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Dabei sehen wir von unendlich kleinen Grössen höhere Ordnung ab.
Lie [7] p. 523

Introduction

The present note makes no claim of originality; it is a “conspectus” of some of the
classical theory of characteristics for 1st order PDEs, as expounded geometrically
by Lie and elaborated by Klein, notably §72 in [1]. These authors use extensively a
synthetic geometric language, but ultimately describe notions rigourously only by
presenting them in analytic terms. Our approach describes the notions, like “united
position” (“vereinigte Lage”) and “characteristic”, rigourously in pure synthetic
and coordinate free terms, and introduces coordinates only at a later point, when it
comes to proving some of the relations between the notions introduced.

So we are not claiming that describing the notions synthetically is an effective
tool for proving; usually, coordinates are better suited for this. The virtue of the
synthetic descriptions are, as also appears from the work of Monge, Lie, Klein,
et. al., that it gives a geometric language to speak about geometric entities, and in
particular, make them coordinate free from the outset.

The particular version of synthetic language that we use is that of Synthetic
Differential Geometry (SDG), as in [2], [3] say, and notably as in [5], where the
main synthetic relation is the first and second order neighbour relation of a scheme
or of a manifold, . Such neighbourhoods (of various orders) was first considered
in French algebraic geometry and global analysis in the 1950s, see by Malgrange
et al. see e.g. [8]. We denote these relations (of order 1 and 2) by the symbol
∼1 (or just ∼) and ∼2, respectively. They are reflexive symmetric relations on a
scheme resp. manifold, and these relations are preserved by any map in the relevant
category (whose objects we call manifolds). The manifolds that we consider are
derived from an ambient 3-dimensional manifold M (where “dimension” refers to
the analytic model, ultimately: M = R3). “Curves” and “surfaces” are manifolds
of dimension 1 and 2, respectively.
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The object of kth order neighbours of a point x in a manifold M is denoted
Mk(x), i.e. Mk(x) = {y ∈ M | y ∼k x}. One has that x ∼1 y ∼1 z implies x ∼2 z.
Equivalently,

y ∈M1(x) implies M1(y)⊆M2(x). (1)

The axiomatics used for these neighbourhoods is essentially the “Kock-Lawvere”
(KL) axiom scheme, which we shall quote when needed. The basic manifold is the
number line R; here x∼k y iff (y− x)k+1 = 0. In Rn, the set M1(0) is also denoted
D(n), and Mk(0) is denoted Dk(n). See the Appendix for the algebraic description.

Since all maps preserve ∼, it follows that in X ×Y , we have M1(x,y) ⊆
M1(x)×M1(y) (where x ∈ X , y ∈ Y ). The converse inclusion does not hold
in general. However, if K ⊆ X ×Y is the graph of a map f : X → Y , we have
(M1(x)×Y )∩K ⊆M1(x,y). For, any map preserves ∼, and this applies to the
map x 7→ (x, f (x)) from X to K, as well as to the inclusion K ⊆ X×Y .

1 Surface elements and calottes

Let M be a 3-dimensional manifold.
A surface element at x is a set P⊂M of the form M1(x)∩F , where F ⊂M is

a surface (2-dimensional submanifold of M) containing x. Similarly a calotte at x
is a set K ⊂M of the form M2(x)∩F where F ⊂M is a surface containing x. (The
notion of calotte is from [1] p. 281.)

If K is a calotte at x, it is clear that M1(x)∩K is a surface element P at x, called
the restriction of K, and similarly, K is an extension calotte of P.

Surface elements by definition come equipped with base points, since we only
defined the notion of surface element at a point; similarly for calottes.

More generally,

Proposition 1 If K is a calotte at x and if y ∈M1(x)∩K, then M1(y)∩K is a
surface element.

Proof. Let F is any surface with K =M2(x)∩F . Since M1(y)⊆M2(x) by (1),

M1(y)∩F ⊆M2(x)∩F = K

so M1(y)∩F =M1(y)∩K. So F witnesses that M1(y)∩K is a surface element.

