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We attempt here to present a foundation of akind of Differential Algebra, where
the differentiation process is not an added structure, but something which stems
from a property of the ring object considered. Ring objects of this kind (“rings of
line type’’) are not’ present in the category of sets, but occur in some of the toposes
of algebraic geometry, as well as in the lcategory «of formal schemes. : :

There are two basic ideas. The first is an idea of Lawvere from 1967 that there
should be an object D of mﬁmtesunals such that the “function space object” M2 j
the tangent bundle of M (for any, or for many, M). D must be a certain subob]ect
of the ring object A in question. The second idea is tnat the tangent bundle A® of
A itself in a canonical way should be isomorphic to A x A. “There will in fact be a
canonical map a: A XA — AP, and mverubnhty of this a is the only property of A
we need to make a fair amount of differential calculus work. o :

The paper is a sequel to [1}]; in whlch models for the: axiom were presented and
Leibniz- and chain-rule proved for dnﬁerentlatton o functxons ‘A— A (“in one
variable”). We shall need these rules lhere also bu1 apart from that we do not
presuppose [1]. R L '

The consideration of the Dk 'S m Sc*ctlon 2, wh ch is crucnal to the proof of
Taylor’s Theorem, was suggested to me by Gavnn:Wr aith, who also gave the correct
version of the role of the J acobxans, and 1ts ptoof APt,o, he cons:dered several years
ago the object D in the category of formal schezrnes, and showed ‘how much
differential calculus stems from it, [5][ I want to thank hun for many fruitful
discussions on the present subject ‘ b i

The plan of the paper is as follows. rn'st we give the several-vanable ﬁrst order
calculus. Because of the snmphmty of the axlomatlcs, it apphes not only to the
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b ne ~an ha identifiad with formal nower series: these man
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precisely those that are interesting from a local-geometric point of view. In this
sense, our theory leads back to classical power-series algebra (inverse function
theorem etc.): this is summed up in Theorem 5.3.

Finally, a word about a notation method. Commutativity of a diagram like, say,

cxc
(fl-f2> l+
AXB = C 0.1)
is expressed by saying
fila)+f(b)=g(a,b) VacA,beB. 0.2)

The reader may translate such an equation back into a diagram, or alternatively,
interpret @ and b as ‘“‘elements” of A and B, respectively, in the sense: @ and b are
maps X >A and X - B, where X is an unspecified object of the category.
Similarly, we use such equations as descriptions of constructions of maps; e.g. (0.2)
may be used as a definition of the map g in (0.1) in terms of the maps f, f; and +.

1. Jacobians and differentials

Let € be a category with finite inverse limits, and A a commutative ring object in
€. We let, as in [1], D denote the equalizer of the two maps A — A given by
“squaring” and “constant 0"". (So a : X — A factors through D if and only if a>=0
in the ring hom(X, A)).

We assume that the exjonential object A” exists, and we consider the map
a:AXA— AP whose exponential adjoint d:AXAXD — A is given by the
description

d(ao,al,d)=a0+(a1 . d)

As in [1], we say that A is of line type if a is invertible; in the sequel, we assume
that this is the case.

Let M be an A-module object. We say that M is Euclidean if the map
ar:M XM — MP
whose exponential adjoint
ay MXMXD - M

has the description

dp(mo, my, d)=mo+(m, - d)
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is invertible; by assumption, A, and thus also A"=AX-+-XA (n times), is
Euclidean. (There do exist examples of A-module objects which are not Eucli-
dean.) For a Euclidean object M, we denote by y or yar the map

MP — s MxM B0

(where proj; is projection onto the second factor;—projection to the first factor is-
denoted projo). :

We can equip A X A with a “ring-of- dual-numbers ring structure: addition is
coordinatewise, and multiplication : '

(AXA)X(AXA)— AXA
is given by
(a0, a1), (a6, a1)) —> (a0 ao, ao* a1 +ay - ao).

Likewise, the A-module M XM can be given a module structure over this ring
A X A, namely with multiplication

{ao, a1), (Fflo, m,)) — (flp . l?lo, ao-my+a - mq)-

We denote AXA and M XM by A[e] and iM[e], respectively when we want
to emphasize these structures. Also, since the (pzrtially defined) functor ( )?
preserves products, A” inherits a ring structure from A, and M D inherits an
AP-module structure; these structures may be called the diagonally induced
structures. With the structures thus described, we have:

Proposition 1.1. The map a: A X A — A" is a ring isomerphism ; the map
(@, ane): (AX A, M X M)—> (A%, M”)

is a ring-module komomorphism (and thus an zsomorphl m m case M is buchdean)
Proof. The first statement is prov‘ed‘ in [1]* the pr'oo‘f'o,w‘ the second is similar.

