoneda’s Lemma, as an element of
homRings(B,C), i.e. an element of the set

{(x, y) ∈ C × C | x2 + y2 = 1} = S1(C),
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the “set theoretical circle over C”. The standard unit circle, which
comes about by taking C = R, thus consists of certain elements of
S1(R) ⊆ R × R defined at stage yR, the ‘real points of the circle’ in
classical terminology; this terminology also allows for ‘complex points’
(or ‘imaginary points’) of the circle, e.g. its two points at infinity, or to
give an example not involving projective geometry, the two ‘imaginary’
points common to the unit circle and the line x = 2, say. In our con-
text, they are simply elements of S1(R) defined at stage yC (which is a
stage ‘later’ than yR, due to y(i) : yC → yR induced by the standard
embedding i : R ↪→ C).

EXERCISES
1.1. Let R be any full subcategory of the category of k-algebras, and

let E = SetR, R = forgetful functor. For B ∈ FGTk, interpret B as a
ring of functions SpecR(B) → R. (Hint: b ∈ B gives rise to F (1) → B

(where F (1) = k[X]); apply SpecR to it and use SpecR(F (1)) = R.) Use
this to construct for each B′ ∈ R, a map j : B → RSpecR(B)(B′).

1.2. With E , R and B as in Exercise 1, and C ∈ R -Alg, describe a
map

HomR -Alg(R
SpecR(B), C)

µB,C- SpecC(B)

as follows. Give its B′-component (B′ ∈ R) by associating to the data
(1.3) the map

B = 1×B
idB′ ×j- y(B′)(B′)×RSpecR(B)(B′)

τB′- C(B′)

with j as in Exercise 1. Interpret this map as an element of SpecC(B)(B′)
(as in the proof of Theorem 1.2).

1.3. Prove that the µB,C constructed in Exercise 2 is natural in B ∈
FGTk, and, for B = F (n) , agrees with the νB,C of I.(12.2). Conclude
by Appendix A that µB,C = νB,C .

1.4. If B is stable with respect to R, then RSpecR(B)(B′) may be
identified with B′ ⊗k B ∈ R (cf. the proof of Theorem 1.2), and under
this identification, the map j of Exercise 1 becomes the inclusion B →
B′ ⊗k B. Conclude that the process described in the proof of Theorem
1.2 to lead from (1.2) to (1.4) is just νB,C .
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III.2 MODELS FOR ε-STABLE GEOMETRIC THEORIES

We shall here prove that certain of the models E , R described in the
previous § satisfy not only Axiom 1W and Axiom 3, but also some first
order sentences like

∀x : (x is invertible ) ∨ ((1− x) is invertible)

(which, together with ¬(0 = 1), express: R is a local ring). To be able
to interpret such sentences which involve ∃, ∨, and ¬, we must have a
Grothendieck topology (cf. II §8) on E .

The models here will be of form E = SetR, with R some small full
subcategory of the category of k-algebras, and R : R → Set will be the
forgetful functor. The Grothendieck topology we consider on E is the
canonical one. It can be described by the pretopology given by

{Fi → F | i ∈ I} ∈ Cov(F )

if for each C ∈ R, the family of set-theoretic mappings

{Fi(C)→ F (C) | i ∈ I}

is jointly surjective. The representable functors, y(B) for B ∈ R, form a
dense set A of generators, which is topologically dense. We know from
II §8 that we only have to consider A-elements to describe satisfaction
`.

For a family

{y(fi) : y(Bi)→ y(B) | i ∈ I}

to be a covering, a necessary and sufficient condition is that for some
i ∈ I, y(fi) is split epic, or equivalently, that fi : B → Bi is split mono,
i.e. has a left inverse g. (For the necessity, apply the ‘jointly surjective’
criterion for C = B.) None of the representables is covered by an empty
family.

One reason why geometric formulae and theories are important in our
context is because of the following two Propositions. Note first that, for
any B ∈ R, we have, by Yoneda’s lemma, a bijective correspondence
between maps b : yB → R, and elements b ∈ R(B) = B (i.e. to b ∈yB R

corresponds b ∈ B).

Proposition 2.1. Suppose φ(x1, . . . , xn) is a geometric formula. For
any n-tuple

yB
bi- R (i = 1, . . . , n),
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we have

`yB φ(b1, . . . , bn)

if and only if

φ(b1, . . . , bn) holds in B.

Proof. This is proved by induction in the way φ is built from polynomial
equations by means of ∧, ∨, and ∃. For the polynomial equations,
it follows immediately, because the ring structure on R was described
argumentwise, so that hom(yB,R) ∼= R(B) is a ring isomorphism. Let
us do the induction step for ∃, assuming for simplicity that n = 1, and
φ(b) is ∃zψ(b, z), where the ψ(x, y) is a geometric formula to which the
induction hypothesis applies. So assume `yB φ(b), i.e.

`yB ∃z : ψ(b, z).

We can thus find a covering {yBi → yB | i ∈ I} of yB, and elements
ci : yBi → R with `yBi ψ(b, ci) for all i. One of the yBi → yB is
of form y(f) : y(C) → y(B) with f : B → C a split monic, g ◦ f =
idB , and we have c : yC → R with `yC ψ(b, c). Changing stage along
y(g) : y(B)→ y(C), we thus also have `yB ψ(b, c), (note that we get our
original b back since g ◦ f = idB). By the induction hypothesis, we thus
have ψ(b, c). Hence also ∃zψ(b, z) holds in B. The other implication is
trivial. Disjunction is treated similarly; conjunction is trivial.

Proposition 2.2. Let R be a small full subcategory of the category of
Tk-algebras, and assume all B ∈ R satisfy the axioms of a geometric
theory T . Then R ∈ SetR (= the forgetful functor) is a model of T .

Proof. Let

∀x1, . . . , xn : φ(x1, . . . , xn)⇒ ψ(x1, . . . , xn)

be one of the Axioms of T . To prove that

`1 ∀x1, . . . , xn : φ(x1, . . . , xn)⇒ ψ(x1, . . . , xn) (2.1)

holds for R, let

yB
bi- R i = 1, . . . , n

be an n-tuple of A-elements of R with

`yB φ(b1, . . . , bn).
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Since φ is a geometric formula, Proposition 2.1 yields that φ(b1, . . . , bn)
holds in B. Since B satisfies T , we therefore also have ψ(b1, . . . , bn)
holding in B, so by Proposition 2.1 again,

`yB ψ(b1, . . . , bn).

This proves (2.1).

Theorem 2.3. If R is the category of those (finitely generated, say) k-
algebras which are local rings, then, for E = SetR and R = the forgetful
functor R → Set, we have that R is a local ring object, and Axiom 1W

k

and Axiom 3k hold. Also, for each n = 1, 2, . . .

`1 ∀x1, . . . , xn : ¬
( n∧
i=1

(xi = 0)
)
⇒

( n∨
i=0

(xi is invertible )
)
. (2.2)

Proof. The last assertion is an “extra” which falls outside the general
theory, and we refer to Exercise 2.2 for a proof. The other assertions are
part of a general principle, whose pillars are §1 and Proposition 2.2. The
latter immediately gives that R is a local ring object. To prove Axioms
1W

k and 3k, using §1, we need

Lemma 2.4. If B is a k-algebra which is a local ring, and W is a Weil
algebra over k, then B ⊗k W is a local ring. In particular, W is stable
with respect to R.

Proof. Let W = k ⊕ kn−1 = k ⊕W ′ with all elements in W ′ nilpotent.
Then B ⊗k W = B ⊕ B′ with all elements in B′ nilpotent. Thus, an
element (b, b′) ∈ B ⊕ B′ is invertible iff b ∈ B is invertible. To say
that B is local can be expressed: the non-invertibles are stable under
addition. Then it is clear that the non-invertibles in B ⊕ B′ are stable
under addition.

Having the Lemma, we have that SpecR(W ) is an atom for any Weil
algebra W , by Proposition 1.5, so Axiom 3k holds. From Theorem 1.2,
we conclude that for any Weil algebra W and for any R-algebra C in E ,
the map νW,C

HomR -Alg(R
SpecR W , C)→ SpecC(W )

is an isomorphism, from which Axiom 1W
k follows, cf. the proof of Theo-

rem I.16.1. This proves the theorem.

Let us agree to call a geometric theory T in the language of the theory
of k-algebras ε-stable if it has the property: if B is a model of T , then so
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is B⊗k W , for any Weil algebra W over k. The theory of local rings (or
local k-algebras) is ε-stable, by Lemma 2.4. We immediately see that
the proof given for Theorem 2.3 also can be used to prove

Theorem 2.5. Let T be an ε-stable geometric theory of k-algebras.
Then there exists a model (E , R) of Axiom 1W

k , Axiom 3k , and T .

We take in fact E = SetR for R some small category of T -models such
that R is stable under functors of form −⊗k W for any Weil algebra W
over k.

A more subtle theorem [6], [14] is that if T is stable, then the generic
T -model (in the sense of classifying toposes, cf. [56]) satisfies Axioms 1W

k ,
Axiom 3k, (and T of course). These models live in toposes of sheaves
on (FPTk)op, for a Grothendieck topology jT on this category, which is
defined in terms of the axioms of the theory T . It is easy to prove that
if jT is subcanonical, then the argument of Theorem 1.2 and Corollary
1.3 yields also that Axiom 2k holds for R in E (R being the forgetful
functor FPTk → Set). We collect some of the information given here:

Theorem 2.6. Let T be an ε-stable geometric theory of k-algebras.
Then Axioms 1W

k and 3k hold for R = generic T -model. If the Grothen-
dieck topology jT is subcanonical, Axiom 2k holds as well.

The theorem (including the last part) applies in particular to the
theory of k-algebras which are local rings, and to the theory of separably
closed local k-algebras (cf. Exercise 2.6 below for more information about
this notion). The first part of the Theorem applies to the theory Tr of
Exercise 2.6.

EXERCISES
2.1. LetR be any small category of rings, and E = SetR, R = forgetful

functor. Let y : Rop → SetR be the Yoneda embedding. Prove, for
b1, . . . , bn ∈y(B) R that

`y(B) ¬(b1 = 0 ∧ . . . ∧ bn = 0)

if and only if: for no f : B → C in R do we have f(b1) = . . . = f(bn) = 0
(notation as in Proposition 2.1).

2.2. If B is a local ring, prove that if none of b1, . . . , bn ∈ B are
invertible, then B/(b1, . . . , bn) is a local ring. Combine this with Exercise
1 to conclude that for the model (E , R) considered in Theorem 2.3, we
have, for each n, validity of (2.2).
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2.3. Prove that the geometric field notion II.(9.7) is not ε-stable.

2.4. Prove that the theory of k-algebras satisfying II.(9.8) is ε-stable,
provided k contains the rational numbers. (Hint: Write B ⊗k W as
B ⊕ B′, as in the proof of Lemma 2.4. To find

√
(b, b′) one may use

Taylor series for √ , developed from (b, 0).

2.5. Prove that the theory of k-algebras satisfying

∀x : (∃y : y2 = x ∨ ∃y : y2 = −x)

is not ε-stable.

2.6. Consider the theory T of rings satisfying

∀x1, . . . , xn :
( n∨
i=0

(xi is invertible )
)
⇒ (Σx2

i is invertible)

for all n = 1, 2, . . .. Prove that T is ε-stable, and that, if B is a local
ring which satisfies T , then

B[i] := B[X]/(X2 + 1)

is a local ring. (Models of T are the so-called “formally-real” rings.)
There exists a geometric theory T (Joyal and Wraith [81]), whose

models in Set are the Henselian local rings with separably closed residue
field. There is also [33] a geometric theory Tr whose models are those
formally real local rings B such that B[i] is a model of T . The models in
Set of Tr are Henselian local rings with real-closed residue field. Models
of T , respectively Tr, are the so-called separably closed local rings, and
separably real-closed local rings. These notions are ε-stable substitutes
for the (not ε-stable) notions of algebraically closed, respectively real-
closed field.

2.7. Formulate by geometric sentences the axioms for the theory of
formally real local rings in which each invertible square sum has a square
root (“Pythagorean local rings”), and prove this theory ε-stable.

2.8. For theories formulated in the language of the theory of k-algebras
and a preorder relation ≤, we define the notion of ε-stability as above,
and by further declaring the order relation ≤ on B⊗kW in terms of the
order relation ≤ on B by

(b1, b′1) ≤ (b2, b′2) iff b1 ≤ b2

(identifying B ⊗k W with B ⊕B′ as in the proof of Lemma 2.4). Prove



III.3 Well-adapted models (1) 141

that the theory of preordered rings considered in I §13 is ε-stable, but
that ε-stability is lost if we further require ≤ to be antisymmetric.

2.9. Prove that the theory of Archimedean preordered rings (meaning
the theory described by II (9.9)) is ε-stable.

III.3 Axiomatic theory of well-adapted models (1)

For the first time in these notes, we shall now presuppose classical dif-
ferential calculus, and manifold theory; in particular, we shall consider
the real numbers, R. We do it in order to answer the question what
a comparison between classical analysis and the synthetic theory devel-
oped here should be like, to justify the borrowing of names (“derivative”,
“vector field”, “Lie-bracket”, etc.).

In the following, the word manifold means smooth (= C∞) manifold,
Hausdorff and with a countable basis (and hence paracompact and with
partitions of unity, cf. §5 below). Let Mf denote the category of these
(with C∞ maps as morphisms). It is an essentially small category.

The category Mf has rather poor category theoretic exactness prop-
erties,2 in particular, it does not have all finite inverse limits, and some
of those finite inverse limits it does happen to have, are “wrong”; for
example, in Mf, the intersection between the x-axis in R2 and a tan-
gent unit circle exists in Mf, and is the (unique) manifold with just one
point, whereas, from our point of view (and Protagoras’, Hjelmslev’s,
Grothendieck’s), this intersection should be a certain bigger object D.
Those intersections in Mf, which have good properties from all view-
points, are the transversal ones. More generally, Mf has good transversal
pullbacks; we recall

Definition 3.1. A pair of maps fi : Mi → N (i = 1, 2) in Mf with
common codomain are said to be transversal to each other if for each
pair of points x1 ∈ M1, x2 ∈ M2 with f1(x1) = f2(x2) (= y, say), the
images of (dfi)xi

(i = 1, 2) jointly span TyN as a vector space.

This is easily seen to be equivalent to saying that the map

f1 × f2 : M1 ×M2 → N ×N

is transversal to the submanifold ∆ : N ↪→ N ×N . From this, and the
“preimage-theorem” (see e.g. [24], p. 21) follows that (f1×f2)−1(∆) is a
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submanifold of M1×M2. But it sits in a set-theoretic pullback diagram

(f1 × f2)−1(∆) - M1

M2

?

f2
- N

f1

?

which is therefore also a pullback diagram in Mf. Such pullback dia-
grams we call transversal.

When we say that a functor from Mf into a category E preserves
transversal pullbacks, we mean that any transversal pullback in Mf is
transformed into a pullback diagram in E , and that the terminal object
1 in Mf (=the one-point manifold) goes to the terminal object in E .

Given f : M → N in Mf. To say that y ∈ N is a regular value
(standard terminology, cf. e.g. [24], p. 21) may be expressed: the maps
pyq : 1 → N and f : M → N are transversal. This is in particular the
case if y is not in the image of f . If all y ∈ N are regular values, one says
that f is a submersion. In this case, any smooth map with codomain N
is transversal to f . An open inclusion is evidently a submersion.

Also, a product of two manifolds M1 and M2 may be viewed as a
transversal pullback of M1 and M2 over 1.

In the following, we shall consider a cartesian closed category E with
finite inverse limits, and a functor

i : Mf → E .

The data for a well-adapted model is just such E and i. These data are
required to satisfy Axioms A and B, to be described now, and Axioms
C and D, to be described in the next §.

Axiom A. The functor i preserves transversal pullbacks.

Since R is an R-algebra object in Mf, and i preserves finite products, we
get from Axiom A that i(R) is an R-algebra object in E . This object,
we denote R:

R := i(R).

It now makes sense to state (using notation from I §16):

Axiom B. (= Axiom 1W
R ). For any Weil algebra W over R, the R-

algebra homomorphism

α : R⊗W → RSpecR(W )
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is an isomorphism.

In the rest of this §, we assume Axioms A and B. An Axiom B.2
stronger than Axiom B is presented in some of the exercises of §9.

Since Axiom 1W
R implies Axiom 1 (compare I §12 and I §16), it follows

that for any given map g : R → R in the category E , we can define its
(“synthetic”) derivative g′ : R → R, as in I §2. We have the follow-
ing comparison theorem between synthetic differentiation and the usual
“analytic” one:

Theorem 3.2. Let f : R→ R be a smooth map. Then

(i(f))′ = i(f ′).

Proof. A well known theorem from analysis (“Hadamard’s lemma”)
says that if f : R→ R is smooth, then the function f(x+ t) in the two
variables x and t can be written

f(x+ t) = f(x) + t · f ′(x) + t2 · g(t, x), (3.1)

where g : R × R → R is some uniquely determined smooth function.
Now the validity of (3.1) can be expressed in terms of commutativity
of a certain diagram starting in R × R, built by means of cartesian
products, from f, f ′, and g, and the ring operations ‘plus’ and ‘times’.
The functor i : Mf → E preserves such products (by Axiom A), and
takes the ring operations of R into those of i(R) = R, by construction of
the ring structure of the latter. Thus we get a commutative diagram in
E , starting in R×R. The commutativity of it can, by the extensionality
principle for maps (Proposition II.3.2), be expressed

`1 ∀x, t : (i(f)(x+ t) = (i(f))(x) + t · (i(f ′))(x) + t2 · (i(g))(t, x).

From this, we deduce

`1 ∀x ∈ R ∀d ∈ D : (i(f)(x+ d) = (i(f))(x) + d · (i(f ′))(x). (3.2)

Let x ∈X R be a generalized element of R and d ∈Y R a generalized
element of D, defined at the later stage α : Y → X. From (3.2), we get

`Y (i(f))(x+ d) = (i(f))(x) + d · (i(f ′))(x),

but by Taylor’s formula, Theorem I 2.1, applied for i(f) and the given
(generalized) elements x and d, we have

`Y (i(f))(x+ d) = (i(f))(x) + d · (i(f))′(x).
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Subtracting these two equations (which hold in the ring hom(Y,R)), we
get

`Y (d · (i(f ′))(x) = d · (i(f))′(x).

Since α, d were arbitrary, we get

`X ∀d ∈ D : d · (i(f ′))(x) = d · (i(f))′(x),

and cancelling the universally quantified d (cf. Exercise II.5.2), we get

`X (i(f ′))(x) = (i(f))′(x).

Since x,X were arbitrary, we conclude from the extensionality principle
for maps that i(f ′) = (i(f))′.

Of course, even when i : Mf → E is full, this theorem talks only about
actual maps R → R in E , or equivalently, global sections of RR. There
is a more general form talking about elements g ∈i(M) R

R,

i(M)
g - RR;

namely, if the exponential adjoint of it,

i(M × R) = i(M)×R→ R = i(R),

comes about as i(f), for f : M × R → R a smooth map, then one may
similarly prove (cf. Exercise 3.2) that

g′ =
(
i
(∂f
∂t

))∧
, (3.3)

where ∂f
∂t means partial differentiation after the last variable, and ∧

denotes exponential adjoint.

The technique used for proving Theorem 3.2 may be used to prove
also

Theorem 3.3. Let g : Rn → R be smooth. Then:

i(
∂g

∂xj
) =

∂(i(g))
∂xj

for j = 1, . . . , n,

and hence also: i commutes with formation of Jacobian

i(dg) = d(i(g)) : Rn ×Rn → Rn.



III.3 Well-adapted models (1) 145

(Recall that dg(x, y) = dgx(y) =
∑ ∂g

∂xi
(x) · yi, and similarly in the

synthetic setting.)

This theorem also holds in parametrized form, in analogy with (3.3).

Recall from I §19 that if B is any ring object in a category with
sufficiently many finite inverse limits, then Inv(B) ↪→ B is the subobject
defined as the upper composite in the diagram

Inv(B) - B ×B
proj1- B

∗

1
?

p1q
- B

m

?

where m is the multiplication, and the square * is formed as a pullback.
If B = R in the category Mf, the pullback diagram * exists and is in

fact transversal: if x and y ∈ R have x · y = 1, then dm(x,y) = {y, x}
which is a matrix of rank one, since x is invertible. (Equivalently, 1 is
a regular value for the multiplication map.) It follows that i : Mf → E
preserves this pullback, so that we get, in E ,

i(Inv(R)) = Inv(R),

as subobjects of R. (Of course, Inv(R) = {x ∈ R | x 6= 0}.) Also, Axiom
1W

R implies that Inv(R) ↪→ R is formal-étale in the sense of I §17, by
Proposition I.19.1.

We can now prove

Theorem 3.4. If U is an open subset of a manifold M , the inclusion
U ↪→M goes by the functor i to a formal étale monic iU → iM in E.

Proof. A well-known theorem of analysis (see e.g.[24] Ex. 1.5.11, and
combine with a partition-of-unity argument) says that any open subset
U ⊆M of a manifold is of form f−1(Inv(R)) for some smooth f : M →
R. Such f we may call a smooth characteristic function for U . The
pullback diagram defining f−1(Inv(R)) is transversal because Inv(R) ↪→
R is an open inclusion, hence a submersion. Since i preserves such
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pullbacks, we get a pullback square in E
iU- - iM

Inv(R) = i(Inv(R))
?

-- iR = R.
?

But the class of formal-étale maps is stable under pullback, by Proposi-
tion I.19.2.

Recalling the terminology of I §19, we see that the proof also gives

Proposition 3.5. If U is an open subset of a manifold M , i(U) � i(M)
is strongly étale (or, is an open inclusion). Similarly for injective maps
which map onto an open subset of M (“open embeddings in Mf”).

