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MODELS FOR SYNTHETIC
INTEGRATION THEORY*

A. KOCK and G. E. REYES

The present note gives an axiom for the treatment of integration in the
context of syntetic differential geometry, and proves that the full, well adapted
model considered by Dubuc [1] satisfies this integration axiom.

We shall, as was to be expected, define integration in terms of the notion
“primitive of a function”. But we want to have integrals for functions which
have only been defined on intervals. This leads us to consider as basic object
a ring object of line type equipped with a preorder relation <.

We give the axiom in Section 1, and derive, by means of “standard synthetic
calculus” some consequences. In Section 2, we prove that the axiom is valid for
Dubuc’s model, referred to above, essentially as a corollary of the embedding
theorem of Porta and Reyes, [8].

In Section 1, we shall use set theoretic notation as shorthand for internal
logic of the (unspecified) ambient topos in which we work. Thus, when we say:
“for every f:[0,1] — R, there exists a unique g...”, we mean that the
sentence “V fe RI®! 31 g . .~ is internally valid. In Section 2, we shall have
to unravel these internal sentences into statements about actual smooth
manifolds with or without boundary.

Compared to the preprint version [7], the present version contains some
simplifications.

1. Axioms for integration.

Let R be a ring object of line type (in the sense of Kock-Lawvere, [2]) in a
topos &, and let £ be a pre-order relation on it, compatible with the ring
structure. Thus, in particular, < is transitive and reflexive. It is not assumed to
be antisymmetric; on the contrary, we shall assume that for any nilpotent
x € R we have
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x<£0 and O0Z x.

If a<b, the “set” {x 1 a<x<b} will be denoted [a,b] and called the closed
interval determined by a and b. Note that a and b are not, in turn, determined
by [a, b] since, for instance, for any nilpotent d € 4

[a,b] = [a,b+d] .

In particular, [0,0] contains all nilpotent elements. We also note that any
interval is “subeuclidean” or “etale” in the sense of [3] or [6], meaning that it is
stable under the addition of nilpotents. In particular, for any g: [a,b] — R, it
makes sense to talk about g': [a,b] — R. Also, we note that [a, b] is convex: if
x,y € [a,b] and t € [0, 1], then

t-x+(1—t)-yelab].

This is a standard consequence of the compatibility of < with the ring
structure.
The axiom for integration says:

INTEGRATION AxiOM. For any f: [0,1] — R, there is a unique g: [0,1] —> R
with g'=f and g(0)=0.
We can then define

1
f f@yar = g(1);
0

several of the standard rules for integration then follow from the corresponding
rules for differentiation (see [2, Theorem 8]) purely formally. In particular:

1
(L.1) J f(t)dt depends in an R-linear way on f.
0

(12) Let h: [0,1] — R. Then f K(tydt = h(1)—h(0) .

0

From these two properties we can deduce:

ProrositioN 1 (Hadamard’s lemma). Let a<b and f: [a,b] — R. Then, for
x,y € [a,b],

o) -f(x) = U”x)'jof'(x+t'0'—x))dt.

Proor. (Note that the integrand makes sense because of convexity and
étaleness of [a,b].) By convexity, we have a map ¢: [0,1] — [a,b] given by

ot) = x+t-(y—x).
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We have ¢'=y—x. So
FO)—f(x) = fle)—f(¢(0)

1
=J (foo)y (1) dt by (1.2)
0

= r —x) (f'ep)(t)dt (chain rule)

0

1
= (y—X)I (f'e@)()dt by (L1),

0

which is the desired result.

PROPOSITION 2. Let a<b and g: [a,b] — R. If g =0 on [a,b], then g is
constant on [a,b].

Proor. By Hadamard’s lemma above, we have, for any y € [a,b],

1
gy)—gla) = (y—a)f glat+t (y—a)dt.
)]
By assumption, the integrand is =0, so by (1.1) we conclude that the integral is
0, so g(y)=g(a).

