
Journal of Pure and Applied Algebra 12 (1978) 1!71-293. 
@ North-Holland Publishing Company 

YL ES ~ALCWLUJS FOR 
LINE TYPE 

Anders KOCK 

Matematisk Institut, Aarhus Universitet, Denmark 

Received 10 August 1977 
Communicated by William Lawvere 

We attempt here to present a foundation oft a kind of Differential Algebra, where 
the differentiation process is not an added structure, but something which stems 
from a property of the ring obji=ct considered. “Ring objects of this kind (‘kings of 
line type”) are not present in the category of sets, but occur in some of the topdses 
of algebraic geometry, as well as in the categoryrof formal schemes. 

There are two basic ideas. The first is an idea of Lawvere from 1967 that there 
should be an object D of infinitesimals such that the “function space object” MD is 
the tangent bundle of M (for any, or for many, M). B must be a certain subobject 
of the ring object A in question. The second idea is t&at theetangent bundle A” of 
A itself in a canonical way should be isomorphic to a x A. ,There will in fact be a 
canonical map cu : A X A + AD, and invertibihty of this LY is the only property of A 
we need to make a fair amount of differential calculus work. 

The paper is a sequel to [l], in which models for the6 axiom were presented, and 
Leibniz- and chain-rule proved for differentiation :o’ functions -A + A (L‘in one 
variable”). We shall need these rules lhere @so, buj apart from that, we *do not 
presuppose [ 11. 

The consideration of the Dk’s in Section 2, wh,&h is crucial to the proof of 
Taylor’s Theorem, was suggested to.me by Gavin WF aith, who also gave the correct 
version of the role of the Jacobians, and its proof. Aldo, he considered several years 
ago the object D in the category of formal schemes, and showed how much 
differential calculus stems from it, [5](. I want to thank him for many fruitful 
discussions on the present subject. 

The plan of the paper is as follows. First we give the several-variable first order 
calculus. Because of the simplicity of the axiomatics, it apilies not only to the 
category 5%’ in question, but @so to eajzh g/N; this allows us to interpret partial 
differentiation in 8 as a special_ _case of differentiation, n&ely differentiation in 
8/N (for suitable N); see Section 4. 

Then we use the Dk’s and a characteristic-zero assumption, to relate 
category with their Taylor series. The outcome of this is that certain 
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category in question can be identified with formal power series; these maps are 
precisely those that are interesting from a local-geometric point of view. In this 
sense, our theory leads back to classical power-series algebra (inverse function 
theorem etc.): this is summed up in Theorem 5.3. 

Finally, a word about a notation method. Commutativity of a diagram like, say, 

cxc 

(fl,f2? /‘I + 
AxB + c W) 

is expressed by saying 

fda)+fdd = da, b) VaeA,bcB. (0.2) 

The reader may translate such an equation back into a diagram, or alternatively, 
interpret a and b as “elements” of A and B, respectively, in the sense: a and b are 
maps X +A and X + B, where X is an unspecified object of the category. 
Similarly, we use such equations as descriptions of constructions of maps; e.g. (0.2) 
may be used as a definition of the map g in (0.1) in terms of the maps fi, f2 and +. 

1. Jacobians and differentials 

Let 8 be a category with finite inverse limits, and A a commutative ring object in 
2% We let, as in [ 11, D denote the equalizer of the two maps A + A given by 
“squaring” and “constant 0”. (So a :X -+ A factors through D if and only if a 2 = 0 
in the ring hom(X, A)). 

We assume that the ex Jonential object AD exists, and we consider the map 
a:AxA-AD whose e> ponential adjoint &:A X A X D ---, A is given by the 
description 

G(ao, aI, d)=ao+(al l d). 

As in [ 11, we say that A is of line type if cy is invertible; in the sequel, we assume 
that this is the case, 

Let M be an A-module object. We say that M is Euclidean if the map 

aM:MxM+MD 

whose exponential adjoint 

c&:MxMxp)+M 

has the description 
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is invertible; by assumption, A, and thus also A” = A X l 0 l X A (n times), is 
Euclidean. (There do exist examples of A-module $objects which are not E$ucli- 
dean.) For a Euclidean object M, we denote by y or ye the map 

(where projl is projection onto the second factor, *-projection to the first factor is, 
denoted projo). 

We can equip A x A with a “ring-of-dual-numbers” ring structure: addition is 
coordinatewise, and multiplication 

(AxA)x(AxA)+AxA 

is given by 

((a0, al), (a& 4)) H (a0 l a& ao. a’l +a1 0 ab). 

Likewise, the A-module A4 x kf can be given a module structure over this ring 
A X A, namely with multiplication * 

ho, ad, b0,md) 13 (a0 l mo, a0 l ml-t a1 . mo). 

We denote A XA and M x.M by A[E] and M[ei, respectively when we want 
to emphasize these -structures. Also, since the (partially defined) functor ( fD 
preserves products, AD inherits a ring structure from A, and MD inherits an 
AD-module structure; these structures may be called the diagonally induced 
structures. With the structures thus described, we have: 

Proposition 1.1. The map a : A x A + A” is a ring isomorphism ; the mclp 

(a, aM): (A x A, M x M)+ (AD, MD) 

is a ring-module homomorphism (and thus an isomorpki sm in case M is Euclidean). 