EXERCISES
3.1. Prove that if the two squares in a diagram

- -

- ? -? ?

in Mf are transversal pullbacks, then so is the total diagram.

3.2. For M ∈ Mf, a smooth map f : M × R → R may be viewed
as a smoothly parametrized family of maps {fm : R → R | m ∈ M}.
Hadamard’s lemma is known to be “g in parameters”, meaning that if
we for each m ∈ M take the gm : R2 → R making (3.1) true, then
g : M × R2 → R given by (m, t, x) 7→ gm(t, x), is smooth. Use this to
prove (3.3).

III.4 Axiomatic theory of well-adapted models (2)

Unlike Axioms A and B in the preceding §, the Axioms C and D to
be presented now deal with colimit- and covering-related notions. To
state Axiom C, we need the concepts of pretopology and (Grothendieck-)
topos (cf. Appendix B).

The category Mf has a subcanonical pretopology whose coverings

{Mj →M | j ∈ J}
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are jointly surjective families of open inclusions. Such families we call,
of course, open coverings.

Axiom C. E is a topos, and the functor i : Mf → E takes open coverings
to coverings (briefly “i preserves coverings”).

Recall that a covering in a topos E is simply a jointly epic family;
these define the canonical topology on it, which is in fact subcanonical.

The most important consequence of Axioms A, B, C is the following
theorem, which one may rightfully demand of any comparison between
the synthetic and the analytic theory. Assuming these three axioms, we
have

Theorem 4.1. The functor i : Mf → E commutes with formation of
tangent-bundle, i.e. there exists an isomorphism, natural in Mf,

i(TM)
αM

∼=
- T (iM) = (iM)D,

where TM is the classical tangent bundle; and for M = R, this α is the
α of I (1.1)

i(TR) = i(R× R) = R×R
α- RD. (4.1)

There is a more general version of the Theorem, involving the “Weil
prolongation of type W” [79] for any Weil algebra W over R, and which
states the existence of a natural isomorphism

i(TWM)
αM- (iM)SpecR(W )

where TWM is the Weil prolongation of type W (in Weil’s notation
WM) and with αR equal to the α of Axiom 1W

R (I §16) . We refer the
reader to [36] for this generalization. The case stated in the Theorem
corresponds to the case W = R[ε]. – The functors TW : Mf → Mf
(in particular, the tangent bundle functor) take transversal pullbacks to
transversal pullbacks, and open coverings to open coverings.

Proof of Theorem 4.1. Since both T , i, and (−)D commute with
products, we get from (4.1) and Axiom B an isomorphism

αRn : i(T (Rn))→ (Rn)D.
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If U ↪→ Rn is an open subset, we have a transversal pullback in Mf,

TU ⊂ - TRn

U
?
⊂ - Rn

?

and hence the first of the two diagrams

i(TU) - i(TRn) (iU)D - (Rn)D

iU
?

- Rn
?

, iU
?

- Rn
?

is a pullback. The second diagram is a pullback because iU → Rn is
formal-étale, by Theorem 3.4. Since the upper right hand corners are
isomorphic via αRn , the two upper left hand corners are isomorphic, by
a map

iTU
αU- (iU)D (4.2)

which is at least natural with respect to the inclusion map U ⊆ Rn.
The strategy of the proof is now 1) to prove the αU s natural with

respect to any smooth map between open subsets of the Rns (this is the
core of the Theorem), and then 2), to use a patching argument to get a
natural αM , for all M ∈ Mf. Finally 3), we prove this αM invertible for
all M ∈ Mf.

We first generalize Proposition I.1.1, by reformulating it in terms of
algebraic theories (cf. Appendix A, and Exercise I.1.5). We consider
the algebraic theory T∞ whose n-ary operations are the smooth (=
C∞) maps Rn → R. Since polynomials with real coefficients are among
these, any T∞-algebra is also an R-algebra. Evidently, R is an algebra
for T∞, but also R × R = R[ε] carries a canonical structure of algebra
for T∞, extending its already existing structure of R-algebra. Namely,
for g : Rn → R an n-ary operation of T∞, we define its action gR[ε] :
(R[ε])n → R[ε] on R[ε] by

(x1 + ε · y1, . . . , xn + ε · yn) 7→ g(x1, . . . , xn) + ε ·
∑ ∂g

∂xi
(x1, . . . , xn) · yi,

or equivalently, identifying (R[ε])n = (R2)n with Rn × Rn,

(x, y) 7→ (g(x), dgx(y)). (4.3)
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Since the functor i : Mf → E preserves products, it follows that i(R) =
R, as well as i(R[ε]) = R[ε], are algebras for T∞, and since (−)D pre-
serves products, RD also is a T∞-algebra. With these T∞-algebra struc-
tures, we can state and prove the following strengthening of Proposition
I.1.1:

Proposition 4.2. The map α : R[ε]→ RD is a homomorphism of T∞-
algebras.

Proof. Let g be any n-ary operation of T∞. We should prove commu-
tativity of the diagram (cf. I.(1.4))

Rn ×Rn ∼= (R[ε])n αn
- (RD)n ∼= (Rn)D

R[ε]

i(gR[ε]) = gR[ε]

?

α
- RD

gD

?

.

Let (x, y) ∈X Rn×Rn. Chasing it the upper way round in this diagram
yields the element of RD

g ◦ [d 7→ (x+ d · y)] = [d 7→ g(x+ d · y)].

The g here means the action of the operation g on the algebra R = i(R),
so it is really i(g). So let us write that. The right hand side is then, by
Taylor’s formula (Theorem I.5.2)

[d 7→ (ig)(x) + d · d(ig)x(y)]. (4.4)

On the other hand, chasing (x, y) the lower way round the diagram gives,
because of (4.3)

α((ig)(x), (i(dg))x(y))

which is

[d 7→ (ig)(x) + d · (i(dg))x(y)]. (4.5)

Comparing (4.4) and (4.5), we see that the commutativity follows from
d(ig) = i(dg), which was our main “comparison” result of §3 (Theorem
3.3).

Since the αU of (4.2), for U = Rn under the identifications T (Rn) =
Rn×Rn and (Rn)D = (RD)n gets identified with αn : (R[ε])n → (RD)n,
we see that the Proposition can be read: the family of maps αU of (4.2)
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is natural with respect to smooth maps Rn → R; since αU is also, by
construction, natural with respect to the inclusions U ⊆ Rn, we see that
the family αU (for U ranging over open subsets of coordinate vector
spaces Rn) is natural with respect to those smooth maps g : U → R
which have smooth extensions to all Rn ⊇ U .

To prove naturality of the αU (where U ⊆ Rn is open) with respect to
arbitrary smooth mappings g : U → R, we use a well known device from
smooth analysis: we construct an open covering {Uj ⊆ U | j ∈ J} of U
such that each restriction g | Uj has a smooth extension to all of Rn.
Now the tangent bundle functor T : Mf → Mf preserves open coverings,
and i takes open coverings to coverings, by Axiom C. The naturality
assertion we want for α with respect to g is the assertion of equality
of two arrows i(TU) -- RD; we have a covering, i.e. a jointly epic
family {i(TUj)→ i(TU) | j ∈ J} such that the composites

i(TUj) - i(TU) -- RD

are equal, by the naturality of α with respect to g | Uj . This implies
the equality of the two maps i(TU)→ RD, and thus the naturality of α
with respect to g : U → R. It is now immediate to deduce naturality of
α with respect to any smooth U → Rm, and then also with respect to
any smooth U → V with U ⊆ Rn and V ⊆ Rm open subsets.

We have now achieved goal 1) in our strategy: we have constructed a
natural transformation α

mf
i(T (−))-
⇓

(i(−))D
- E

where mf is the full subcategory of Mf consisting of open subsets of the
Rns. The two functors involved are defined on the whole category Mf,
and i(T (−)) preserves coverings and transversal pullbacks, by Axioms C
and A. All we need to achieve our goal 2) is the following general patching
lemma, frequently utilized (implicitly) in differential geometry:

Lemma 4.3. Let F and G be functors Mf → E, and assume F pre-
serves coverings and transversal pullbacks. If h : mf ↪→ Mf denotes the
inclusion functor, any natural transformation α : F ◦ h⇒ G ◦ h extends
(uniquely) to a natural transformation F ⇒ G.

(Proof. To construct αM for M ∈ Mf, we utilize that homE(−, GM)
is a sheaf for the canonical topology on E .)
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Finally, we consider goal 3): we consider the class A of those manifolds
M , for which αM : i(TM))→ (iM)D is an isomorphism.

For U ⊆ Rn open, αU is an isomorphism, by the construction (and
here, Axiom B was involved). Since αM is natural in M ∈ Mf, the class
A is closed under retracts, for trivial categorical reasons (a retract of an
object M is an object N for which there exists maps i : N → M and
p : M → N with p ◦ i = idN ). But a well known theorem of analysis
asserts that any manifold appears as a retract in Mf of some open subset
of some Rm (cf. the reference to Whitney’s embedding theorem in [11]).
Thus A = Mf, and the theorem is proved.

In many contexts (see e.g. I §§19–21) one will need

Axiom D. (= Axiom 3R of I §19) SpecR(W ) is an atom for any Weil
algebra W over R.

We end this § with some remarks about 1st order properties of well-
adapted models. For instance, using just that i : Mf → E preserves
coverings and transversal pullbacks (Axioms A and C), it is possible to
prove that R = i(R) is a “separably real-closed ring” (cf. Exercise 2.6).
Here we shall just present a proof of

Proposition 4.4. Axioms A and C imply that R is a local ring object
(cf. II §9 for this notion).

Proof. We have already noted that Axiom A implies

i(Inv(R)) = Inv(R).

Similarly (in the notation of II.(9.14))

i(Inv(R) + 1) = Inv(R) + 1.

Now, Inv(R) = {x | x 6= 0} and Inv(R) + 1 = {x | x 6= 1} form an open
covering of R. Hence Inv(R) → R ← (Inv(R) + 1) cover R, by Axiom
C. So II.(9.13) holds for R; and also

1
p0q - R and 1

p1q - R

have ∅ as their (transversal) pullback in Mf; since i(∅) is the initial object
of E , by Axiom C, we have II.(9.12).

Remark. I have been informed that Joyal and Reyes have proved
that any T∞-algebra R in a topos is separably-real-closed (as a ring
object), provided it is local (as a ring object).3
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EXERCISES
4.1. Assume i : Mf → E satisfies Axiom A and C. Define a subobject

< of R × R by applying i to the open inclusion {(x, y) ∈ R × R | x <
y} ⊆ R2. Prove that <, as a binary “order” relation on R, is compatible
with the ring structure in an evident way, and that R with this ordering
is Archimedean, i.e. that

`1 ∀x ∈ R : (x < 0) ∨ (x < 1) ∨ (x < 2) ∨ . . .

Prove also that this order relation has the property that

`1 ∀x ∈ R : x invertible ⇔ (x < 0 ∨ 0 < x) (4.6)

and deduce that R is a formally real ring, i.e. a model for the theory
considered in Exercise 2.6. Also, prove that R is a Pythagorean ring,
i.e. a model of the theory considered in Exercise 2.7.

4.2. Prove that the functor T : Mf → Mf does not preserve all pull-
backs that exist (consider e.g. the intersection of a circle with one of its
tangents).

4.3. Use Axioms A,B, and C, but not Theorem 4.1, to prove that the
functor

(i(−))D : Mf → E

takes open coverings to coverings (hint: use Theorem 3.4). (The same
result gets an easier proof if we further assume Axiom D.)

4.4. Construct an inverse of the natural transformation α by using
the patching Lemma 4.3, together with Exercise 4.3 (thus the use of the
“Whitney embedding Theorem” in the proof of Theorem 4.1 may be
avoided).

III.5 The algebraic theory of smooth functions

To construct models satisfying some or all of Axioms A–D of §§3 and 4,
we need to consider more thoroughly the algebraic theory T∞ introduced
during the proof of Theorem 4.1. Recall

T∞(n, 1) = C∞(Rn) = ( set of smooth functions Rn → R).

Since T∞ contains the algebraic theory TR, of R-algebras (whose n-ary
operations are polynomial maps Rn → R with real coefficients), any
T∞-algebra has in particular structure of R-algebra.

If M ∈ Mf, clearly C∞(M) (= set of smooth functions M → R)
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is a T∞-algebra: given φ ∈ T∞(n, 1), and n elements hi ∈ C∞(M)
(i = 1, . . . , n), define φ(h1, . . . , hn) ∈ C∞(M) to be the composite

M
〈h1, . . . , hn〉- Rn φ - R.

This defines in fact a functor

Mf → (T∞ -Alg)op

M 7→ C∞(M)

and the idea for constructing the well-adapted models is to use algebraic
techniques in analogy with §§1-3 but with T∞ -Alg instead of R-Alg.

One main reason for considering the richer algebraic theory T∞ rather
than TR is that we have

Proposition 5.1. The T∞-algebra C∞(Rn) is the free T∞-algebra in n
generators (namely the proji : Rn → R).

Proof. This is evident from C∞(Rn) = T∞(n, 1).

In particular, C∞(Rn) is finitely presented as a T∞-algebra.

The main results to be proved in the next three §’s are:

(0) every Weil algebra over R is canonically a T∞-algebra (and is,
as such, finitely presented).

(i) the functor C∞(−) : Mf → (T∞ -Alg)op is full and faithful.

(ii) it preserves transversal pullbacks, and

(iii) it factors through the subcategory (FPT∞)op of finitely pre-
sented T∞-algebras;

(iv) there is a Grothendieck topology on (FGT∞)op whose restric-
tion to the subcategory Mf ↪→ (FGT∞)op is the standard “open
cover topology”, and whose “reflection” to a certain subcategory
Bop (containing (FPT∞)op) is subcanonical.

The category B ⊆ FGT∞ is the category of “germ-determined T∞-
algebras”, or T∞-algebras “presented by an ideal of local character”,
cf. §6 below; besides the finitely presented T∞-algebras, B also contains
for instance the algebra of germs of smooth functions at a point of a
manifold.

Having these results, well-adapted models can be constructed by alge-
braic means, like in §1, by taking SetB, or better B̃op with respect to the
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topology mentioned in (iv); the proof of Axiom 1W
R then goes completely

like in §1. But at the same time, we have the axiomatics of §4 available,
namely with the composite functor

Mf
C∞(−)- Bop y- B̃op = E

as our embedding i : Mf → E . This essentially follows from the results
(i)–(iv) quoted above.

The plan for proving (0)-(iv) is as follows: in the present §5, we de-
scribe some general “commutative algebra” of the category T∞ -Alg and
prove (0) and (i). In §6, we introduce the notion ‘ideal of local charac-
ter’, or ‘germ-determined ideal’, and prove that every finitely generated
ideal is such. This then leads to a proof of some special cases of (ii). In
§7, we introduce a Grothendieck topology on Bop. Its good properties
lead to a ‘patching’ procedure through which the general preservation
of transversal pullbacks by the functor C∞(−) is reduced to the special
case already studied.

The following factorization property in the theory T∞ is essentially
obtained by iterating Hadamard’s lemma:

Proposition 5.2. Let φ : Rn → R be smooth (i.e. φ ∈ T∞(n, 1)), and
let k ≥ 0 be an integer. Then there exists unique φα ∈ T∞(n, 1) and
there exist4 ψβ ∈ T∞(2n, 1) so that, for all (x, y) ∈ Rn × Rn

φ(x+ y) =
∑
|α|≤k

φα(x) · yα +
∑
|β|=k+1

ψβ(x, y) · yβ , (5.1)

(where α and β denote multi-indices in n letters, and we use the standard
conventions for such, quoted in I §5). Note that φ0 = φ.

As a first application, we prove

Theorem 5.3. Let W be a Weil algebra over R, and let B ∈ T∞ -Alg.
Then there exists a unique T∞-algebra structure on B ⊗R W extending
its R-algebra structure, and such that the canonical j : B → B ⊗R W

becomes a T∞-homomorphism.
In particular, any Weil algebra over R carries a canonical T∞ -algebra

structure, and B ⊗R W is the coproduct of B and W in T∞ -Alg. With
the canonical T∞-algebra structure on W ,

homR -Alg(W,C) = homT∞ -Alg(W,C),

for any T∞-algebra C.
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Proof. (This is really a straightforward generalization of an argument
in §4, cf. (4.3).) W can, as a vector space, be written W = R⊕W ′ with
every element in W ′ nilpotent, in fact, there exists an integer k ≥ 0 so
that the product in W of any k + 1 elements from W ′ is 0. Therefore
B ⊗R W = B ⊕ (B ⊗R W

′), and the product of any k+ 1 elements from
B ⊗R W

′ is 0. Let φ ∈ T∞(n, 1), and let

ri = j(xi) + yi i = 1, . . . , n

be an n-tuple of elements of B ⊗R W = B ⊕ (B ⊗R W
′). If B ⊗R W has

a T∞-algebra structure, then by the equation (5.1) (which holds for all
T∞-algebras, since it is an equation in T∞) we get

φ(r) = φ(j(x) + y) =
∑
|α|≤k

φα(j(x)) · yα +
∑
|β|=k+1

ψβ(j(x), y) · yβ ,

where r = (r1, . . . , rn), etc. The β -summation is zero, so that we must
have

φ(r) =
∑
|α|≤k

φα(j(x)) · yα =
∑
|α|≤k

j(φα(x)) · yα, (5.2)

the last equality sign by the assumption that j : B → B ⊗R W is
a T∞-algebra homomorphism. This proves the uniqueness. The fact
that (5.2) actually does define a T∞-algebra structure on B ⊗R W is
now straightforward. Taking B = R, we get the canonical T∞-algebra
structure on W = R⊗RW . The proof of the assertion about coproducts
as well as the assertion about hom-sets is similar to the proof of the
uniqueness of T∞-structure just given.

In commutative algebra, we have the three fundamental constructions
of 1) forming B/I for I an ideal of B, 2) forming B[Σ−1] for Σ a subset
of B, and 3) adjoining an indeterminate element to B. Each of these
constructions solves a universal problem, namely, respectively of making
all elements of I zero, making all elements in Σ invertible, and taking
coproduct of B with the free thing in one generator. Furthermore, the
two constructions B/I and B[Σ−1] ‘commute’ with each other, in an
evident sense. We may ask for the similar constructions in T∞ -Alg. In
so far as the first is concerned, the answer is that the construction is the
same as for R-algebras, more precisely:

Proposition 5.4. Let B be a T∞-algebra, and let I ⊆ B be an ideal (in
the usual ring theoretic sense). Then the R-algebra B/I carries a unique
structure of T∞-algebra such that the natural B → B/I is a T∞-algebra
homomorphism.
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Equivalently, the relation: x ∼ y iff y−x ∈ I, is a congruence relation
for the theory T∞.

Proof. We prove the last statement. Suppose yi − xi = hi ∈ I, i =
1, . . . , n. For any φ ∈ T∞(n, 1) we must prove φ(y) − φ(x) ∈ I. Now
using Proposition 5.2 with k = 1, we have

φ(y) = φ(x+ h) = φ0(x) +
∑
|β|=1

ψβ(x, h) · hβ .

But φ0 = φ and the sum
∑

β belongs to I since each hi does.

Because of the Proposition, ‘ordinary’ ideals play the same role in the
theory of T∞-algebras as they do in commutative algebra; some titles
of famous books reflect this fact, [57], [75], even though these books do
not explicitly utilize the T∞-algebra viewpoint.

Example 5.5. If p ∈ Rn, we let J(p) be the ideal of functions f for
which there is an open neighbourhood of p where f vanishes. The T∞-
algebra C∞(Rn)/J(p) is the algebra of germs at p. The ideal J(p) is
not finitely generated, so there is no reason why C∞(Rn)/J(p) should
be finitely presented. It is, of course, finitely generated.

We next consider the construction of inverting the elements of a subset
Σ ⊆ B, where B is a T∞-algebra. Here, the R-algebra B[Σ−1] will not
in general carry a T∞-algebra structure. We denote by B 7→ B{Σ−1}
the universal solution in T∞ -Alg of making the elements of Σ invertible.
Unlike in ordinary commutative algebra, we do not in general have an
explicit description of the elements of B{Σ−1}.

Finally, for general reasons, T∞ -Alg has coproducts, which we denote
⊗∞. One cannot describe these as explicitly as in commutative algebra.
But from C∞(Rn) being the free algebra in n generators follows that

C∞(Rn) = C∞(R)⊗∞ C∞(R)⊗∞ . . .⊗∞ C∞(R) (n times) (5.3)

so that at least this ⊗∞-formation is easy to describe explicitly. Ad-
joining an indeterminate t to the T∞-algebra B consists just in forming
C∞(R) ⊗∞ B. – Note that (5.3) may be read as: C∞(−) : Mf →
(T∞ -Alg)op preserves finite products of Rms.

For the case where Σ consists of just one element b, the formation of
B{Σ−1} = B{b−1} may be reduced to a combination of the two other
constructions: (i) adjoin an indeterminate t to B, and (ii) divide out by
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the ideal generated by t · b− 1,

B{b−1} = (C∞(R)⊗∞ B)/(t · b− 1). (5.4)

This is immediate from the universal properties involved. In particu-
lar, if B is finitely generated (respectively finitely presented) as a T∞-
algebra, then so is B{b−1}.