So a calotte K at x defines a family of surface elements, namely the family of
pointed sets M1(y)∩K (pointed by y) for y ranging over M1(x).

The surface elements P′ coming about from K in this way are said to belong to
K; and the base point of a P′ and the base point of K are (first order) neighbours.
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One has the following “dimension principle”:
for two surface elements P and P′ with same base point, P′ ⊆ P implies P = P′.

This follows in SDG from the fact from linear algebra that for two linear sub-
spaces V and V ′ of same dimension, V ′ ⊆V implies V ′ =V .

One could also use the terms “1-jet (resp. 2-jet) of a surface” for surface ele-
ments, respectively calottes, in M. We denote the manifold of surface elements,
respectively the manifold of calottes, by the symbols S1(M), respectively S2(M).
We have surjective submersions

S2(M)→ S1(M)→M.

The dimensions of these manifolds are 8, 5, and 3, respectively, cf. Section 5. The
manifold S1(M) may be described as the projectivization P(T ∗M) of the cotangent
bundle T ∗(M)→M.

Note that the restriction of K belongs to K; a surface element which belongs to
K is the restriction of K iff its base point is x.

Proposition 2 Let P∼ P′ be contact elements in M with base points x∼ y, respec-
tively. Let K be a calotte with restriction P. If P′ belongs to K, then P′=M1(y)∩K.

Proof. Clearly, P′ ⊆M1(y)∩K. By the dimension principle, it therefore suffices
to know that M1(y)∩K is a contact element, and this we know from Proposition
1.

2 The contact distribution ≈

We consider a general 3-dimensional manifold M, and the corresponding 5-dimen-
sional manifold S1(M) of its surface elements.

Being a manifold, S1(M) carries a (1st order) neighbour relation ∼. It carries
a further structure, namely a reflexive symmetric relation ≈ refining ∼, and called
“united position1” (“vereinigte Lage”, in the terminology og Lie and Klein): if P
and Q are neigbour surface elements with base points p and q, respectively, we say
that

P≈ Q if q ∈ P.

This is almost a literal translation of the definition in Lie [7] p. 523: “a surface
element is in united position with another one if the [base] point of the latter lies

1In modern treatments, the structure “united position” is presented as subordinate to the canoni-
cal contact manifold structure which the cotangent bundle T ∗M carries – a certain canonical 1-form.
However, P(T ∗M) does not carry a canonical 1-form (only “modulo a scalar factor”), and our de-
scription (i.e. Lie’s) of ≈ is purely geometric.
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in the plane of the former”. It is not immediate from our definition that ≈ is a
symmetric relation, but this can be proved if we, in Lie’s verbal rendering ([7] p.
523), “ignore infinitesimally small quantities of higher order”. In our context,
the “ignored quantities” are not only ignored, but are equal to 0, using P ∼ Q,
as the coordinate calculation below (5) will reveal. (Such refinement ≈ of ∼ is a
synthetic way to describe a geometric distribution, cf. [3] or [5] for an elaboration
of this viewpoint.)

In Lie’s treatment, the “united position” structure ≈ on the manifold S1(M)
gives rise to another one, namely the notion of strip: this is a curve C in S1(M),
where neighbour elements in C are in united position; for P and P′ in C, P ∼
P′ implies P≈ P′.

Let F be a surface in M. Since the passage from points x in F to the correspond-
ing surface elements M1(x)∩F is a function F → S1(M), and since any function
preserves ∼, it follows that the surface elements of F at x and y (both in F , and
with x ∼ y) are neighbours in S1(M). Furthermore, y ∈M1(x)∩F ; so y belongs
to the surface element of F at x. Thus we see that if F is a surface, the surface
elements defined by F at neighbouring points x and y of F are in united position,

M1(x)∩F ≈M1(y)∩F. (2)

This is the motivation for the notion.