We have clearly that 0:1— A factors Tthrough D. Tiwe map 1— D thus resulting
gives, for any object N for which NP exists, rise to a map

ND——¢N'2N, o ‘ | (1.1)

“the tangent bundle of N” (as in Lawvere [3], or Wraith [6]). A cross section
X:N — NP of p will be called a tangent vector field of N.

Suppose X is a tangent vector field and that f:N — M is any map into a
Euclidean object M. Then by the derivative of f along X we understand the
composite

D ’ 3
N2 NP L pmP ™M M
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denoted Dxf. (Again we utilize the (partial) functorality of ( )P). Now the set
hom(N, M) carries a canonical structure of hom(N, A)-module.

Proposition 1.2. The pair of maps
Dx: hom(N, M) — hom(N, M); Dx:hom(N, A)— hom(N, A)

is a ring-module derivation, i.e., it is additive, and
Dx(¢ - f)=Dxo - f+¢ - Dxf
forf:N — M and ¢:N — A. Further, Dxf = 0 if f is constant (i.e. factors througk 1).

Proof. We first note that if M is an A-module object for which M° exists, then we
have a commutative triangle

MxM M M

PrOJ\ / (1.2)

where p: MP —>M is as in (1.1). (Compare Proposition 4 of [1]). Also, the A[e]
and M{e] structures on AXA and M XM, respectively, clearly makes the pair
proji: M XM — M, proj;: AXA — A into a ring-module derivation with respect
to the pair projo: M X M — M, projo: A X A — A. From Proposition 1.1 and (1.2)
we ‘hen deduce that ya: M° — M, y:AP 5 Aisa ring-module derivation with
respect to p:MP > M, p: A®” >A. Butif X is a tangent vector field, X:N — N°,
as above, and f: N — M, then

pofPox=f,

as is easily seen. The ﬁrst sart of the proposmon then easily foliows from the fact
that ( f +g)P = f +gPand(p - f)° = @® - FP for the diagonally induced structures
on MP° and AP. The second part is proved by comparing the two relevant maps
into M” by hy passage to exponential adjoints.

In case where N =M = A, and where X is the canonical vector field + : A — AP
(given as exponential adjoint of +: A X D — A), Dxf is just the ' as considered in
[1].

If U is any object and X : U — UP a vector field, then we can use (1.2) to get an
alternative description of Dxf for an f: U — M into a Euclidean M namely we
have the existence of a commutative square

U 2D prxm

X l l“M (1.3)
UvP —— MP

fD

(Proof. Replace ap by a3 and look at the two projections M X M — M),
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There is another kmd of “dnﬁerentnatmn Wthh has good functorial properties:
formation of differentials, df. To deﬁne this generally enough, we introduce the
notion of sub-euclldean object (which will serve aa a substltute for tae notion of

UXNI | T”D . "

ina commutatwe way (dotted arrow au)

Now let U > N be subeuchdean, and f U -—> M any map into a Euchdean M.
By the differential df of f we understand the comp«:snte '

df=UXN -2 UF - f ,Nu

When using elementw:se notat:on, we. shall wnte df. (b) rather than df (a, 5)
- The differential can be described alternatively, usmg (1 2): it sits in a com-
mutative square (which should be compared to (1.3)):

UXN {f e projo, df) MXxXM
| e (1.5)
(Proof: Replace am by a . and look at the two projectiois M XM -—>M).
Now ( )Pisa functor on the full subcategory of thost objects X for which xX°
exists. These good functonal propertxes are then rei ected vna (1 5) into good

functorial properties of the dlﬁerenual-fonmaitmm
Suppose we have, the Slt“.atlon

N M L

gia

with U and V subeuclidean in N and M, and L Euclidean, and suppose that f
factors through V, f: U — V. ‘Then we have
Proposnion 1.3. (Cham rule) We have » e ;
d(g °f ).(b) dgf(.-)(df.(b)), - Va e U b € N

‘ (Properly speaking, thlS express#s commuitatmty of a certam dxagram UXN-—=L,
by the convention explained in the introduction).
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Proof. This is a straightforward diagram chase, using (g o f)° =g” o and (1.5).

The existence of the map ay:U XN —> U® (as in (1.4)) for a subeuclidean
object u: U > N implies, by passing to exponential adjoints, the existence of a
map d¢y making

UxNXD iJ—-> U

UxNxDI Iu

MXNXD —— N
an
commute, which we may express by sayiag ‘“‘for all beN, acU, a+d - -beU
provided d*>= 0" (thinking of d as an infinitesimal, d - b is an infinitesimal vector,
so subeuclidean objects have the property that they are stable under addition of
infinitesimal vectors of this kind).