The feature which distinguishes the commutative algebra of T∞ -Alg
from that of R -Alg is the existence of locally finite partitions of unity.
Recall (from [72] Corollary 2 p. 6, say) that if {Ui | i ∈ I} is an open
covering of a manifold M , there exists a locally finite partition of unity
subordinate to the covering {Ui | i ∈ I}, meaning a family {φi | i ∈ I}
of smooth functions φi : M → R with

(i) supp(φi) ⊆ Ui

(recall supp(φi) = closure of the set {x ∈M | φi(x) 6= 0})

(ii) for all x ∈ M , ∃ open set V 3 x such that the set {i ∈ I |
V ∩ supp(φi) 6= ∅} is finite

(iii)
∑

i∈I φi ≡ 1

(Note that the sum in (iii) makes sense because of (ii)).
If {Ui | i ∈ I} and {φi | i ∈ I} are as above, we let Wi = {x |

φi(x) 6= 0} (so suppφi = W i and Wi is open). Let J ⊆ I be the set
{j ∈ I | Wj 6= ∅}. Clearly the family {Wj | j ∈ J} is a locally finite
refinement of {Ui | i ∈ I}, meaning that it is

(i) an open covering, and that it is

(ii) locally finite (i.e. for all x ∈ M ∃ open set V 3 x such that
the set {j ∈ J | V ∩W j 6= ∅} is finite)

(iii) subordinate to the covering {Ui | i ∈ I}, i.e., for each j ∈ J ,
there exists an i ∈ I with W j ⊆ Ui.

As a first application of partition of unity (for an open cover with
just two sets), we give two equivalent descriptions of C∞p (M), the T∞-
algebra of germs at p ∈M , where M is a manifold. One is an immediate
generalization of Example 5.5, namely

C∞p (M) := C∞(M)/J(p),

where J(p) is the ideal of functions vanishing on some open neighbour-
hood of p (i.e. the ideal of functions whose germ at p is 0). The other
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is

C∞p (M) := C∞(M){Σ−1
p }

where Σp is the set of those f ∈ C∞(M) with f(p) 6= 0. To prove that
these two descriptions are mutually consistent, we should prove

Proposition 5.6. For any p ∈M , there is a canonical isomorphism

C∞(M)/J(p) ∼= C∞(M){Σ
−1

p }.

Proof. To produce a map C∞(M)/J(p)→ C∞(M){Σ−1

p }, it suffices to
see that any f ∈ J(p) becomes zero in C∞(M){Σ−1

p }. Let f vanish on
U 3 p, and let φ, ψ be a partition of unity subordinate to the covering
U,¬{p}. Then ψ(p) = 0, so φ(p) = 1, so φ ∈ Σp. But φ · f ≡ 0 since
supp(φ) ⊆ U and f vanishes on U . So f is 0 in C∞(Rn){Σ−1

p }
To produce a map the other way, we should prove that any g ∈ Σp is

invertible mod J(p). If g(p) 6= 0, g 6= 0 in some neighbourhood U 3 p.
Let φ, ψ be a partition of unity subordinate U,¬{p}. Then φ · g−1 is
well-defined and smooth throughout M (here we use that the support
of φ is closed and contained in the open set U); so

g · (φ · g−1)− 1 = φ− 1 = −ψ.

But ψ (and hence−ψ) belongs to J(p); for supp(ψ) ⊆ ¬{p}, so ¬ supp(ψ)
is an open neighbourhood around p, and ψ vanishes on it.

The element in C∞p (M) determined by f ∈ C∞(M) is called the germ
of f at p ∈ M , and denoted fp. If I ⊆ C∞(M) is an ideal, the set
{fp | f ∈ I} is an ideal in C∞p (M), denoted Ip.

The following result is classical; it is called ‘Milnor’s Exercise’ in [11],
and we refer the reader to there for a proof.

Theorem 5.7. Let M be a manifold. To any R-algebra map p :
C∞(M)→ R, there exists a unique point P ∈M , such that p is “evalu-
ation at P”,

p(f) = f(P ) ∀f ∈ C∞(M).

Since “evaluation at P” is clearly a T∞-algebra homomorphism, the
theorem is equally true if we instead of “R-algebra map” write “T∞-
algebra homomorphism”.

Corollary 5.8. The functor C∞(−) : Mf → (R -Alg)op, and hence also
the functor C∞(−) : Mf → (T∞ -Alg)op, are full and faithful.
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Proof. Let φ : C∞(N)→ C∞(M) be an R-algebra homomorphism. Let
P ∈M , and let p : C∞(M)→ R be evaluation at P , as in the theorem.
By the theorem, applied for N , the composite p ◦ φ is “evaluation at
Q ∈ N” for some unique Q ∈ N , which we denote f(P ). Thus we have
defined at least a set-theoretic mapping f : M → N . To prove that f is
smooth, it suffices to see that g ◦f is smooth for any smooth g : N → R.
But we claim

g ◦ f = φ(g) ∈ C∞(M), (5.5)

from which smoothness follows. To see (5.5), it suffices to see that the
two mappings there agree on any P ∈ M . But φ(g)(P ) = g(f(P )),
by construction of f . This proves (5.5) and also that φ = C∞(f). So
C∞(−), considered as a functor with values in (R -Alg)op, is full and
faithful. Since the forgetful functor (T∞ -Alg)op → (R -Alg)op is faithful,
it is obvious that C∞(−) is also full and faithful when considered to have
values in (T∞ -Alg)op.

Because of Theorem 5.7, and the remark following it, it is consistent
to formulate

Definition 5.9. Let B ∈ T∞ -Alg. A point p of B is a T∞-algebra
homomorphism B → R. We say that B is point-determined if for any
f ∈ B

(p(f) = 0 for all points p of B)⇒ (f = 0).

Corollary 5.10. A T∞-algebra of form C∞(M) is point-determined.

Note that under the bijective correpondence of Theorem 5.7 between
points P ∈ M and points p of C∞(M), f(P ) = p(f). We shall confuse
P and p notationally.

We end this § by some Propositions about Weil algebras (over R)
viewed as T∞-algebras.

Proposition 5.11. Let fi(X1, . . . , Xn) (i = 1, . . . , k) be polynomials
with coefficients from R, and let I ⊆ R[X1, . . . , Xn] be the ideal they gen-
erate. Suppose R[X1, . . . , Xn]/I is a Weil algebra W . Let J ⊆ C∞(Rn)
be the ideal generated by the functions f1, . . . , fk. Then the canonical
R-algebra map

W = R[X1, . . . , Xn]/I → C∞(Rn)/J

is an isomorphism, in fact an isomorphism of T∞-algebras.
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In particular, any Weil algebra (over R) is finitely presented as a T∞-
algebra.

Proof. This is a straightforward application of “Hadamard’s lemma” in
the form of Proposition 5.2, and for the last assertion, also of Proposition
5.1.

Proposition 5.12. Let W be a Weil algebra over R and let φ :
C∞(Rm) → W be a T∞-homomorphism, “centered” at p ∈ Rm (mean-
ing: the composite π ◦ φ : C∞(Rm) → R is “evaluation at p ∈ Rm”).
Then for any linear ρ : W → R, there exists a polynomial P in m

variables such that

∀f ∈ C∞(Rm) : ρ(φ(f)) = (P (
∂

∂x1
, . . . ,

∂

∂xm
)(f))(p).

Proof. Any Weil algebra W over R is a quotient of one of form
C∞(Rn)/Ik+1 where Ik+1 is the ideal generated by monomials of de-
gree k + 1; so it suffices to consider such Weil algebras. We consider
first a special case, namely where φ is the canonical residue class map
φ : C∞(Rn) → C∞(Rn)/Ik+1. It is centered at 0 ∈ Rn. An R-linear
basis of W = C∞(Rn)/Ik+1 consists of the monomials of total degree
≤ k. For any f ∈ C∞(Rn) we have, by Hadamard’s lemma (Proposition
5.2),

f(x) =
∑
α≤k

1
α!
∂αf

∂xα
(0) · xα +

∑
β=k+1

xβ · gβ(x),

so that the residue class φ(f) is just the α-part of the sum. If {ρα}|α|≤k

is the dual basis to the basis {x}|α|≤k for W , we thus have

ρα(φ(f)) =
1
α!
∂αf

∂xα
(0),

proving the assertion for the ρα’s. But these form a basis for the vector
space of all linear functionals on W .

To prove the general case, let φ : C∞(Rm)→W be arbitrary, centered
at p ∈ Rm. We now have the situation

C∞(Rm)

C∞(Rn)

C∞(h)

?

................

φ
-- W.

φ

-

(5.6)
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Since C∞(Rm) is free and φ is surjective, φ lifts over φ (dotted arrow),
and since C∞(−) : Mf → (T∞ -Alg)op is full, the lifted map is of form
C∞(h) for some smooth h : Rn → Rm, with h(0) = p. If now ρ : W → R
is a linear functional, then, for any g ∈ C∞(Rm)

ρ(φ(g)) = ρ(φ(g ◦ h)) = P
( ∂

∂x1
, . . . ,

∂

∂xn

)
(g ◦ h)(0),

by the special case already proved. But, as is well known,

P
( ∂

∂x1
, . . .,

∂

∂xn

)
(g ◦ h)

=
∑

i

(
Qi

( ∂

∂y1
, . . . ,

∂

∂ym

)
(g) ◦ h

)
·
(
Ri

( ∂

∂x1
, . . . ,

∂

∂xn

)
(h)

)
for suitable polynomials Qi and Ri which depend only on P , not on g

and h. In particular (since h is fixed, and h(0) = p),

P
( ∂

∂x1
, . . . ,

∂

∂xn

)
(g ◦ h)(0) =

∑
i

(
Qi

( ∂

∂y1
, . . . ,

∂

∂ym

)
(g)(p)

)
· ri

which is of form Q
(

∂
∂y1

, . . . , ∂
∂ym

)
(g)(p) for a polynomial Q. This proves

the Proposition.

EXERCISES
5.1.(Dubuc [11]). Let W be a Weil algebra over R, and let B be an

arbitrary T∞-algebra. Prove

homT∞ -Alg(B,W ) = homR -Alg(B,W ).

5.2. Show that the ring of formal power series R[[X1, . . . , Xn]] car-
ries a canonical structure of T∞-algebra (Hint: it is an inverse limit of
Weil algebras R[X1, . . . , Xn]/Ik+1, where Ik+1 is the ideal generated by
monomials of degree k+1.) (Dubuc has informed me that Calderon has
proved that R[[X1, . . . , Xn]] is the coproduct in T∞ -Alg of n copies of
R[[X]].5)

5.3 (Reyes). Prove that any T∞-algebra B is formally-real in the
sense that, for any n = 1, 2, . . ., and any b1, . . . , bn ∈ B, 1 +

∑
(b2i ) is

invertible in B. (Hint: we have a smooth function Rn → R given by
(x1, . . . , xn) 7→ (1+

∑
(x2

i ))
−1; interpret it as an n-ary operation in T∞.)

5.4. Let M be a manifold, and F ⊆ M a subset. Let IF ⊆ C∞(M)
be the ideal of functions that vanish on F . For I an ideal of C∞(M),
let Z(I) ⊆M be the set

Z(I) = {x ∈M | f(x) = 0 ∀f ∈ I}. (5.7)
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Prove that F = Z(IF ) if and only if F is closed. (Hint: Use the existence
of smooth characteristic functions for open sets of a manifold, cf. e.g.
proof of Theorem 3.4).

5.6. With notation as in Exercise 5.4, prove that for an ideal I ⊆
C∞(M), we have I = IZ(I) if and only if C∞(M)/I is point-determined.

5.7 (Dubuc and Schanuel). Let I ⊆ C∞(Rm) be an ideal. Let
I∗ denote the ideal generated by the image of I under the inclusion
C∞(Rm) → C∞(R) ⊗∞ C∞(Rm) = C∞(Rm+1). Writing elements of
this algebra in form f(t, x), (t ∈ R, x ∈ Rm), prove that

t · f(t, x) ∈ I∗ ⇒ f(t, x) ∈ I∗.

III.6 Germ-determined T∞-algebras

It is now consistent to formulate

Definition 6.1. Let B ∈ T∞ -Alg, and let p be a point of B, p : B → R.
The germ-algebra at p, denoted Bp, is the T∞-algebra B{Σ−1

p } where
Σp = {f ∈ B | p(f) 6= 0}.

If f ∈ B, the element it represents in Bp is denoted fp and called the
germ of f at the point p. Similarly, if I is an ideal in B, the smallest
ideal in Bp containing {fp | f ∈ I} is denoted Ip.

If M ∈ Mf, B = C∞(M), and P ∈ M , and if p : C∞(M) → R is
the point (in the sense of Definition 5.9) defined as “evaluation at P”,
then p(f) = f(P ), and fp as defined just now agrees with the germ (in
the classical sense) of f at P , by Proposition 5.6. Confusing P and p

notationally, we may identify C∞p (M) (the classical ring of germs at p)
with (C∞(M))p as defined now.

Definition 6.2. Let B ∈ T∞ -Alg, and let I ⊆ B be an ideal. The
germ-radical of I, denoted Î, is the ideal in B given by

Î = {f ∈ B | fp ∈ Ip for all points p of B}.

Clearly I ⊆ Î. We say that I is of local character, or germ-determined,
if I = Î. We say that B is germ-determined if the zero ideal in B is germ-
determined.

Thus, I ⊆ B is of local character if a sufficient condition for f to
belong to I is that fp ∈ Ip for all points p of B.
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Any T∞-algebra B evidently maps to a germ-determined one in a
universal way, namely by B → B/{̂0}. We may denote B → B/{̂0}
simply by B̂. Note that B and B̂ have the same points.

A T∞-algebra need not have any points: let I ⊆ C∞(R) be the ideal
of functions f with compact support. Then for each p ∈ R, Ip = C∞p (R),
so Î = C∞(R); thus, for B = C∞(R)/I, B̂ = {0}, which has no points,
so B has no points. Also the ideal I is not of local character, and B is
not germ-determined.

The contention is that the only geometrically interesting T∞-algebras
are the germ-determined ones. Clearly any point-determined T∞-algebra
(Definition 5.9), and in particular any C∞(M) for M ∈ Mf, is germ-
determined. There are many interesting T∞-algebras which are germ-
determined, but not point-determined, like R[ε] (or any other Weil alge-
bra), or C∞p (M).

We let B denote the full subcategory of FGT∞ consisting of germ-
determined T∞-algebras. If C∞(Rn)/I is a presentation of a germ-
determined T∞-algebra,

C∞(Rn)/I = (C∞(Rn)/I )̂ = C∞(Rn)/Î,

so that I = Î; so I is germ-determined. Conversely, if I ⊆ C∞(Rn) is
germ-determined, C∞(Rn)/I is germ determined, and belongs to B.

The process B 7→ B̂ defines a reflection functor FGT∞ → B, left
adjoint to the inclusion B ↪→ FGT∞. The existence of that implies that
B has finite colimits. They are not in general preserved by the inclusion
functor B ↪→ FGT∞.

Let M ∈ Mf. From Proposition 5.6 follows that if f ∈ C∞(M) and
I ⊆ C∞(M) is an ideal, then f ∈ Î implies that for each p ∈ M , there
exists an open neighbourhood V (p) around p, and functions g(p) and
γ(p) ∈ C∞(M) such that

f = g(p) + γ(p) (6.1)

with g(p) ∈ I and γ(p) vanishing on V (p). (Conversely, an f of this form
for all p ∈M belongs to Î.) This description is used in the proof of the
following essential

Theorem 6.3. Let M be a manifold, J ⊆ C∞(M) an ideal, and h ∈
C∞(M) an arbitrary element. If J is germ-determined, then so is the
ideal I = (J, h) generated by J and h.

In particular, any finitely generated ideal in C∞(M) is germ-
determined; and any finitely presented T∞-algebra is germ-determined.
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Proof. Assume fp ∈ Ip ∀p ∈ M . So for every p ∈ M , we may find
g(p), γ(p), and V (p), as in (6.1). Let {Uα | α ∈ A} be a locally finite
refinement of the covering {V (p) | p ∈ M} of M , and let {φα | α ∈ A}
be a (locally finite) partition of unity subordinate to {Uα | α ∈ A}. For
each α, we have Uα ⊆ V (p) for some p. For such p

φα · f = φα · g(p) + φα · γ(p) = φα · g(p),

the last equality sign because supp(φα) ⊆ Uα ⊆ V (p), and γ(p) vanishes
here. Since g(p) ∈ I, φα · f ∈ I. This holds for each α ∈ A. So we may
write

φα · f = jα + kα · h (6.2)

for suitable jα ∈ J and kα ∈ C∞(M). Now since supp(φα) ⊆ Uα is
closed, we have a partition of unity ρα, 1−ρα subordinate to the covering
Uα, ¬ supp(φα). In particular, ρα ≡ 1 on supp(φα). So ρα ·φα = φα. So
we have

φα · f = ρα · φα · f = ρα · jα + (ρα · kα) · h.

We change notation and write jα for ρα · jα, and kα for ρα · kα; so (6.2)
holds again, but now with supp(jα) ⊆ Uα, supp(kα) ⊆ Uα. So we have

f =
(∑

φα

)
· f =

∑
(φα · f) =

∑
(jα + kα · h)

=
∑

jα +
∑

(kα · h);

this last interchange of the order of summation is permissible, since
the families {jα} and {kα} are locally finite because the covering {Uα}
is locally finite. For the same reason, we may rewrite

∑
(kα · h) into

(
∑
kα) · h. So altogether we get

f =
∑

jα +
(∑

kα

)
· h. (6.3)

Now again by the local finiteness of {Uα}, the germ (
∑
jα)p is a finite

sum of germs (jα)p, so (
∑
jα)p ∈ Jp, for each p ∈ M . Since J was

assumed to be germ-determined, we conclude
∑
jα ∈ J , and clearly

(
∑
kα) · h ∈ (h). Thus (6.3) proves f ∈ (J, h) = I, as desired. This

proves the general part of the theorem. The particular case follows by in-
duction, starting from the observation that C∞(M) is germ-determined,
thus the zero ideal in it is germ-determined. TakingM = C∞(Rm) yields
the assertion for T∞-algebras of form C∞(Rm)/(f1, . . . , fn), i.e. for the
finitely presented ones.
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The following Proposition is an application of the local character
(= germ-determinedness) of finitely generated ideals in C∞(M). It
provides a first partial answer to the question: to what extent does
C∞(−) : Mf → (T∞ -Alg)op preserve transversal pullbacks? M denotes
a manifold.

Proposition 6.4. Let h : M → Rs have x as regular value. Then the
(transversal) pullback

H ⊂ - M

1
?

pxq
- Rs

h

?

is preserved by the functor C∞(−) : Mf → (T∞ -Alg)op. Equivalently,
the equalizer in Mf

H ⊂ - M
h -

x
- Rs

is preserved by C∞(−) (where x denotes the constant map with value x).
In particular, if M = Rn, C∞(H) is finitely presented as a T∞-algebra.

Proof. The equivalence of the two formulations is a trivial dia-
grammatic fact, knowing that C∞(1) = R is the terminal object in
(T∞ -Alg)op. So we prove the second formulation.

Without loss of generality, we may assume x = 0 ∈ Rs. If h =
(h1, . . . , hs), then H is the submanifold cut out by the s functions
h1, . . . , hs (i.e. the meet of their zero sets). We must prove that

C∞(H) �r C∞(M) �C
∞(h)

�
0

C∞(Rs)

is a coequalizer in T∞ -Alg, where r is the restriction map. Since C∞(Rs)
is the free T∞-algebra in s generators, this is equivalent to proving that

C∞(M)/(h1, . . . , hs) ∼= C∞(H), (6.4)

via the restriction map r. Let f ∈ C∞(M) have r(f) = 0, i.e. f ≡ 0
on H. We must prove that f ∈ (h1, . . . , hs). Since this ideal is germ-
determined (Theorem 6.3) it suffices to prove, for each p ∈M

fp ∈ (h1, . . . , hs)p. (6.5)
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For p /∈ H, (h1, . . . , hs)p = C∞(M)p, so (6.5) is automatic. So consider
a p ∈ H. By the implicit function theorem and the fact that the his
have linearly independent differentials at p (because h(p) = 0 and 0
was assumed a regular value for h), we may choose a smooth coordinate
frame around p and f(p) so that, locally around p = 0, h : Rn → Rs

is projection onto the s first coordinates (it suffices to consider things
locally, since (6.5) is a statement about germs). Writing Rn = Rs⊕Rn−s,
we thus need:

Lemma. Let f : U → R vanish on U ∩Rn−s (U an open neighbourhood
of 0 ∈ Rs ⊕ Rn−s). Then

f =
s∑

i=1

gi · xi

for suitable smooth gi : U → R (here, xi denotes, as usual, projection
Rn → R to the ith factor).

Proof. This is another special case of Hadamard’s lemma (cf. Proposi-
tion 5.2).

We have now identified the kernel of the restriction map r : C∞(M)→
C∞(H) as being exactly the ideal (h1, . . . , hs). To prove that r is sur-
jective means proving that any smooth f : H → R may be extended
over H ↪→ M . Locally, this can be done, because locally H looks like
Rn−s ⊆ Rn. To get a global extension, we may apply a partition of
unity. This proves (6.4) and thus the Proposition.

Let U ⊆M be an open subset of a manifold. Recall (§3) that we may
find a smooth characteristic function g : M → R for it (i.e. U = {x ∈
M | g(x) 6= 0}. Then 1 ∈ R is a regular value for the map h : R×M → R
given by (t, x) 7→ t ·g(x). From Proposition 6.4 follows that the equalizer
in Mf

U
e - R×M

h -

1
- R,

where e(x) = (g(x)−1, x), is preserved by C∞(−), or equivalently that

C∞(U) ∼= C∞(R×M)/(h− 1), (6.6)

where h(t, x) = t · g(x). Equivalently, by (5.4),

C∞(U) = C∞(M){g−1}. (6.7)
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In particular, taking M = Rn, we have C∞(R × M) = C∞(Rn+1),
the free T∞-algebra in n + 1 generators, so that (6.6) provides a finite
presentation of C∞(U); so we have

Lemma 6.5. If U ⊆ Rn is open, C∞(U) is finitely presented as a T∞-
algebra.

We can now prove

Theorem 6.6. For any manifold M , C∞(M) is finitely presented as a
T∞-algebra.

