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Introduction

The classical synthetic descriptions of the osculating plane of a space curve
k, at a point P € k, are: 1) it is the plane given by the tangent at P and
a neighbour point on k; or 2) it is the plane given by P and a neighbour
tangent; or 3) it is the plane given by P and two consecutive neighbours of P
on k; or, finally, 4) it is the (common) tangent plane of the surface, swept out
by the tangents of the space curve, taken at any point of the tangent through
P. Only the last description matches perfectly with the analytic formalism,
by means of which the theory is usually made rigourous. We shall present
a formalism which a little more directly fits with (or vindicates) the three
last of these descriptions; and which is rigourous. It does not vindicate the
first description; for, in our formalism, the curve tangent through P contains
already all neighbour points of P on the curve.

The analytic method in geometry is so strong and comprehensive that
almost all geometric theory is formulated in terms of it, nowadays.Only little
is formulated in synthetic (incidence theoretic) terms, like the theory of finite
projective planes, say, which in this form is considered part of combinatorics.

The synthetic method in differential geometry is even less well established
as a rigourous method (although some theory does exist, cf. e.g. [1], and
the work of the topos theoretic school, see below), but it flourishes in many
heuristic considerations of differential geometric nature. Through the work
of the topos theoretic school, by Lawvere and his collaborators (see e.g. [4]),



it was embedded in a coordinate context, where some of the synthetic notions
can be formulated.

The existence of such coordinate models for the synthetic notions of dif-
ferential geometry has lead to a sharpening of these notions, to an extent that
the time by now is ripe for a formulation that does not presuppose any basic
coordinate ring. In fact, the language has been sharpened enough so that
the question of combinatorial models can be raised ( - in a similar way as the
sharpening of the incidence theoretic language of projective geometry in gen-
eral was the prerequisite for projective geometry partly turning into a branch
of combinatorics). I shall present a version of this language/formalism. As a
kind of experimental project, I shall formulate the descriptions of the oscu-
lating plane in terms of this language, demonstrating a closer match between
the formalism and three of the descriptions of the osculating planes quoted
above; and also, a proof of the equivalence of the three descriptions is given,
a proof which does not need to go outside the formalism. (This was already
attempted in [4] .21, but not completed.) This is the content of Section 1; in
Section 3, we demonstrate how the pure synthetic notions can be interpreted
in any of the coordinate models of Synthetic Differential Geometry. But my
point is that the notions don’t have to be thus interpreted, and by themselves
form a very direct vehicle for geometric definition and reasoning.

The content of the present note is not exactly the same as the one I presented in
Perugia in May 1997; that talk rather dealt with some related, but metric, aspects
of Synthetic Differential Geometry (“Geometric Construction of the Levi-Civita
Parallelism”), cf. [5]. I want to thank the organizers warmly for inviting me to
speak at the meeting.

1 Synthetic Theory

Since the geometric notions that will enter in our formalism here all belong
to just projective geometry (not to, say, affine or metric geometry), it is clear
that the notions considered, and the results proved, belong to Projective
Differential Geometry, and as such are invariant under the Projective General
Linear Group.

Characteristic of the pure synthetic language I shall present, is that in-
tensive quantities, real valued functions, say, do not play a role, in particular,
coordinates are not considered; hence, also there is no occurrence of “Quan-



tities vanishing to the first, or to the second, or ... order”. Rather, the pure
synthetic language deals with points, pairs of neighbour points, etc., as well
as with lines, planes, curves, ... - they are all examples of extensive quan-
tities. So in this sense, the language is one-sided, in a way that cannot be
recommended in general.

So the vocabulary has words familiar from 3-dimensional projective ge-
ometry: point, line, plane, space, and the usual incidence relations. Also,
besides equality of points, and of lines, planes, etc., one needs an apartness’
relation for points, Pf(), as well as a neighbour relation, () ~ R for points
P, ), R. The apartness relation is needed in order to formulate the most
basic incidence theoretic property: through two points which are apart, there
passes a unique line.