Our next proposition says that “one can differentiate under the integral
sign”:

ProprosITION 3. Let f: [a,b] x[0,1] — R. Let h: [a,b] — R be defined by
r1

h(sy = | f(s,t)dt.
Then v
ﬂl af

= (s, t)dt .

H(s) = , 2

Proor. Let d € D (ie., d is an element of square zero). Then
r1

h(s+d)—h(s)

I

(fs+d,)—f(s,t))dt

JO
r1
= d'g(s,t)dt
o O0s

LY

laf
dJ‘ E‘(S,t)dl ,

o 0S
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where we have used (1.1) in the first and third equality sign, and Taylor’s
formula (see e.g. [2, Proposition 6]) in the second. On the other hand, by
Taylor,

h(s+d)—h(s) = d-W(s).

Since this holds for all d e D, we get the conclusion by the uniqueness
assertion in the “line type” axiom [2] (cf. the formulation of [4]).

We can now prove the following strengthening of the integration axiom.
Again, the theorem should be understood “internally”:

THEOREM 4. For any a<b and any f: [a,b] — R, there is a unique g: [a, b]
— R with g'=f and g(a)=0.

Proor. The uniqueness assertion follows immediately from Proposition 2
and linearity of differentiation. To prove existence, we construct g: [a,b] — R
as follows. Let ¢ € [a,b]. To define g(c), consider the unique affine map
¢,: [0,1] — [a,b] with ¢.(0)=a and ¢.(1)=c (it maps into [a,c]<[a,b], by
convexity of intervals). We put

1
gle) := j fle.() o (t)dt

o

= Jl fla+t-(c—a) (c—a)dt.

0

By (1.1), g(@)=0. To differentiate g with respect to ¢, we may, by Proposition 3,
differentiate under the integral sign. We get, using also chain rule and Leibniz
rule for differentiation,

g'(c) = Jl fla+t-(c—a)t (c—a)+f(a+t (c—a)dt
1]

1
= J F(t)dt ,

[}
where F(f):=f(a+t-(c—a))-t. By (1.2), this equals
F()-F(©0) = f(at(c—a)'1 = f(o).

This proves g'(c)=f(c). This proves existence of the desired g, and thus the
theorem.

If fand g are as in the theorem, we define [5 f(¢) dt as g(b). This is consistent
with our previous definition of {§ f(t)dt. Also, (1.1) and (1.2) and Proposition 3
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generalize to the case where the limits of integration are a,b, and we
furthermore have the following:

(1.3) rf(t)dt+rf(t)dt = jcf(t)dt for a<b<c.
a b a

(1.4) Let h: [a,b] — R be defined by h(s)=f f(t)dt. Then K =f.

(1.5) Let ¢: [a,b] — [a;,b,] have @(a)=a,, ¢(b)=b,.
Then

by b
j f(n)ydt = f fle(s) @'(s)ds .
To see (1.3), take any g: [a,c] — R with g'=f (such exists, by the theorem). By
the generalized version of (1.2),

b b
J f= j g = gb)—gla),

a a

and similar [§ f=g(c)—g(b), from which (1.3) is immediate. To see (1.4), let
again g'=f. For any d of square zero, we then have, using Taylor’s formula and
(1.3),

s+d
d-W(s) = h(s+d)—h(s) = J f@)ydt = g(s+d)—g(s)

N

=d-g) =dfl,

and since this holds for all such d, we conclude #'(s)=f(s) by the uniqueness
assertion in the line type axiom. Finally, (1.5) is a formal consequence of the
chain rule ([2, Theorem §]).

2. Integration in Dubuc’s model.

“Dubuc’s model” is a Grothendick topos & with a full and faithful functor
i: Mf — &, where Mf is the category of smooth manifolds. The pair &,i is a
well adapted model in the sense of [5], from where we shall freely use
notations, except that we write R instead of 4 for i(R), the basic ring of line
type in &. In particular, j: #°°P — & embeds the dual of the category of real
Weyl algebras.