Proposition 3 Let K be a calotte with base point x, and let y ∈ K be ∼ x. Then

M1(x)∩K ≈M1(y)∩K

as elements of S1(M).

Proof. Let F be any surface with K =M2(x)∩F . Then

M1(x)∩K =M1(x)∩M2(x)∩F =M1(x)∩F,

since M1(x)⊆M2(x). On the other hand,

M1(y)∩K =M1(y)∩M2(x)∩F =M1(y)∩F,

since M1(y)⊆M2(x) ( by (1)). The result now follows from (2).
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3 First order PDEs

By a first order PDE on a 3-dimensional manifold M, one understands a 4-dimen-
sional submanifold Ψ of the 5-dimensional manifold S1(M) of surface elements in
M. The solutions of Ψ are then the surfaces F in M such that all surface elements
of F belong to Ψ.

The method of characteristics is a way to construct such solutions F .
This geometric formulation of the analytic notion of “first order partial differ-

ential equation” goes back to Monge, Lie, and other 19th century geometers, cf.
classical texts like [7], [1], [9],. . . .

The submanifold Ψ ⊆ S1(M) is typically given by one “partial differential
equation” ψ(P) = 0 for a function ψ : S1(M)→ R, so Ψ is generally 4-dimensional
since S1(M) is 5-dimensional. (A 3-dimensional submanifold of S1(M) is typically
given by two such partial differential equations; it is an “over-determined” system,
and such may have no solutions.)

By a solution calotte of Ψ, we mean a calotte K all of whose surface elements
belong to Ψ, so for all surface elements P

(P belongs to K) implies (P ∈Ψ).

A necessary condition that a calotte K at x is a solution calotte is of course that
its restriction belongs to Ψ, i.e. that M1(x)∩K ∈ Ψ. How many solution calottes
through P are there, i.e. how many solution calottes are there with restriction P?

We shall in a coordinatized situation (M = R3), for non-degenerate Ψ, prove
that the set of such calottes form a 1-dimensional manifold, see the remarks after
Theorem 10.

We ask: given P ∈ Ψ, how many surface elements P′ ≈ P have the property
that they belong to all these ∞1 solution calottes extending P? We pose:

Definition 4 Let Ψ be a PDE, and let P ≈ P′ be surface elements in Ψ. If P′ be-
longs to all solution calottes extending P, we say that P′ is a characteristic neigh-
bour of P, written P≈Ψ P′.

Just as for ≈, it can, by analytic means, be proved that ≈Ψ is a symmetric
relation.

- In the following, Ψ is a fixed PDE on M.

Proposition 5 Let P ≈Ψ P′ with base points x and y, respectively. Assume that F
is a solution surface containing P. Then F also contains P′. And P′ =M1(y)∩F.
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Proof. Consider the (solution) calotte K := M2(x)∩F . Since K extends P and
P ≈Ψ P′, P′ belongs to K, so P′ ⊆ K ⊆ F . The second assertion follows from
Proposition 2.

Theorem 6 If F1 and F2 are solution surfaces containing P. Assume that P≈ψ P′.
Then M1(y)∩F1 =M1(y)∩F2 where y is the base point of P′.

Proof. For by Proposition 5 M1(y)∩F1 = P′ =M1(y)∩F2.

(The conclusion M1(y)∩F1 =M1(y)∩F2 may also be expressed that F1 and
F2 are tangent to each other at y, or touch each other at y, see [6].)

If P and P′ are characteristic neighbours, and y is the base point of P′, then
P′ can be reconstructed from y and P. For, take any solution calotte K extending
P (such calottes do exist - there are in fact ∞1 of them). Since P ≈ P′, we have
that y ∈ P ⊆ K, and since P′ belongs to all such solution calottes by assumption,
P′ =M1(y)∩K.