Proof. The first statement is proved in [I]; the proof OQ/ the second is similar. 

We have clearly that 0: ll 3 A factors throlugh D. T”llle map I --) 64 thus resulting 
gives, for any object N for which ND exists, rise to a map 

ND - N’=N, (1.1) 

“the tangent bundle of N” (as in Lawvere [3], or Wraith [6]). A cross section 
X: N + ND of p will be called a tangent vector fieid of N. 

Suppose X is a tangent vector field and that f: N + M is any map into a 
Euclidean object M, Then by the deriuatiue of f along X we understand the 
composite 
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denoted Dxf. (Again we utilize the (partial) functorality of ( )“). Now the set 
hom(N, M) carries a canonical structure of hom(N, A)-module. 

Proposition 1.2. The pair of maps 

Dx: hom(N, M) + hom(N, M); Dx: hom(N, A) -+ hom(N, A) 

is a ring-module derivation, i.e., it is additive, and 

Dxb l f)=DN l f+vDxf 

for f: N + M and (p : N + A. Further, Dxf = 0 if f is constant (i.e. factors through 0). 

Proof. We first note that if M is an A-module object for which MD exists, then we 
have a commutative triangle 

Proj0 IJ P (1 a 
M 

where p: MD + M is as in (1.1). (Compare Proposition 4 of [ 11). Also, the A[&] 
and M[E] structures on A X A and M X M, respectively, clearly makes the pair 
projl : M X M + M, projl: A X A + A into a ring-module derivation with respect 
to the pair projo: M x M 3 M, projo: A x A --+ A. From Proposition 1.1 and (1.2) 
we ‘hen deduce that yM:MD + M, y:AD -+ A is a ring-module derivation with 
respect to p:MD *M, p:AD -+A. But if X is a tangent vector field, X: N -+ ND, 
as above, and f: N + M, then 

pofDoX=f, 

as is easily seen. The first Dart of the proposition then easily follows from the fact 
that (f + g)D = f D + gD and (cp l f )” = cpD l f D for the diagonally induced structures 
on MD and AD. The second part is proved by comparing the two relevant maps 
into M” by by passage to exponential adjoints. 

In case where N = M = A, and where X is the canonical vector field * : A - AD 
(given as exponential adjoint of + : A X D -+ A), Dxf is just the f’ as considered in 

VI - . 
If U is any object and X: U + UD a vector field, then we can use (1.2) to get an 

alternative description of Dxf for an f: U -+ A4 into a Euclidean M; namely we 
have the existence of a commutative square 

u (f,pxf), MxfM 

X 1 I aM 0.3) 

UD - M D 

f” 

(PrOOf. Replace aM by CY -’ M and look at the two projections M X M -+ M). 
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There is another kind of “differentiation’ which haa good functoria1 properties: 
formation of differentials, df. To define this generally enough, we in Ytroduce the 
n.otion of sub-euclidean object (which will-serve as a substitute for tile notion of 
“open subset of _E.uclidean7spaeel_‘):,L;et.N. be..a~~~~i~~,~~~~~~e~~, and JGU++ -NT -a- _ ,.. _ , .k: 

subobject. .We say that ‘it is sub&#dean ’ provided ‘U?‘$&s,A ~p?~:itllerr~~;exists., a . j 
map cyu (necessarily unique) filtjng, but the diagram r 1 

_ j 4 
. _. I”. _ 1 

UxN ___!EL-_* uD 

UxNl f+ ’ - . (1.4) 

NxN 7 ND 

in a commutative way (dotted arrow 4;). 
, ’ 

. 
Now let U )-) N be subeuclidean, and. f : 0 + M’any map into a Euclidean M. 

By the differential df of f we understand ‘the composite 

When using elementwise notation, we-shall ‘write df* (b) rather than df (a, 9). . 
* The differential can be described alternatively, using (1.2): it sits in a com- 

mutative square (which should be compared to (1.3)): 
UxN (f oprojdf~ MxM 

au I , 1 a# (1.5) 

uD 
fD 

9 MD 

(Proof: Replace cy~ by cy 2 and look at the two projectiofers M x M -+ 44); 
INOW ( )D is a functor on the full subcategory of those objects .X for which XD 

exists. These good functorial properties are then re’l ‘ected via (1.5) into good 
functorial properties of the differential-formation: h 

Suppose we have; the situation : n 

with U and V subeuclidean in N and A& and L Euclidean, and suppose that f 
factors through V, f : U 3 V. Then we have 

Proposition 1.3. (Chain rule) We have 

(Properly speiaking, this expresses commutativity of ‘a certain diagram U x N --: L, 
by the convention explained in the introduction). 
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Proof. This is a straightforward diagram chase, using (g 0 j>” = gD ofD and (1.5). 