The neighbour relation is assumed to be reflexive and symmetric, but is
not assumed transitive (transitivity would destroy the whole theory; so the
neighbour relation is definitely not to be thought of as the relation of “being
infinitesimally close”, in the sense of Non Standard Analysis). The apartness
relation should satisfy: zfy and y ~ z implies zfz.

The set of neighbours of a point P will be denoted M (P) (M for 'monad’,
a term borrowed from Non Standard Analysis; in [4], it is denoted M (P),
“first-order monad”, to distinguish it from the second and higher order mon-
ads, which are larger.) We shall assume the following “linear sufficiency
principle” for the monads: if h; and hy are linear subsets (lines, or planes)
through P, then if hy N M (P) C he N M(P), we may conclude h; C hs.

We assume now given a smooth space curve k; this means a subset of
space, with the property that for any P € k, there is a (necessarily unique)
line [ with the property that

1N M(P) = kn M(P).

This line [ is the tangent line of k at P, denoted tp(k) or just ¢p, since k will
be fixed throughout.

We shall also consider smooth surfaces GG; this means a subset G of space,
with the property that for any @ € G, there is a (necessarily unique) plane
7 with the property that

TNM(Q)=GnNM(Q).

! As demonstrated in [3], it is possible to take P$Q to mean just =(P = Q); but we do
not, even in this case, have that —(P§Q) implies P = Q.




This plane is the tangent plane Ty of G at Q. A line | with [ N M(Q) C
G N M(Q) is called a tangent line to G at ). Tangent lines to G at @ lie in
the tangent plane Ty, by “linear sufficiency”.

We shall assume that the tangent lines of £ sweep out a smooth surface
(G; more precisely, for each P € k, let us denote by t§3 the set of points on
tp apart from P. The set of tgp’s, as P ranges over k, should be disjoint,
and together make up a smooth surface G. (The geometric picture is that
G consists of two sheets that meet along k, which is a sharp edge of the
closure of GG. One sheet is formed by the positive half tangents, the other
by the negative ones; but this refinement of the picture is not utilized in
the following. The ‘disjointness’ means: if t§3 and tﬂP, have some point in
common, then P = P'.) Since tﬂP C @, it follows that for any @) € t§3, tp is
a tangent line to G at @), and hence ¢tp C Tj,.

We shall also assume that if ) ~ Q' are points on GG, then P ~ P’, where
P and P' are the unique points on k such that @) € tp and Q' € tpr; and
conversely, if ) € tp and P ~ P’, then there is at least one point Q' € tp with
Q@ ~ Q. These requirements should be thought of as continuity requirements.

Now we can do an argument:

Proposition 1.1 Let Q € G, say Q € tp. Then for P' € k with P' ~ P,
tp C Ty . Verbally, if Q) € tp, then any neighbour tangent to tp is contained
in the tangent plane at Q.

Proof. By continuity, pick @' € tp, Q" ~ @. Then Q#P’. Since
Q € GNM(Q), Q € Ty. Since P € kN M(P'), P € tp. Since P'#Q’
and P ~ P’ P{Q'. So the unique line containing P and Q' is tpr. Now
P etp CTy and Q' € T. From this follows that the whole line these two
points determine is contained in Tyy. So tpr C Ty.

Proposition 1.2 Let Q1 and Qo be points on G on the same tp. Then
To, =Tg,-

Proof. By symmetry, it suffices to prove Tg, C Tg,, and for this, it
suffices to prove Ty, N M(Q,) C Ty,. But T, N M(Q,) = G N M(Q1). So
let Q" € GNM(Q;). Then by continuity, @' € tp for some P’ ~ P, as in the
previous proof. By the Proposition just proved (with @ = @Q2), we get that
tpr C Th,, and since Q' € tpr, Q' € Ty,, as desired.



The last Proposition shows that T only depends on the P for which
@ € tp; we may call the plane thus defined the osculating plane of k at P.
Proposition 1.1 thus expresses verbally: The osculating plane at P contains
all neighbour tangents tpr of tp.