In order to proceed further, we have to describe differentials by means of Jacobi
matrices. This cannot be done for arbitrary Euclidean objects, but it can be done
for the A" and their subeuclidean objects (*‘coordinate neighbourhoods).

Let u:U > A" be a subeuclidean object of coordinate n-space. We have n
distinguished tangent vector fields on U

3
—U—-U? i=1,---,n,
ox; .

d/dx; being the exponential adjoint of the map U X D — U with description
(uly” '1un9d>—')(uh“ '1ui+d9' : ';un>
or alternatively
()
(a,dy—25-> g 1+ d - ¢,
e; denoting the i ’th canonical basis vector 1— A"; a+d - ¢ is in U by the above
mentioned stability property of subeuclidean objects.

For f: U — M a map from a coordinate neighbourhood in A" into a Euclidean

object M, we denote by df/ax; or D;f the derivative of f along the tangent vector
field 9/ 0x;.

For X = 9/ax;, we now take the commutative diagram (1.3) and pass to exponen-
tial adjoints; this yields the diagram

o
UxD —<f—a’i’>—x->p MxMXD

(2| |

U—-,————»M
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fa+d - e)=fa)+d -ﬁf-k(a); o | 19

(foracU CA" beA", d eD) CThls of course is a generahzatxon of the “First
Taylor Lemma”, Propusition 6 of [1] to the many variable case; we shall later see
that it can also be viewed as a special case of the 1-variable First Taylor Lemma,
namely by passing to $/A" ). SRR

Using (1.6), we can now prove the following fundamental Jacobl-descnptlon of
differentials. We let U>—> A" be a coordinate nelghbourhood and f: U - M amap
into a Euclidean object. For convenience, scalars are multiplied on the right of M.

Proposition 1.4. The differential of f
df :UXA"->M
has description

n af
(as b) > ,_;l;.’;(a)_ ' bI'

where b= (b,, ..., b,).

Proof. Again using (1.2), it suffices to prove commutativity of the diagram

UxA" —Z-> MxM

aul la

U b —_fB_> M
where f has description

of

(@,b) — (f(@), L~ (a) b)

This is done by passing to exponential adjoints, so we should prove that the
following diagram is commutative

UxA"XD -£XBy MxMxD

&l ldu

u —— M

f
which in elementwise terms says

of

f@a+d-b)=f(a)+d - (z, - (@)- b,) | (1.7)
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To prove this equation, we write & = Y5¢; and use (1.6) repeatedly on the left hand

side of (1.7), not only for f but alsc for the df/dx;,, Whenever a term contains two
factors d, it vanishes, since d*>=0, whence in the final result no iterated partial

derivatives

LA

o (5x)

occur, and we end up with the right hand side of (1.7). This proves the proposition.

2. One-variable Taylor Series

To have some Taylor Theorems work in the present setting, we need to
strengthen shghtly the assumptions on the surrounding category &, and to make the
(strong) assumption that the ring object A considered is in fact an algebra over the
rationals; so for any natural number p # 0, we have a map

l:A — A,
p

with the expected properties.
To state the assumptions of categorical nature, we let for each natural number k

D, >>A denote the equalizer of the two maps A — A given by the descriptions
ara*'anda — 0, respectively. We shall assume that for each n the object APk

exists and that the map

a i AX- - XxA— AP
()
k +1 copies

whose exponential adjoint &, has description
k
(ao, ..., a),d)rs ¥ a;-d’,
i=0

is invertible. So we say that A is a ring object of line type in the extended sense.
Also, if M is an .A-module object such that M ?x exists for each k =1, 2, ..., we
say that M is Euclidean-in-the-extended sense if the maps

em M X X M— MP«
D e
k + 1copies

whose exponential adjoint have description

k .
{mo, - ,mi),d)— ¥ d' - m;

i=0

are invertible.
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Fmally, u U >->M is called subeuclidean m the axtended sense 1f ak M mduces a

+2
M"

ak-ﬂl

M M

commutative. This generalizes (1 2) from k O to arbltrary k smce D1 =D and
Do=(1"% A).
We evndently have maps LT e
D XDy > Dy : COEART ceimend g e Sienett 2 5(2.2)
and - L | , sy
restrictions of multxphcatlon AXxA -—>A and adutlon A ><A —A, respectlvely
(To see (2.3), note that if d°*' =0 and e" = 0 then
(d +e)D+q+1 Z(r+s)dr s

summed over r,s with r+s=p+q+1. But then each term in the sum contains
either d in a power =p+1 or e in a power =q +1 and tl.us vanishes). Similarly, or
by iteration of (2.3), we have maps