The existence of the map cyu : U X N -+ UD (as in (1.4)) for a subeuclidean 
object u : U ++ N implies, by passing to exponential adjoints, the existence of a 
map dr*u making 

UxNxD’ I I u 
PTxNxD - N 

SN 

commute, which we may express by saying “for all b EN, a E U, a + d l b E U 
provided d* = 0” (thinking of d as an infinitesimal, d l b is an infinitesimal vector, 
so subeuclidean objects have the property that they are stable under addition of 
infinitesimal vectors of this kind). 

In order to proceed further, we have to describe differentials by means of Jacobi 
matrices. This cannot be done for arbitrary Euclidean objects, but it can be done 
for the A” and their subeuclidean objects (L‘coordinate neighbourhoods”). 

Let u : U * A” be a subeuclidean object of coordinate n-space. We have n 
distinguished tangent vector fields on U 

-&LID, i=l,-•,n, 
i 

a/&i being the exponential adjoint of the map U x D -+ U with description 

or alternatively 

a + d 9 ei, 

ei denoting the i’th canonical basis vector I --) A” ; a + d l ei is in U by the above 
mentioned stability property of subeuclidean objects. 

For f : U ---, M a map from a coordinate neighbourhood in A” into a Euclidean 
object M, we denote by dflaxi or Dif the derivative of f along the tangent vector 
field ajaxi. 

For X = a/&, we now take the commutative diagram (1.3) and pass to exponen- 
tial adjoints; this yields the diagram 

a 

( )I ix; 1 &.f 
_ 
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whose commutativity is expressed by the equation 

f(a+d l ei)=f(a)+d -$(a) 
i 
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(1.6) 

(for a E U G A”, b E A”, d E D). (This of course is a generalization of the “First 
Taylor Lemma”, Proposition 6 of [l] to the many variable case; we shall later see 
that it can also be viewed as a special case of the f-variable First Taylor Lemma, 
namely by passing to %/An-l). 

Using (1.6), we can now prove the following fundamental Jacobi-description of 
differentials. We let U-A” be a coordinate neighbourhood and f: U --, M a map 
into a Euclidean object. For convenience, scalars are multiplied on the right of M. 

Propwition 1.4, Z?ae differential off 

df:UxA”+M 

has description 

where b = (bl, . . . , b,,). 

Proof. Again using (1.2), it suffices to prove commuta:ivity of the diagram 

UxA” ’ - MXM 

where p has description 

(a, 6) c-) (f(a), Z$e,; bi). 
i 

This is done by passing to exponential adjoints, SO we shoul& prove that the 
following diagram is commutative 

UxA”xD _fxs, MxMxD 

which in elementwise terms says 
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To prove this equation, we write b = C@j and use (1.6) repeatedly on the left hand 
side of (1.7), not only for f but also for the afldq. Whenever a term contains two 
factors d, it vanishes, since d* = 0, whence in the final result no iterated partial 
derivatives 

occur, and we end up with the right hand side of (1.7). This proves the proposition. 

2. he-variable Taylor Series 

To have some Taylor Theorems work in the present setting, we need to 
strengthen slightly the assumptions on the surrounding category 8, and to make the 
(strong) as&mption that t e ring object A considered is in fact an algebra over the 
rationals; so for any natural number p # 0, we have a map 

1 
-:A+A, 
P 

with the expected properties. 
To state the assumptions of categorical nature, we let for each natural number k 

Dk *A denote the equalizer of the two maps A + A given by the descriptions 
a I+ uk+’ and a H 0, respectively. We shall assume that for each n the object ADk 
exists and that the map 

ak:Ax-•xA-- ADk 
k + 1 copies 

whose exponential adjoint & has description 

k 

~~a0, . . . , ak), d) + c aj * d’, 
j-0 

is invertible. So we say that A is a ring object of line type in the extended sense. 
Also, if M is an 14-module object such that MDL exists for each k = 1,2, . . . , we 

say that M is Euclidean-in-the-extended sense if the maps 

akJ..j:Mx* * l X&f---+MD” % w , 

k + lcopies 

whose exponential adjoint have description 

k 

ho, l ’ - , ink), d) w c d’ l mj 
j=O 

are invertible. 



Finally, ic’: ‘WL M is called subeuelidean in the extended sense if a&,M induces a 

map 1 * 

t&!k,U:UXMX*- l xM-+UDk. Y 
k copies 

I_ _ _c,;J :;“ _; _ 1 1 ,.y “‘ / ̂  _ :, *y, L 

clearly & G D&+1; the restri&iork map-tiDk+l -+ MD& then-makes thesquare 
1 . I e 

M&+2 Pr40,,...k Mk+l 

ak+l 

I 1 

r. I 

a& 
’ ~9 (2.13 

MD&+’ I ,) ,M:gt_ , ._ _ , . _._ i- +_ .I . - _ 

commutative. This generalizes (1.2). from k-:= 0 to arbitrary. k, since D1= D and 
Do=(O=+A). 