Proof. By the version of Whitney’s embedding theorem also utilized in
§4, M is a smooth retract of some open U ⊆ Rn. It follows that C∞(M)
is a retract in T∞ -Alg of C∞(U), which is finitely presented, by Lemma
6.5. It is standard universal algebra that a retract of a finitely presented
thing is finitely presented.

Using (6.7), it is easy to prove:

Proposition 6.7. Let U ↪→M be an open subset of a manifold, and let
f : N →M be a smooth map between manifolds. Then the (transversal)
pullback defining f−1(U) ⊆ N is preserved by the functor C∞(−) : Mf →
(T∞ -Alg)op.

Proof. Let g be a smooth characteristic function for U . Then g ◦
f is a smooth characteristic function for f−1(U). From the univer-
sal properties involved follows that C∞(N){(g ◦ f)−1} is a pushout of
C∞(M){g−1} along C∞(f). The result follows from (6.7).

EXERCISES
6.1 (Dubuc). Consider the two germ-determined T∞-algebras C∞0 (R)

and C∞(R) (the first one is the algebra of germs at 0 ∈ R). Prove that
their coproduct in T∞ -Alg

C∞0 (R)⊗∞ C∞(R) (6.8)

is isomorphic to C∞(R2)/J , where J is the ideal of functions vanishing
in some subset of R2 of form ] − ε, ε[×R (a “strip around the y-axis”).
Prove that Jp is the unit ideal for any p that does not belong to the
y-axis. Thus, if f : R2 → R has fp = 0 for all p ∈ y-axis, f ∈ Ĵ . In
particular, we conclude that the ideal J is not germ-determined, and
that (6.8) is not in B.
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6.2. Let W be a Weil algebra over R, and p : W → R its unique point.
Prove that the germ algebra Wp equals W , and conclude in particular
that W is germ-determined.

III.7 The open cover topology

By Corollary 5.8, Theorem 6.6, and Theorem 6.3, we have full inclusions

Mf ↪→ (FPT∞)op ↪→ Bop,

(where B = category of finitely generated germ-determined T∞-algebras).
We want to extend the Grothendieck topology on Mf, given by the

open coverings, to a Grothendieck topology on Bop. The definition is
almost immediate, when we take the notion of ‘point’ serious, and recall,
(6.7), that for U ⊆ M open, C∞(U) ∼= C∞(M)/{g−1} for some g ∈
C∞(M), and conversely, for any g ∈ C∞(M), C∞(M)/{g−1} ∼= C∞(U)
where U = {x ∈ M | g(x) 6= 0}. This leads us to utilize the following
terminology, which properly speaking refers to Bop rather than to B:

Definition 7.1. A map B → C in B is an open inclusion if it is of form
B → B{b−1} → B{b−1}̂ for some b ∈ B, and where the two displayed
maps are the canonical ones.

It seems that we cannot from “B is germ-determined” conclude
“B{b−1} is germ-determined”, in general, whence we have to make it
so by applying the reflection functor ̂ : FGT∞ → B. However, if B
is finitely presented, then so is B{b−1}, by (5.4), so is already germ-
determined, by Theorem 6.3. This in particular applies to B = C∞(M)
by Theorem 6.6, and by the above remarks, it follows that the inclu-
sion Mf ↪→ Bop preserves and reflects the notion of open inclusion, in
an evident sense: C∞(M) → C is an open inclusion iff it is of form
C∞(M)→ C∞(U) for some open subset U ⊆M .

We now describe a Grothendieck topology on Bop, by describing a
pretopology. We work with the dual category B, so that we must describe
co-coverings instead of coverings.

Definition 7.2. An open co-cover of a B ∈ B is a family {ξα : B →
Bα | α ∈ A} of open inclusions in B (Definition 7.1) such that any
point B → R factors through some ξα (“Every point of B is a point of
some Bα”, or “the family is jointly surjective in so far as points are
concerned.”)
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To check that this is a pre-(co-)-topology: the point-surjectivity con-
dition is evidently preserved under composition of covers, and using only
the universal property of pushouts in B, it is likewise easily seen to be
preserved under pushout. So we need only see

Proposition 7.3. 1) The pushout in B of an open inclusion is of an
open inclusion. 2) The composite of two open inclusions is an open
inclusion.

Proof. It is clear that B{b−1}̂ solves in B the universal problem of
making b ∈ B invertible. From this, and the universal property of
pushouts, 1) follows. To prove 2), let c ∈ B{b−1}̂. We should prove that

B → (B{b−1}̂){c−1}̂

is an open inclusion. Consider a presentation of B, π : C∞(Rn) � B

with kernel I. We find a g ∈ C∞(Rn) mapping to b by π, and by the
fact that the processes of dividing out by ideals and forming fraction-
T∞-algebras commute, we have a commutative square (ignore the αs
which are for later reference)

C∞(Rn) - C∞(Rn){g−1
α } = C∞(Uα)

B

π

??
- B{b−1

α }

qα
??

(7.1)

(with U = {x | g(x) 6= 0} an open subset of Rn). By the universal
properties of the constructions involved, this is a pushout in FGT∞. If
we apply the reflection functor̂: FGT∞ → B to it, we get a pushout in
B, and it looks like (7.1) except that B{b−1} is replaced by B{b−1}̂ (the
other three objects being already in B). Obviously, q̂ is surjective, so we
find some h ∈ C∞(U) going to c by q̂. Let V = {x ∈ U | h(x) 6= 0}. It is
clearly open in U ⊆ Rn, so it is an open subset of Rn. Let k : Rn → R be
a smooth characteristic function for it. In B, we have the two adjacent
pushout diagrams

C∞(Rn) - C∞(U) - C∞(U){h−1} = C∞(V )

B

π

?
- B{b−1}̂

?
- (B{b−1}̂){c−1}̂

?

(7.2)
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But we also have a pushout diagram in B

C∞(Rn) - C∞(Rn){k−1} = C∞(V )

B

π

??
- B{π(k)−1}̂,

?

and comparing it with the total diagram in (7.2), which must be iso-
morphic to it, we conclude that the composite map in the bottom line
of (7.2) is an open inclusion. This proves the Proposition.

As we have remarked, the Proposition implies that the open covers
of Definition 7.2 do form a Grothendieck pretopology. The fact that we
have been only considering germ-determined T∞-algebras did not play
a role for that, but it does for

Theorem 7.4. The Grothendieck pretopology on Bop (as described in
Definition 7.2) is subcanonical, i.e. for every F ∈ B, the functor

homB(F,−) : (Bop)op → Set

is a sheaf.

Proof. Let B ∈ B, and consider an arbitrary open covering {ξα : B →
Cα | α ∈ A} of it . As in the proof of Proposition 7.3, it follows that we
may choose a presentation π : C∞(Rn) � B of B, with kernel I, say,
and open subsets Uα of Rn such that the diagrams

C∞(Rn) - C∞(Uα)

B

π

??
- Cα

qα

??

are pushouts in B. From the point-surjectivity condition follows that
the union of the Uαs, which we denote W , contains Z(I) = {p ∈ Rn |
f(p) = 0 ∀f ∈ I}.

Lemma. The map π : C∞(Rn)→ B factors across the restriction map
C∞(Rn)→ C∞(W ).

Proof. Let g : Rn → R be a smooth characteristic function for W ,
so C∞(W ) = C∞(Rn){g−1}. We have to see that π(g) is invertible
in B = C∞(Rn)/I. Since B is assumed germ-determined, the ideal
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(π(g)) ⊆ B is germ-determined, by Theorem 6.3. To prove (π(g)) = B,
it suffices to see (π(g))p = Bp for all points p of B, i.e. for all points
p ∈ Z(I). But g is nowhere zero on Z(I) so p(π(g)) 6= 0 in R, whence
π(g)p is invertible in Bp for p ∈ Z(I).

By the Lemma, we get a map π : C∞(W ) → B. We now prove
the sheaf condition simultaneously for all homB(F,−), F ∈ B: let Cαβ

denote the pushout in B of B → Cα and B → Cβ . It suffices to prove
that

B -
∏

Cα
-
-

∏
Cαβ

is an equalizer in T∞ -Alg. Let {hα ∈ Cα | α ∈ A} be an element in
the middle, equalized by the two parallel maps, i.e. {hα} is a compatible
family. This implies that for all points p of Cαβ , (hα)p = (hβ)p. Thus,

for every point p of B, there is a well-defined element h
(p) ∈ Bp with

h
(p)

= (hα)p (7.3)

for any α such that p is a point of Cα. We shall construct an element
h ∈ B such that

hp = h
(p)

(7.4)

for all points p of B.
Let hα ∈ C∞(Uα) have qα(hα) = hα. Let {φα | α ∈ A} be a locally

finite partition of unity of W , subordinate to the covering {Uα | α ∈ A}
of W . Since supp(φα) ⊆ U is closed, the function φα · hα is defined and
smooth on the whole of W , and, by local finiteness, we may form

h :=
∑
α

φα · hα ∈ C∞(W ).

We let h := π(h) ∈ B. Generally, in the following, an overbar indicates
that we have applied π or qα. Now let p be any point of B, (so also
p ∈ Z(I) ⊆W ). We choose, by local finiteness of the partition {φα}, an
open neighbourhood V around p meeting only finitely many supp(φα),
say those with index in A0 ⊆ A. Let A1 = {α ∈ A0 | p ∈ Uα}. We then
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have

(h)p =
∑

α∈A1

(φα · hα)p

=
∑
A1

(φα)p(hα)p

= (
∑
A1

(φα)p · h
(p)

(by (7.3))

= (
∑
A1

φα)p · h
(p)

= h
(p)
,

the last equality sign by observing that in a small enough neighbourhood
around p,

∑
A1
φα =

∑
A φα(≡ 1). This proves (7.4). But then in Cα,

ξα(h) = hα;

for, since Cα is germ-determined, this follows by proving

(ξα(h))p = (hα)p for all points p of Cα;

and by (7.3) and (7.4)

(ξα(h))p = hp = h
(p)

= (hα)p.

This proves the Theorem.

EXERCISES
7.1. Prove that in B, the only object covered by the empty family is

the T∞-algebra {0} (the one-element T∞-algebra).

7.2. Describe a Grothendieck pre-co-topology on FGT∞ by letting an
open co-cover of B ∈ FGT∞ be a family {ξα : B → Bα | α ∈ A} which
is surjective in so far as points are concerned, and where each ξα is an
“open pre-inclusion”, where this latter just means a map in FGT∞ of
form B → B{b−1}. (Hint: to prove the axioms for pretopologies, modify
the proof of Proposition 7.3.)

7.3. (Dubuc). Let B = C∞(R)/I where I is the ideal of functions
of compact support. In the Grothendieck co-topology of Exercise 7.2,
prove that B is covered by the empty family; and conclude that this
co-topology on FGT∞ is not subcanonical.
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III.8 Construction of well-adapted models

We begin by proving a fundamental result:

Theorem 8.1. The functor C∞(−) : Mf → Bop preserves transversal
pullbacks.

Since each of the full inclusions FPT∞ ⊆ FGT∞ and FGT∞ ⊆
T∞ -Alg preserve finite colimits, and C∞(M) ∈ FPT∞ ⊆ B ⊆ FGT∞ ⊆
T∞ -Alg, it follows purely formally from the theorem that C∞(−) pre-
serves transversal pullbacks also when its value category is taken to be
either FPT∞op, FGT∞op, or T∞ -Alg op.

Proof. Several special cases have already been proved, e.g. Propositions
6.4 and 6.7. We prove (using these) two further special cases:

Proposition 8.2. Let H � M be a closed submanifold and f : N →M

a smooth map, transversal to the inclusion H � M . Then the (transver-
sal) pullback

F - H

N
?

?

f
- M

?

?

(F = f−1(H)) is preserved by C∞(−) : Mf → Bop.

Proposition 8.3. The functor C∞(−) : Mf → Bop preserves finite
products.

Jointly, these two Propositions immediately lead to the theorem. This
follows from the remarks following Definition 3.1 (a transversal pullback
of f1, f2 being represented as (f1 × f2)−1(∆)).

Proof of Proposition 8.2. We may cover M by open subsets {Uα | α ∈
A} so that H ∩ Uα is carved out of Uα by a function hα : Uα → Rs, as
h−1

α (0) with 0 ∈ Rs a regular value of hα. For each α, we have a diagram
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F - H

Vα ∩ F -
⊂

-

H ∩ Uα
-

⊂

-

1

N
? f - M

?

Vα

?
-

⊂

-

Uα

? hα -
⊂

-

Rs

0

?

where Vα = f−1(Uα). All squares are (transversal) pullbacks in Mf,
because H � M is transversal to f and 0 is a regular value for hα.
Proposition 6.4 applies to the right-hand square in front, and to the
composite of the two front squares. Purely diagrammatically, it follows
that the left-hand front square goes to a pullback by C∞(−). So our
given square FHNM is ‘covered’ by pullbacks, each of which is preserved
by C∞(−); we use sheaf theory to prove that the square FHNM itself
goes to a pullback, as follows. Identifying objects in Mf by their image
in Bop under C∞(−), let X ∈ Bop, and let n : X → N , m : X → H

have f ◦ n = incl ◦m, where incl is the inclusion of H into M . Let,
for each α, Xα be formed by pulling n : X → N back along Vα ↪→ N .
Since the Vαs cover N , the Xαs cover X, for the open cover topology in
Bop. From Proposition 6.7 it follows that the intersection H ∩Uα is also
an intersection in Bop, so that Xα → X → H factors across H ∩ Uα.
Using that the left-hand front square is a pullback in Bop, we get a map
να : Xα → Vα∩F ⊆ F , and having this for each α ∈ A gives an element
{να}α∈A in ∏

α∈A

homBop(Xα, F ).

To see that the {να} form a compatible family, we use that F � N is
monic in Bop (the restriction map r : C∞(N)→ C∞(F ) being surjective,
cf. the proof of Proposition 6.4). Using then the sheaf condition for the
functor homBop(−, F ) (Theorem 7.4) gives a global X → F , composing
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with the F → N and F → H to the correct maps n and m, respectively.
Uniqueness follows from the fact (Theorem 7.4) that the topology is
subcanonical. This proves Proposition 8.2.

Proof of Proposition 8.3. We first prove that C∞(−) : Mf → Bop

preserves products of form U × V , where U ⊆ Rn, V ⊆ Rm are open.
Let g and h be smooth characteristic functions for U and V , respectively.
The function g · h : Rn+m → R defined by

(g · h)(x, y) := g(x) · h(y)

is then a smooth characteristic function for U × V ⊆ Rn+m. We have,
using just the universal properties, that

C∞(Rn+m){(g · h)−1} = C∞(Rn){g−1} ⊗∞ C∞(Rm){h−1}.

But the three T∞-algebras involved here are, by (6.7), just C∞(U ×V ),
C∞(U), and C∞(V ), respectively.

Next we prove that C∞(−) preserves products of form U ×M , where
U ⊆ Rn is open, and M is a manifold. We do this by covering M with
open sets Vα, where Vα is an open subset of Rm. To pass from the
preservation of the product U × V (already proved) to the preservation
of U ×M , is then again a sheaf theoretic argument, like in the proof
of Proposition 8.2. Finally, preservation of N ×M is proved similarly,
knowing the preservation of Uα ×M for a suitable open covering Uα of
N .

We are now in a position to construct a well-adapted model in the
sense of §§3 and 4. We shall in fact construct several later (§9 ff), but
the one to be presented now is the most natural and comprehensive one.

We let

E := B̃op ⊆ SetB,

the sheaves on Bop with respect to the open-cover topology of §7.6 We
let i : Mf → E be the composite

Mf
C∞(−)- Bop y - B̃op (8.3)

where y : Bop → SetB is the Yoneda embedding; it factors through the
subcategory B̃op of sheaves, because the open-cover topology on Bop is
subcanonical (Theorem 7.4). We note that i(R) = y(C∞(R)) is just the
forgetful functor B → Set, since C∞(R) is the free T∞-algebra in one
generator. With i(R) = R, it is easy to prove

yB = SpecR(B)
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for any B ∈ B, in fact a more general equality holds, cf. the Note at the
beginning of §9 below, notably formula (9.3).

Theorem 8.4. The model i : Mf → E described by (8.3) is a fully well-
adapted model in the sense that the functor i is full and faithful and the
Axioms A,B,C, and D of §§3 and 4 are satisfied.

Proof. The functor C∞(−) is full and faithful by Corollary 5.8, and
the Yoneda embedding y is full and faithful; hence so is i. The functor
C∞(−) preserves transversal pullbacks (Theorem 8.1), and the Yoneda
embedding preserves all limits that exist; hence i preserves transversal
pullbacks. This is Axiom A. To prove Axiom B (= Axiom 1W

R ) for
R = i(R), we resort to the theory developed in §1; there, we talked
about the algebraic theory Tk of k-algebras, but evidently this applies
equally well to any algebraic theory T whatsoever, in particular to T∞;
⊗k is to be replaced by ⊗∞, the coproduct in the category T∞ -Alg. We
shall in particular use Theorem 1.2 for T∞, with R = B.

We consider the canonical map (1.1)

HomR -Alg(R
SpecR(B), C)

νB,C- SpecC(B), (8.4)

for R = i(R) = forgetful functor B → Set, B ∈ FGT∞, and C ∈
R -Alg = (R ↓ T∞ -Alg(E)). From Theorem 1.2 follows that

Proposition 8.5. If B ∈ B is stable w.r.to B (meaning B ⊗∞ B′ ∈ B
for any B′ ∈ B), then νB,C is an isomorphism for any C ∈ R -Alg.

Not all B ∈ B are stable in this sense: the coproducts in B are not in
general preserved by B ↪→ T∞ -Alg, see Exercise 6.1. However, all Weil
algebras are:

Lemma 8.6. Let W be a Weil algebra over R, and consider it with its
canonical T∞-structure. Then B ∈ B ⇒ B ⊗∞W ∈ B.

Proof. We have to see that B ⊗∞W is germ-determined if B is. Since
a Weil algebra W has a unique point π : W → R, it follows that the
points B ⊗∞W → R of B ⊗∞W are in 1–1 correspondence with those
of B, via the projection π : B ⊗∞W → B. By Theorem 5.3,

B ⊗∞W = B ⊗R W = B ⊕ (B ⊗R W
′),

with all elements in the second component nilpotent. Also, if b = b0+n ∈
B ⊕ (B ⊗R W

′), then

(B ⊗∞W ){b−1} = B{b−1
0 } ⊗∞W, (8.5)
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since n is nilpotent. From these observations easily follows that for any
point p of B, and the corresponding point p = p◦π of B⊗∞W , we have
for the germ-algebras

(B ⊗∞W )p
∼= Bp ⊗∞W. (8.6)

To say that B is germ-determined is to say that the family

B → Bp, p a point of B

is jointly mono. The functor − ⊗R W = − ⊗∞ W preserves jointly
monic families, since it, on the underlying vector spaces, is of form C 7→
C ⊕ . . . ⊕ C (m times, where m is the linear dimension of W over R).
It follows from (8.6) that the family B ⊗∞W → (B ⊗∞W )p, p a point
of B⊗∞W , is jointly mono, so that B⊗∞W is germ-determined. This
proves Lemma 8.6.

We conclude from Proposition 8.5 that the map νB,C in (8.4) is an
isomorphism for B = W any Weil-algebra over R. On the other hand

Hom(R↓TR -Alg(E))(R⊗W,C) ∼= SpecC(W ) (8.7)

by I. (16.3) , and

Hom(R↓TR -Alg(E))(R⊗W,C) ∼= Hom(R↓T∞ -Alg(E))(R⊗W,C) (8.8)

by an evident internalization of Theorem 5.3 (last clause). Combining
the isomorphisms of (8.4), (8.7), and (8.8), we conclude by Yoneda’s
lemma (as in I §16) that

α : R⊗W → RSpecR W

is an isomorphism, proving Axiom B.
Validity of Axiom C is evident: C∞(−) : Mf → Bop preserves cover-

ings, and y : Bop → B̃op takes the coverings of the Grothendieck topology
on Bop into jointly epic families in the topos it defines (this is a general
fact about Grothendieck topologies).

We finally prove Axiom D. Since B has coproducts, we have from
Proposition 1.4 that in SetB, every representable y(B) is an atom. In
particular, for B finitely presented, y(B) = SpecR(B) is an atom in
SetB. To prove that for B = W a Weil algebra, yW = SpecRW is an
atom in B̃op, it suffices to see that FyW is a sheaf if F is, where (−)yW

denotes the right adjoint of (−)yW . This follows purely formally if we
can prove

(aX)yW = a(XyW )
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where X is an arbitrary object in SetB and a : SetB → B̃op is the sheaf
reflection functor. (For then, for F ∈ B̃op and X ∈ SetB, we have
(denoting hom-sets by square brackets)

[aX,FyW ] = [(aX)yW , F ] = [a(XyW ), F ]

= [XyW , F ] = [X,FyW ].)

To prove a(XyW ) = (aX)yW , we use the classical construction of a as
l ◦ l ([1], II.3) where l : SetB → SetB is the functor

l(X)(B) := lim−→
R↪→yB

hom(R,X)

the colimit ranging over ‘covering cribles’ R ↪→ yB. Then

l(XyW )(B) = lim−→
R↪→yB

hom(R,XyW ) = lim−→
R↪→yB

hom(R× yW,X) (8.9)

whereas

(lX)yW (B) = (lX)(W ⊗B) = lim−→
R′↪→y(W⊗B)

hom(R′, X). (8.10)

These two objects are isomorphic: for, since every open (co-) cover of
W ⊗∞ B in B comes about from a unique open (co-) cover of B, by
pushing out along B → W ⊗∞ B (by an argumentation as in the proof
of Lemma 8.6), it follows that the index categories used for the colimits
in (8.9) and (8.10) are equivalent, and if R′ ↪→ y(W ⊗ B) corresponds
to R ↪→ yB, R′ = R× yW . From l(XyW ) ∼= (lX)yW follows a(XyW ) ∼=
(aX)yW , as desired. This proves Axiom D.