Dix:--xDy»D, o
M e e/ B P :
given by the descripﬁ‘o}‘l | SRRk

(i, -+, di)>Tdp
Out of @ = a;, we can manufacture a map g Wthh is an 1somorphlsm since a, is:
AZ" - AD1X XDy R o . (2.5)

(k copies of D in the exponent), gi\)éxi as the eXﬁonéntial adioint of the map & with
description '

(Note that we |dent1fy elements of " with subs sof f[lé]};f'—ﬂ'i{l, 2, 2 ,k}):Fork =1,

the o is just o;.
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Let M be a Euclidean object (in the ¢xtended sense). We shall describe in
elementwise terms the unique map + which will make the following diagram

commutative:
Mk+1 _i_) Mzk
a,‘le sl«r (2.6)

D, D, x---xD
M=« _AT!? M !

Proposition 2.1. The map + :M**' — M*" given by the description
(mo, ..., m)—> {Hw—j!- m}

(where j is the number |H | of elements in H < [k]) makes (2.6) commutative.
(Again, an element in M 2* is described by assigning to each element H of 2% je.
to each subset H of [k], an element of M.)

Proof. We pass to exponential adjoints with (2.6). The counterclockwise composite
then yields (denoting D; X- - -X D, by 9)
evg o (M* X D)o (ax X D)
=evp, °(MP X +)o(a; .7)
=evp, ° (ax X Di)e (M“ 7 x +)
=dj o (M " x +).
The clockwise composite yields
evg o (T XD)o (+ XD)=6 o (+ xX9D).
So it suffices to prove commutative the diagram

M*'xD,x- - -xD3;, —X22, M*xD,x---xD,

Mk+1 .
X *l 10 (2.7)
I‘lk"—1 X Dk - > M,
oy
which we do elementwise: Consider an element
<m0a ey mk, dla ey dk) (2‘8)
of the domain (so d3 =...=ds = 0). Taking it counterclockwise yields
k .k
L m@i+e+d =T ome( T UL dh), @9
j=0 j=0 Hclk] heH

|H|=j



whence a term can be 1dent|ﬁed w1th a subse H of [k] wlth ] elements Gomg
clockwise with the element (2. 8) ylelds by deﬁmt:on of ¥

0‘(({H"’I"mi' i

( denotmg the number o € ements.,m H CL
proposmon is proved

Mt Ey My SR T B e
D, xD,,
n+m _____) n
commutatwe is glven by

(mo, M) {(P:q)mp+q}p " ", :

.....

q=0,...,mﬁ

(the right hand vertical map in (2 10) bemg agam an 1somorphnsm denved from a,
and ap,). 2 v
Let U>»>A be subeuclidean. Then, as observed in Suctlon 1, U is stable under
addition of elements of D (in fact, since U is assumed to be subeuciidean in the
extended sense, U is stable under addmon of elements of any Dy). Thus, by
iteration, we also have addition maps
pr;x,- XDy 5 U
NG —
Let f:U—>M with M Euchdean »We";can then use urst Taylor Lemma (1 6), to
conclude equahty of the two maps . :
UXDIX ’ xDl—)M,

R

k

whose descriptions are the two sides in

fla+di+: - +d)= % f(’)(a) H dh,\ (J‘\Hl) (2.11)

HCI

»(Where f‘”_ (f(’ 1)), and _.
equwalenqy, ks a g / axl' To s

den.otes der ation along - + U—- UP or,
y, we proceed by 1nduct10n

f(a+d1+ +d;) j((a+d1+ +dk 1)+d,()
*f(a‘*’dl‘f +dk-—1)+'f(al+ A di-1) " di,
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(using (1.6)), and by induction hypothesis on each o

denoting number of elements in H)

N HCIZK ljf(')(a) hl;lﬂ dh

(2.12)
+ ¥ fTYa)- hIGIHd;. - dre

Hclk—-1]

This equals the right hand side of (2.11); for a set H < [k] either does not contain k,
and the term corresponding to such H occurs (exactly once) in the first sum in
(2.12); o7 it does contain k, in which case the term corresponding to H occurs (with
index H' = H\{k}) in the second sum in (2.12) (exactly once).