This in fact characterizes the osculating plane. For, let P € k, and let 7
be a plane that contains all ¢pr (for all neighbour points P’ of P on the curve).
Then we prove that m = Tg, for any @ € t§3 C G. It suffices, by standard
dimension argument, to prove Ty C 7, and for this, it suffices to prove that
the inclusion holds after intersecting with M (Q). But for a Q' € To N M(Q),
we have Q' € tp/, for some neighbour point P’ on the curve (as above), and
by assumption, tpr C 7. Thus

Proposition 1.3 The osculating plane at P € k is the unique plane con-
tatning tp and all its neighbour tangents.

Of course, we may equivalently, with slight redundancy, state this: the
osculating plane at P is the unique plane containing P and all the neighbour
tangents tp (tp being itself among them.) This comes close to the “classical”
synthetic formulation 2) given in the introduction; note, however, that we
talk about all neighbour tangents collectively, where the classical formulation
talks about one of them (this makes sense, if the “one” it talks about, is
“the generic one”, but this would require some explanation of what that is
supposed to mean).

We have an analogous relation between the formulations of the “three-
point” synthetic characterization of the osculating plane; we have, in our
context:

Proposition 1.4 Let P € k. For arbitrary P' ~ P and P" ~ P’ (with P’
and P" on k), we have that P, P'andP" are contained in the osculating plane
at P; and this property characterizes the osculating plane.

Proof. For P’ and P" as in the statement, we have P’ € tp and P"” € tp/,
but both tp and tpr are contained in the osculating plane at P, by Proposition
1.1. Conversely, if a plane 7m has the property stated, we can prove that it
contains tpr for any P’ ~ P on the curve. It suffices to see that tp N M (P') C
7N M(P'). The set on the left equals £ N M(P’), but a P” in this set is a
point on the curve which is ~ P’, thus such P" is in 7 by assumption.



It is clear that the first synthetic description given in the introduction
is not vindicated in our formalism; for all the neighbour points in question
already belong to tp, and so, even collectively, do not determine a plane.

2 Linear Algebra over a Local Ring

We now turn to the question of existence of models. It will be no surprise
that we turn to coordinate models, over a suitable commutative ring R,
although, as stated in the introduction, one could conceivably have purely
combinatorial models.

It will also be no surprise that R will be not a ring in the category of sets,
but a ring object in a suitable chosen topos. In fact, we turn to the models
provided by the topos theoretic school, cf. e.g. [4], [7], and the references in
there. This means that the logic we employ has to be constructive (no law of
excluded middle); and also, for the basic coordinate ring we cannot assume
algebraic properties which are too strong, since the models don’t provide us
with such. However, all interesting models of SDG give that at least the
coordinate ring is a local ring.

This requires us to establish a certain amount of linear algebra and matrix
theory for local ring objects in a topos. This is partly taken from [2] and [3].

We consider a local ring R in a topos E; this means that R is a commu-
tative ring object which satisfies —=(0 = 1) and

x + y invertible = (z invertible V y invertible ).

We also consider R-modules V', whose elements we call vectors. An R-module
V is called finite dimensional if, for some natural number n, it satisfies “there
exists an isomorphism of R-modules V = R"”. 2

An n-tuple of vectors vq,...,v, € V is called a basis for V if the map
R™ — V given by (t1,...,t,) — > t;v; is an isomorphism of R-modules.
Clearly V is finite dimensional iff there exists a basis for V.

2The phrase “there exists ...” is to be read according to standard sheaf semantics,

as “there exists locally ...”. Thus, in the topos of sheaves over a topological space, any
(locally trivial) n-dimensional vector bundle will define an n-dimensional R-module, where
R is the sheaf of germs of real valued functions on the space. - Similarly for all other similar
uses of “there exists ...”.



The notion of linear independent set ramifies, compared to standard linear
algebra over a field in the topos of sets, and one of the ramifications we
call prebasis; a prebasis in V' is a k-tuple of vectors vy, ...,vr that may be
expanded to a basis vy, ..., Uk, Vgi1, ..., U, for V 3.

