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I want to thank CIRM (Luminy) and Srecko Brlek for giving me this
opportunity to explain some aspects of synthetic differential geometry to an
audience of discrete geometers. I hope there will be some cross-fertilization.

The talk will be concerned with some of the geometry of geometric dis-
tributions, by use of what may be called the (or a) synthetic method.

An example of a geometric distribution is the slope field which we draw
in the calculus class to give a geometric picture of the problem posed by a
first order differential equation y′ = F (x, y): through “each” point (x, y) of
the plane R2, we draw a “little (pointed) piece of a line” with slope F (x, y)
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Then the solutions to the differential equation are functions whose graphs
“are made up of” small lines from the slope field.

For differential equations

∂z

∂x
= F (x, y, z),

∂z

∂y
= G(x, y, z),

the corresponding geometric distribution consists in: at each point (x, y, z) ∈
R3, we draw a “little” (pointed) piece of a plane, whose slope in the direc-
tions x (resp. y) is given by F (x, y, z) (resp. G(x, y, x)). Here the integration
problem may have no solution, as one can see geometrically; or, analytically,
a necessary condition for solvability is that

∂F

∂y
=
∂G

∂x

because of equality of the mixed partial derivatives of a solution z(x, y).
We address the question: how “little” should the “little piece” of line

(resp. plane) be ? The synthetic method which I shall expound (called
synthetic differential geometry, SDG) will give a precise answer. It is an
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axiomatic method. It has as one of its aspects that certain differential-
geometric notions and results get a purely combinatorial formulation. This
in particular applies to the solvability/integrability of geometric distribu-
tions, as exemplified by slope fields, or plane fields, as above. And these
combinatorial notions may have geometric interpretations in more discrete
contexts.

The axiomatics deals with a commutative ring R, whose elements we call
numbers, because we should think of R as a model of the number line. Thus,
we think of R2 as the (coordinatized) plane, etc. The essential combinatorial
structure on Rn is the kth order neighbour relation ∼k (for each k = 0, 1, . . .).
It is defined from the subset

Dk(n) := {(x1, . . . , xn) | any product of k + 1 of the xis is 0}.

(Repetitions are allowed.) If R were a field (say, R), Dk(n) would just
consist of the zero vector. The axiomatics (to be partially presented), on
the other hand, implies that there are sufficiently many nilpotent elements
in the number line R, i.e. numbers x ∈ R such that xk+1 = 0 for suitable
natural number k.

It is clear that the subset Dk(n) ⊆ Rn contains the zero vector 0, and
is stable under additive inversion, x ∈ Dk(n) implies −x ∈ Dk(n) (where x
denotes an n-tuple of numbers). Therefore, the binary relation ∼k on Rn

defined by
x ∼k y iff x− y ∈ Dk(n)

is reflexive, x ∼k x, and symmetric, x ∼k y implies y ∼k x.
We say that x and y are kth order neighbours if x ∼k y. It is useful

to have a notation and name for the set of kth order neighbours of x; it
is called the kth order monad around x and denoted Mk(x). Note that
Mk(0) = Dk(n). The set D1(n) is also denoted D(n).

The axiomatics to be used has for one of its main pillars the KL axiom
scheme, of which one instance is that for any x ∈ Rn,

any function g : Mk(x) → R extends uniquely to a polynomial function
Rn → R of degree ≤ k.

This (family of) axioms implies a large amount of differential calculus.
For instance, given a function f : Rn → R; let g : Mk(x) → R denote its
restriction to Mk(x). The unique extension of g to a polynomial function
Rn → R of degree ≤ k is then the Taylor polynomial of f of order k at x.

So the axiomatics also implies that every function f : Rn → R is differ-
entiable.

We shall almost exclusively be concerned with the 1st order neighbour
relation ∼1, which we also denote just ∼; likewise, M1(x) is denoted M(x).

For instance, in dimension 1, we have M(0) = {d ∈ R | d2 = 0}, This set
(= D1(1)) is also denoted D. We note that the axiomatics does not imply
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that the neighbour relations ∼k are transitive. In one dimension, and with
k = 1, transitivity of ∼ would be equivalent to the assertion that D is stable
under addition, and this does not follow from the axiomatics:

(d1 + d2)2 = d2
1 + d2

2 + 2d1d2 = 0 + 0 + 2d1d2,

and there is no reason why d1d2 should be 0. On the other hand, binomial
expansion of (d1 + d2)3 reveals that d1 + d2 belongs to D2(1).