We shall utilize a theorem of Porta and Reyes ([8, Proposition p. 43]—
which in turn depends on Whitney’s theorem on smooth even functions)
according to which i: Mf— & can be extended to a full embedding (also
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denoted i) from the category Mf' of smooth manifolds with boundary. The
functor i: Mf — & preserves finite products, and i: Mf’ — & preserves those
finite products that exist.

The manifold-with-boundary,

Ryo = {reR| r20}

embeds by i to a subobject R, of R, which in turn defines a preorder relation
< on R, compatible with the ring structure. All nilpotents are in R, (which is
in fact étale, or subeuclidean subobject: stable under addition of infinitesimals).
With this preorder relation we shall prove

THEOREM. The Integration Axiom holds in Dubuc’s model.

We shall need the following specific feature of Dubuc’s topos &, namely
that objects of the form

iMxjX (with MeMf, X e %)

form a site of definition for the topos &. In particular, the preorder relation <
on R may be defined in an alternative way, using i and j, as follows. It suffices
to define when an element a in R, defined at stage iM x jX, has 0 < a. Consider
such an element

iMxjX <> R.

There is a unique map 1 — jX, and therefore a canonical map iM — iM xjX.
The composite, denoted a,,

a, = iM - iMxjX - R = iR

comes, by i being full and faithful, from a unique smooth map a: M — R, and
we let a=0 provided a(m)=0, Vm € M. (The fact that the order relation thus
described agrees with the one defined by R, essentially follows from [9,
Proposition p. 15].)

We remark that [0, 1] (also denoted I) denotes both a certain manifold-with-
boundary, and a certain subobject of R. However, they correspond under
i: Mf' - 8.

Proor oF THE THEOREM. Let f denote an “element” of R!*-!) defined at stage
iM xjX, say (letting I denote [0, 1]),
friMxjX - R,

We shall produce an element g of R! (defined at the same stage!), g: iM x jX
— R! such that
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2.2 f:%%:iijXxI—»R,

where ~ denotes exponential adjoint, and 6/t means deriving in the direction of
the I-factor.

By twisted exponential adjointness, we get from f a map f: iM x I — R/X
~iX, which (by the fact that i: Mf" — & is full and faithful and preserves those
products that exist) comes from a unique map in Mf’

fiMxI - X.

We form a map g: M xI — X by putting

t
(23) gm,1) = J fm,s)ds .

4]
Note that the integration makes sense, X being a finite dimensional real vector
space. Since fis smooth, it is classical that g is also smooth. Now the bijection
by which we produced f out of f,

hom, (iM x jX, R") = hom (M x I, X),
yields when applied (backwards) to ¢ a map
g iMxjX — Rl

We claim that g satisfies (2.2). This fact must of course be derived from the
evident equality
(2.4 f’)E——-T:M><I~+X
ot

coming from (2.3) and the fundamental theorem of calculus. From (2.4) we get
by applying the functor i (which transforms the “analytic” differentiation in Mf
to the “synthetic” one in &, essentially by [5, Theorem 1]) the equality

0g .
2.5) a—f = 7. iMxI — iX = RiX
which expresses that the directional derivative of g along the vector field /0t of
iM x I is f (in the terminology of [4], say). Now we have a completely general
fact about derivatives with values in Euclidean modules of form RS (S
arbitrary).

LeEMMA. Let Y be a vector field on object N, and h: N — RS a function. Then
for the directional derivative

Y(h): N - RS
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we have
Y(h = Y(B): NxS - R

where ~ denotes exponential adjointness, and Y is the vector field on N x § given
by (Kn,s),d) — (Y(n,d),s).

The proof is straightforward in the style of [4].
We deduce in particular from the lemma and (2.5) that

5
‘3% — 7 iMxIxjX — R.

Since clearly §(0)=0, this means that the element g of R ! defined at stage iM
xjX has g'=f and g(0)=0. This proves the existence.
The uniqueness comes similarly from the uniqueness ofa g: M xI — X with
0g/ot=f and g(m,0)=0, Vm e M.
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