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Preface

It is a striking fact that differential calculus exists not only in analysis (based on
the real numbers R), but also in algebraic geometry, where no limit processes are
available. In algebraic geometry, one rather uses the idea of nilpotent elements
in the “affine line” R; they act as infinitesimals. (Recall that an element x in a
ring R is called nilpotent if xk = 0 for suitable non-negative integer k.)

Synthetic differential geometry (SDG) is an axiomatic theory, based on such
nilpotent infinitesimals. It can be proved, via topos theory, that the axiomatics
covers both the differential-geometric notions of algebraic geometry and those
of calculus.

I shall provide a glimpse of this synthetic method, by discussing its applica-
tion to two particular types of differential-geometric structure, namely that of
affine connection and of midpoint formation.

I shall not go much into the foundations of SDG, whose core is the so-called
KL1 axiom scheme. This is a very strong kind of axiomatics; in fact, a salient
feature of it is: it is inconsistent – if you allow yourself the luxury of reasoning
with so-called classical logic, i.e. use the “law of excluded middle”, “proof by
contradiction”, etc. Rather, in SDG, one uses a weaker kind of logic, often called
“constructive” or “intuitionist”. Note the evident logical fact that there is a
trade-off: with a weaker logic, stronger axiom systems become consistent. For
the SDG axiomatics, it follows for instance that any function from the number
line to itself is infinitely often differentiable (smooth); a very useful simplifying
feature in differential geometry – but incompatible with the law of excluded
middle, which allows you to construct the non-smooth function

f(x) =

{
1 if x = 0,

0 if not
.

1 Nilpotents, and neighbours

Nilpotent elements on the number line serve as infinitesimals2, in a sense which
is “forbidden” when the number line is R. Nilpotent infinitesimals come in a

1 for “Kock-Lawvere”
2 they are not to be compared to the infinitesimals of non-standard analysis



precise hierachy, since

xk = 0 implies xk+1 = 0.

The method of SDG combines the “nilpotency” ideas from algebraic geome-
try, with category theory, and categorical logic: category theory has provided a
sense by which reasoning in (constructive) naive set theory is sound for geometric
reasoning. So the following is formulated in such naive set theoretic terms.

We plunge directly into the geometry of infinitesimals (in the “nilpotency”
sense): let us denote by D ⊆ R the set of x ∈ R with x2 = 0 (the “first order
infinitesimals”), more generally, let Dk ⊆ R be the set of kth order infinitesimals,
meaning the set of x ∈ R with xk+1 = 0. (So D = D1.) The basic instance of the
KL axiom scheme says that any map Dk → R extends uniquely to a polynomial
map R → R of degree ≤ k. Thus, given any map f : R → R, the restriction of
f to Dk extends uniquely to a polynomial map of degree ≤ k, the kth Taylor
polynomial of f at 0.

For x and y in R, we say that x and y are kth order neighbours if x−y ∈ Dk,
and we write x ∼k y. It is clear that ∼k is a reflexive and symmetric relation. It
is not transitive. For instance, if x ∈ D and y ∈ D, then x+y ∈ D2, by binomial
expansion of (x+ y)3; but we cannot conclude x+ y ∈ D. So x ∼1 y and y ∼1 z
imply x ∼2 z, and similarly for higher k.

We now turn to the (first order) neighbour relations in the coordinate plane
R2. It is, in analogy with the 1-dimensional case, defined in terms of a subset
D(2) ⊆ R2; we put

D(2) = {(x1, x2) ∈ R×R | x2
1 = 0, x2

2 = 0, x1 · x2 = 0};

we define x ∼ y if x − y ∈ D(2), where x = (x1, x2) and y = (y1, y2). So
D(2) ⊆ D×D. Similarly for D(n) ⊆ Rn, and the resulting first order neighbour
relation on the higher “coordinate vector spaces” Rn.

The following is a consequence of the KL axiom scheme:

Theorem 1.1 Any map f : Rn → Rm preserves the kth order neighbour rela-
tion,

x ∼k y implies f(x) ∼k f(y).