We evidently have maps 

.&XL&+& ~ ) ‘. (2.2) 

and 
’ * 

restrictions of multiplication A X1 4 -+ A and addition A x A + A, respectively. 
(To see (2.3), note that if dp+l = 0 and e*“‘= 0 then 

(d + e)p+q+’ = 

summed over r, s with r + s = p + q + 1. But then each term in the sum contains 
either d in a power z p + 1 or e in a polwer zz q + 1 and tLys vanishes). Similarly, or 
by iteration of (2.3), we have maps I 

_‘ 

D,x*** XD1 -d& 

-x-- 

? - ’ ” ._,-. : .; . _, a : (2.4) 

given by the description ” _ 
. 

Out of ty = QY~, we can manufacture a map CT which is an isomorphism since al is: 

A 2k %A D,x--xD, 
(2.9 

(k copies of DI in the exponent), given as the exponential adjoint of the map ri with 
description 

,& .:..~;L. :..’ ({aH);;;ik;‘;,_&;‘; I’,” ; -&)iii”-& ‘-_ L n die 

/ H hEH 

(Not’e that we identify elements of’2k .Mthsubsets of [k] = {1,2, . * . , k)), For k = 1, 
the c is just q. 
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Let M be a Euclidean object (in the o-tended sense). We shall describe in 
elementwise terms the unique map i w!Gch will make the following diagram 
commutative: 

Proposition 2.1. The map ? : Mk+’ * M2* given by the description 

(m0 ,...,?&)-{HHj!gmj} 

(where j is the number IHI of elements in H G [k]) makes (2.6) commutative. 
(Again, an element in M2’ is described by assigning to each element H of 2& i.e. 

to each subset H of [k], an element of M.) 

Proof. We pass to exponential adjoints with (2.6). The counterclockwise composite 
then yields (denoting Dl x l l l x D1 by 9) 

Wg”(kf+x%+‘(a~x~) 

=evDkO(MDkx +)“(a; a:‘:) 

= evD, o((yk)(Dk)“(&fkr’x+) 

= && 0 (Mk+’ X +). 

The clockwise composite yields 

evs +XiB)o(i X9)=&0(? X9). 

S!o it suffices to prove commutative the diagram 

Mk+‘xDlx- l -xl”1 ‘*’ l Mz*x&x- l ‘xD1 

(2.7) 

M ‘+‘XDk 
61, 

b M, 

which we do elementwise: Consider an element 

ho,. . -9 m&(9 A,. . .p &? 

of the domain (so df = . . . - - di = 0). Taking it counterclockwise yields 

(2.8) 
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. j 

since, when multiplying out- (di + . . . i- dk)i ‘all.ternisCth a repeated factor vanish, 
whence a term can be identified with a subs& H OS! [k] with j elements, Going 
clockwise with the element (2.8) yieldis, by definition of i 

M%+m --g MDnXDm 

commutative is given by 

(the right hand vertical map in (2.10) being again an isomorphism derived from all 
and am). 

Let U>-,A be subeuclidean. Then, as observed in S&ion 1, U is stable under 
addition of elements of D (in fact, since U is assumed to be subeuciidean in the 
extended sense; U is stable tinder addition of elements of any Dk). Thus, by 
iteration, we also have addition maps 

Let f : U + A& with M Euclidean. We +an then use . ?.rst Taylor Lemma (1.6), / . 
conclude equality of the two maps ’ a’ ’ ’ I I 1 

,” I 

to 

whose descriptions are the two sides in 

f(a+dl+m 9 +dk)= C f”‘(a) - II A, (4 = iH\), (2.1 ll) 
$ficlkl hEH - 

(where fO’= (f o-1’)‘, and where prime dewtes derivation alqng ? : (U --+ UD or, 
equivalently, g’ 5 &g/$x& “$0, p&k’(2’~i f):~~~~~ii~,~we.proceed by induction: 

f(a+-d+. . l +dk)=f’((a fdl+* * l +d/&+dk) 

= f(n + i&b + -;dk_& f ‘(al +& * l + t&-l) ’ t.& 
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(using (1.6)), and by induction hypothesis on each of the two terms, we get (j 
denoting number of elements in H) 

= C f"'(a)* n dh 
Hr[k-11 hcH 

(2.12) 

+ 1 f (i+l’(a) l n & l dk. 
Hc[k-11 heH 

This equals the right hand side of (2.11); for a set H c [k] either does not contain k, 
and the term corresponding to such H occurs (exactly once) in the first sum in 
(2.12); or it does contain k, in which case the term corresponding to H occurs (with 
index H’ = H\(k)) in the second sum in (2.12) (exactly once). 

Recall the assumptions of this paragraph: A is a ring object of line type in the 
extended sense, i.e. ADk s Ak+’ via c&, and A is an algebra over the rationah. 
Under these assumptions, we have 

Theorem 2.2. (Taylor). Let U-A be subeuclidean, and let f : U ---) M be any map 
into a Euclidean object. Then the two maps 

whose descriptions are the two sides in (2.13), agree : 

f(a +d)= i ldi l f”‘(a). 
j=0 j! 