For the case where V' = R"™, this can be expressed matrix-theoretically.
Given an n X k matrix A (n > k). Then A is called regular (or of mazimal
rank) if at least one of its k X k submatrices has invertible determinant. And
it is called singular if all its k£ x k submatrices have determinant zero. From
[2], Proposition 3.1 and Proposition 2.1, we quote

Proposition 2.1 The k columns of an n X k matriz A (k < n) is a prebasis
for R™ iff A is regular.

Proposition 2.2 Given a reqular nx k matriz A (k < n), and given z € R".
Then the n x (k + 1) matriz [A | 2] is singular iff z belongs to* the column
space of A.

We also shall prove a form of the Steinitz exchange theorem, in a stronger
form than the one of [2]:

Proposition 2.3 Let B be a reqular n x | matriz, and let A be a reqular
n X k matriz (1 < k < n). Assume that each of the | column vectors of B
belong to the column space of A. Then there exists a reqular n X k matriz,
whose columns are the | columns of B together with k — | columns from A,
and whose column space is the same as the column space of A.

Before we prove it, we need some preparations. First, a vector v in R" is
called regular if it is regular viewed as an n x 1 matrix, i.e. if at least one
of its entries is invertible. If A = {a;;} is a matrix, and A - v is a regular
vector, then v is regular. For, by assumption, one of the coordinates of A - v
is invertible, say the ith. But this entry is 3° a;;v;. By localness of R, one of
the terms is invertible, say a;;v;, and this implies that v; is invertible.

If A is an invertible n X n matrix, then it now follows that A - v is regular
iff v is. From this, in turn follows that the notion of regularity of vectors

3Note that to be a prebasis is again an existential property: “there exist vgy1,...,v,”.
4The last clause is again an existential statement: “there exists a linear combination
of the column vectors of A with z as value”.



may be defined for vectors in arbitrary finite dimensional R-modules V', by
transport along an isomorphism R"™ — V', but independent of the choice of
the isomorphism.

In a similar way, it is easy to see that if a linear combination _ r;a; of
vectors a; is regular, then at least one of the coefficients r; is invertible.

We shall in particular be interested in the exterior powers A¥(R"); these
exist, and are finite dimensional (cf. [2]); and an n X k matrix (with k& <
n) is regular iff the wedge product w of its columns is a regular vector in
A¥(R™) (for, with one of the standard choices of a basis for A¥(R"), the
coordinates of w, with respect to this basis, is precisely the ( Z >—tuple of
k x k subdeterminants of the matrix).

We now prove the Steinitz exchange. From Proposition 2.1 follows that a
subset of the set of columns of a regular matrix form a regular matrix; so in
particular, since B is assumed regular, its first column vector b; is regular.
By assumption b; is a linear combination of the columns of A, a4, ..., ag,

61:T101+...+Tkak,

and since by is regular, at least one of the r;’s is invertible; for simplicity,
assume it is ;. Multiplying the equation by the scalar r;* and rearranging,
we get a; expressed as a linear combination of by, as, ..., ax, and it is clear
that this set of vectors has the same span as aq, ..., ax. In particular, by can
be expressed as a linear combination

bQ = 81b1 + Sq9a0 + ...+ SkQy - (1)

Taking wedge product of this equation with the vector b; and using by Ab; = 0,
we get
b1 A bg = 82(b1 A az) 4+ ...+ Sk(bl N ak).

Since the two columns by, by form a regular matrix, their wedge product
by A by is a regular vector, and therefore, one of the coefficients s,,..., s
in the linear combination above is invertible; for simplicity, assume it is s,.
Then in (1), we divide by s, and rearrange; then we see that as is in the span
of by, by, as...ag, and so also the span of these equals the span of the original
a1, ---,ag. (Continue in a similar fashion if [ > 3). The equality of the spans
implies the existence of a k£ x k matrix C so that A'- C = A where A’ is the



matrix with columns by, by, a3 . .. ag, and since A is regular, it follows that A’
is regular; for, the & x k minor determinants of A come about from the k£ x k
minor determinants of A’ by multiplication by the determinant of C. This
proves the Proposition (for [ = 2).