EXERCISES
8.1 (Grothendieck-Verdier, [1]). Define a Grothendieck pretopology

on Mf by declaring a family {Mi → M | i ∈ I} to be a covering if it is
jointly surjective and each Mi →M is an open inclusion. Prove that it
is subcanonical. Let M̃f be the resulting topos (“the smooth topos”7).
Prove that the functor y : Mf → M̃f is a well-adapted model in the sense
that Axioms A, C, and D of §§3 and 4 are satisfied. (Hint: Axiom D is
satisfied for the trivial reason that SpecR(W ) = 1 for any Weil algebra
W , so no proper infinitesimal objects exist (“R has no nilpotents”).)
Prove that Axiom B fails.

However (Reyes), synthetic calculus in Fermat-style (I, Axiom (2.4))
is available, cf. Exercise 9.4 below.
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III.9 W-determined algebras, and manifolds with boundary

To get toposes in which the category of manifolds with boundary is nicely
and fully embedded, it seems necessary to construct some “smaller” well-
adapted models, by choosing suitable full subcategories C ⊆ B as our
site of definition. In order to be able to utilize the open-cover-topology
(§7), we shall assume that C satisfies the following condition:

If B ∈ C and B → C is an open inclusion in B,
then C ∈ C

(9.1)

(recalling Definition 7.1 of the notion ‘open inclusion’). Since the pushout
of an open inclusion along any map is an open inclusion, and the com-
posite of two open inclusions is an open inclusion, it is clear that the
class of open co-coverings of objects of C form a Grothendieck pre-co-
topology on C (likewise called the open cover topology), and that any
sheaf F : B → Set has the property that its restriction to C is a sheaf.
In particular, the topology on C is subcanonical. If

j : C ↪→ FGT∞

denotes the inclusion functor, some specially useful sheaves are functors
of form

homFGT∞(B, j(−)) : C → Set (9.2)

for B ∈ FGT∞. If B is not in C, such a functor is not representable.
We say nevertheless that B represents it “from the outside”, and write
yo(B) for the functor (9.2).

Examples. 1) Let CS ⊆ B be the full image of the functor C∞(−) :
Mfop → B. It satisfies condition (9.1); this CS leads to the smooth topos
(cf. Exercise 8.1).

2) Let CC ⊆ B be the category of T∞-algebras of form

C∞(M)⊗∞W (= C∞(M)⊗R W )

for W a Weil algebra over R, and M ∈ Mf. The fact that (9.1) holds
follows from (8.5). This C leads to the “Cahiers topos” of Dubuc [11].

3) C = B. This leads to the topos considered in §8.
4) C =W, the category of Weil algebras. This rather trivial example

is studied in Exercise 9.9.

Note. The functor

yo : (FGT∞)op - C̃op
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is proper left exact and factors through the reflection functor

(FGT∞)op ̂ - Bop

(which is also proper left exact, being a right adjoint). For, since C ⊆ B,

homT∞ -Alg(B, j(−)) ∼= homT∞ -Alg(B̂, j(−)),

where j : C → FGT∞ is the inclusion functor.
Note also that since yo is proper left exact, and

yo(C∞(R)) = R = forgetful functor C → Set

(= y(C∞(R)) if C∞(R) ∈ C), we have for any B ∈ FGT∞

SpecR(B) = yo(B) = yo(B̂). (9.3)

The examples CS , CC , and W for C, have the property that all their
objects are W-determined T∞-algebras in the sense of the following Defi-
nition 9.1. This notion is analogous to, but stronger than, the notion
germ-determined in §6.

Definition 9.1. 8 Let B ∈ T∞ -Alg, and let I ⊆ B be an ideal. The
W-radical (W for “Weil”) , denoted I, is the ideal in B given by

I :={f ∈ B | for any T∞-algebra map (or TR-algebra map, cf. Ex. 5.1)

φ : B →W into a Weil algebra W,

φ(I) = 0 implies φ(f) = 0}.

We say that B is W-determined if {0} = {0}.

It is possible to prove that, for B = C∞(Rn) and I ⊆ B an ideal,
the W-radical is exactly the closure of I in the Whitney9 topology on
C∞(Rn), cf. [69]. We shall not utilize this.

Proposition 9.2. Each T∞-algebra of form C∞(M)⊗∞W is W-deter-
mined.

Proof. The family {evp : C∞(M)→ R | p ∈M} is jointly mono. Hence
so is the family

{evp⊗ id : C∞(M)⊗∞W →W | p ∈M}

since C∞(M)⊗∞W = C∞(M)⊗RW , and the functor −⊗RW preserves
jointly monic families (as we observed in the proof of Lemma 8.6).

Note that since a Weil algebra W has a unique point W → R, every
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q : B →W (B ∈ T∞ -Alg) defines a point p of B, namely the composite
B →W → R. We say that q : B →W is centered at the point p. If f ∈
B has p(f) invertible (i.e. 6= 0) in R, q : B → W factors across B{f−1}
(recall that W → R reflects the property of being invertible, cf. the proof
of Proposition I.19.1). Since this holds for all f with p(f) invertible, we
see that any B → W , centered at p, factors across B → Bp = B{Σ−1

p },
where Σp = {f ∈ B | p(f) is invertible }. It follows in particular that
a W-determined algebra is also germ-determined. A point-determined
T∞-algebra is clearly W-determined.

The category of W-determined algebras is a reflective subcategory of
the category of all T∞-algebras: to any T∞-algebra B, we may divide
out by the W-radical of the zero ideal to get a W-determined algebra.

We now begin the consideration of manifolds-with-boundary. The
fundamental such is the non-negative half-line

H := {x ∈ R | x ≥ 0}.

Then C∞(H) = C∞(R)/I1 where I1 is the ideal of functions vanishing
on H.

It is clear that if f ∈ I1, then f (k)(0) = 0 ∀k, i.e. f is flat at 0. So any
f ∈ I1 can by Hadamard’s lemma, be written

f(x) = xk+1 · g(x)

for any k = 1, 2, . . ., in particular I ⊆ (xk+1). So we have a surjective
homomorphism

C∞(R)/I1 = C∞(H) � C∞(R)/(xk+1) = R[X]/(Xk+1) (9.4)

(the last equality by Proposition 5.11).

We consider in C∞(Rn+1) = C∞(Rn)⊗∞C∞(R) the ideal I generated
by the image of I1 under the inclusion of C∞(R) into this tensor product.
So I consists of functions of form

∑
gi(x, y) · hi(y)

(finite sum) with hi ∈ I1.

Proposition 9.3. † The W-radical I of I consists of those functions
f : Rn × R→ R which vanish on Rn ×H.

† Quê and Reyes have announced a stronger result which implies that I itself con-
tains all functions vanishing on Rn × H.
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Proof. Let φ : C∞(Rn × R) → W annihilate the ideal I, and let
f : Rn ×R→ R vanish on Rn ×H. We shall prove φ(f) = 0, which will
prove f ∈ I. Clearly, φ is centered at some point p = (b, a) ∈ Rn × H.
By Proposition 5.12, it is of form (identifying W with Rk )

Pj

( ∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y

)
( )(p) j = 1, . . . , k

for a k-tuple of polynomials Pj in n+1 variables, all of degree ≤ K, say.
We can, by Hadamard’s lemma, write the given f in form

f(x, y) =
∑
|α|≤K

1
α!

(x− b)α · ∂
αf

∂xα
(b, y) +

∑
|β|=K+1

(x− b)β · hβ(x, y)

where α and β are multi-indices in (1, . . . , n). Since f vanishes on Rn×H,
we have

∂αf

∂xα
(b, y) ∈ I1,

and likewise hβ(x, y) vanishes on Rn × H. So in the above sum, the
α-sum belongs to I and is thus killed by φ. So it suffices to see that the
β-summation is killed by any differential operator of form

P (
∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y
)()(b, a),

with P a polynomial of degree ≤ K. We write P in form∑
Ql(X1, . . . , Xn) · Y l, with the Qls of degree ≤ K. So

P

(
∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y

)
((x− b)β · hβ(x, y))(b, a)

=
∑

l

Ql

(
∂

∂x1
, . . . ,

∂

∂xn

)
((x− b)β · ∂

l

∂yl
hβ(x, y))(b, a).

Now, none of the differential operators Ql

(
∂

∂x1
, . . . , ∂

∂xn

)
has high

enough degree to derive away all of the factors (x − b)β because
|β| = K + 1. So when substituting b for x after the differentiation,
we get 0.

In the rest of this § we shall make the following set of assumptions on
C:

Assumption (i) C ⊆ B and C satisfies (9.1); (ii) C∞(M) is in C for
any M ∈ Mf; (iii) if C ∈ C, then so is C⊗∞W , for any Weil algebra W ;
(iv) each C ∈ C is W-determined.
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By Proposition 9.2, an example of such C is the class CC of T∞-algebras
of form C∞(M)⊗∞W .

Under the Assumption, we have a functor, analogous to (8.3), namely

Mf
C∞(−)- Cop y - C̃op, (9.5)

where y : Cop → SetC is the Yoneda embedding; it factors through
the subcategory C̃op of sheaves, because the open-cover topology on Cop

is subcanonical. We note that i(R) = y(C∞(R)) is just the forgetful
functor C → Set, since C∞(R) the free T∞-algebra in one generator.

Under the Assumption above, we have, writing E for C̃op:

Theorem 9.4. The model i : Mf → E thus described is a fully well-
adapted model in the sense that the functor i is full and faithful, and the
Axioms A,B,C, and D of §§3 and 4 are satisfied.

Proof. This is a repetition of the proof of Theorem 8.4, with C instead
of B. Note that Cop ↪→ Bop does not preserve finite limits in general,
but since C∞(−) : Mf → Bop preserves transversal pullbacks and fac-
tors through Cop ⊆ Bop, C∞(−) : Mf → Cop does preserve transversal
pullbacks. Lemma 8.6 is replaced by (iii) in the Assumption.

The rest of the § is concerned with extending i : Mf → E to a full and
faithful functor on Mf ′, the category of manifolds-with-boundary, and
investigating properties of this extension.

We do this as follows. If K is a manifold-with-boundary, one may find
a manifold M without boundary, of same dimension, containing K, and
such that each x ∈ ∂K (= boundary of K) has an open neighbourhood
U in M diffeomorphic to Rn, by a diffeomorphism which takes U ∩ K
into Rn−1 ×H. We then have

C∞(K) ∼= C∞(M)/I,

where I is the ideal of functions f : M → R vanishing on K. It is clear
that I is germ-determined. Since C∞(M) ∈ B (i.e. finitely generated
and germ-determined), the same holds true for C∞(K). From Theorem
5.7, it follows that a point of C∞(K) must be evaluation at some P ∈M ,
and it is clear that this P cannot be outside K ⊆ M (which is a closed
subset). So the notational and terminological confusion between points
of K and points of C∞(K) is justified, just as for manifolds-without-
boundary.

In particular, each C∞(K) is point-determined, and hence also W-
determined.
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If Mf ′ denotes the category of manifolds-with-boundary (it contains
Mf as a full subcategory), we extend the functor i : Mf → E = C̃op into
a functor i′ : Mf ′ → E by letting i′(K) be the functor represented-from-
the-outside by C∞(K),

i′(K) = homT∞ -Alg(C∞(K), j(−)) : C → Set,

which is a sheaf, as we noted at the beginning of the §. It is now easy
to prove

Theorem 9.5. The functor i′ : Mf ′ → E = C̃op preserves any product
of form N ×K, where N ∈ Mf ⊆ Mf ′ and K ∈ Mf ′.

Proof. Let K ⊆ M be as above, with M ∈ Mf, a manifold-without-
boundary. Then

C∞(N ×K) = C∞(N ×M)/J

where J is the ideal of functions vanishing on N ×K ⊆ N ×M . On the
other hand

C∞(N)⊗∞ C∞(K) = C∞(N)⊗∞ (C∞(M)/I1)

= (C∞(N)⊗∞ C∞(M))/I,

where I1 is the ideal in C∞(M) of functions vanishing on K, and I is
the ideal which I1 generates in C∞(N) ⊗∞ C∞(M). We claim† that
the W-radical I of I is J . Clearly I ⊆ J , and since J is W-determined,
I ⊆ J . Conversely, let f ∈ J . To prove f ∈ I, it suffices, since I

is W-determined, hence germ-determined, to prove fp ∈ (I)p for all
points p, of N × M . But now that we are working with germs, we
may as well assume that N = Rn, M = Rm, K = Rm−1 × H; then
J consists of functions vanishing on Rn × Rm−1 × H, and I contains
any h(x1, . . . , xn, y1, . . . , ym) which only depends on ym and vanishes if
ym ≥ 0. Then f ∈ I follows from Proposition 9.3.

It follows that for any W-determined T∞-algebra C,

homT∞(C∞(N ×M)/J, C) ∼= homT∞(C∞(N)⊗∞ C∞(K), C);

since C is assumed to consists of W-determined algebras, it follows that
C∞(N × M)/J , i.e. C∞(N × K), and C∞(N) ⊗∞ C∞(K) represent
(from the outside) the same object in C̃op. The Theorem now follows.

The last endeavour of this § is to prove

† the result announced by Quê and Reyes (mentioned earlier) implies that in fact

I = J(= I).
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Theorem 9.6. The functor i′ : Mf ′ → E = C̃op is full and faithful.

Proof. We have the functor Γ = hom(1,−) : E → Set. If K ∈ Mf ′,

Γ(i′K) = homE(y(R), yo(C∞(K)))

= homT∞ -Alg(C∞(K),R) = |K|,
(9.6)

the underlying set of K. Since the “underlying-set” functor | · | : Mf ′ →
Set is faithful, it follows that i′ is. To prove it full, let f : i′K1 → i′K2 be
a map in E . Applying Γ, we get by (9.6) a map Γ(f) in Set from |K1| to
|K2|. We claim that it is smooth. First, by considering a boundaryless
manifold M2 ⊇ K2 as above, we see that we may replace K2 by M2, or
changing notation, assume that K2 itself is boundaryless, K2 ∈ Mf. For
any N ∈ Mf and any smooth g : N → K1 we have

f ◦ i(g) : iN → iK2,

and since i is full, this comes from a smooth map N → K2, whose
underlying point-set map |N | → |K2| is Γ(f) ◦ |g|. So we have proved
that Γ(f) : |K1| → |K2| is plot smooth, where we pose

Definition 9.7. A point-set map h : |K1| → |K2| where K1 ∈ Mf ′,
K2 ∈ Mf is plot smooth if its composite with any smooth g : N → K1

(with N ∈ Mf) is smooth.

The gs occurring here are to be thought of as “test plots” whence the
name “plot smooth”. The concept may be applied to any subset K1 of
a manifold.

The main lemma in the proof is the following, whose proof depends
on a well known theorem of Whitney concerning smooth even functions
[80]:

Lemma 9.8. Any plot smooth h : |K1| → |K2| (with K1 and K2 ∈ Mf ′)
is smooth.

Proof. To prove h smooth, it suffices to prove its composite with any
smooth K2 → R to be smooth. Since the composite of a plot smooth
map with a smooth map clearly is plot smooth, it suffices to prove the
Lemma for the case K2 = R.

Let K1 ⊆M with M boundaryless. To prove h smooth at an interior
point p of K1 is obvious. So consider the case p ∈ ∂K1, the boundary of
K1. To say h smooth at p means that it can be extended to a smooth
function on some open U ⊆M containing p. Since the question whether
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this can be done is local, we may as well assume that K1 = Rn−1 × H,
and p = (b, 0) (b ∈ Rn−1). We consider the plot s

Rn s- Rn−1 ×H (9.7)

given by

(x, y) 7→ (x, y2).

By assumption of plot smoothness of h, h ◦ s is smooth Rn → R, and it
clearly is even in the last variable y (i.e. takes same value on (x, y) and
(x,−y)). By Whitney’s theorem quoted above, there exists a smooth
f : Rn → R such that

f(x, y2) = h(s(x, y)) (= h(x, y2)) ∀(x, y) ∈ Rn.

Since every z ∈ H is of form y2 for some y, it follows that f and h agree
on Rn−1 × H. So h has been extended to a smooth map (namely f)
defined on all of Rn. This proves the Lemma.

Returning to the proof of the theorem, we have for f : i′K1 → i′K2

that Γf : |K1| → |K2| is plot smooth, hence smooth, by the Lemma; so
we have

i′Γf : i′K1 → i′K2.

If we can prove i′Γf = f we have proved i′ full. Clearly Γ(i′Γf) = Γ(f).
We may embedK2 into a boundaryless manifoldM2, as above, and then,
by Whitney’s embedding theorem, embed M2 as a closed submanifold
of some Rm. These two embeddings go by i′ to monic maps. To see
i′Γf = f , we may therefore reduce to the case where K2 = Rm, and
then, since i preserves products, to the case K2 = R. The result then
follows (by taking K = K1 and g = f − i′Γf) from

Lemma 9.9. Let K ∈ Mf ′, and let g : i′K → R have the property that
Γ(g) : K → R is the zero map. Then g itself is the zero map.

Proof. It suffices to see that for any yC → i′K with C ∈ C, the
composite yC → i′K → R is zero. Since R = y(C∞(R)), this composite
is induced by a T∞-homomorphism γ : C∞(R) → C, which we have to
see sends idR into the zero element of C. Since C is W-determined, it
suffices to see that each composite

C∞(R)
γ - C - W

with W a Weil algebra, sends idR to 0. This reduces the problem to
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proving that for any b : yW → i′K (with W a Weil algebra), the com-
posite

yW
b - i′K

g - R

is zero. Since i′K = yo(C∞(K)), b is induced by a T∞-homomorphism
C∞(K)→W , centered at some p ∈ K, and therefore factoring through
C∞(K)→ C∞p (K). We then have the situation

yW
b- yo(C∞(K))

g- y(C∞(R))

yo(C∞p (K))
∪

6

g

-

b
-

and it suffices to prove g◦b to be the zero map. Since we are now working
with germs, we may as well assume that K = Rn−1 ×H, and p = (x, 0)
(the case p = (x, y) with y > 0 is quickly reduced to the boundaryless
case). Now it is clear that b factors through

Rn−1 ×Dk ⊆ Rn−1 × i′(H)

for some k (the inclusion Dk ⊆ i′(H) is by (9.4)). So it suffices to see
that our g : Rn−1 × i′(H) → R vanishes on Rn−1 × Dk. We fire the
final shot by once again pulling the “squaring map” (cf. (9.7)); we have,
writing H for i′(H),

Rn i(s)- Rn−1 ×H - R. (9.8)

Since i : Mf → E is full, this composite is of form i(l) for some smooth
l : Rn → R, and since g is zero on global points p : 1→ Rn−1 ×H, i.e.
on elements of Rn−1×H, it follows that l must be the zero map, whence
also (9.8) is the zero map. Therefore also

Rn−1 ×D2k+1
id×s- Rn−1 ×Dk

g- R

is the zero map, where s : D2k+1 → Dk is the restriction of the squaring
map. Taking exponential adjoints, we get that

Rn−1 ĝ - RDk
Rs
- RD2k+1

is the zero map. But “R believes s : D2k+1 → Dk is epic”, meaning
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Rs : RDk → RD2k+1 is monic; this follows from Axiom 1W and the fact
that we have a monic map between the Weil algebras for Dk and D2k+1

R[X]/(Xk+1)→ R[Y ]/(Y 2k+2)

given by X 7→ Y 2.
Since Rs ◦ ĝ is the zero map, and Rs is monic, ĝ is the zero map, hence

g : Rn−1 ×Dk → R is the zero map. Lemma 9.9 is proved. So Theorem
9.6 is proved.

EXERCISES
9.1. Define a functor i′ : Mf ′ → B̃op by

i′(K) := y(C∞(K)).

Prove that i′ is full and faithful. (Hint: we have remarked that Theorem
5.7 is valid for K as well. Now copy the proof of Corollary 5.8.)

9.2. Use the result of Quê and Reyes quoted in the footnotes to prove
that the functor i′ considered in Exercise 9.1 preserves products of form
N ×K with N ∈ Mf and K ∈ Mf ′.

9.3. Let I ′ ⊆ C∞(R) be the ideal of functions g for which there exists
an open U ⊇ H on which g vanishes. Prove that the W-radical of I ′ is
the ideal of functions vanishing on H. Prove that it is strictly larger than
I ′. However, the germ radical of I ′ is I ′ itself. (Hint: use Proposition
5.12.)

9.4 (Reyes). Let C ⊆ B satisfy (9.1), and assume C∞(Rm) ∈ C ∀m =
0, 1, . . .. Finally assume ∀B ∈ C : C∞(Rm) ⊗∞ B ∈ C ∀m. If I ⊆
C∞(Rm) is an ideal, let I∗ ⊆ C∞(Rm+1) be the ideal generated by I

under the inclusion C∞(Rm) → C∞(Rm) ⊗∞ C∞(R) = C∞(Rm+1).
Consider a generalized element f ∈yB RR, where B = C∞(Rm)/I.
Prove that the information contained in f is given by an F ∈ C∞(Rm+1)
modulo I∗. Use this, in connection with Exercise 5.1, to prove that

`1 ∀f ∈ RR(f · id ≡ 0⇒ f ≡ 0).

Similarly, using a parametrized form of Hadamard’s lemma, prove that

`1 ∀f ∈ RR ∃g ∈ RR×R : ∀x, y f(x)− f(y) = (x− y) · g(x, y)

and deduce (cf. Exercise I.13.2) that Fermat’s axiom I.(2.4) holds, thus
some synthetic calculus is available.
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In particular, prove that Fermat’s Axiom holds for the Smooth Topos
C̃Sop.