The characteristic neighbour relation ≈Ψ is reflexive and symmetric; in fact, it
defines a 1-dimensional distribution on the manifold Ψ, and hence can be integrated
into curves in S1(P). These curves are the classical “characteristic strips” of the
PDE Ψ. A characteristic strip (w.r. to Ψ) is a strip where neighbouring elements P
and P′ not only have P≈ P′ but P≈Ψ P′.

A classical method for constructing solution surfaces for Ψ is to build them as
unions of characteristic strips; we shall not elaborate on this; see e.g. [1] p. 284.

4 Monge cone

Given a PDE Ψ⊆ S1(M) on a manifold M, as above. A point x′ which appears as
the base point of a characteristic neigbour P′ of P may be called a characteristic
neighbour point of P “in the calotte sense”. There is (for M = R3) another, older,
notion of characteristic neighbour point of P, going back to Monge, Lagrange, . . . ,
namely, it is a point x′ of P, on the line along which P is tangent to the “Monge
cone” at x (where x is the base point of P).

The notions of “line” and “cone” presuppose some linear or affine structure
on M, unlike the notions of the previous Section. We shall describe these “affine”
notions in synthetic form, assuming that M is linearly isomorphic to R3. (Points in
R3 are of the form (x1,x2,x3), so we denote such points by x).

In M is a vector space isomorphic to R3, the KL axiomatics give that a surface
element P with base point x gives rise to a unique pointed plane V in M, with x as
base point. If K is a calotte in M with base point x and if (P′,y) belongs to K, the

6



pointed plane (V ′,y) arising from (P′,y) deserves the name the tangent plane to K
at y; and P′ =M1(y)∩V ′.

Therefore, in the classical treatment, with M = R3, the surface elements in R3

are called plane elements, since a surface element at x ∈ R3 may be given by a
(unique) plane through x. The plane elements of a PDE Ψ with a given base point
x have an enveloping surface, which is a cone, called the Monge cone at x; each
individual plane element P ∈Ψ with base point x is tangent to the Monge cone at
x along a generator of the cone, and this generator l ⊆ P is the characteristic line
of the plane element. Paraphrasing, we then arrive at the provisional definition that
y is a characteristic neighbour point (in the “Monge sense”) of the plane element
(P,x) ∈Ψ if y ∈M1(x)∩ l.

We prove in Section 7 that x′ is a characteristic neighbour point of P in the
“calotte” sense iff it is so in the “Monge” sense.

However, as argued in [4], the relationship between enveloping surfaces and
characteristics is that the characteristics are logically prior to the enveloping surface
(which is made up of the characteristics). From this conception, it is therefore a
detour to define the characteristic lines l in terms of the Monge cones.

Let us be explicit about the synthetic description (following [4] for the notions
of characteristics and envelopes) of the characteristic lines and the Monge cones for
a given PDE Ψ in R3. We identify S1(M) (when M = R3) with the 5-dimensional
manifold of pointed planes P = (x,P) in R3, and Ψ with a 4-dimensional submani-
fold. Let Ψ(x) be the set of pointed planes with base point x. Then the characteristic
line l(x,P) for a given plane element (x,P) is⋂

P′∈Ψ(x), P′∼P

|P′| (3)

and the Monge cone at x is the union of these lines, as P ranges over Ψ(x). (We
wrote |P′| to distinguish the plane P′ from the pointed plane (x,P′).)

If we return to the case of a general 3-dimensional manifold, where we work
with surface elements (x,P) =M1(x)∩F , rather than pointed planes, we are there-
fore motivated to make the following

Definition 7 Let Ψ be a PDE on a 3-dimensional manifold M, and let P ∈Ψ with
base point x. Then y ∈ P is a characteristic neighbour point for P (in the “Monge”
sense) if for all P′ ∼ P in Ψ and with same base point x as P, we have y ∈ P′.