(2.13) 

Proof. Take the exponen :ial adjoint of the two maps in question; this is a diagram 

to prove it commutative, it suffices to prove 

u 3 j@ M+, @‘,x--‘-1 (2.14) 

commutative (k copies of Dl), because it is evident from the algebra-over-the- 
rationals assumption and Pr9position 2.1 that 

is manic. To prove (2.14) commutative, we go to exponential adjoints once more, 
and obtain the diagram 

UxD+-xDl~~+UxDk =3M (2.15) 

obtained from U X Dk =Is M by multiplying U X + on the left. Now we prove (2- 15) 
commutative by means of elements. We must prove the equality (for d: = l * l = 

d; = 0): 

f(u +dl+- 
k a 

l •+d~)=,~o~(dl+.. *+dk)ifO”(a). 
.E . 

(2.16) 
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Essentially, we have done the work alreadp‘in formula (2.11). We just have to see 
that the right hand sides of (2.11) and (2.16) iqree. In the j’th term of the right 
hand side of (2.16) the term 

3 , 

;dh+.. 

#_.. ” “ i 

, dh, . fqa) ‘* . y ” : , 

. ,I 
. 

(for hl< hZ< l * l < hi) occurs I! times and the sum’of these j! terms correspond 
exactly to the H summand-fO”(a) l l&,,&~ -where I% _kr, ; i l , hj), Terms with a 
repeated factor $i vanish because d: = 0 by assumption; Thei theorem is proved, 

3. Several variables-global sections case; 

A’global section of an object M in a category ‘8 is a map b: II -+ M. For any X in 
g, b will also denote the composite X --, II -& M Arbitrary maps X -+ M may be 
reinterpreted as global sections in I&X. Now our axioms are stable under passage 
from 8 to Fg/X in a sense that will be explained in ‘Section 4. Therefore the results 
of the present section, which deal with global sections, are&not so special as it may 
seem. ’ 

With the assumptions of Section 2 on the category 8’ and the ring object of line 
type A, we consider a Euclidean object N and a subeuclidean U- N. Then any 
global section b: 1 --+ N gives rise to a tangent vector field b. on Ur 

b.: U ---, UD 

is given as exponential adjoint of the map U X D ---) U I- ith description 

(a,d) ++ a+d 9 b; 

b. is a “constant vector field”, With such N, b and U 1 VG. have 

Proposition 3.1. Let M be Euclidemt and f: U + Ma i.utap, Then 

dfo (b) = &f(a) Va E U. 

Proof. The map with description (Y I+ df=(b) is by definition of differentials the 
composite 

U~UXI Ux6*UxN~UD fD.MD y *M. 

However, it is easily seen that the cotiposite of the three, first maps here is just the I 
vector field b., whence the proposi.ti& Note that if B = 1 CA, then Dbf = f’. 

osition 3.2. Jff: N --+ .$ kf is an A -linear map bettveen Euclidean objects, 
NxN+Misjustfoprojl. 

. 
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Proof, By the characterizing property (1.5) of & it suffices to prove 

NxN fxf, M’xM 

ND ----i?M 
D 

f 

commutative. But when taking the exponential adjoint. diagram, commutativity is 
immediate from the A-linearity of fi 

Now Pet N be a Euclidean object and b a global section of N. We consider the 
linear map h : A -+ N given by the description t t+ t l b. Then we have for any s E A 

b=h(l)=dh,(l)=-Dl.h(s)=h’(s) 

by Proposition 3.2 and 3.1, so h’ is constant b. More generally, let o and b be two 
global sections of N, and consider the map h : A y N with description 

Since (Prclposition 1.2) the derivative of a constant is 0, and derivation is additive, 
we conclude that h’ is constant 6, or alternatively (using Proposition 3.1 again) that 

dh,(t)= t l &,(l)= t l DI.h(s)= t l b vs. (3.1) 

Assume now further that U--N = A” is subeuclidean and that a: 1 * N factors 
through U. Let f: U -+ M be ti map into an Euclidean M. We shall further assume 
that there exists a subeuclidean W-A containing 0 so that h maps W into U (the 
D*= U Dk considered later will serve for W). Let g denote the composite 

Wh-U f cu. 

Applying the one-variable Taylor Theorem 2.2, we obtain, for d E Dk, 

f(a+d 9 b)=g(d)= i cg”‘(O). 
i=O j! 

We now compute the g”(O) in terms of f. We have g”‘(t) = g(t) =f(a + t 9 b). We 
prove by induction 

Vt: g”‘(t) = i * * l i Dii . l 

il= 1 ii = 1 
l Di, f (a + tb) * bi, l l l bi, 

(where b, is r’th coordinate of b). Assume that this formula holds; we then prove 
the similar for!nula for gUf” (t). Since differentiation is a derivation, and the 
derivative of a constant (like b,) is zero, we can differentiate g”’ termwise, whence 
(by changing notation, denoting Di, l . . . l Dif by f), we only have to prove 

g’(tj= i Dif(Q+t * b)*bi 
i = 1 

(3.2) 
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(with g, j, CI and b as above). Now, using Proposition 3.1, 

g’(t). = &.g(t) = dg,(l) 

285 

=: d(f O h)r(l) ,I- . 
= dfh&&,(l)) (by chain rule) > 

= df=+t.s (b) (by (3.1)) - 

which equals the right hand side of (3.2) by. Proposition 1.4, We have thus proved: 
, 

Theorem 3.3. Let U 2-+A” be subeuk&&, f: rr ~G’$_yi &$ ink h Euclidean 
object, and a and b global sections of ‘Li alrd A’, respeeti&iy. hei, for d E Dk we 
have 

. 

f(a+d l b)= f c i 
j=() i! il=l 

*a* f D,***Di,f(a)*&i,~...obi,. 
ii-1 

(3.3 

This expression can be somewhat simplified because we can prove inter- 
changeability of two partial differentiation processes. 