Proof sketch for n = 2, m = 1, for the first order neighbour relation ∼1. It
suffices to see that x ∼1 0 implies f(x) ∼1 f(0), i.e to prove that x ∈ D(2)
implies f(x) − f(0) ∈ D. Now from a suitable version of the KL axiom scheme
follows that on D(2), f agrees with a unique affine function T1f : R2 → R, so

f(x)− f(0) = a1x1 + a2x2.

Squaring the right hand side here yields 0, since not only x1 ∈ D and x2 ∈ D,
but also x1 · x2 = 0. So f(x)− f(0) ∈ D.



From the Theorem follows that the relation ∼k on Rn is coordinate free, i.e.
is a truly geometric notion: any re-coordinatization of Rn (by any map, not just
by a linear or affine one) preserves the relation ∼k.

For suitable definition of what an open subsets of Rn is, and for a suitable
definition of “n-dimensional manifold” (something that locally can be coordina-
tized with open subsets of Rn), one concludes that on any manifold, there are
canonical reflexive symmetric relations ∼k: they may be defined in terms of a
local coordinatization, but, by the Theorem, are independent of the coordinati-
zation chosen.

Any map between manifolds preserves the relations ∼k.

We shall mainly be interested in the first order neighbour relation ∼1, which
we shall also write just ∼. Similarly, the phrase “first order neighbour” is ab-
breveiated to “neighbour”. In Section 3, we study aspects of the second order
neighbour relation ∼2.

So for a manifold M , we have a subset M(1) ⊆ M × M , the “first neigh-
bourhood of the diagonal”, consisting of (x, y) ∈ M ×M with x ∼ y. It was in
terms of this “scheme” M(1) that algebraic geometers in the 1950 gave nilpo-
tent infinitesimals a rigourous role in geometry. Note that for M = Rn, we have
M(1)

∼= M ×D(n), by the map (x, y) 7→ (x, x− y).

Let us consider some notions from “infinitesimal geometry” which can be
expressed in terms of the first order neighbour relation ∼ on an arbitrary man-
ifold M . Given three points x, y, z in M . If x ∼ y and x ∼ z we call the triple
(x, y, z) a 2-whisker at x (sometimes: an infinitesimal 2-whisker, for emphasis);
since ∼ is not transitive, we cannot in general conclude that y ∼ z; if y happens
to be ∼ z, we call the triple (x, y, z) a 2-simplex (sometimes an infinitesimal
2-simplex). Similarly for k-whiskers and k-simplices. A k-simplex is thus a k+1-
tuple of mutual neighbour points. The k-simplices form, as k ranges, a simplicial
complex, which in fact contains the information of differential forms, and the de
Rham complex of M , see [2], [6], [1], [7].

(When we say that (x0, x1, . . . , xk) is a k-whisker, we mean to say that it is
a k-whisker at x0, i.e. that x0 ∼ xi for all i = 1, . . . , k. On the other hand, in a
simplex, none of the points have a special status.)

Given a k-whisker (x0, . . . , xk) in M . If U is an open subset of M containing
x0, it will also contain the other xis, and if U is coordinatized by Rn, we may
use coordinates to define the affine combination

k∑
i=0

ti · xi, (1.1)

(where
∑

ti = 1; recall that this is the condition that a linear combination
deserves the name of affine combination). The affine combination (1.1) can again
be proved to belong to U , and thus it defines a point in M . The point thus
obtained has in general not a good geometric significance, since it will depend
on the coordinatization chosen. However (cf. [5], [7] 2.1), it does, if the whisker
is a simplex:



Theorem 1.2 Let (x0, . . . , xk) be a k-simplex in M . Then the affine combina-
tion (1.1) is independent of the coordinatization used to define it. All the points
that arise in this way are mutual neigbours. And any map to another manifold
M ′ preserves such combinations.