Thus, the set of characteristic points of the surface element P at x is given
by the formula (3), but where now P and P′ denote surface elements rather than
pointed planes. So in this definition no algebraic structure (like vector space of
affine space) is assumed on M.
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This may be seen as a rigourous formulation of the description of Lie, [7] p.
510: “. . . so hat man im Punkte (x,y,z) die Schnittlinie der Ebenen zweier solcher
unmittelbar benachbarte Flächenelemente . . . zu suchen . . . ” (“. . . then one must
then in the point (x,y,z) look for the intersection line of the planes of two such
immediate neighbouring plane elements”) (he is talking about two plane elements
with same base point (x,y,z)). So instead of intersecting P with “an immediate
neighbour” P′ in Ψ with base point x, we intersect P with all its “immediate” (first
order) neigbours in Ψ with base point x.

5 Coordinate calculations

We consider the case where M = R3. A (smooth) function f : R2→ R gives rise to
a surface F in R3, namely its graph. Not all surfaces in R3 come about in this way
(they may contain vertical surface elements), but since our notions are local and
invariant under diffeomorphisms, it suffices to consider such “graph”-surfaces.

We shall be concerned in particular with linear and quadratic2 functions, and
their graphs. The graphs of the linear functions are planes P. We consider in
particular pointed planes (x,P), since they give rise to surface elements. A pointed
(non-vertical) plane with x = (x,y,z) is given by a 5-tuple (x,y,z, p,q) of numbers,
namely the graph of the linear function f with f (x,y) = z and with ∂ f ∂x = p and
∂ f ∂y = q, so

f (ξ ,η) = z+ p(ξ − x)+q(η− y), (4)

or writing dx for the “increment” (ξ − x), and similarly dy for η − y and dz for
ζ − z,

f (x+dx,y+dy) = z+ p dx+q dy,

or
dz = p dx+q dy.

Consider also another the pointed plane with same base point x, so it given by
(x,y,z, p+δ p,q+δq). Then it is elementary arithmetic to prove

Proposition 8 Consider the pointed planes given by (x,y,z, p,q) and by (x,y,z, p+
δ p,q+δq), respectively. Then (x+dx,y+dy,z+dz) belongs to both these planes
iff

dz = p dx+q dy and δ p ·dx+δq ·dy = 0.
2“linear” is here to be read: polynomial function of degree ≤ 1; similarly, we us “quadratic” for

polynomial functions of degree ≤ 2.
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For two surface elements P and P′ to be in united position, P ≈ P′, they must
first of all be neighbours, P∼ P′, so they are of the form

(x,y,z, p,q) and (x+dx,y+dy,z+dz, p+d p,q+dq)

respectively, with (dx,dy,dz,d p,dq) ∈ D(5); and then

P≈ P′ iff dz = p dx+q dy. (5)

To prove symmetry of the relation ≈, we should from dz = p dx+q dy deduce
that

dz = (p+d p)(dx)+(q+dq)(dy);

but this follows because d p ·dx = 0 and dq ·dy = 0 since (dx, . . . ,dq) ∈D(5). (Lie
puts it this way, [7] p. 523: “here, we ignore infinitely small quantities of higher
order”; in our formalism, the “higher order quantities” to be ignored are d p · dx
and dq ·dy; they are both 0.)

An 8-tuple (x,y,z, p,q,r,s, t) defines a quadratic function f : R2→ R, given by

f (ξ ,η)= z+ p(ξ−x)+q(η−y)+ 1
2 r(ξ−x)2+s(ξ−x)(η−y)+ 1

2 t(η−y)2. (6)

The partial derivatives ∂ f/∂ξ and ∂ f/∂η are the functions

∂ f/∂ξ (ξ ,η) = p+ r(ξ − x)+ s(η− y)

and
∂ f/∂η(ξ ,η) = q+ s(ξ − x)+ t(η− y)r,

respectively, or, writing dx for ξ − x and dy for η− y,

∂ f/∂ξ ‘(x+dx,y+dy) = p+ r dx+ s dy (7)

and
∂ f/∂η(x+dx,y+dy) = q+ s dx+ t dy (8)