Reyes and others have observed that in this model, the object Rded of
Dedekind reals (cf. [28], 6.61) is represented from the outside by C0(R)
(= ring of continuous functions on R). The inclusion C∞(R) ⊆ C0(R)
gives rise to a comparison map R→ Rded, which has been utilized and
studied by Reyes and Veit.

9.5. Let χ : R→ R be a smooth characteristic function for N = {x ∈
R | x < 0}, i.e. χ(x) 6= 0 iff x < 0. The ideal (χ) is germ-determined by
Theorem 6.3. Prove that its W-radical consists of functions vanishing
on H. (Hint: use Proposition 5.12.)

9.6. We may consider the following on a T∞-algebra object R

Axiom B.2. For any B ∈ CC (i.e. B = C∞(M)⊗∞W ),

HomR -Alg(R
SpecR B , C)

∼=- SpecC(B)

is an isomorphism.

Adapt the proof of Theorem 1.2 to prove that Axiom B.2 holds for C̃op
C .

(Hint: the inclusion functor C ⊆ T∞ -Alg preserves finite coproducts, by
an adaptation of the proof of Proposition 8.3.)

9.7. Prove that Axiom B.2 implies Axiom B. (Hint: adapt the proof
of Theorem I.16.1.)

9.8. Prove that in C̃op
C , every objectN of form i(M) (=SpecR(C∞(M))

is reflexive: the canonical

N → HomR -Alg(R
N , R)

is an isomorphism (R -Alg denotes, again, (R ↓ T∞ -Alg(E))). More
generally

NX ∼= HomR -Alg(R
N , RX).

9.9. (Dubuc [11]). Let C = W ⊆ FGT∞ be the category of Weil
algebras over R. Prove that the open-cover topology on it is trivial,
so that C̃op = SetC . Prove that the functor i : Mf → SetC given by
i(M)(W ) = homT∞ -Alg(C∞(M),W ) is a “well-adapted model” in the
sense that it is faithful (but not full), and satisfies Axioms A, B, C, and
D of §§3 and 4. Prove that for this model

`1 ∀x ∈ R : (x is inverible) ∨ (x is nilpotent).
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9.10 (Dubuc). Let C satisfy (9.1), and assume that R ∈ C. LetN ∈ C̃op

be an object with no global elements 1→ N . Prove that N = ∅. (Hint:
Prove that if yC → N is any generalized element, yC = ∅. Now use that
the representables are topologically dense).

This should be viewed as a “Nullstellensatz”.

III.10 A field property of R and the synthetic role of germ
algebras

We consider in this § the models E = B̃op and E = C̃op
C . We have in both

cases the Axioms A,B,C, and D of §§3 and 4 satisfied, by Theorem 8.4
and Theorem 9.4, respectively. In particular, we know by Proposition
4.4 that R (= i(R) = y(C∞(R))) is a local ring object.

It turns out that in a certain sense, R is a field object, but with a
field notion which is not contradictory to the fundamental Axiom 1 (cf.
I §1). To state it, we remind the reader of Part II. We use

∧n
i=1 φi as

a shorthand for the n-fold conjunction φ1 ∧ . . . ∧ φn, and similarly for
disjunction.

Theorem 10.1. For E = B̃op and E = C̃op
C , R ∈ E satisfies, for each

natural number n,

`1 ∀x1, . . . , xn : ¬
( n∧
i=1

(xi = 0)
)
⇐⇒

n∨
i=1

(xi is invertible ). (10.1)

Proof. We first consider the case E = B̃op. Then the category E has
the representables as a dense class A of generators which is topologically
dense; so we may define the satisfaction relation ` relative to that, cf.
II §§7 and 8. So let there be given an n-tuple of (generalized) elements
of R, defined at stage yB ∈ A:

yB
xi - R i = 1, . . . , n,

and assume that

`yB ¬
( n∧
i=1

(xi = 0)
)
.

Under the bijective correspondences

homE(yB, y(C∞(R))) = homB(C∞(R), B) ∼= B,

xi ∈yB R corresponds to an actual element xi ∈ B. The ideal (x1, . . . , xn)
⊆ B is germ-determined, by Theorem 6.3; let C = B/(x1, . . . , xn),
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and let β : B → C be the canonical map. Under the change of stage
y(β) : yC → yB, the generalized elements xi ∈yB R all become zero,
because all xi become zero under β : B → C. By the assumption it
follows that C is covered by the empty family, whence C = {0}. So
(x1, . . . , xn) = B. We consider the family of maps in B

{B
ξi- B{x−1

i }̂ | i = 1, . . . , n}. (10.2)

If p : B → R is a point of B, p(x1), . . . , p(xn) generate the unit ideal of
R, hence at least one p(xi) is invertible, so that p factors across ξi. Thus
the family (10.2) is a covering for the open cover co-topology on B. The
change of stage y(ξi) makes xi invertible, since ξi makes xi invertible.
But this implies, by definition of ` for disjunctive statements, that

`yB

n∨
i=1

(xi is invertible ).

This proves the implication ‘⇒’. The converse implication is almost
trivial:

First

`1 ∀x (x invertible ⇒ ¬(x = 0)). (10.3)

For, if x : yB → R satisfies `yB (x is invertible), then x ∈ B is invertible
in B. Thus, if β : B → C sends x to 0, C must be the zero ring. This
proves `yB ¬(x = 0). Secondly, from (10.3), the result follows by purely
logical means, since it is easy to see that (cf. (Exercise II.8.8)

`X

( n∨
i=1

φi

)
⇒ ¬

( n∧
i=1

ψi

)
is implied by

`X

n∧
i=1

(φi ⇒ ¬ψi),

for any X,φi and ψi.

We next consider the “Cahiers topos” C̃op
C . The argument for the non-

trivial implication⇒ cannot be repeated, since we cannot in general form
B/(x1, . . . , xn) ∈ CC when B ∈ C and xi ∈ B. Instead, the argument
goes as follows: Let xi : yB → R (i = 1, . . . , n) be an n-tuple of gen-
eralized elements of R, defined at stage yB, with B = C∞(M) ⊗∞ W ,
say (M a manifold, W a Weil algebra). As in the proof for the B-case,
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these elements correspond to n elements

x1, . . . , xn ∈ B = C∞(M)⊗∞W.

The assumption `yB ¬(
∧

(xi = 0)) means that no β : B → C in CC can
kill all the xis (except C = {0}). This in particular holds for C = R, i.e.
for the points of B. But they are of form

C∞(M)⊗∞W
π- C∞(M)

evp - R

with p ∈ M (cf. Theorem 5.7). Since no such kills all the xis, it means
that for each p ∈ M , at least one of the functions π(xi) ∈ C∞(M) is
non-zero at p. Let Ui ⊆M (for i = 1, . . . , n) be the open set defined by

Ui := {p ∈M | π(xi)(p) 6= 0};

they form an open cover of M , and π(xi) becomes invertible by applying
the restriction C∞(M)→ C∞(Ui). Also π : C∞(Ui)⊗∞W → C∞(Ui)
reflects invertibility, and the

C∞(M)⊗∞W → C∞(Ui)⊗∞W

form a co-covering of B = C∞(M) ⊗∞ W in C. The non-trivial impli-
cation ‘⇒’ in the Theorem now easily follows.

Corollary 10.2. With E , R as in the Theorem, the two subobjects of R

[[x | ¬(x = 0)]] and Inv(R)

agree.

In the following, we shall employ a notation known from topos theory
(and elsewhere): if U � V is a subobject, ¬(U � V ) is the subobject
given as the extension

[[x ∈ V | ¬(x ∈ U)]].

Equivalently (in a topos), it is the unique largest subobject of V having
∅ intersection with U .

Also, if p : 1 → V is any global section, it is necessarily monic, and
the subobject of V it defines will be denoted {p}. Thus

¬{p} = [[x ∈ V | ¬(x ∈ {p})]] = [[x ∈ V | ¬(x = p)]].

We shall now use Theorem 10.1 to analyze the synthetic role of the
germ algebras of form C∞p (Rn), where p ∈ Rn or equivalently, p : 1 →
Rn. The algebra C∞p (Rn) belongs to B but not to CC . Anyway, the
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canonical surjective C∞(Rn) → C∞p (Rn) induces a monic map in E =
B̃op

y(C∞p (Rn)) � y(C∞(Rn)) = Rn

as well as in E = C̃op (C = CC or CS),

yo(C∞p (Rn)) � y(C∞(Rn)) = Rn;

the subobject thus defined, we shall temporarily denote (Rn)p. But it
needs no special notation because of the remarkable

Theorem 10.3. For E = B̃op as well as for E = C̃op
C and E = C̃op

S , the
two subobjects of Rn

¬¬{p} and (Rn)p

agree, for any p : 1→ Rn.

We shall first prove

Proposition 10.4. Let C be a full subcategory of B, with R ∈ C, and
with some subcanonical Grothendieck (co)-topology for which the forget-
ful functor R : C → Set is a sheaf, and where {0} (the one-element
T∞-algebra) is covered by the empty family. Then for any B ∈ C and
any b ∈yB R, the following conditions are equivalent in C̃op

(i) `yB ¬(b is invertible);
(ii) for every point p : B → R, p(b) = 0;
(iii) the T∞-homomorphism b : C∞(R)→ B factors across C∞0 (R).

(We identify notationally the equivalent data b : C∞(R) → B, b ∈ B,
b ∈yB R.)

Proof. Assume (i). For every C ∈ C which is not covered by the empty
family, any φ : B → C takes b to a non-invertible element in C; now
R ∈ C, and is not covered by the empty family. So for any p : B → R,
p(b) is non-invertible in R. But in R, “non-invertible” means “equals
zero”. This proves (ii). Assume (ii) . To prove (iii) , let f ∈ C∞(R)
belong to the kernel of C∞(R) → C∞0 (R), so f vanishes on some open
set U around 0. We should prove that b : C∞(R) → B takes f to 0.
It suffices, since B is germ-determined, to see that for any point p of
B, b(f)p = 0. Now U and Inv(R) is an open covering of R. So the
point p ◦ b of C∞(R) must factor through either C∞(R) → C∞(U) or
C∞(R)→ C∞(Inv). In the first case, b(f)p is zero, since f goes to zero
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in C∞(U). The second case does not occur, since it would imply that

C∞(R)
b - B

p - R (10.5)

sends idR into an invertible element in R, so p(b) ∈ R is invertible,
contrary to (ii). This proves (iii). Finally, assume (iii), and assume that
φ : B → C has φ(b) invertible in C. Then φ ◦ b factors across C∞(R)→
C∞(Inv(R)). By assumption, it also factors across C∞(R) → C∞0 (R),
hence over their pushout in B. But this pushout clearly has no points,
hence is {0}, so that C = {0}, hence is covered by the empty family.
This proves (i).

The Proposition has the following Corollary,

Corollary 10.5. If C is as in the Proposition, then in E = C̃op, the
subobject [[x ∈ R | ¬(x is invertible )]] is represented (possibly from the
outside) by the germ algebra C∞0 (R). This in particular applies to E =
B̃op, E = C̃op

C and E = C̃op
S .

Proof of the theorem. Without loss of generality, we may assume p =
0 ∈ Rn. Then

¬¬{0} = [[x ∈ Rn | ¬¬
( n∧
i=1

(xi = 0)
)
]]

= [[x ∈ Rn | ¬(
n∨

i=1

xi is invertible )]],

by Theorem 10.1

= [[x ∈ Rn |
n∧

i=1

¬
(
xi is invertible

)
]], (10.6)

the last equality for logical reasons. If we denote by R0 the subobject
of R represented by C∞0 (R), then we get, by Corollary 10.5, that (10.6),
in turn, equals the subobject

n⋂
i=1

R× . . .×R0 × . . .×R (10.7)

(R0 as the ith factor). Now the functor yo : Bop → E is left exact, and
so is the reflection functor ̂ : (FGT∞)op → Bop. The object (10.7) is
therefore represented by Ĉ where C ∈ FGT∞ is the T∞-algebra

C = C∞(Rn)/(I1 + . . .+ In),



III.10 Field property – germ algebras 195

where Ii is the ideal generated by the functions f(x1, . . . , xn) which
only depend on the ith variable, and as a function of xi vanish in a
neighbourhood of 0.

On the other hand (Rn)0 is by definition represented by the T∞-
algebra C∞(Rn)/J(0), where J(0) is the ideal of functions Rn → R
vanishing in some neighbourhood of 0 ∈ Rn. This is a germ-determined
ideal. The result will follow if we can prove J(0) equal to the germ
radical of I1 + . . .+ In. The non-trivial part of this is proving

(I1 + . . .+ In)̂ ⊇ J(0), (10.8)

the converse inclusion being clear. So let f ∈ J(0). To prove that
f ∈ (I1 + . . .+ In)̂ means proving, for all p ∈ Rn, that

fp ∈ (I1 + . . .+ In)p = (I1)p + . . .+ (In)p. (10.9)

For p = 0, this is clear, since f has zero germ at 0. For p 6= 0, p =
(x1, . . . , xn) with (say) xj 6= 0. So (Ij)p is the unit ideal, so (10.9) again
holds. This proves (10.8), hence the Theorem.

We may introduce an “apartness” relation # on Rn by putting, for x
and y generalized elements of Rn defined at same stage,

x#y iff
n∨

i=1

(xi − yi is invertible ). (10.10)

In the presence of the field property of Theorem 10.1, we of course have
x#y iff ¬(x = y). Combining Theorem 10.1 and Theorem 10.3, we

therefore have, for E = B̃op, E = C̃op
C , and E = C̃op

S

Theorem 10.6. 10

For any p : 1→ Rn, the three subobjects of Rn

[[x ∈ Rn | ¬¬(x = p)]], [[x ∈ Rn | (x#p)]], and yo(C∞p (Rn))

agree.

EXERCISES
10.1 [30], cf. also [66]. Prove that a ring object which satisfies the

conclusion of Theorem 10.1 has the property (for each n):

`1 Any injective linear Rn → Rn is bijective.

(Hint: formulate a notion of “k-tuple of independent vectors in Rn”.
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Use the conclusion of Theorem 10.1 to bring any n×n matrix with n in-
dependent columns into triangular form (by the usual sweeping method)
with invertible elements in the diagonal.)

10.2. Let E be a category with a Grothendieck pretopology. Prove
that for any f : A→ B in E , we have

`1 ∀a1, a2 ∈ A×A : ¬¬(a1 = a2)⇒ ¬¬(f(a1) = f(a2)). (10.11)

Penon [64] has suggested consideration of the “germ-neighbourhood of
the diagonal” of any object M in a topos, as being

[[(x, y) ∈M ×M | ¬¬(x = y)]] ⊆M ×M.

Prove that if M = Rn in B̃op or C̃op
C , then it contains [[(x, y) ∈M ×M |

x ∼k y]], for any k. Define the notion of “germ-monad” around an
element in analogy with the notion of ‘k-monad’. Then (10.11) plays
the role of Proposition I.17.5.

10.3 (Grayson; Penon). Call a subobject U of an object E in a topos
open if

`1 ∀x ∈ U ∀y ∈ E : y ∈ U ∨ ¬(y = x).

Prove that, with E , R as in Theorem 10.1, for any z ∈ Rn, the object
{x ∈ Rn | ¬(x = z)} is open in this sense.11

10.4 (Reyes (?)). Prove that for the models E , R considered in Theo-
rem 10.1, we have, (for each n = 1, 2 . . .)

`1 ∀x1, . . . xn :
(∑

x2
i = 0

)
⇒ ¬¬((x1, . . . , xn) = (0, . . . , 0)).

(Hint: Use Theorem 10.1 and Exercise 4.1.).

III.11 Order and integration in the Cahiers topos

We consider first E = C̃op, where C ⊆ B is any category satisfying the
Assumption of §9. We let R = y(C∞(R)) and H = yo(C∞(H)); H is a
subobject of R. In the notation of §9, H = i′(H).

Theorem 11.1. The subobject H ⊆ R is formal-étale.
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Proof. Let W be a Weil algebra. Write W for SpecR(W ). We must
prove

HW- iW - RW

H

π

?
-

i
- R

π

?

to be a pullback. It suffices to test for any C ∈ C and any φ̌ : yC → RW

that if π◦φ̌ factors through H, then φ̌ itself factors through HW . Taking
exponential adjoints, we are given a φ : yC ×W → R, whose restriction
to yC � yC×W factors through H. We must prove that φ itself factors
through H. Since all objects under consideration are representable, we
are looking at the situation

C∞(R) -- C∞(H)

C ⊗∞W

φ

?
-

�...
.....

.....
.....

.....
.....

.

C
?

(11.1)

where we must provide the diagonal fill-in, as indicated. The kernel of
the top map is the ideal I of functions vanishing on H. We must prove
that f ∈ I implies φ(f) = 0. By the Assumption of §9, C ⊗∞ W ∈ C,
and is thus W-determined. So it suffices to prove that for any T∞-
homomorphism λ : C⊗∞W → V , where V is a Weil algebra, λ(φ(f)) =
0. Let π : V → R be the unique point of V . Then π ◦ λ ◦ φ is a point of
C∞(R), so is (by fullness) given as “evaluation at p ∈ R” for some unique
p ∈ R (“λ ◦ φ is centered at p”). There is a bijective correspondence
between points of C⊗∞W and points of C, and from this easily follows
that p cannot be < 0, hence p ∈ H ⊆ R. Let ρ : V → R be any R-linear
map. By Proposition 5.12,

ρ(λ(φ(f))) = P
( ∂
∂x

)
(f)(p)

for some polynomial P . But since p ∈ H and f vanishes on H, all the
derivatives of f vanish at p, so P ( ∂

∂x )(f)(p) = 0. Since this holds for
any ρ, λ(φ(f)) = 0. The theorem then follows.
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Let N = {x ∈ R | x < 0} ⊆ R, and let N = y(C∞(N)). Then N ⊆ R

is a subobject. We have

Theorem 11.2. (¬N) = H.

Proof. To prove H ⊆ ¬N means proving H ∩N = ∅. Clearly, H ∩N
can have no global points 1→ H∩N , (since such, by fullness of Mf ′ → E ,
would come from an element in R being at the same time in H and in
N). If now yC → H ∩N is a generalized element, yC can have no global
points, hence C ∈ C is cocovered by the empty family. We conclude
that H ∩N is covered by the empty family, hence is ∅. (Note that the
last part of the argument was really the argument required for “Dubuc’s
Nullstellensatz”, Exercise 9.10).

Conversely, assume x ∈yC R has `yC ¬(x ∈ N). We must prove
that the map x : C∞(R)→ C factors across C∞(H), i.e. annihilates the
ideal of functions f vanishing on H. This is almost as in the proof of
Theorem 12.1; it suffices, by W-determinedness of C, to see that for any
λ : C → V with V a Weil-algebra, f ∈ I implies λ(x(f)) = 0. The point
∈ R at which λ ◦ x is centered cannot be < 0, since this would imply
that λ◦x factors across C∞(N) (by formal étaleness of N ⊆ R), i.e. that

`yV x ◦ y(λ) ∈ N

contrary to `yC ¬(x ∈ N). So λ ◦ x is centered at some p ∈ H. The
proof now proceeds exactly as the proof of Theorem 11.1.

We may now define binary relations ≤ and < on R: we say, for gene-
ralized elements x and y of R (defined at same stage, yC, say) that

`yC x ≤ y if `yC (y − x) ∈ H

and

`yC x < y if `yC (x− y) ∈ N.

Alternatively, we may define ≤i� R×R as the extension

[[(x, y) ∈ R×R | x ≤ y]].

It can be constructed as the pullback

≤i - R×R

H
?
- - R

ψ = “twisted minus”,

?
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where ψ has description (x, y) 7→ y − x. Similarly for 4. Clearly 4 is
contained in ≤i, i.e.

`1 ∀x : x < 0⇒ x ≤ 0.

We have the following properties:

Theorem 11.3. The relations < and ≤ are transitive, and compatible
with the ring structure on R. Furthermore,

i) `1 ∀d : d nilpotent⇒ 0 ≤ d
ii) `1 ∀x : x < 0⇒ x invertible
iii) `1 ∀x : x invertible ⇒ (x < 0) ∨ (−x < 0)
iv) `1 ∀x : ¬(x < 0)⇔ 0 ≤ x
v) `1 ∀x, y : (0 < x) ∧ (x ≤ y)⇒ 0 < y.

Proof. Those assertions that deal only with < are straightforward, due
to the fact that N ⊆ R is a submanifold, and i : Mf → E is full and
preserves transversal pullbacks. Also, i) follows from Theorem 11.1 and
iv) from Theorem 11.2; v) follows from the fact that i′ : Mf ′ → E is full
and preserves products M × B where M is boundaryless, cf. Theorem
9.5. So the only delicate point is proving ≤ compatible with the ring
structure, and transitive (note that H×H does not belong to Mf ′). For
this, we need the following “Positiv-stellen-satz”:

Lemma 11.4. Let C ∈ C have a presentation q : C∞(Rm) � C. Let
g ∈ C∞(Rm), and let g = q(g) ∈ C. If J is the kernel of q, the following
conditions are equivalent:

(i) g maps Z(J) into H.
(ii) 0 ≤ ĝ (where ĝ : C∞(R) → C is the homomorphism sending

idR to g, and where we omit y : Cop → E from notation).