In view’of a later use, we shall here remark that if f: U --) 1M is a map from a 
subeuclidean U c A k into a Euclidean U, and a : ‘It- 0 is a global section, then we 
can define DJ (a), which is a global section 1 --) M ;’ but this global section could 
have been defined even if f had only been defined on the subobject a + Dl l .ei of U. 
For, as above, Dif(a) is the derivative at 0 of a certain map g: W --, M, and (for any 
g: W -+ M) g’(0) can be defined just knowing g on D1, namely as 

where the first map is the exponential adjoint of the idei+ltity map. More generally, 
if g: D, + M, the p’th derivative of g can be defined (as a map Dr--p --+ M 

Thus, all the iterated partial derivatives in (3.3) on1 J Depend on having tefined 
on 

@+(&X***XDk). 
b Y / 

n 

4. Several variable Taylor Theorems 

On basis of (3.3), it is a matter of pure category theory to prove the following 
Taylor Theorem (a different one appears as Theorem 4.3): 

Theorem 4.1. Let U-A” be subeuclidean, and f: U +M a map into a Euclidean 
object. Then the two maps 

UxA”xDk-+M 

whose descriptions are the two sides of (3.3) agree. 
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Proof. Let a: X + U, b: X-A”, d: X + Dk be elements with co,nmon domain. 
It suffices to prove (3.3) for these elements. Let us denote the functor 8 + g/X 
given by 

X 

by ( )x. It commutes with inverse limits and preserves those exponentials that 
exist. Therefore if A is a ring object of line type in %, then Ax is a ring object of line 
type in 8/X. Also, ( )x preserves differentiation and derivation. Now a: X + U 
gives rise to 

x (a, W, u xx 

that is, to a global section a’: 0~ ---, Ux. Similarly for b and d. By (3.3) applied in 
$/‘X we conclude equality of the two global sections of 1Mx (in g/X) which are 
denoted by the two sides of (3.3) with a * placed on each of the letters a, b, d in 
there. So we have equality of two maps llx ---) M;r. Applying the obvious forgetful 
functa;r 8/X + 8’ we get equality of two maps X + A4 XX in %, and taking 
projection onto first factor, we conclude the equality of two maps X +M, as 
desired. But are the two maps the desired maps? Yes, because ( )X preserves 
differentiation and the ring operations, meaning for instance equality of 

and 

X 
uxx (a+hW, Dfx id 

h nmx 

but applying the forgetful functor 8/X - %? to the latter, and then composing with 
proj: M X X --+ M precisely yields Dif (a + b). 

Corollary 4.2, Let i be a fixed index between 1 and n, Then the two maps 
U x Dk --j M with descriptions 

f(a+d.ei)= i <Dy’f(a), (dcDk) 
j=O j! 

agree. 



Proof. Put b =ei in (3.3). 
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The technique employed in tht, proof of Theorem 4.1 also ~UOWS us to view 
partial differentiation as a special case of ordinary l-variable differentiation. We 
confine ourselv,estq sket$ttis_in a special case, Suppose ‘given a map in 8 . x , . ..’ _” 4” ;,\_ ;. 7-2 . , , 

AxN-ki!kf 
‘ +_ ‘i . ) _‘ /_1 Q . / ’ 1 .-1 ‘r’_/ (I s./ *, ,>‘ &. .+ - .d ” _ , *i.(ci,z I_ 

with M a Euclidean obje& The partial ‘&&at& “of f &ng the,.i~~~st:~~o;J~~~tk~~ 

‘* _ 

A is by &finitim the derivative of If in the direction &h&angent’ve&r field 21: 
A x N --3 (A x NP given as exponential zidjoint’of the,map~ , _ _ , 

AxNxD+AxN 6 _- 

with description 

(a, n, d) r--, (a +d, n). 

(This is consistent with our earlier description of partial derivation, af/a~i or 04). 
However, out of f we can manufacture a map f in 8/N, namely 

c’s,: 

. AN =AxN (hh,) MxN=4& 

p\ 2 

.N 

We thus have a map f: AN -+ MN in %‘/N with domairi a ring object of line type 
and with Euclideancodomain, It can be differentiated to yield 

ZA I. . N-+MN, 

and reinterpreting this map as a map A x N * M’ x N arId composing with projM: 
M X N --, M yields Dxlfs 

There are some <“neighbourhoods” of 0 EAT whicfq we want to consider: let 
D (,rn)k denote the .extension I 

w 1, . . . , &)I any product of k + 1 copies of t_le d{s his 01. 