Let K be the calotte at (x,y,z) given as the graph of the restriction of this func-
tion to M2(x,y). Then every (dx,dy) ∈ D(2) gives rise to a surface element be-
longing to K, namely

(x+dx,y+dy,z+ p dx+q dy, p+ r dx+ s dy,q+ s dx+ t dy), (9)

and every surface element belonging to K is of this form for unique (dx,dy)∈D(2).
We consider a surface element P= (x,y,z, p,q) and ask for the relation between

on the one hand
• calottes K = (x,y,z, p,q,r,s, t) extending P, and
• surface elements P′ = (x+dx,y+dy,z+ p dx+q dy, p+d p,q+dq) on the

other. (Here, (dx,dy,d p,dq) ∈ D(4); and surface elements of the described form
are automatically in united position with P.)
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Proposition 9 The surface element P′ belongs to K iff (r,s, t) is a solution of a cer-
tain linear equation system (two equations in three unknowns), namely the linear
system with augmented matrix[

dx dy d p
dx dy dq

]
. (10)

Proof. Consider the function f from (6) whose 2-jet at (x,y) has K as graph. Its
first partial derivatives at (x+ dx,y+ dy) are p+ r dx+ s dy and q+ s dx+ t dy,
respectively. For P′ to belong to K, these partial derivatives have to be p+ d p
and q+ dq, respectively. This equation expresses a relation between (r,s, t) and
(dx,dy,d p,dq) on the other, which may be rewritten in matrix form as stated.

6 PDEs in coordinates

Now we bring in a PDE Ψ, a 4-dimensional submanifold of the 5-dimensional
manifold S1(R3) of surface elements in R3. Our considerations are local, so we
may assume that Ψ is given as the zero set of a certain function ψ : R5→ R, in other
words, (x,y,z, p,q) ∈Ψ iff ψ(x,y,z, p,q) = 0. The graph of a function f : R2→ R
is then a solution surface iff for all (x,y)

ψ(x,y, f (x,y), ∂ f
∂x (x,y),

∂ f
∂y (x,y)) = 0

which is a partial differential equation of order 1.
We proceed to describe the solution calottes for Ψ in analytic terms. A neces-

sary condition that a calotte K = (x,y,z, p,q,r,s, t) is a solution calotte is of course
that its restriction (x,y,z, p,q) is in Ψ.

To be a solution calotte means that all surface elements belonging to K are in Ψ.
These surface elements are of the form described in (9). So K = (x,y,z, p,q,r,s, t)
is a solution calotte if (r,s, t) has the property that

ψ(x+dx y+dy, z+ p dx+q dy, p+ r dx+ s dy, q+ s dx+ t dy) = 0 (11)

for all (dx,dy) ∈ D(2). We consider this expression as a function of (dx,dy) ∈
D(2). We Taylor expand ψ from (x,y,z, p,q) and use ψ(x,y,z, p,q) = 0; then we
see that (11) equivalent to

∂ψ

∂x
·dx+

∂ψ

∂y
·dy+

∂ψ

∂ z
· (p dx+q dy)

+
∂ψ

∂ p
· (r dx+ s dy)+

∂ψ

∂q
· (s dx+ t dy) = 0

(12)
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where the partial derivatives are to be evaluated in (x,y,z, p,q). As a function of
(dx,dy) ∈ D(2), it is linear, and it vanishes iff it vanishes on all (dx,0) and on all
(0,dy). This gives two equations (writing ψx for ∂ψ/∂x, evaluated at x,y,z, p,q),
and similarly for ψy, ...ψq)

(ψx +ψz p+ψpr+ψqs) dx = 0,

(ψy +ψzq+ψps+ψqt) dy = 0,

and for K to be a solution calotte, they have to hold for all dx in D and for all dy in
D.