3 The coordinate model

We describe the incidence geometry, as well as the apartness- and neighbour
relation, for a suitable variant (see [3]) of projective 3-space over R (where R
is a local ring object in a topos; ultimately, R will be assumed to be a model
of SDG, as in [4] or [7]).

The points of this projective 3-space are the equivalence classes of regu-
lar vectors in R*, under the equivalence relation given by multiplication by
invertible elements in R. (We view vectors as column vectors, i.e. as 4 X 1
matrices.)

The lines of projective 3-space are the equivalence classes of regular 4 x 2
matrices with entries from R, under the equivalence relation given by right
multiplication by invertible 2 x 2 matrices; and the planes are similarly equiv-
alence classes of regular 4 x 3 matrices, under the equivalence relation given
by right multiplication by invertible 3 x 3 matrices.

A point is said to be incident with a line if the 4 x 3 matrix obtained by
taking representative matrices of the point and the line, and writing them
next to each other, is singular. Similarly, incidence of a point with a plane is
defined in terms of singularity of the 4 x4 matrix obtained from representative
matrices of the point and the plane.

Incidence of a line with a plane is defined by singularity of the fwo 4 x 4
matrices obtained by taking each of the two columns of a representative
matrix for the line and placing it next to a representative matrix for the
plane.

Two points are defined to be apart if the 2 X 4 matrix, obtained by
placing representative matrices of the points next to each other, is regular.
This regular matrix then also will witness that through two points, which
are apart, there passes a unique line.

All these notions are independent of choice of representatives. They could
have been defined more abstractly in terms of the exterior algebra of an R-
module, cf. [2] (where it is also argued that the duality principle of projective



geometry holds for the model thus constructed).

Finally, to define the neighbour relation for points, let P and P’ be points,
represented by (z1,...,24) and (z,...,x}), respectively. A necessary con-
dition that these points qualify as neighbours is that for each ¢ = 1,...,4,
x; is invertible iff z} is. If so, assume for instance that z, and hence z is
invertible. Then by dividing by x4, respectively by x;, we get representatives
for P and P’ of form (z1, 29, 23,1) and (2}, 2, 23, 1), respectively. Then P
and P’ are declared neighbours if (21, 29, 23) and (21, 25, z3) are neighbours in
affine 3-space R?, in the usual sense of [4] (meaning that (z;—zj)-(z;—2j) =0
for all 4,7 = 1,2, 3, in particular (z; — z)? = 0).

In other words, we define the neighborhood relation by passing to the
affine charts R? that cover projective 3-space.

We also shall indicate what trace the incidence combinatorics leaves on
such an affine piece, say the one given by x440. Assume that a line [, repre-
sented by a certain regular 4 X 2 matrix A, has a point P in common with
this affine piece. Let P be represented by the vector u = (uq,ug, us, u4),
say, with u4 invertible. Then P may equally be represented by a vector
x = (x1,29,23,1). Since P is assumed to be incident with the line, the
4 x 3 matrix [z, A] is singular, and then it follows from the Steinitz Exchange
(Proposition 2.3) that the line [ may be represented by a 4 x 2 matrix B
with x as its first column. Performing now an elementary column operation
on B (which amounts to right multiplication by a suitable invertible 2 x 2
matrix), we finally conclude that [ may be represented by a matrix of form

1 n
Ty T2
T3 T3
1 0

Let y = (y1, ..., ys) represent a point @) incident with {. Then by Proposition
2.2, y belongs to the column space of the matrix; if further y is in the affine
piece 2440, we may, as before, assume that y, is actually 1, and then y belongs
to the column space of the matrix iff for some s (necessarily unique)

(y1,Y2,y3) = (21,22, 23) + 5+ (r1,72,73). (2)

This proves that a line [, which meets the affine piece R?, may be exhibited in
the parametric form (2), where (1,2, z3) is an arbitrary point on the meet
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of the line with the affine piece R, and where (71, 79,73) is a regular vector
in R? (regular, because (r1,79,73,0) is a regular vector, being a column of
the regular matrix above). Of course, (r1,79,73) is to be thought of as an
(affine) direction vector for the line [.