(Formally, this is an intersection of mk+’ subobjecto of A”‘. In the ease lm = 2, 
k = 1, it is the intersection of D1 x A, A xD1, and of the following subobject of 
A x A (counted twice): 

(which just is notation for the equalizer of the multiplication map &cJ, X A --, A end 
the constant-0map AxA +A). , . . ’ L . ; j 

I ’ Clearly ’ _ 3 . _ .1 f 

., 

D(pn)k SD: .b,. ” 1 
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but also 

Df r D(m)h (4.2) 

for h sufficiently large (h = m - k will do). 
We can now prove a Taylor Theorem related to Theorems 4.1 and 3.3. 

Theorem 4.3. Let f: U --) M where U is a subeuclidean object of A”, and M is any 

Euclidean objxt. Then the two maps 

UxD(n)k-+M 

with descriptions 

WV-f(a+W 

and 

kl” n 

(a,b)- 17 C *a* 1 Di,~**Diif(a)*bil*...*bi, 
i=OJ! i:=l if= 1 

Proof. This is straightforward using induction in n and Corollary 4.2. More 
precisely, let the induction hypothesis be that the theorem holds for 6 of form 

(bl, . . . , b,, 0, . . . ) 0). 

We omit details. 

5. Power series 

In this section we add a weak assumption of purely categorical nature. It says that 
the increasing sequence of subobjects of A 

D1cDzc...cA 

should have a colimit D, which again is a subobject of A ; this (filtering) colimit 
should further commute with finite inverse limits. This condition is satisfied in the 
ring classifier topos, because it is a topos, and in the category of formal schemes, 
because it is a locally finitely presented category, Also 0% should exist for any k 
(this is again so in the two specifically mentioned categories; for they are Cartesian 
closed). 

We are then in a position to prove that DOD is a subeuclidean object (in the 
extended sense; -we assume throughout that A is a ring object of line type 
in the extended sense of Section 2). For each k? we have to prove existence of a 



/ 
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factorization 
<j 

D,xAk ----_-__3 D3 

D,XAk XDk =(l~Di)xAkxDk=~~(~jXAL.XDlr) 
i 

(by the limit-colimit commutation assumption), so that it suffices to prove that the 
right hand side of (5.1) is in Da0 provided t is in D,,. To prove this is again an 
exercise with binomial coefficients. So 

Proposition 5.1. The subobject D,>-rA is subeuclidecrn (in the extended sense). 

Borrowing a term, and some of the spirit, from non sta:ndard analysis, one would 
call D, the monad around 0 in A (“the set of infinitesimally small elements”). It is 
in fact the smallest subeuclidean object containing I, Do we have a similar 
“monad” i! A” for m 2 2? , _ 

Proposition 5.2. The product of m copies of & is sub+uclidean in -A”, and is the 
smallest subeuclidean object of A” containing 0. $lt equrr, is kmkD(rn)&* 

Proof. For simplicity of notation, we do the case m = 2. By limit-coIimit com- 
mutation 

D,xD,= l& (Dk XDk) 
k- 

and like in the proof of Proposition 5.1, it suffices to see that 
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is in D, xD, when 
(i = I, 2) of (5.2) is 

ti+bii l d’ 
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t E Dk xL)k, d ED,, and each bi E A2. The i’tk coordinate 

which agai.n is in some DI. The minimality property is left to the reader (it will play 
no role in the sequel). That it equals lim+D(m)k is immediate from (4.1) and (4.2). 

E the “local behaviour near 0” of a iunction means its behaviour on ohe monad 
around 0, then the following theorem expresses that the Taylor Series expansion of 
a function precisely contains the information of its local behaviour. 

Let ~2 denote the ring of global sections 0 4 A. It is an algebra over the rationals 
by the assumptions made. 

Aaeorem 5.3, There is a l-l correspondence between 

homg (Da, x l s l x&A) L and _ .&[XI,. . . ,X,,,l, 
* / 

m 

the ring of formal power series over & in m commuting variables. Eke correspondence 
is given by Taylor Series expansion, and is compatible with the ring-structure and 
substitution (to the extent the latter is defined-see Proposition 5.5). 

Proof. Given f: D” --j A ; we associate to it the “Taylor Series” 

m 9-z i=C,j! il=l 
. . . f ) 1 jl . . . 

i, = 1 
H), f (0) l Xi1 ’ . . . ’ Xij (5 3 

in the m commuting variables X1, . . . , Xm. Conversely, given a formal power series 
in &[Xl, . . . , X,,J, we may write it uniquely in the form 

m 

iI 
m * . . z: 

i=O il=l ij = 1 
tZi, .L.ij ’ xi, ’ l l l l Xii 

viith the ai,_..ij not depending on the ordering of the 
partial sum Cy=, in herL; is a polynomial of degree n 
hom(ll, A), so defines a map 

f,:Ax- .-A-A. 