Proof sketch. This is much in the spirit of the proof of Theorem 1.1: it suffices
to see that any map Rn → Rm (not just a linear or affine one) preserves affine
combinations of mutual neighbour points. This follows by considering a suitable
first Taylor polynomial of f (expand from x0), and using the following purely
algebraic fact: If x1, . . . , xk are in D(n), then any linear combination of them
will again be in D(n) provided the xis are mutual neighbours.

Examples. If x ∼ y in a manifold (so they form a 1-simplex), we have the affine
combinations “midpoint of x and y”, and “reflection of x in y”,

1
2x+ 1

2y and 2y − x,

respectively. If x, y, z form a 2-simplex, we may form the affine combination
u := y − x + z; geometrically, it means completing the simplex into a parallel-
ogram by adjoining the point u. Here is the relevant picture:
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(1.2)

(All four points here are neighbours, not just those that are connected by lines
in the figure.) The u thus constructed will be a neighbour of each of the three
given points. Therefore, we may form the midpoint of x and u, and also we may
form the midpoint of y and z; these two midpoints will agree, because they do
so in Rn, from where the construction of affine combinations was imported.

Remark. If x, y, z and u are as above, and if x, y, and z belong to a subset
S ⊆ M given as a zero set of a function f : M → R, then so does u = y− x+ z;
for, f preserves this affine combination.

2 Affine connections

If x, y, z form a 2-whisker at x (so x ∼ y and x ∼ z), we cannot canonically
form a parallelogram as in (1.2); rather, parallelogram formation is an added
structure:

Definition 2.1 An affine connection on a manifold M is a law λ which to any
2-whisker x, y, z in M associates a point u = λ(x, y, z) ∈ M , subject to the
conditions

λ(x, x, z) = z, λ(x, y, x) = y. (2.1)



It can be verified, by working in a coordinatized situation, that several other
laws follow; in a more abstract combinatorial situation than manifolds, these
laws should probably be postulated. The laws are that for any 2-whisker (x, y, z)

λ(x, y, z) ∼ y and λ(x, y, z) ∼ z (2.2)

λ(y, x, λ(x, y, z)) = z (2.3)

One will not in general have or require the “symmetry” condition

λ(x, y, z) = λ(x, z, y); (2.4)

nor do we in general have, for 2-simplices x, y, z, that

λ(x, y, z) = y − x+ z. (2.5)

The laws (2.4) and (2.5) are in fact equivalent, and affine connections satisfying
either are called symmetric or torsion free. We return to the torsion of an affine
connection below.

If x, y, z, u are four points in M such that (x, y, z) is a 2-whisker at x, the
statement u = λ(x, y, z) can be rendered by a diagram
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q q u = λ(x, y, z)

q
(2.6)

The figure3 is meant to indicate that the data of λ provides a way of closing
a whisker (x, y, z) into a parallellogram (one may say that λ provides a notion
of infinitesimal parallelogram); but note that λ is not required to be symmetric
in y and z, which is why we in the figure use different signatures for the line
segments connecting x to y and to z, respectively.

Here, a line segment (whether single or double) indicates that the points
connected by the line segment are neighbours. – One may think of λ(x, y, z) as
the result of parallel transport of z from x to y; so xy is an active aspect, z is a
passive aspect.

If x, y, z, u are four points in M that come about in the way described, we
say that the 4-tuple form a λ-parallelogram . The fact that we in the picture did
not make the four line segments oriented contains some symmetry assertions,
which can be proved by working in a coordinatized situation; namely that the
4-group Z2 ×Z2 acts on the set of λ-parallelograms; so for instance (u, z, y, x) is
a λ-parallelogram, equivalently

λ(λ(x, y, z), z, y) = x.

3 Note the difference between this figure and the figure (1.2), in which y and z are
assumed to be neighbours, and where the parallelogram canonically may be formed.