Recall the assumptions of this paragraph: A is a ring object of line type in the

extended sense, i.e. A”<=A""! via a,, and A is an algebra over the rationals.
Under these assumptions, we have

Theorem 2.2. (Taylor). Let U>> A be subeuclidean, and let f: U — M be any map
into a Euclidean object. Then the two maps
UXDy=3 M

whose descriptions are the two sides in (2.13), agree:

fla+d)= 'gko jl'd" -f%a). (2.13)

Proof. Take the exponen :ial adjoint of the two maps in question; this is a diagram
U=3MP«

to prove it commutative, it suffices to prove
U 2 MDk _M:_) MDlx-..XD] (2 14)

commutative (k copies of D,), because it is evident from the algebra-over-the-
rationals assumption and Proposition 2.1 that

D, .Jﬂ; MDl""‘xDx

is monic. To prove (2.14) commutative, we go to exponential adjoints once more,
and obtain the diagram

U XD, X XJDl UXDI( =3M (215)

obtained from U XD, = M by multiplying U X + on the left. Now we prove (2.15)

commutative by means of elements. We must prove the equality (for d? 1= =
di = 0):

fla+dy+---+dy)= ,zf.of;(dw- < +di)fOa). (2.16)



,Tayklo,r"éerz‘éi’e&’lcms e | 283

Essentially, we have done the work :ilre’ddy‘iri formula (2.11). We just have to see
that the right hand sides of (2.11) and (2.16) «gree. In the j’th term of the right
hand srde of (2 16) the term

| '.‘dhl'-f_ dh, fm(a)

these. g 'terms corresp:md
H ={ b hi} Terms with a
St ,__fptlen .The theorem is proved

(for h1<h2< « + < h;) occurs j! times and the ,sum 0
exactly to the H summand f%(a)- 1 ’L.egd,, where H
repeated factor d; vanish because di =0 by é

3. Severalvﬁridblése—-globsll‘Secticfrre case »~

A 'global section of an object M in a category € is amap b: 1— M. For any X in
&, b will also denote the composrte X—-1 5 M. Arbltrary maps X — M may be
reinterpreted as global sections in %/X Now our axroms are stable under passage
from & to &/X in a sense that will be explafned in Section 4. Therefore the results
of the present sectlon, whrch deal wrth global sectrons, are not $O specral as it may
seem. ‘ : ~ ~
With the assumptions of Section 2 on the category & and the ring object of line
type A, we consider a Euclidean object N and a subeuclidean U>—> N. Then any
global section b: 1— N gives rise to a tangent vector ficld b. on U:

b.U—->U" .
is given as exponential adjoint of the map U X D — U v ith description
(a,d)—> a+d-b;

b. is a “constant vector field”. With such N, b and U 'v. have

Proposition 3.1. Let M be Euclidean and f: U — M a inap. Then
dfa(6)=Dyf(a) VacU.

Proof. The map with description a — df,(b) is by definition of differentials the
composite

U*——')UXIWUXN ay > U f > M > M.

B However, 1t IS easrly seen that the c,omposrte of the three ﬁrst maps here rs just the
vector field b o whence the proposrtxon Note that rf b 1 eA thern D;,f f

Proposition 3.2. Iff: N ~» Mis an A-linear map between Euclidean objects, then df:
N XN - M is just f ° proj;.



commutative. But when taking the exponential adjoint diagram, commutativity is
immediate from the A-linearity of f.

Now let N be a Euclidean object and b a global section of N. We consider the
linear map h: A — N given by the description ¢t — t - b. Then we have for any s € A

b=h(1)=dh;(1)=D1.h(s)=h'(s)

by Proposition 3.2 and 3.1, so &’ is constant b. More generally, let @ and b be two
global sections of N, and consider the map h: A — N with description

hit—>a+t-b. !

Since (Prcposition 1.2) the derivative of a constant is 0, and derivation is additive,
we conciude that &' is constant b, or alternatively (using Proposition 3.1 again) that

dhs(t)=t-dhs(1)=t-Dyh(s)=t-b Vs. 3.1)

Assume now further that U>>N = A" is subeuclidean and that a: 1 — N factors
through U. Let f: U — M be « map into an Euclidean M. We shall further assume
that there exists a subeuclidean W >»A containing 0 so that 4 maps W into U (the
D« = U Dy considered later will serve for W). Let g denote the composite

w-tsu—Lsu

Applying the one-variable Taylor Theorem 2.2, we obtain, for d € Dy,

o kd
fla+d-b)=g(d)= _zo;;g"’(O).
i=o0 j!
We now compute the g“(0) in terms of f. We have g9 =gt)=f(a+t-b). We
prove by induction

11=!