By the fundamental axiom in SDG, one has the principle of “cancelling uni-
versally quantified dx s”:

if a ·dx = 0 for all dx ∈ D, then a = 0.
So if these two equations hold for all dx, and all dys, the two coefficients given

by the parentheses are 0. We therefore have

Proposition 10 Given a surface element P = (x,y,z, p,q) ∈ Ψ and a calotte K =
(x,y,z, p,q,r,s, t) extending P, then K is a solution calotte for Ψ is

ψx +ψz p+ψpr+ψqs = 0,

and
ψy +ψzq+ψps+ψqt = 0.

For fixed P = (x,y,z, p,q), the two equations in this Theorem is a linear system,
two equations with three unknowns r,s, t and with augmented matrix[

ψp ψq −ψx− p ·ψz

ψp ψq −ψy−q ·ψz

]
. (13)

Given P = (x,y,z, p,q) ∈Ψ.
The condition on a neighbour surface element P′ that it is belongs to a calotte

K is given by a condition on the (r,s, t) of the calotte, namely that it is a solution
of the equation system (10) in Proposition 9.

The condition that a calotte extending P is a solution calotte is that (r,s, t)
is a solution of the equation system (13) in Proposition 10. To say that P′ is a
characteristic neighbour of P is therefore to say that whenever (r,s, t) solves (13),
it also solves (10).

From the “elementary linear algebra” in the Appendix therefore follows that
this is the case iff the augmented matrix in (10) is a scalar multiple of the one in
(13) .
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We are now assuming that the PDE ψ is non-degenerate (or non-singular),
meaning that, at the given (x,y,x, p,q), at least one of ψp and ψq is invertible,
then the rank of the coefficient matrix in ( 13) is 2, whence it represents a sur-
jective linear map R3 → R2; the solution set of the equation system is therefore
a 1-dimensional (and affine) subspace of the (r,s, t)-space. So also for a general
(sufficiently non-singular) PDE Ψ⊆ S1(M), there are ∞1 solution calottes extend-
ing a given P ∈Ψ. So also for a general (sufficiently non-singular) “abstract” PDE
Ψ⊆ S1(M), there are ∞1 solution calottes extending a given P ∈Ψ.

Therefore we have

Theorem 11 Assume P = (x,y,z, p,q) is in Ψ. For P′ = (x+dx,y+dy,z+ p dx+
q dy, p+d p,q+dq) to be a characteristic neighbour element, it is necessary and
sufficient that there exists a scalar λ such that

(dx,dy,dz,d p,dq) = λ · (ψp,ψq, p ·ψp +q ·ψq,−ψx− p ·ψz,−ψy−q ·ψz), (14)

or equivalently, that

(dx,dy,d p,dq) = λ · (ψp,ψq,−ψx− p ·ψz,−ψy−q ·ψz). (15)

Here, ψp denotes ∂ψ/∂ p evaluated at P = (x,y,z, p,q), and simlarly for ψq, ψx

etc. Note that our assumption that at least one of ψp and ψq is invertible implies
that the scalar λ is uniquely determined.

From the Theorem follows in particular that for (x+dx,y+dy,z+ p dx+q dy)
to be a characteristic neighbour point of P (in the calotte sense), it is necessary that

(dx,dy) = λ · (ψp,ψq). (16)

In fact, it is also sufficient, since the relevant d p and dq then can be reconstructed
from λ and the partial derivatives of ψ by (15).

7 Differential equation for Monge characteristics

We consider the surface element P = (x,y,z, p,q) in Ψ, so ψ(x,y,z, p,q) = 0. A
neighbour surface element with same base point is of the form (x,y,z, p+δ p,q+
δq) with (δ p,δq)∈D(2), and this element is in Ψ if ψ(x,y,z, p+δ p,q+δq) = 0;
by Taylor expansion, and using ψ(x,y,z, p,q) = 0, this is equivalent to