Similarly, any plane 7, which meets the affine piece z,10, may be exhibited
in parametric form with two parameters, using two “direction vectors,” which
together form a regular 3 x 2 matrix, (and with an arbitrary point, on the
meet of m with the affine piece, as “base point”).

We now prove that the monads are “linearly sufficient”, which is of course
where part of the basic axioms of SDG come in. We do it for the case of a
line [ and a plane 7, the other cases (line/line and plane/plane being similar).
So let P be a point on [ and on 7, such that M(P) NIl C 7. Without loss
of generality, we may assume that P is in the affine piece R® given by x430.
For simplicity, we may even assume that P is the point (0,0,0) € R3, so
P is represented by the regular vector (0,0,0,1). Since P € [ and P € m,
it follows from Steinitz Exchange that [ and 7 may be represented by the
regular matrices

0 0 ur un
0 D) 0 U2 V9
0 T3 ’ 0 Uus vUs ’
1 0 1 0 0

respectively. Let d € R be any element with d> = 0. Then the point
represented by (dry,dry,drs, 1) is in M(P) N1 (in the affine piece R3, it is
just the point (dry,dry, drs) ~ (0,0,0)). Hence by assumption, it is in 7.
This implies that the 4 x 4 matrix

0 u vy drg
0 ug vy drg
0 us vUs d’f‘g
1 0 0 1

is singular, i.e. has determinant 0. But this determinant is clearly (plus
or minus) d times the determinant A consisting of the u’s, v’s and r’s. A
fundamental axiom, valid in the models of SDG, is that if d - k£ = 0 for all
d € R with d> = 0, then k is 0. So applying this principle, we see that A is
0, which in turn implies that the 4 x 4 matrix above, with d replaced by 1, is
singular. From this immediately follows singularity of the two 4 x 4 matrices
made up of the matrix for 7 and each of the two columns of the matrix for /.
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Concerning the continuity assumptions from Section 1: the law, which
to a point () € G associates the unique P € k such that () € tp, defines a
function (in the topos) from G to k; and all functions defined in the topos
models preserve the neighbourhood relation. So it follows that neighbour
Q’s define neighbour P’s. For the other continuity requirement, we shall be
sketchy only. Tangents ¢tp and tpr at neighbour points on k£ are themselves
neighbours in the Grassmann manifold G4 of lines in projective space. For
any two neighbour lines [ and I’ in G4, and any ) € [, we may find a
plane 7 which intersects [ transversally in (). It will then also intersect I’
transversally; we thus get a map, in the topos, from an open subset of G2 4
to 7, namely: take a line € G4 to its intersection (assumed transversal)
with 7. Since [ and I’ are neighbours, their intersections with 7 are again
neighbours. Thus the intersection of I" with 7 is the desired @'.

To get a model for the reasoning of Section 1, we should finally exhibit
some “curves” k, and here, at present, we have to assume a little more
than was actually stated as assumptions; namely that the curve locally may
be exhibited by a parametrization r(t), with r : R — R? a function (weaker
assumptions would require that some implicit function theorem were available
in the topos model, and this is not the case for many of the otherwise good
models). If r then is sufficiently regular, the tangent line at a given point
r(t) is of course given in parametrized form r(¢) + s - 7'(t), and viewing both
t and s here as parameters provides a parametrization of the surface G,
provided ', 7" is a regular pair of vectors, in the sense of Section 2. We leave
the details, since they are no different from those of any standard analytic
formulation of the construction of the “tangent surface” G and the osculating
planes of the parametrized curve k.
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