m &pies 

It is clear that 

f-dD(mh: =fn+dJ(m)k 

indices il, . . . 9 i,. The n’th 
with coefficients from & = 
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for n 2 k. From this follows that the fm’s together describe a map 

29’1 

D: =l~(D(m)&A. 
k 

The two processeo~~desc~ibe$ art inverse of “eatih other. ,Let,us $tar-t with a ..map 
f: Dz + A, We fo& tht:~,~~~~~~~.~~~si;-~~~!:~~~~~air’~~~,~~~”~~~~~~~;~‘~~~~~~~~-~~~~_ m,q, 
fi Dg + A, as above. Since D$” =*~&[~(~);>,~#l& F& ~~~~$$&&&e&~~ l&rki f 
and f agree on D(m)k. But this fbl10ws~ from TagPors Tljebrep 4;3. 

Conversely, given a formal :series of’ the, for&(S& ;Wi c&tict a fun&ion f: 
02 + A as above and take its T+ylor Se.@? @v~“~have~bse~ed in. the end of 
Section 3, the j’th partial derivatives 0) i is% c&y-d&p&i &he restriction of f to 
Dp, and this restriction is -given by a polynomid.of degree h (for suitable large h, 
say 1 m 9 k), hmely the h’th partial su& of the &en +ries. B&ause partial 
differentiation is a derivation, it follows that a polynomial function equals its Taylor 

c’ 
series (which terminates). Thus the series for f equals the given series. 

(As a corollary of the proof here, we inf& that 

DilDizf = D$if; 

this fact can also be established directly for any map f: U + A4 with M Euclidean). 
It is evident that the process T (“taking Taylor series”) 

homg(D, X 9 l +D,,A)-,d[Xl,. . . ,X,,,j 

commutes with addition and multiplication by constangs I + A. To investigate its 
behaviour with respect to multipii;cation, we consider T-l instead; so let f and g be 
two formal series in XI, . . . 9 Xn and f. g their (Cauchy-) product. We shall prove 

T-“(f 0 g)= T-l(f) 8 T-l(g). 

The two sides here are Maps D,x . . . x D, + A. Tc ) prove their. equality, it 

suffices, by * 

&,x-exD m=li~D(m)a 
--g--J i 

to prove their restrictions to D(m)k equal. .But these rctitrictions are represented by 
polynomials of degree k (the k’th. partial sum of the series in question), and the 
product of two maps described by p@ynomials equals the. map described by the 
formal product of the polynomials (this is true in any category). 

This proves the theorem, except for the statement concerning substitution. TO 

make this statement precise, let 

hom+(Doo x 9 9 6 xDm,A)~~om(Dc+~ l xD,,A) 

denote the subset consisting of those inaps f fcr which f (0) = 0. Then T bf such an 
lies in &[X,, . . . , Xnlj, the set of formal series wit!,1 zero constant term. 
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Lemma 5.4, Let f (0) = 0. Then f factors through D, C_ A. 

Proof, Since the domain off is a direct limit KIJ~~ D(m)k, it suffices to prove that the 
restriciian of f to each D(m)k factors through D, s A. But this restriction is given 
by a polynomial, namely the k’th partial sum of the Taylor Series for f, and has 0 
constant term. So it is a sum of terms where each term contains at least one factor 
from Dk. Thus raised to a sufficiently high power, the sum vanishes. 

We can now consider two algebraic theories, 9+ and $0 where 

Y’(m, 1) = horn+@, X 9 9 l X D,, D,) 

rir- 

and where $0 is is the algebraic theory of formal power series without constant 
term over ~4 (as considered in [Z], say). Then Taylor-Series formation defines maps 

3”+(m,.l)T~ &(m, 1) 

and the statement about compatibility of T with substitution can be given the 
following precistl formulation. 

Proposition 5.5. Th,? maps T establish an isomolphism between the algebraic theories 
9+ ared $0. 

Proof. Since each T,,, is bijective (and &linear) it suffices to prove it for T? 
Again, as for the multiplica.ive property of T, it suffices to prove it for polynomials. 
But it is well known that formal substitution of polynomials correspond to 
composition of the maps described by the polynomials on any ring object in any 
category with finite products-just because the algebraic theory consisting of 
polynomials and their formal substitution is the algebraic theory of commutative 
rings. 

A wealth of corollaries about existence of maps defined on 0: follow from 
Proposition 5.5 and well known theorems about formal power series. Thus we can 
have inverse- and implicit functions theorems for maps 0: -+ Dz, VVeierstrass 
preparation theorem, and existence and uniqueness of solutions for differential 
equations. We just give one of these as an example, the formal inverse function 
theorem. 

Theorem 5.6. Let f: 0: + 0: be a map with f (0) = 0. Then there is an inverse map 

g if and only if 

dfo: A" +A” 

is invertible. 



Proof. f is given by pz maps fi: D% + D, with fi(Oy = 0, thurs by PZ serieti int n 

variables XI, . . m , Xn, and with 0 constant term. It is we11 known that such an 
n-tuple of series is invertible if and only if the Linear terms form an invertible n :x: n 