We leave as an exercise to the reader to expand these latter considera-
tions and prove that in any Rn,

x ∼k y and y ∼l z imply x ∼k+l z.

Also clearly, if l ≥ k, we have that x ∼k y implies x ∼l y.
In Rn, we now have the reflexive symmetric relation ∼ (i.e. ∼1, the first-

order neighbour relation) – a purely combinatorial structure (“graph”). For
the higher order relations ∼k, a relevant intuition is that it is the relation:
“x ∼k y if y can be reached from x in k (or fewer) “steps” ∼.”

There is a notion of n-dimensional manifold, which is any set which can
“locally” be coordinatized with Rn, in a suitable sense of “locally” (and
which is also essentially to be given axiomatically). For any n-dimensional
manifold M , the neighbour relations ∼k can be “imported” from Rn, and are
independent of the coordinate charts used for the import. We shall present
the following in terms of such manifolds M , rather than Rn, to stress the
coordinate free nature of the ∼k relation, and the combinatorics arising from
it.

After this “foundational” discussion, we shall turn to the geometric sub-
ject matter: the (geometric) distributions. By “manifold” M , we may here
understand any set M equipped with a reflexive symmetric relation ∼ (so
M is the set of vertices of a graph, with edges: pairs x ∼ y).

Definition 0.1 A geometric distribution on a manifold M is a reflexive
symmetric refinement ≈ of ∼, i.e. for x, y in M

x ≈ y implies x ∼ y.

I want to stress that this is a purely combinatorial notion, and that it may be
possible that aspects of this notion may have significance in context in pure
graph theory, say, (without any reference to the KL axiomatics); this could
in particular apply to the combinatorial notion of involutive distribution
described below.

First, however, we have to describe how slope fields fit into the picture
in the context of SDG. Just as we have the monads M(x) for points x ∈M ,
as an alternative encoding of the first order neighbourhood structure ∼, we
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have, given a distribution ≈, an alternative encoding of it in terms of the
“strong” monads M≈(x) := {y ∈ M | x ≈ y}. We have M≈(x) ⊆ M(x)
because ≈ is assumed to refine ∼.

The contention is that the “little lines” that make up the slope field of
a differential equation are exactly the strong monads for a distribution ≈.
Given a differential equation y′ = F (x, y), let us define, for (x1, y1) ∼ (x2, y2)
in R2

(x1, y1) ≈ (x2, y2) iff y2 − y1 = F (x1, y1) · (x2 − x1).

This is clearly a reflexive relation, but why is it symmetric ? The equation
defining (x1, y1) ≈ (x2, y2) clearly implies

(y1 − y2) = F (x1, y1) · (x1 − x2),

but (x2, y2) ≈ (x1, y1) would require that the F -factor were F (x2, y2), not
F (x1, y1). Now the difference of these two F -factors can be described ex-
actly: for, as mentioned, differential calculus (Taylor expansion) is available,
on basis of the KL axiomatics, and therefore we can describe the discrepancy
between the F -factors:

F (x2, y2)− F (x1, y1) =
∂F

∂x
(x1, y1) · (x2 − x1) +

∂F

∂y
(x1, y1) · (y2 − y1)

by Taylor expansion of F from (x1, y1). Note that there are no “higher”
terms in the expansion because (x2, y2) is a first order neighbour of (x1, y1).
The discrepancy between what we have and what we want is therefore

[
∂F

∂x
(x1, y1) · (x2 − x1) +

∂F

∂y
(x1, y1) · (y2 − y1)] · (x1 − x2);

this, however, is 0, because (x1 − x2) · (x1 − x2) and (x1 − x2) · (y1 − y2,
by virtue of (x1, y1) ∼ (x2, y2). This proves the symmetry of the ≈ defined.
(Put briefly, the argument may summarized that the discrepancy between
what we have and what we want is of second order in (x1 − x1, y1 − y2),
and therefore vanishes because the points (x1, y1) and (x2, y2) are first order
neighbours.)

Similarly, the 3-dimensional example given provides a distribution in
R3, whose strong monads are the little “planes” occurring in that example.
(Both these distributions are of codimension one; there are of course also
distributions in higher codimension, e.g. line fields in R3.)