Vi:g”(0)= Y -+ ¥ Dy ---Dyf(a+th)- by, b,
ij="1

(where b, is r’th coordinate of b). Assume that this formula holds; we then prove
the similar for:nula for g”""(t). Since differentiation is a derivation, and the
derivative of a constant (like b,) is zero, we can differentiate g“) termwise, whence
(by changing notation, denoting D, - ... D,f by f), we only have to prove

§6)= L Df(a+1-b)- b (3.2)
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(with g, f, a and b as above) Now, usmg Propos:tlon 3.1, /
g'(t)=D1.g(t)=dg,(1) |
—dfhm(dh:(l)) bychainrile)
—dfen®)  GYGL) e
which equals the nght hand snde of (3 2) by Proposmon 1 4 We have thus proved

object and a and b global secttons of, L,k ar , re
have SR R A
d n n i

e Z X D;, - - Dyf(a): by .. .- by (3.3)

fla+d - b)= }f:

This expression can be somewhat simplified because ‘we can prove inter-
changeability of two partial dlﬁerentlatxon processes :

In view of a later use, :weisha'll. here remark that if f: U — M is a map from a
subeuclidean U< A* into a Euclideari:M and a: 1 — U is a global section, then we
can define D;f(a), which is a global section 1 — M; but this global section could
have been defined even if f had only been defined on thz subobject @ + D, -.¢; of U.
For, as above, D;f(a) is the derivative at 0 of a certain map g: W — M, and (for any
g: W — M) g'(0) can be defined just knowing g on D, namely as

| o,
1—— D) MY M

where the first map is the exponential adjoint of the identity map. More generally,
if g: D, — M, the p’th derivative of g can be defined as a map D,—, > M.
Thus, all the iterated partial derivatives in (3.3) onl / -depend on having  lefined
a+(Dg X XDy).
n

4. Several variable Taylor Theorems

On basis of (3.3), it is a matter of pure category theory to prove the following
Taylor Theorem (a different one appears as Theorem 4.3):

Theorem 4.1. Let U>>A" be subeuclzdean, and f: U —-M a map into a Euclidean
object. Then the two maps ‘

whose descriptions are the two sides of (3.3) agree.
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tl

n
Proof. Leta: X—> U, b: X — A", d: X — D; be elements with conmon domai

It suffices to prove (3.3) for these elements. Let us denote the functor & — &/X
given by

><|

proj

<—-——X

by ( )x. It commutes with inverse limits and preserves those ekponentials that
exist. Therefore if A is a ring object of line type in &, then Ax is a ring object of line
......... = JRgupigrs tmee nem] Adawicrntiaee Al v

PR S o = rr
lypc 11k c(g/X. A}SU, ( )X pleCl AA ] UlllCl cuuauuu ana acrivation. Now aé. A — u
gives rise to

x feid prxx

ic\ ﬁro j
X

that is, to a global section d: Ix — Uy. Similarly for b and d. By (3.3) applied in
&/ X we conclude equality of the two global sections of Mx (in €/X) which are
denoted by the two sides of (3.3) with a ~ placed on each of the letters a, b, d in
there. So we have equality of two maps 1x — Mx. Applying the obvious forgetful
functor €/X — € we get equality of two maps X - M XX in &, and taking
projection onto first factor, we conclude the equality of two maps X — M, as
desired. But are the two maps the desired maps? Yes, because ( )x preserves
differentiation and the ring operations, meaning for instance equality of

«u a+b UX D(fx) M

and

(a+b|d) UxX Dfx:d

PTOJ
proj

but applying the forgetful functor &/ X — & to the latter, and then composing with
proj: M X X — M precisely yields D;f(a + b).

Corollary 4.2. Let i be a fixed index between 1 and n. Then the two maps
U X Dy — M with descriptions

fla+d-e)=3 %D?’f(a), (deDy)

i=0

agrze.
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Proof. Put b =¢; in (3.3).

The technique employed in the proof of Theorem 4.1 also allows us to view
partial differentiation as a special case of ordinary 1-variable dxﬁerentxatxon We
confine ouraelves to sketch this in a special case. Suppose given a map in &

AXN—-—»"\'Ir

with M a Euclldean object. The ‘
A is by definition the derxvauve of f in- the directi
AXN —(AX N)P given as exponentxal ad]omt of the m:

AxNxD—anN

with description
(a,n,d) > {(a+d,n).