On the other hand

λ(λ(x, y, z), y, z) ∼ x, (2.7)

but it will not in general be equal to x; its discrepancy from being x is an
expression of the torsion of λ. Even when y ∼ z (so x, y, z form a simplex), the
left hand side of (2.7) need not be x. Rather, we may define the torsion of λ
to be the law b which to any 2-simplex x, y, z associates λ(λ(x, y, z), y, z). Then
b(x, y, z) = x for all simplices iff λ is symmetric.

There is also a notion of curvature of λ: Let M be a manifold equipped with
an affine connection λ. If x, y, z form an infinitesimal 2-simplex in M , λ(x, y,−)
takes any neighbour v of x into a neighbour of y, and to it, we can then apply
λ(y, z,−) to obtain a neigbour of z. But since x ∼ z, we could also transport
v directly by λ(x, z,−). To say that λ is flat or curvature-free is to say that we
get the same neighbour point of z as the result. An equivalent description of
flatness of λ is to say that applying λ(x, y,−), then λ(y, z,−), then λ(z, x,−)
to any v ∼ x will return v as value. In this conception, the curvature r of λ
is a law, which to any infinitesimal 2-simplex x, y, z provides a permutation of
the set of neighbours of x. (In the terminology of [7], r is a group-bundle valued
combinatorial 2-form.)

We give two examples of affine connections on the sphere S.

Example 1. The unit sphere S sits inside Euclidean 3-space, S ⊆ E. Since E
is in particular an affine space, we may for any three points x, y, z in it form
y−x+ z ∈ E. For x, y, z in S, the point y−x+ z will in general be outside S; if
x, y, z are mutual neighbours, however, y− x+ z will be in S, cf. Remark at the
end of Section 1. What if x, y, z form an infinitesimal 2-whisker? Then we may
define λ(x, y, z) ∈ S to be the point, where the half line from the center of S to
y− x+ z meets S. It is easy to see that (2.2) holds. The equation (2.3) requires
a little argument in the following spirit: the failure of (2.3) to hold is quadratic
in x− y, and therfore vanishes because x− y ∈ D(3) ⊂ E = R3.

This affine connection is evidently symmetric in y and z, so is torsion free; it
does, however, have curvature. It is the Riemann- or Levi-Civita connection on
sphere.

Example 2. (This example does not work on the whole sphere, only away from
the two poles.) Given x, y and z with x ∼ z (x ∼ y is presently not relevant).
Since x and z are quite close, we can uniquely describe z in a rectangular co-
ordinate system at x with coordinate axes pointing East and North. Now take
λ(x, y, z) to be that point near y, which in the East-North coordinate system at
y has same coordinates as the ones obtained for z in the coordinate system that
we considered at x.

The description of this (flat) affine connection is asymmetric in y and z, and
it is indeed easy to calculate that it has torsion ([7], Section 2.4). In fact, if x is a
point on the Northern hemisphere, and y is η km East of x, and z is 1 km North
of x, then λ(x, y, z) is the point u which is 1 km North of y; the calculation of
the expression λ(λ(x, y, z), y, z) in (2.7) requires us to find the coordinates of z



as seen from this point u, and it is clear that z is less than η km West of u, and
hence λ(λ(x, y, z), y, z) is less than η km West of y, so we are not quite back
at x. The discrepancy is around π/2 times tan(ϕ) · 10−4η km, where ϕ is the
latitude of x (and where the pole is 104 km North of the Equator).

Connections constructed in a similar way also occur in materials science: for a
crystalline substance one may attach a coordinate system at each point, by using
the crystalline structure to define directions (call them “East” and “North” and
“Up”, say). The torsion for a connection λ constructed from such coordinate
systems is a measure for the imperfection of the crystal lattice (dislocations), –
see [8], [4] and the references therein.

3 Second order notions; midpoint formation

The data of an affine connection on a manifold M is a (partially defined) ternary
operation λ. We indicate in this Section how the data of a symmetric (= tor-
sion free) affine connection may be encoded by a binary operation “midpoint
formation” µ on pairs of second order neighbours in M .