Now the possibility of a plane field which cannot be integrated leads to
another purely combinatorial notion, giving necessary conditions for inte-
grability, namely

Definition 0.2 A distribution ≈ on a manifold M is involutive if for all
x, y, z ∈M ,

x ≈ y, x ≈ z and y ∼ z imply y ≈ z.
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A relevant picture is the following; single lines indicate the neighbour
relation ∼, double lines indicate the assumed “strong” neighbour relation
≈:
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(When differential calculus is available, it can be proved that 1-dimensional
distributions are always involutive. The simplest examples of non-involutive
distributions occur in dimension 3.)

The next notion is a combinatorial rendering of one of the aspects of an
“integral” for a distribution, e.g. the curves that one sketches using a slope
field in the plane:

Definition 0.3 Given a distribution ≈ on a manifold M . Then a subset
F ⊆M is an integral subset for ≈ if for all x and y in M , we have

x ∈ F, y ∈ F and x ∼ y implies x ≈ y.

Clearly a subset of an integral set is integral; in particular, singleton subsets
are integral. Obviously, one is interested in large integral subsets. On the
other hand, integral subsets cannot be too large; for clearly M itself is
integral iff ≈ and ∼ agree.

We invite the reader to prove the following about certain “small” subsets,
the strong monads:

Proposition 1 A distribution ≈ is involutive iff all sets of the form M≈(x)
are integral.

In the applications, one has the notion of when a subset F ⊆M is con-
nected: in differential topology, this could typically mean “path connected”;
in the purely graph theoretic world, this could mean: “can be connected
by a finite chain of edges of the graph”. The following notion is not purely
combinatorial, but depend on the choice of the meaning of “connected”.

Definition 1.1 Given a distribution ≈ on a manifold M . Then a subset
F ⊆ M is a leaf for ≈ if its integral, connected, and if it is maximal with
these properties.

When differential topology is available, the fundamental Frobenius Thorem
says that if ≈ is an involutive distribution on M , then every x ∈M is con-
tained in a unique leaf. (The leaves then form a foliation of M .)

Question: if “connected” is taken in the purely graph theoretic sense, is
the conclusion of the Frobenius Theorem hold ?
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We are now ready to make some mathematical arguments of purely com-
binatorial nature.

Proposition 2 Assume ≈ is an involutive distribution on a manifold M ,
and that the conclusion of the Frobenius Theorem is valid (every x is con-
tained in a leaf). Assume that all strong monads M≈(x) are connected.
Then

1) every x is contained in a unique leaf Q(x), and the relation y ≡ x if
y ∈ Q(x) is an equivalence relation.

2) for any leaf F , and any x ∈ F

M≈(x) = M(x) ∩ F.

Proof. The first assertion is a simple exercise using the assumed maximality
of leaves. (In the second assertion, therefore, F isQ(x).) To prove the second
assertion: we have M≈(x) ⊆ M(x), since ≈ refines ∼. Also M≈(x) ⊆
F , since M≈(x) is integral (by involutivity of ≈, cf. Proposition 1) and
connected, and because F is maximal with these properties. This proves
the inclusion ⊆. Conversely, let y ∈M(x) ∩ F . Then y ∼ x and y ∈ F , and
by integrality of F , we conclude y ≈ x, i.e. y ∈M≈(x).

This proves the Proposition. The second part may be seen asserting that
the M≈(x) have precisely the right size. As “small lines” in the case of a
slope field, they are contained in the integral curves, which in turn is made
up of these.

Where do distributions come from, analytically? This can also be mod-
elled in a purely combinatorial way by the notion of combinatorial differ-
ential 1-form which we shall now expound. We consider a manifold M,∼,
and the number line R. A differential 1-form ω on M is a law which to any
pair of neighbour points x ∼ y in M associates a number, subject to the
normalization condition ω(x, x) = 0. It can be proved on basis of the KL
axiomatics, that this implies ω(y, x) = −ω(x, y). (Outside the SDG context,
this equation should probably be assumed.)

Note that there is no linearity assumption; in the context of SDG, such
ω extends uniquely to a fibrewise linear T (M) → R. This is essentially
because a map ω : D(n) → R which satisfies the normalization condition
ω(0) = 0, by KL extends uniquely to a linear map Rn → R. So in this
context, the combinatorial 1-forms are in bijective correspondence with the
classical 1-forms

One says that the 1-form is closed if for all 3-tuple of mutual neighbours
x, y, z in M , we have

ω(x, y) + ω(y, z) + ω(z, x) = 0. (1)

A combinatorial 1-form ω on M gives rise to a distribution ≈,

x ≈ y iff ω(x, y) = 0.
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Clearly, if ω is closed, the corresponding distribution is involutive; for,
if (1) holds, and two of the three terms on the left of (1) are 0, then so
is the third. A 1-form may give rise to an involutive distribution without
being closed; for, if f : M → R is a function with invertible values, we
have another 1-form ω′ given by ω′(x, y) := f(x) ·ω(x, y), defining the same
distribution as ω, but ω′ will in general not be closed.