Proof. Assume (i). To prove (ii) means to prove that ĝ : C∞(R) → C

factors across C∞(R) → C∞(H), i.e. that ĝ annihilates the ideal I of
functions vanishing on H. Since C is W-determined, it suffices to see
that ĝ annihilates the ideal I ′ of functions vanishing in some open subset
of R containing H (for, the W-radical of I ′ is I, by Exercise 9.3). Let
f ∈ I ′, say f vanishes on U ⊇ H. Then

Z(J) ⊆ g−1(H) ⊆ g−1(U) ⊆ Rm,

and f ◦ g vanishes on g−1(U). Since g−1(U) is open, the germ of f ◦ g
at any p ∈ Z(J) is zero. This implies ĝ(f)p ∈ Cp is zero, for any point
p of C, and since C is germ-determined, ĝ(f) = 0.
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Conversely, assume (ii), and let p ∈ Z(J). Then p : C∞(Rm) → R
factors across C, as p, say. If g(p) /∈ H, g(p) < 0, and

C∞(R)
ĝ - C

p - R

may be interpreted as a generalized element ∈yR R obtained by base
change from ĝ along p. But `yC 0 ≤ ĝ, hence `yR 0 ≤ ĝ. On the other
hand, g(p) < 0 implies `yR ĝ < 0. These two things are incompatible,
by iv) of the theorem. So g(p) /∈ H is incompatible with the assumption.
This proves the Lemma.

To finish the proof of the remaining parts of the theorem: transitivity
of ≤, and compatibility with the ring structure, we utilize the Lemma.
To prove 0 ≤ x and 0 ≤ y implies 0 ≤ x+ y, consider

yC
a -

b
- H ⊆ R.

To prove `yC 0 ≤ (a+ b), take a presentation of C as in the proof of the
Lemma; a and b are represented by a, b ∈ C∞(Rm). By the Lemma, it
suffices to see that (a+b)(p) ≥ 0 for any p ∈ Z(J). But a(p) ≥ 0, b(p) ≥ 0
by the Lemma, whence a(p) + b(p) ≥ 0, whence the result. The other
remaining parts of the theorem are proved similarly.

Let us remark the identity of the following two subobjects of R:

i′([0, 1]) = [0, 1] (= [[x ∈ R | 0 ≤ x ≤ 1]]. (11.2)

The former is yo(C∞[0, 1]), the latter is the intersection of H and H ′ =
(−H) + 1; H and H ′ are represented by the two T∞-algebras C∞(H)
and C∞(H′) (where H′ = {x | x ≤ 1}). Since yo : Bop → E preserves all
limits that exist, we see that H ∩H ′ is represented by

C∞(R)/(I + I ′)

where I (respectively I ′) is the ideal of functions vanishing on H (re-
spectively on H′) . This ideal equals the ideal J of functions vanishing
on [0, 1]; for, clearly I + I ′ ⊆ J , and if f ∈ J , we may find a partition of
unity φ, ψ, subordinate to the covering (−∞, 2/3), (1/3,∞). Then

f = φ · f + ψ · f,

and clearly φ · f ∈ I, ψ · f ∈ I ′.
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We shall finally consider the integration theory of I §13 for the spe-
cific model E = C̃op

C (the “Cahiers topos”, CC being T∞-algebras of form
C∞(M) ⊗∞ W ).12 The fact from analysis which enters here is the fol-
lowing: given a smooth

M × [0, 1]
f- W = Rm; (11.3)

we form out of this another smooth map, denoted
∫
f

M × [0, 1]

∫
f
- W = Rm, (11.4)

by putting

(
∫
f)(m, t) :=

∫ t

0

f(m, s) ds

(the integration of functions with values in W = Rm takes place in each
of the m R-factors separately, as usual).

With E = C̃op
C , R = i(R) = y(C∞(R)), and with the relation ≤ on R

derived from C∞(H), as above, we have

Theorem 11.5. The Integration Axiom of I §13 holds.

Proof. Let f : yC → R[0,1] be a generalized element. By assumption,
C = C∞(M) ⊗∞ W for some M ∈ Mf and W a Weil algebra. So f

comes in the following equivalent conceptual disguises (where m is the
dimension of W as a vector space):

y(C∞(M))× y(W ) ∼= y(C∞(M)⊗∞W ) → R[0,1]

y(C∞(M))× [0, 1] → Ry(W )

i(M)× i′([0, 1]) → RyW ∼= R⊗W = Rm

i′(M × [0, 1]) → Rm

M × [0, 1] → Rm (smooth)
(11.5)

the first passage by twisted exponential adjointness, the second by Ax-
iom 1W (recall by (9.3), yW = SpecRW ), as well as by (11.2), the third
because i′ preserves certain products (cf. Theorem 9.5), and the fourth
because i′ is full (cf. Theorem 9.6). This is the data in (11.3). Pass
to (11.4) by the prescription given there, and with (11.4), go backwards
through (11.5). Thus, we obtain a new element of R[0,1], defined at stage
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yC, again; this element satisfies the requirement for y in the integration
axiom, because of two facts:

1) the function
∫
f defined in (11.4) satisfies(∫
f
)′(m, t) = f(m, t) and

(∫
f
)
(m, 0) = 0,

where the prime denotes derivative w.r.to t, keeping m fixed),

2) i′ preserves differentiation. This was proved for functions R → R in
Theorem 3.2 (or better (3.3)), but the proof for functions [0, 1] → R is
the same. We leave the details (i.e. keeping track of the identifications)
to the reader, (or cf. [44]).

EXERCISES
11.1 (Reyes). Use that the Whitney Theorem on smooth even func-

tions (quoted in §9) is smooth in parameters to prove that in C̃op
C , the

diagram

RH Rsq
- RR

R− id
-

Rid
- RR

is an equalizer, or alternatively, that ‘internal Whitney Theorem’ holds:

`1 ∀f ∈ RR (∀x ∈ R : f(x) = f(−x))
⇒ ∃!g : H → R : (∀x ∈ R : f(x) = g(x2)).

11.2. Assume i : Mf → E satisfies Axiom A and C of §§3 and 4, and
define 4 � R × R as in Exercise 4.1. Prove that this is the extension
[[(x, y) ∈ R×R | x < y]] with < defined as in the present §.

Also prove, on basis of Axiom A and C alone, that

`1 ∀x ∈ R : 0 < x⇔ ∃y ∈ Inv(R) : y2 = x.

11.3. Prove that if C ⊆ B is a subcategory satisfying the Assumption of
§9, then the relation ≤ on R as defined in the present § can be described
entirely in terms of the ring structure on R, as follows:

`1 ∀x ∈ R : x ≤ 0⇔ ¬(∃y ∈ Inv(R) : y2 = x).

(Hint: use Exercise 11.2 and Theorem 11.2.)

11.4. Prove that for the model considered in Exercise 9.9 we have
non-constant maps f : R→ R with f ′ ≡ 0.
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Notes 2006
1Re Introduction to Part III: A quite comprehensive text on models of

SDG is the 1991 book by Moerdijk and Reyes [142], in so far as C∞ manifolds
are concerned. Dubuc and Zilber have considered models that contain the
category of complex analytic manifolds, cf. [96], [97].

2Re §3 (preamble): Pradines [149] has analyzed the categorical properties
of Mf axiomatically, leading to his notion of Diptych. – For many purposes it
suffices to know that surjective submersions are effective descent maps.

3Re Remark at the end of §4: This assertion, with proof, can now be found
in [142], Theorem 3.22.

4Re Proposition 5.2: The ψβs are not unique in general. The uniqueness
assertion in the 1981 edition is incorrect.

5Re Exercise 5.2: See [142] I, Corollary 4.18 for a proof.
6Re eBop: this topos is now often referred to as the Dubuc topos.
7Re Exercise 8.1: The Smooth Topos belongs to a family of toposes,

invvented by the Grothendieck school and named “Gros Toposes” in SGA4
([1]); in here, the authors discuss explicitly some other particular gros toposes,
e.g. the one defined by the site of topological spaces and their open coverings;
they do not explicitly mention the closely related Smooth Topos, which ap-
parently was given this name (and was credited to Grothendieck-Verdier) by
the authors of the Montreal notes [70].

8Re Definition 9.1: The wording of this definition has been changed from
the rather akward one in the 1981 edition.

9Re “Whitney topology”: the standard terminology is Frêchet topology;
see I.4 in [142].

10Re Theorem 10.6: The deeper significance of the objects mentioned in
the Theorem, as discovered notably by Penon, Dubuc, and Bunge [64] [88]
[95], is that these objects represent a synthetic notion of germ, encoding pas-

sage from “infinitesimal” to “local”; for the topos gBop (but not for the other
toposes mentioned), this passage allows a synthetic rendering of for instance
the existence- and uniqueness theorem of differential equation theory. Also,
some of the existence theorem in singularity theory admits synthetic formu-

lation, by virtue of these notions, cf. [89], [101]. (For the topos gCop
C , the

germ notion implied by the Theorem reduces to that of formal power series,
essentially because the objects mentioned in the Theorem can be expressed in
terms of D∞, more precisely, in this topos D∞ = ∆, the object mentioned in
Theorem 10.6 (for n = 1).) The synthetic germ notion depends on having an
intrinsic topology on the objects in question, and the “Penon-topology” (cf.
Exercise 10.3) serves this purpose.

11Re Exercise 10.3: Topological notions in the spirit of Penon became crucial
in the work of Bunge and Dubuc.

12Re validity of the integration axiom: For validity of the integration axiom
in the Dubuc Topos G, see [142] p. 111.
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Loose ends13

There are several developments, related to the content of the present
book, which were not treated in it, due to lack of time or space, or lack
of comprehension on my side. I would have liked to include something
about:

1. Formulation and application of a synthetic inverse function
theorem. A formulation has been given by Penon14 [64]: he utilizes 1)
that an inverse function theorem expresses that a germ is invertible if
its 1-jet is invertible 2) a synthetic formulation of the germ notion is
implied by his Theorem (Theorem III.10.3) (and, of course, a synthetic
formulation of the jet-notion is implied in the foundations of synthetic
differential geometry).

In particular, a synthetic version of the Preimage theorem (as quoted
in III §3) is still lacking.15

2. Differential equations. A correct formulation of the classical
existence and uniqueness theorems for flows for vector fields is still lack-
ing. The problem is that solutions (flows) only should exist locally, (cf.
e.g. Exercise I.8.7). Maybe the Penon germ notion implied in Theorem
III.10.3 will provide a formulation, which is true in some of the models,
and strong enough to carry come synthetic theory.16

3. Calculus of variations. The problems and perspectives are re-
lated to those mentioned for differential equations. However, a gros
topos designed for this purpose, and for the purpose of considering dif-
ferential forms as quantities, exists implicitly in work of K.T. Chen, as
Lawvere has pointed out.17

4. Methods of differential algebra in synthetic context. A start

204
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on this has been made by M. Bunge [3], who considers the ring RR as a
differential ring, and relates it to a notion “ring of differential line type”
(proving in particular that the generic differential ring is such).

5. Algebraic topology from the differentiable viewpoint. Since
we are considering differential forms, we should ask to what extent, or
under which further axioms, deRham cohomology comes out right. This
and related questions are being studied in a forthcoming M.Sc. thesis by
L. Bélair (U. de Montréal).18

Finally, a certain “red herring” must be mentioned. We consider the
picture in Exercise I.1.2 but in one dimension higher; thus we are asking
for the intersection of a unit sphere and one of its tangent planes. Taking
the center of the sphere in (0, 0, 1), the xy plane is a tangent plane, and
the intersection is

[[(x, y) ∈ R2 | x2 + y2 = 0]] ⊆ R×R. (*)

Is this one of the infinitesimal objects we already know? Clearly not;
in certain models, it even contains elements far away from (0, 0), like
in SetFPTR , where it contains for instance the element, defined at stage
y(C),

y(C)
(1, i)- R×R,

since 12 + i2 = 0.
So some reality properties of R must be postulated to get (*) to be

infinitesimal. Does there exist an ε-stable geometric theory T of R-
algebras (say), such that the algebra A = R[X,Y ]/(X2 + Y 2) has a
universal R-algebra homomorphism A → B into a T -model B, in such
a way that B is a Weil algebra (note: A is not a Weil algebra, being
infinite dimensional as a vector space).

If there is such T and B, B cannot be too small. In particular,
SpecR(B) must be strictly larger than D×D; this follows from Exercise
I.4.7.

On the other hand, the models B̃op and C̃op
c of III §10 have the property

that (*) is contained in the “¬¬-monad” [[x ∈ R2 | ¬¬(x = 0)]] of
0 ∈ R2. (Reyes; cf. Exercise III.10.4).

Historical remarks 19

I.1 and I.2. The formula RD ∼= R × R appeared in a lecture by Law-
vere in 1967 (“Categorical Dynamics”), and in the form here, with the
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explicitly given isomorphism α, in [31], 1976. With this, its power was
recognized, and the present development of the theory took form. The
paper [31] was not the first one inspired by Lawvere’s 1967 talk. In
1972, Wraith, in an unpublished manuscript, considered the construc-
tion of the Lie algebra of a group object in “categorical dynamics” terms,
and for this purpose, considered what we have called ”Condition W”; see
the historical remarks for I.9. A summary, written in 1979, of Lawvere’s
1967 talks, exists, [50].

In [31] and later, one called rings satisfying Axiom 1 (or Axiom 1′,
1′′, . . . ) ring objects of line type. The terminology “rings satisfying the
Kock-Lawvere axiom” is now also used.

The naive verbal formulations (supplementing the diagrammatic ones)
became current in the late 1970s.

I.3 -I.5. This is largely from [32]. The consideration of the Dks was
suggested by G. Wraith in 1976.

I.6. The notion of infinitesimal linearity in some sense goes back to
[10]20. In the present form and context, it emerged in discussion in 1977
between Reyes, Wraith, and myself, where we also considered many of
the infinitesimal objects and their relationship. The consideration of a
k-neighbour relation occurs in classical scheme theory. Joyal advocated
its use in synthetic context, cf. historical remarks to I.18.

I.7 and I.8. The consideration of MD as tangent bundle, and the
notion of vector field in terms of this was explicit in Lawvere’s 1967
talk, and in Wraith’s investigations of 1972-74. In particular, Lawvere
emphasized in 1967 how the necessary conceptual transformations (be-
tween vector fields, infinitesimal transformations, and tangent vectors at
id ∈MM )) make also the notion of cartesian closed category necessary.

I.9. The content here is from [71]; the idea of Property W to define
Lie bracket is due to the unpublished work of Wraith in the early 1970s.

I.10. This is mainly from [34], 1978.

I.12. This is mainly from [38], 1980.

I.13. This is mainly from [44], 1979.

I.14 and I.15. The form notion of Definition 14.2 is from [45]. We
considered Stokes’ theorem from the viewpoint, as presented here, that
it is tautologically true for infinitesimal chains.

I.16. Weil algebras were considered by Bourbaki and his student,
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A. Weil, in a remarkable paper by the latter, [79], “Théorie des points
proches sur les variétés différentiables”, for purposes related to those
of the present book. However, they did not develop the viewpoint. A
closely related start was made by Emsalem [16], but again not developed.
The use of Weil algebras in the present approach is due to Dubuc [11].
Axiom 1W was formulated in [36].

I.17. The formal-étaleness notion introduced here is akin to that of
algebraic geometry. Essentially it was introduced into synthetic context
in [42]. We used this étaleness notion to introduce one notion of ‘man-
ifold’ synthetically. Another one was introduced in [35], and the one of
the present § is akin to that. A completely new idea for a good manifold
notion is due to Penon, cf. historical remarks for III.10.

I.18. The simplicial object (18.1) was advocated by Joyal, who,
together with Bkouche, used it for defining differential forms (unpub-
lished) and de Rham cohomology. The objectM(1) is presumably in suit-
able contexts (local ringed spaces) and for suitable M equal to Grothen-
dieck’s “1st neighbourhood of the diagonal”, [23], which also in the con-
text of smooth manifolds has been investigated to a considerable extent,
[58], [46], and others.21

The correspondence between the group valued forms here and ‘classi-
cal’ Lie algebra valued forms is from [37].

I.19. Atoms were first used, and examples of them found, in [42].
In particular, we proved that, even in certain subtoposes of the ring
classifier (Zariski topos, étale topos), the object D is an atom. We used
the atom property in connection with formal-étale descent. The strong
étaleness notion is stronger, and inspired by recent work of Joyal, and
of Coste-Michon [7].

I.20. It was Lawvere who in 1979 pointed out that, given an atom J ,
the right adjoint of (−)J should be studied and utilized, in particular
so as to be able to view differential forms as quantities. The content of
§20 is mainly due to him. Much research is still to be done. What do
Λn(V ) or VDn look like in concrete models?22 What are the categorical
properties of atoms J , and the functors (−)J ?23 The latter question is
genuinely category-theoretic, since categorical logic, as we know it now,
is unable to talk about (−)J .

It would also be interesting to see whether the kind of differential
forms considered in I.18 can be reinterpreted as quantities: Joyal has
conjectured that the functor M 7→M(1,...,1) likewise should have a right



208 Appendices

adjoint. But at least as presented here, the functor is only defined on
formal manifolds M ; a good general definition of M(1) is still lacking.

II.1–II.9. In its first stages of its present development, synthetic dif-
ferential geometry was formulated mainly in diagrammatic terms. The
elementwise mode of expressing its notions and reasonings developed
later, alongside with an explicitation in logical terms of the semantics of
generalized elements.

Generalized elements, or elements defined at different stages, have a
long tradition in geometry, cf. Introduction, and the remarks at the end
of III §1. The precise category theoretic formulation of the notion is
probably due to the group around Grothendieck, who also emphasized
the role of the Yoneda Lemma in this connection. They, however, refused
to give an explicit semantics for logical formulas talking about such
elements (except when the formulas were purely equational).24 Such
semantics was advocated by Joyal in 1972, and possibly by others too.
The properties and applicability of this semantics was tested through the
works [40], [30], [67], and other places. We used the term ‘Kripke-Joyal
semantics’. Now we call it sheaf semantics (implicitly, it was present in
sheaf theory all the time).

The good logical properties of toposes were stressed much earlier, im-
plicitly by Lawvere in [48] in 1964, and in 1969-70 with the development
of the theory of elementary toposes by Lawvere and Tierney [21]. An
explicit semantics for suitable formal languages, exploiting theses logical
properties, was given by W. Mitchell [59] and J. Bénabou [2]; they gave
the notion of extension of a formula the leading role. For toposes, the
semantics in terms of elements is equivalent to the semantics in terms
of extensions (cf. e.g. [63]).

The group around Bénabou (notably M. Coste) proved a formal meta-
theorem, according to which a certain natural form of intuitionistic
logic is sound (= only yields valid results) for this interpretation. This
metatheorem may be seen as the justification for the fact that we do
not ‘revisit’ the whole series of deductions of Part I, but only revisit the
axioms (II §5), and a sample deduction.

Comma categories of the special kind E/X were introduced by the
Grothendieck group, who used them for converting generalized elements
into global elements, as in II §6 here. The density notion employed in
II §7 is Isbell’s ‘adequacy’ notion, and is equivalent to Ulmer’s density
notion.

Geometric theories, and their special role in topos theory, were recog-
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nized by Joyal, Reyes, . . . , cf. [56] p. 71 (where they are called ‘coherent’
theories).

Further historical information and bibliography may be found in [22],
notably Chapter V.25

III (general). All the models considered here are examples of ‘gros
toposes’. Gros toposes were discovered and utilized by the group around
Grothendieck in the early 1960s. A gros topos is a category of set valued
functors on a small category, R, where Rop is a category of objects
of geometric nature; Rop could be the category of smooth manifolds,
say. If R is the category of finitely presented k-algebras, Rop is also a
geometric-natured category, namely that of affine schemes over k. This
category SetR and some closely related categories were utilized by the
group around Cartier and Grothendieck as the ‘world’ in which algebraic
geometry lives, cf. notably [10], [9], and [78]. Also, Lawvere’s first work
on categorical dynamics was inspired by [10] and [9], cf. [50].

However, except for [78], the main emphasis in algebraic geometry has
been on another ‘world’, namely that of schemes, which are certain topo-
logical spaces equipped with a sheaf of local rings. Likewise, Dubuc [12]
advocated the consideration of C∞-schemes (certain topological spaces
equipped with a sheaf of T∞-algebras).

Synthetic differential geometry lives in these scheme contexts, too, but
we have consistently avoided them in favour of the gros toposes, because
the latter are conceptually simpler, and the methods of categorical logic
(cf. Part II) work better there. Anyway, the two approaches are well
related, cf. [9] and [12].26

Note that the category Set∆
op

of CSS-complexes is also kind of gros
topos, with very primitive model objects: affine simplices, forming the
category ∆.

III 1. Theorem III 1.2 is from [38]. The Corollary that RD ∼= R×R
is much older, cf. [50] and [31].

III 2. The notion of ε-stability was found by me in 1977 (cf. [33])
for purposes not directly related to differential geometry, but shortly
after, I found Theorem III 2.5. The deeper Theorem III 2.6 was then
conjectured by me, and proved by Coste, Coste-Roy, and me, and by
Dubuc and Reyes, [6], [14].

III 3–4. Well-adapted models were first constructed by Dubuc [11]
(in fact, the specific model CC is from that paper). Essential for this was
the replacing of the algebraic theory of R-algebras by the richer algebraic
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theory T∞; this theory was advocated already in Lawvere’s 1967 lecture.
Using T∞, Dubuc could combine the (dual of the) category of manifolds,
and the category of Weil algebras into the category CC . The content of
§§3-4 is from [36], which in turn contains a streamlining of some of the
results and notions of [11], as well as the Comparison Theorem (Theorem
3.2).

III 5. The results here are due to Dubuc, or are classical.

III 6. The notion ‘ideal of local character’ ( = germ determined ideal)
is due to Dubuc, [12], so far I know. The results of the paragraph are also
due to him, except Theorem 6.6 which was proved by Lawvere (1980);
Theorem 6.3 is a slight strenthening of Dubuc’s [12], Proposition 12.

III 7. The open cover topology on B is described by Dubuc in [13],
where Theorem 7.4 is also proved. The open cover topology appears in
different form also in his [11] and [12].