(This is consistent with our earlier description of partlal derivation, af/ ax 1 or Dif).
However, out of f we can manufacture a map f in /N, namely

AN—AXN —‘-’"—’i'i”—“-'—’—-» MxN MN
M A

We thus have a map f: AN —>MN in €/N with domain a rmg object of line type
and with Euclidean codomain. It can be differentiated to yield

f': AN —>MN,

and reinterpreting this map as a map AX N -M XN and composing with projas:
M xN — M yields Dx.f. : 7

There are some “nexghbourhoods” of OEA"' whrcl we want to oonsnder let
D(m)i denote the extensxon R

{1, ...,dm)| any product of k + 1 coples of tie d sis 0}

(Formally, this is an intersection of m* subobjectcy of A™ In the case m=2,
k =1, it is the intersection of D1 XA, A ‘<D1, and of the following subobject of
A X A (counted twice): ‘ ~ S

{(dy, d)| d1 - d2=0}, |

(whxch just is notation for the equahzer of the multxphcauon map AX A - A e.ad
the constant-O map A xA - A) O s iy ,
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but also

for h sufficiently large (h = m - k will do).
We can now prove a Taylor Theorem related to Theorems 4.1 and 3.3.

Theorem 4.3. Let f: U — M where U is a subeuclidean object of A", and M is any
Euclidean object. Then the two maps

UXDnh—>M
with descriptions
(a,b) — f(a+b)

ard

k n

(a’b>'—),2 l! 2 i Dil'"Diif(a)'bil""'bii

j=0]:i;=1 ii=1

agree.

Proof. This is straightforward using induction in n and Corollary 4.2. More
precisely, let the induction hypothesis be that the theorem holds for b of form

(bl,---,br,o,...,O).

We omit details.

5. Power series

In this section we add a weak assumption of purely categorical nature. It says that
the increasing sequence of subobjects of A

Dlgng...gA

should have a colimit Dy which again is a subobject of A; this (filtering) colimit
should further commute with finite inverse limits. This condition is satisfied in the
ring classifier topos, because it is a topos, and in the category of formal schemes,
because it is a locally finitely presented category. Also D2+ should exist for any k
(this is again so in the two specifically mentioned categories; for they are cartesian
ciosed). ' -

We are then in a position to prove that Dy is a subeuclidean object {in ihe
extended sense;—we assume throughout that A is a ring object of line type
in the extended sense of Section 2). For each k, we have to prove existence of a
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factorization LR

DwoxA* --—--> D2

CAxA* 2o

By passing to exponential adjoints, this is quivalent to proving that

Do xA* XDk ~—>A

61

(t:aly---saks )"'*t"‘z aid}

factors through D. Now

(by the limit-colimit commutatlon assumptlon) SO that it sufﬁces to prove that the
right hand side of (5.1) is in De provnded tis in D To prove this is again an
exercise with binomial coefﬁcxents So

Proposition 5.1. The subobieét D> A is subeuclidean (in the extended sense).

Borrowing a term, and some of the spirit, from non staadard analysis, one would
call D, the monad around 0 in-A (“the set of infinitesim. ally small elements”) Itis
in fact the smallest subeuclndean object contammgt, Do we have a similar
“monad” in A for m = 2‘7 ’ v

Proposition 5.2. The pmduct of m captes af D«, is sub 'uchdean in A f and is the ~,
smallest subeuclidean object of A™ cantammg 0. Ite eqw Is hm,,D(m )k ‘

Proof. For simplicity of notation, we do the case m = =2. By limit-colimit com-
mutation

DcoXDoo=!_iLn (Dk ka)

and like in the proof of Proposition 5.1, it suffices to see that

(+3 b d (5.2)
i=1
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is in Do X Do when £ Dy XDy, d€D,, and each b;e A%. The i’th coordinate
(i=1,2)of (5.2)is

ti+bi-d

which again is in some D;. The minimality property is left to the reader (it will play
no role in the sequel). That it equals lim_.D (m ), is immediate from (4.1) and (4.2).

IT the “local behaviour near 0” of a function means its behaviour on the monad
around 0, then the following theorem expresses that the Taylor Series expansion of
a function precisely contains the information of its local behaviour.

Let of denote the ring of global sections 1— A. It is an algebra over the rationals
by the assumptions made.

viheorem 5.3. There is a 1—1 correspondence between

!“OH‘g (Dco X Um, A) 3"ld usg"’X], DAY Xmﬂ,
;——v—-——’
m

the ring of formal power series over of in m commuting variables. The correspondence
is given by Taylor Series expansion, and is compatible with the ring-structure and
substitution (to the extent the latter is defined—see Proposition 5.5).