There is also a notion of combinatorial k-form for k ≥ 2. We shall need it
for k = 2: a combinatorial 2-form on (M,∼) is a law θ which to any 3-tuple
x, y, z of mutual neighbours in M associates a number θ(x, y, z) ∈ R, subject
to the normalization condition that the value is 0 if two of the three points
are equal, (e.g. θ(x, y, x) = 0). In the context of SDG, it can be proved that
such θ is alternating in the sense that the value changes sign when two of
the input entries x, y, z are interchanged.

Any 1-form ω gives rise to a 2-form dω (“coboundary” or “exterior deriva-
tive”), defined by the left hand side of (1); so a 1-form is closed iff dω is the
zero 2-form. Alternatively

dω(x, y, z) = ω(x, y)− ω(x, z) + ω(y, z);

this formula is identical to the coboundary formula for cochains in simplicial
algebraic topology.

If ω and α are two 1-forms, we may form a 2-form ω ∧ α by the formula

(ω ∧ α)(x, y, z) = ω(x, y) · α(y, z); (2)

again it is a “vanishing to the second order”-argument that this is indeed a
2-form. Note that this formula is identical to the formula for cup products
of cochains in simplicial algebraic topology.

Proposition 3 A sufficient condition for a distribution defined by a 1-form
ω to be involutive is that dω = ω ∧ α for some 1-form α.

Proof. Let x, y, z be mutual neighbours in M , and assume x ≈ y and x ≈ z.
Then

ω(y, z) = dω(x, y, z)± ω(x, y)± ω(x, z)

by the formula for coboundary. The two last terms vanish, since x ≈ y and
x ≈ z. So we are left with

dω(x, y, z) = (ω ∧ α)(x, y, z) = ω(x, y) · α(y, z) = 0,

since x ≈ y. So ω(y, z) = 0, i.e. y ≈ z), and this proves the Proposition.

In the context of classical differential geometry, involutivity of a (codi-
mension 1) distribution is usually defined either in terms of a 1-form that
represents it, or by an (n − 1)-tuple of vector fields subordinate to it. In
essence, the differential-form formulation is the sufficient condition in the
Propsition above.
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I would like to comment explicitly on a question raised during the pre-
sentation of my talk on June 7, namely why it is that the formula for wedge
product of forms given here does not involve the standard alternating sum
needed to to guarantee the alternating property. The point is the first order
neighbour relation ∼ on Rn contains a little piece of nice “algebraic magic”,
which I shall illustrate in dimension 2. Consider namely a 3-tuple of mutual
neighbours in R2, and for simplicity, let one of them be the zero vector. The
other two points then make up the columns of a 2 × 2-matrix [xij ]. Since
the first column is in D(2) (being neighbour of 0) xi1 · xj1 = 0 for all i, j,
and similarly for the second column. But now the two columns are also
neighbours of each other, and this implies

(x11 − x12) · (x21 − x22) = 0.

Multiplying out, we get four terms, two of which vanish (those products
where the second indices agree), and we are left with

−x11 · x22 − x12 · x21

which therefore is 0. Equivalently,

−x12 · x21 = x11 · x22,

but this means that the two terms in the determinant of the matrix are
equal, so that the determinant of the matrix (except for a factor 2!) equals
x11 · x22; no alternating sum needed ! More generally, if one has an n-tuple
of vectors in Rn, which are neighbours of 0, and are mutual neighbours, then
the determinant of the n×n-matrix formed by these vectors is n! times the
product of the diagonal entries (in more detail, all the terms in the sum of
n! terms that form the determinant, agree with this product).

There is a quite extensive literature on varius aspects of SDG; including in some
of my papers. They can be downloaded from my home page,
http://home.imf.au.dk/kock/ .

There is an exposition of many geometric notions deriving from the neighbour-
hoods of the diagonal, and an extensive biblography, in my recent book

Anders Kock, Synthetic Geometry of Manifolds, Cambridge Tracts in Mathematics
180, Cambridge University Press 2010.
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