Let M(2) ⊆ M ×M denote the set of pairs (x, u) of second order neighbours;
M(2) is the “second neighbourhood of the diagonal”, in analogy with the first
neighbourhoodM(1) described in Section 1. We haveM(1) ⊆ M(2). If λ is an affine
connection on M , then for any 2-whisker x, y, z, we have that x ∼2 λ(x, y, z).

Recall that for x ∼1 y in M , we have canonically the affine combination
1
2x+ 1

2y, the midpoint.

Definition 3.1 A midpoint formation structure on M is a map µ : M(2) → M ,
extending the canonical midpoint formation for pairs of first order neighbour
points.

Thus, µ(x, u) is defined whenever x ∼2 u; and µ(x, u) = 1
2x + 1

2u whenever
x ∼1 u. It can be proved that such µ is automatically symmetric, µ(x, u) =
µ(u, x), and that µ(x, u) ∼2 x and ∼2 u.

Theorem 3.2 There is a bijective correspondence between midpoint formation
structures µ on M , and symmetric (= torsion free) affine connections λ on M .

Proof (sketch). Given µ, and given an infinitesimal 2-whisker (x, y, z). Since
x ∼1 y, we may form the affine combination 2y − x (reflection of x in y), and it
is still a first order neigbour of x. Similarly for 2z − x. So (2y − x) ∼2 (2z − x),
and so we may form µ(2y − x, 2z − x), and we define

λ(x, y, z) := µ(2y − x, 2z − x).

The relevant picture is here:
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It is symmetric in y and z, by the symmetry of µ. Also, if y = x, we get

λ(x, x, z) = µ(x, 2z − x) = 1
2x+ 1

2 (2z − x),

since x ∼1 2z−x and µ extends the canonical midpoint formation for first order
neighbours. But this equals z, by evident equations for affine combinations. This
proves the first equation in (2.1), and the second one then follows by symmetry.

The passage from a symmetric affine connection λ to midpoint formation µ
is less evident. If x ∼2 u and if we have some y which “interpolates” in the sense
that x ∼1 y ∼1 u, we may define µ(x, u) by

µ(x, u) = λ(y, 1
2x+ 1

2y,
1
2y +

1
2u),

(make a picture!); one can prove that this does not depend on the choice of the
interpolating y.

Let us show that one gets the symmetric affine connection λ back from the
midpoint formation µ to which it gives rise. Let λ̃ be the affine connection
constructed from µ, so for a whisker x, y, z at x, use x as interpolating point
between 2y − x and 2z − x; so

λ̃(x, y, z) = µ(2y − x, 2z − x) = λ(x, 1
2x+ 1

2 (2y − x), 1
2x+ 1

2 (2z − x)),

but 1
2x + 1

2 (2y − x) = y and 1
2x + 1

2 (2z − x) = z, by purely affine calculations;
so we get λ(x, y, z) back.

Remark. The Theorem may also be seen as a manifestation of a simple algebraic
fact: in Rn, a midpoint formation µ is given by µ(x, y) = 1

2x+
1
2y+M(x; y−x),

where x ∼2 y and where M(x;−) (for each x) is a function D2(n) → Rn,
vanishing on D1(n). By a version of the KL axiom scheme, one sees that each
suchM(x;−) extends uniquely to a quadraticRn-valued form onRn, and there is
classically a bijective correspondence between such forms, and symmetric bilinear
Rn-valued forms Γ on Rn; these Γ s will serve as Christoffel symbols for the
symmetric affine connection corresponding to µ, modulo a factor −8.

In [5], it is shown how a Riemannian metric geometrically gives rise to a
midpoint formation (out of which, in turn, the Levi-Civita affine connection
may be constructed, by the process given by the Theorem).



Problem: Since a midpoint formation structure µ gives rise to an affine con-
nection λ by a geometric construction, and an affine connection λ gives rise to
a curvature r, likewise constructed geometrically, one gets by concatenation of
these constructions a geometric construction of r out of µ. Is there a more direct
geometric way of getting r from µ?
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