Proof. Given f: D™ — A; we associate to it the “Taylor Series”

o] 1 m m
Z(]-' Z Zl,),-l...D,-,.f(())-Xi,-...-X,-, (5.3)
j=0 = .
in the m commuting variatles X1, ..., X,. Conversely, given a formal power series
n A[X1, ..., Xn], we may write it uniquely in the form
Z Z Za’l l" ‘l""-X;.l
j=0iy= li—

with the a;,.; not depending on the ordering of the indices iy,...,i. The n’th
partial sum Z;;O in herc is a polynomial of degree n with coefficients from & =
hom(1, A), so defines a map

friAX---XA—> A,
S—— e ———
m copies

It is clear that

ntD(m)l: =fn+1!D(m)k
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for n = k. From this follows that the fu's together de 'cnbe amap -

D% =lim (D(m)) 5 A.
k

The two processes described are inverse of each other. Let us start with a map
f D"‘ - A We form;»the

Conversely, given a formal serres of th e for
Doo — A as above and take lts Taylor ‘S ries. /

ons uct a a functron f:
b’ erved m the end of

say =m - k), namely the h’th partral sum of the given ‘series. Because partlal
differentiation is a derivation, it follows that a polynomtal functlon equals its Taylor
series (which termmates) Thus the series for f equals the gwen series.

(As a corollary of the proof here, we infer that

DllDizf Drlelfs

this fact can also be established dxrectly for any map f U->MwithM Euchdeam)
It is evident that the process T (“takmg Taylor sertes”)

homg(Dq) xDm, A)"-) dﬂXl, v ey Xm],
commutes with addition and maultiplication by constants 1— A. To investigate its
behaviour with respect to multiplicat‘ion ‘we consider T~ instead; so let f and g be
two formal 'ser'ies inX;,...,X,and f- g their (Cauchy-) product We shall prove
T7(f-g)= T“(f) T '(g).
The two sides here are maps Dmx xv'Do'o — A. T prove their. equality, it
suffices, by S PO R R :
o SXX XD»:‘I_imD(m)ki

-

V-

to prove thetr restrtctlons to D(m )k equal ,_But these re. stnctrons are represented by
polynomials of degree k (the k’th parti sum of the series in question), and the
product of two maps descrtbed by polynomxals equals the. map described by the
formal product of the polynomxals (thrs is true in any category)

This proves the theorem, except for the statement concerning substitution. To
make this statement precise, let = '

hom (Dx, XoooX Doa, Ag hom(Dw X+ v+ X Do, A)

denote the subset consxstmg of thosevmaps fier whm.h f(0)= l Then T of such an f
lies in .szL,I[X 1s -+ + » X ], the set of formal senes wnth zero constant term.
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Lemma 5.4. Let f(0)=0. Then f factors through DS A.

Proof. Since the domain of f is a direct limit limx D(m ), it suffices to prove that the
restriciion of f to each D(m ), factors through D« < A. But this restriction is given
by a polynomial, namely the k’th partial sum of the Taylor Series for f, and has ¢
constant term. So it is a sum oi terms where each term contains at least one factor
from D:. Thus raised to a sufficiently high power, the sum vanishes.

We can now consider two algebraic theories, 7 and 9o where

T (m,1)=hom" (PoX"* X D, D)
&——Tnf—«s——l

=hom™ (Dw X" * * X D, A),

and where 9, is is the algebraic theory of formal power series without constant
term over & (as considered in [2], say). Then Taylor-Series formation defines maps

TH(m,1)= Fo(m, 1)

and the statement about compatibility of T with substitution can be given the
following precise formulation.

Proposition 5.5. The maps T establish an isomorphism between the algebraic theories
g * and g. 0-

Proof. Since each T, is bijective (and /-linear) it suffices to prove it for T .
Again, as for the multiplica ive property of T, it suffices to prove it for polynomials.
But it is well known thzt formal substitution of polynomials correspond to
composition of the maps dzscribed by the polynomials on any ring object in any
category with finite products—just because the algebraic theory consisting of
polynomials and their formal substitution is the algebraic theory of commutative
rings.

A wealth of corollaries about existence of maps defined on Dy follow from
Proposition 5.5 and well known theorems about formal power series. Thus we can
have inverse- and implicit functions theorems for maps D% — D%, Weierstrass
preparation theorem, and existence and uniqueness of solutions for differential

equations. We just give one of these as an example, the formal inverse function
theorem.

Theorem 5.6. Let f: Dg — Dy be a map with f(0)= 0. Then there is an inverse map
g if and only if
dfo: A" A"

Is invertible.



Proof. f is given by n maps f, Dco ""’Dm thh'f,'((l) =0, thus by n series in n
variables Xj, ..., X, and with 0 constant term. It is well kmown that such an

n-tuple of series is invertible lf and only if the linear terms form an mvertxble nxn
matnx But thxs matl' x for dfe, using Proposition 1.4.
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