III 8. Theorem 8.1 and 8.4 are due to Dubuc [12];27 the proof we
give for validity of Axiom B is somewhat different from his.

III 9. The notion of W-determined ideal was advocated by Reyes [68].
Joyal conjectured, and Reyes proved that the W-determined ideals are
precisely the closed ideals for the “Whitney-” (Frêchet-space) topology
on C∞(Rn). Theorem 9.4 is a variation of Dubuc’s results [11]. Theorem
9.5 and 9.6 are due to Porta and Reyes [65].28

III 10. The conclusion of Theorem 10.1 was proved for the generic
local ring by me in [30]. The proof presented for R ∈ E here is virtually
the same. Theorem 10.3 is due to Penon [64], and is expected to lead to
a very interesting development.29

III 11. The results here are due to Kock, Porta, and Reyes [44], [65].

Appendix A: Functorial semantics

We consider functorial semantics on three “levels” (or in three “doc-
trines”): algebraic theories, left-exact categories, and proper-left-exact
categories.

Recall [49] that a (finitary) algebraic theory T is a category whose
objects are 0, 1, 2, . . . , and where n is an n-fold product of 1 with itself
n times, by means of specified proji : n → 1. The examples that occur
in this book are Tk (for k a commutative ring in Set), and T∞.

The theory Tk has for its morphisms n→ m m-tuples of polynomials
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over k in n variables X1, . . . , Xn; they need not all occur. The com-
position is formal substitution of polynomials into polynomials. The
proji : n→ 1 is just the polynomial Xi.

The theory T∞ has for its morphisms n→ m the set of smooth (=C∞)
maps Rn → Rm, with evident composition. So T∞ is a full subcategory
of Mf, the category of manifolds and smooth maps.

Note that Tk was syntactically defined, whereas T∞ was semantically
defined. Note also that there are natural inclusions

TZ ⊆ TQ ⊆ TR ⊆ T∞,

the last because a polynomial over any infinite field k is completely
determined by the polynomial map kn → k which it defines.

If T is an algebraic theory and E is a category with finite products,
the category of T-algebras in E , denoted T -Alg(E), is the category of
finite-product-preserving functors R : T → E . The object R(1) ∈ E is
the underlying object of the T-algebra R, and often is itself denoted R.

For instance, if T = TZ, the category of T-algebras in E is equivalent
to the category of commutative ring objects in E ; if R is a ring object
in E , we get a functor R : T → E by sending φ ∈ T(n, 1) into the map
Rn → R with description

(x1, . . . , xn) 7→ φ(x1, . . . , xn)

which makes sense because φ is a polynomium in n variables.
If E = Set and T is any algebraic theory, the functor

homT(n,−) : T→ Set

is a T-algebra, denoted F (n). It solves the universal problem justi-
fying the name “free algebra in n generators”. The n generators are
proj1, . . . ,projn. If T = Tk, F (n) = k[X1, . . . , Xn].

It is known that the category T -Alg(Set) is complete and cocomplete.
A T-algebra B in Set is called finitely presented if there exists a coequal-
izer in T -Alg(Set)

F (m) -- F (n) - B

(a “finite presentation of B”). There is a weaker notion: B is said to be
finitely generated if there exists a surjective T-algebra homomorphism
F (n) → B. The full subcategories of T -Alg(Set), consisting of finitely
presented (respectively finitely generated) algebras, are denoted FPT
anf FGT, respectively. There is a full and faithful functor

F : T→ (FPT)op
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given by n 7→ F (n). It preserves finite products. It has an important uni-
versal property. First we note that the subcategory FPT ⊆ T -Alg(Set)
is closed under finite colimits; in particular, FPT has finite colimits, so
(FPT)op has finite inverse limits. Let us call a category which has finite
inverse limits left exact, and let us call a functor which preserves finite
inverse limits left exact. Then

Theorem A.1. Given a left exact category E. Then, to any T-algebra
R : T → E, there exists a left exact functor R : FPTop → E such that
the diagram

T
R - E

(FPT)op

R

-

F
-

commutes. It is unique up to unique isomorphism, in fact, we have the
stronger statement: given any functor S : (FPT)op → E and any natural
transformation

τ : S ◦ F ⇒ R = R ◦ F,

there exists a unique natural transformation τ : S ⇒ R with τF (n) =
τn ∀n = 0, 1, 2, . . .. Also, if ν : S ⇒ R is a natural transformation with
νF (1) = τ1, then ν = τ .

This Theorem is implicitly in [18], and (for the existence of R) explic-
itly in [41]. The unique existence of τ given τ is straightforward, and the
uniqueness of τ just knowing τ1 follows because R(n) = R(1)×. . .×R(1).

If R is a T-algebra in a left exact category E , one sometimes writes
SpecR(B) for R(B) (B ∈ FPT).

A Corollary of the Theorem is that

T -Alg(E) ' Lex((FPT)op, E),

the category of left exact functors (FPT)op → E . One may express this
by saying that (FPT)op is the “theory of T-algebras in the the doctrine
of left exactness”. [18] is the book about this doctrine, and also about
the doctrine of proper-left-exactness:

A monic map g : A → B in a category is called proper monic if for
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any commutative square

C - D

A
?

g
-

�...
.....

.....
.....

.....
.....

....

B
?

with the top map epic, there is a unique D → A making both resulting
triangles commute. A proper subobject of an object B is a subobject
represented by a proper monic. A category A is called proper-left-exact
if it is left exact and if every class of proper subobjects of an object B has
a limit; such limit is then necessarily a proper subobject of B and will
be called a proper intersection. Similarly, we define the notion of proper-
left-exact functor: a left exact functor preserving proper intersections.

The notions of proper epic, proper quotient, proper cointersection,
and proper-right-exact category/functor are defined dually.

The proper epics in T -Alg(Set) are exactly those homomorphisms
which are surjective on the underlying-set level. The same holds for
FGT.

The category T -Alg(Set) has proper cointersections, and

FGT ⊆ T -Alg(Set)

is closed under formation of these, and also under the formation of finite
colimits.

The functor T F−→ FPTop −→ FGTop does for the doctrine of proper-
left-exactness what F does for the doctrine of left exactness:

Theorem A.2. Replace FPT in Theorem A.1 by FGT, and the two
occurrences of the word ‘left exact’ by ‘proper-left-exact’. Then the Theo-
rem still holds.

This is also implicitly in [18]. Again, one sometimes writes SpecR(B)
for R(B) (B ∈ FGT). If B ∈ FPT, this is consistent with the previous
usage.

Let E be cartesian closed and left exact. Let R ∈ T -Alg(E). We write
R -Alg for R ↓ T -Alg, and HomR -Alg for the corresponding internal-
hom-object formation, cf. I §12, II §4, and III §1. For any such R, any
C ∈ R -Alg and B ∈ FPT, there is a map νB,C in E

HomR -Alg(R
R(B), C)

νB,C- C(B), (A.1)



214 Appendices

where R and C are the functors FPTop → E associated to R and C by
Theorem A.1. To describe νB,C for all B ∈ FPT, it suffices, by Theorem
A.1, to describe νF (n),C for all n ∈ T, and prove naturality in n. We now
describe νF (n),C . We substitute F (n) for B, so R(B) = Rn, C(B) = Cn.
So we should describe

HomR -Alg(R
Rn

, C)
νF (n),C- Cn.

We do it for the case E = Set. (By the technique of Part II, this
actually gives a description for any E). The ith component of νF (n),C is
the map

g 7→ g(proji)

where g denotes an element of HomR -Alg(R
Rn

, C). The naturality w.r.t.
n ∈ T follows because g is a T-homomorphism.

Finally, if E is also proper-left exact, we may similarly construct νB,C

for any B ∈ FGT.

Appendix B: Grothendieck topologies

Let E be a category. To equip E with a Grothendieck pretopology means
to give, for each B ∈ E , a class Cov(B) of “covering families of B” or
just “coverings of B”; the elements of Cov(B) must be families of arrows

{ξi : Xi → B | i ∈ I} (B.1)

with B as their common codomain. The data of the covering families
should satisfy the following:

(1) If (B.1) is a covering of B, and f : A → B is an arbitrary arrow,
then for each i ∈ I, the pullback of ξi along f exists in E ,

A×B Xi
- Xi

A

f∗(ξi)

?

f
- B

ξi

?

and {f∗(ξi) | i ∈ I} is a covering of A. (“Stability of the covering notion
under pullback”.)
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(2) If (B.1) is a covering of B, and, for each i ∈ I

{ηij : Yj → Xi | j ∈ Ji}

is a covering of Xi, then the family

{Yj

ηij - Xi
ξi - B |i ∈ I, j ∈ Ji}

is a covering of B (stability under composition).

(3) The one-element family {idB : B → B} is a covering of B.

Grothendieck pretopologies give rise to Grothendieck topologies,
a more general and invariant notion, which we shall not need.
Grothendieck topologies may be described without any postulate about
existence of sufficiently many pullbacks. The notion of sheaf for a
Grothendieck topology j may be described in terms of any pretopology
giving rise to j.

Definition. Let E be a category equipped with a Grothendieck pretopo-
logy. A functor F : Eop → Set is a sheaf for it if any B ∈ E and any
covering (B.1) of it, the diagram

F (B) -
∏
i∈I

F (Xi)
--

∏
(i,j)∈I×I

F (Xi ×B Xj) (B.2)

is an equalizer (where the three maps in an evident way are induced using
the contravariant functorality of F ).

The full subcategory of SetE
op

consisting of the sheaves is denoted Ẽ .
A Grothendieck topos is a category of form Ẽ , where E is some small cat-
egory equipped with a Grothendieck pretopology. The inclusion functor
Ẽ ↪→ SetE

op

has (for E small) a left adjoint a (a reflection functor), which
preserves finite lim←− (and arbitrary colimits, of course). This implies that
Ẽ has very good exactness properties, much like the category Set. Also,
Ẽ is stably cartesian closed.

If the Yoneda embedding E → SetE
op

factors through Ẽ , or equiva-
lently, if each representable functor

homE(−, C) : Eop → Set

for C ∈ E , is a sheaf, one says that the Grothendieck pretopology is
subcanonical. Note that monicness of the first map in (B.2) implies that
a covering family for a subcanonical topology is necessarily jointly epic.
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Appendix C: Cartesian Closed Categories

Let E be a category with finite products. We say E is cartesian closed if
for each D ∈ E , the functor −×D : E → E has a right adjoint (denoted
(−)D). So there is a bijection (for all X ∈ E , R ∈ E):

homE(X,RD)
λX,R

∼=
- hom(X ×D,R),

natural in X and R, called “λ-conversion” or “exponential adjointness”.
The category Set of sets is an example; here, RD is the set of maps

from D to R.
Any topos is cartesian closed. If E is a topos and X ∈ E , E/X is

known to be a topos. It follows that any topos E is stably cartesian
closed: E/X is cartesian closed ∀X ∈ E .

Appendix D: Microlinearity (2006)

The general notion of micro-linearity which we present now, was first
made explicit by F. Bergeron [83], and studied further in [121] (under
the name “strong infinitesimal linearity”). It subsumes, among others,
the “infinitesimal linearity” (Defintion I.6.3) , “Property W” (Exercise
I.4.2), “Symmetric Functions Property” (Exercise I.4.4).

Let M be an object in a cartesian closed category E . Then the con-
travariant functor E → E given by X 7→MX takes colimit diagrams into
limit diagrams,

M
lim−→i

Xi ∼= lim←−
i

(MXi).

Even if a co-cone Xi → X is not a colimit diagram, it may happen that
MX → MXi is nevertheless a limit cone. In this case, we say that M
perceives Xi → X as a colimit diagram (or that M believes that it is a
colimit diagram).

Example. We use the notation of §I.6. The diagram

1 - D

D
?

- D(2)
?

(D.1)

is not a pushout, but (assuming Axiom 1W ), R perceives it as a pushout,
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since the contravariant functor R(−) takes it into the pullback diagram

R � R2

R2

6

� R3.

6

Similarly, R perceives D(n) to be a pushout of n copies of D; this is
essentially the content of Proposition I.6.4. The Definition I.6.3 of when
an object M is infinitesimally linear may be rephrased “M perceives
D(n) to be a pushout of n copies of D.”

To say that M is micro-linear (or strongly infinitesimally linear) is to
say that M not only perceives (D.1) to be a colimit diagram, but that
it perceives all suitable cocones of infinitesimal objects to be colimit
diagrams. Here, we of course have to explain what the “suitable” cocones
are: they are cocones that arise by the SpecR-functor from finite limit
diagrams of Weil-algebras, i.e. from a limit diagram in the category of
commutative R-algebras, all of whose vertices are Weil-algebras.

For instance, the limit diagram (pullback) of Weil algebras

R � R[ε2]

R[ε1]

6

� R[ε1, ε2]

6

(ε2i = 0) is a finite limit diagram (a pullback, in fact) of Weil algebras.
Applying SpecR to it gives the diagram (D.1).

We have now the following “comprehensive” version of Proposition
I.16.2. Recall Axiom 1W

k from I.16, or Axiom 2k from I.12.

Proposition D.1. Let k be a field. Then Axiom 1W
k , or Axiom 2k,

imply that R is microlinear.

Proof. Consider a finite limit diagram of Weil algebras. We are required
to prove that it is taken to a limit diagram in E by the composite of the
two (contravariant) functors SpecR and R(−). However, the composite
of these two functors is (isomorphic to) the functor R⊗−, by Axiom 1W

k .
This functor is an exact functor on the category of finite dimensional k-
vector spaces, hence preserves finite limit diagrams of such, hence also
finite limit diagrams of Weil algebras. This proves the first assertion.



218 Appendices

The second assertion is now immediate, since Axiom 2k implies Axiom
1W

k (by Theorem I.16.1).

From microlinearity of R follows that many objects built out of R are
microlinear: for, inverse limits of microlinear objects are microlinear,
and if M is microlinear, then so is MN , for any N . Also, microlinearity
is “tested locally”, in a suitable sense (cf. the proof of Proposition I.17.6),
so that for instance all formal manifolds are microlinear.

Notes 2006
13Re “Loose Ends” generally: Some of these loose ends have been tied up

now by 2006; this is indicated in some of the specific endnotes.
14Re Inverse Function Theorem: Penon [148] has proved that it, in this

formulation, actually holds in the Dubuc Topos.
15Re “Loose End 1”: A solution to this problem has been given in the work

of Bunge and her collaborators, cf. [89], and the references therein. See also
the endnotes for Theorem III.10.6.

16Re “Loose End 2”: This was corroborated amply with the work of Bunge
and Dubuc [88], [92] in the context of models of SDG; some formulations
were given and Axioms were obtained, and it was proved that Dubuc’s Topos

G = gBop was a model of these axioms. The crucial property of this topos,
in contrast to the other toposes considered presently is representability of the
notion of germ. See also the endnotes for Theorem III.10.6.

– A purely synthetic theory, allowing some arguments involving “local
existence- and uniqueness” may be found in the work of McLarty, [139].

In so far as partial differential equations are concerned, Kock and Reyes
studied the wave equation as well as the heat equation synthetically, cf. [124],
[126], utilizing a synthetic version of the theory of (Schwartz-) distributions.
The study of the heat equation, in particular, forced us to provide a synthetic
theory of distributions which are not of compact support.

17Re “Loose End 3”: The fact that the context of SDG is a cartesian closed
category means that function spaces, in which the theory of the calculus of
variations is naturally formulated, are immediately available, and in principle
should open up new vistas for such a theory. It has been pursued in this way
by Bunge and Heggie [90], Nishimura [145].

Comparisons of (models of) SDG with foundations of functional analysis
naturally take place through the study of diffeological spaces of Chen [4] et
al. and the subcategory hereof, Frölicher-Kriegl-Michor’s Convenient Vector
Spaces (with their smooth, not necessarily linear) maps, [100], [127], [99].

Such comparisons have been carried out by Bruno [86] for the Dubuc
Topos, and by Kock and Reyes [110], [122], [126], for the Cahiers Topos.

18Re “Loose End 5”: Aspects of de Rham theory may be found in the book
by Moerdijk and Reyes, [142] Chapter 4; in my [112], [111]; and in Felix and
Lavendhomme’s [98]. Bélair’s work is partly subsumed in [142].

19Re “Historical Remarks”, generally: This subsection was written in 1981;
remarks on some of the developments since then appear in the text proper, as
“endnotes”, and are not repeated in this “Historical Remarks”-section.
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20Re “Historical Remark” for I.6: Now this family of notions is compre-
hended into the single notion of microlinearity, as expounded in Appendix
D.

21Re “Historical Remark” for I.18: A comparison may be found in [94], and
in [118].

22Re “Historical Remark” for I.20: Some results in this direction, for n = 1,
may be found in [94].

23Re “Historical Remark” for I.20: Some results exist now, cf. [153], [134],
[123].

24Re Historical Remarks on Categorical Logic: It is not correct to say that
the Grothendieck school “refused” to consider semantics of non-equational
formulae; in particular, Hakim [25] explicitly considered the notion of local
ring in a topos. Further comments on the history of sheaf semantics may be
found in Lawvere’s recent [135].

25Re Historical Remarks on Categorical Logic: See also [135], and [103].
26Re Schemes vs. toposes: more precisely, any (suitable) category of schemes

appears as a full subcategory of a suitable topos; this is a main point in
[9] (for the case of algebraic geometry), and the work of Dubuc ([12], . . . )
for the smooth case. In the toposes, however, the full force of higher order
logic (including functional analysis) becomes available, which it is not in the
categories of schemes.

27Re Historical Remark for III.8: The proof given for validity of Axiom D
here is from [42].

28Re “Historical Remark” for III.9: See [126] for some application, and [150]
for a new rendering of the results of [65].

29Re “Historical Remark” for III.10: Some of this development has taken
place, cf. e.g. [88], [89], and the references therein.
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de Top. et Géom. Diff. 22 (1981), 25-30.

8 H.S.M. Coxeter, The real projective plane, (2nd ed.), Cambridge University
Press 1961.

9 M. Demazure and P. Gabriel, Groupes algébriques, North Holland Publishing
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69 G.E. Reyes, Analyse dans les topos lisses, Cahiers de Top. et Géom. Diff.
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element (generalized), 97
En(M, V ), 54
η, 45
étale, 69
étaleness notion, 86
Euclidean module, 93
exponential adjointness, 216
extension, 102
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extensionality principle, 103, 105, 109

family, 117
Fermat’s Axiom, 9
FGTk, 130
fibre, 117
finitely presented algebra, 43
first integral, 37
flat, 181
forcing, 99
form, 53, 54
formal manifold, 71
formal-étale, 71
formally real ring, 140, 161
FPTk, 130

γ, 4
generalized element, 97, 98
generators, 120
geometric formula, 126
geometric line, 2
geometric sentence, 126
geometric theory, 126
germ, 156, 158, 162
germ determined, 162
germ-algebra, 162
germ-monad, 196
germ-radical, 162
global element, 116
Grothendieck topology, 123
groupoid, 94

H, 196
H, 181
Hadamard’s Lemma, 50, 143, 154
Hall’s identity, 42
Hom, 110, 130
hom, 44

I, 180bI, 162
imaginary points, 135
incidence, 92
inclusion, 103
indexed, 117
infinitesimal linearity, 20
infinitesimal object, 63
infinitesimal transformation, 29
infinitesimally linear, 20
integral, 37
Integration Axiom, 50
interval, 49

jet, 24

k-jet, 18
k-neighbour, 21, 71

Kock-Lawvere axiom, 206

λ-conversion, 107, 216
Lie bracket, 34
Lie module, 42
line, 2
line type, 206
Liouville vector field, 22, 32
local character, 162
local formula, 124
local ring (object), 127

manifold, 141
Maurer–Cartan form, 82
Mf, 141
Mf’, 184
micro-linear, 217
microlinear, 94
Milnor’s Exercise, 158
Mk(x), 22
model object, 71
monad, 22

n-tangent, 54
neighbour, 21, 71
normalized cochain, 80
ν, 44
Nullstellensatz, 190

open coverings, 147
open inclusion, 86, 168
ordinary diff. equation, 28

parallel transport, 28
parametrized element, 98
partial derivative, 12, 13
π (augmentation), 62
plane, 2
plot smooth, 185
point, 159
point determined, 159
Positiv-stellen-satz, 199
preorder, 49
pretopology, 123, 214
principal part, 26
proper monic, 212
proper vector field, 36
proper-left-exact, 213
property W, W-n, 14, 15, 33
Pythagorean local ring, 140

R, 2
R, 141
R[ε], 4
rectangle, 55
reflects, 72
reflexive object, 46
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repr. from the outside, 179
ring of line type, 206

satisfaction, 98
scheme, 45
separably (real-) closed, 140
sheaf, 215
Σ−1, 156
simplex, 76
simplicial object, 76
slope, 2
smooth char. function, 145
smooth topos, 178, 179
space, x
spec, 44
stable formula, 101
stable object, 130
stable properties and notions, 116
stably cartesian closed, 115, 216
stage of definition, x, 97
Stokes’ Theorem, 59
strong infinitesimal linearity, 94, 217
strongly étale, 86
subcanonical, 215
submersion, 142
symmetric functions property, 14

tangent bundle, 24
tangent space, 24
tangent vector, 24
Taylor’s formula, 7, 10, 16
Taylor’s series, 16
⊗∞, 156
T∞, 148, 152
Tk, 210
Tk- Alg, 130
TM , 24
topological density, 123
topology (Grothendieck), 123
topos, 215
transversal, 141, 142
transversal pullback, 141
`, 98, 120
TxM , 24

universally quantified, 3

Vect, 42
vector field, 28, 29
vector form of Axiom 1, 17

W-determined, 180
W-radical, 180
Weil algebra, 62
Weil prolongation, 147
Whitney topology = Frêchet topology,

180

X-neighbours, 36

Yoneda map constructing principle, 104