(∂ψ/∂ p) ·δ p+(∂ψ/∂q) ·δq = 0, (17)

where the partial derivatives are to be evaluated at (x,y,z, p,q).
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A point in P is of the form (x+dx,y+dy,z+ p dx+q dy) with (dx,dy)∈D(2),
and this point is in the surface element (x,y,z, p+ δ p,q+ δq) iff p dx+ q dy =
(p+δ p) ·dx+(q+δq) ·dy, that is, iff

dx ·δ p+dy ·δq = 0. (18)

So to say that (x+dx,y+dy) is a Monge-characteristic neighbour of P is to say that
all (δ p,δq) ∈ D(2) which satisfy (17) also satisfy (18). Assuming, as before, that
∂ψ/∂ p and ∂ψ/∂q do not vanish simultaneously, this property is equivalent to:
(dx,dy) is of the form λ · (∂ψ/∂ p,∂ψ/∂q). Thus, (x+dx,y+dy,z+ p dx+q dy)
is a Monge-characteristic neighbour of P = (x,y,z, p,q) iff

(dx,dy) = λ · (∂ψ/∂ p,∂ψ/∂q).

We see that this is just the equation (15) for characteristic neighbour points in the
calotte sense. We conclude that the two notions of “characteristic neighbour point”
agree. This makes sense, since we noted in the end of Section 3 that P′ can be
reconstructed from P and the base point y of P′.

.

Appendix

Basically, when working in coordinates, the method of SDG is the method of Tay-
lor expansions of functions in several variables, but together with an explicitly for-
mulated theory of which terms (quantities) “can be ignored”, meaning that they are
= 0. This is not a quantitative question of “being infinitely small”, but a qualitative
one of being nilpotent of a certain order.

These notions can be formulated in exact terms in terms of basic ring commu-
tative ring R serving as a number line. Let us list some basic constructs growing
out of any commutative ring R, whose elements we call “numbers”. First of all, we
have the subset D ⊆ R of numbers x ∈ R with x2 = 0; the elements of D we call
first order infinitesimals. We write x∼ y if (x− y) ∈ D.

More generally, D(n)⊆ Rn is

D(n) := {(x1, . . . ,xn ∈ Rn | dxidx j},

(for all i, j = 1, ...,n), not to be confused with Dn⊆Rn which is larger: only dx2
i = 0

is required, for i = 1, ...,n.
The basic (KL-) axiom of SDG says that D(n) classifies linear maps Rn→ R,

meaning that any f : D(n)→ R extends uniquely to a linear map Rn → R. (Here
“linear” means “polynomial of degree ≤ 1” or “affine”). For n = 1, the uniqueness
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assertion here implies the principle of cancelling universally quantified ds: if a ·d =
0 for all d ∈ D, then a = 0.

The first order neighbour relation ∼ in Rn is defined by x∼ y if (x−y) ∈D(n).
We have similarly D2 ⊆ R, consisting of the numbers x ∈ R with x3 = 0, called

the second order infinitesimals. More generally D2(n)⊆ Rn is defined by . . . , and
the resulting second order neighbour relation ∼2 defined by x ∼2 y if (x− y) ∈
D2(n).

Recall that for x ∈ Rn, the subsets M(x) and M2(x) were described in the In-
troduction for general M, e.g. M(x) = {x′ | x∼ x′}. Thus in Rn, M(0) = D(n). The
basic axiomatics of SDG may be expressed by saying that a function f : M(x)→ R
extends uniquely to a (globally defined) polynomial function f : Rn → R of de-
gree ≤ 1 (an affine function). The coefficients of this affine function are the first
order partial derivatives of f at x, (and the constant term f (x)). The graph F of
this function is the tangent plane at the point (x, f (x) ∈ Rn+1. In turn, this tangent
plane (together with the point (x, f (x)) in it. For n = 2, this contains the same
information as the surface element of the surface (the graph) at this point.

Similarly, a function f : M2(x)→ R extends uniquely to a polynomial function
Rn→ R of degree ≤ 2, whose coefficients are the partial derivatives of order ≤ 2
of f .

Any linear map R→ R is multiplication by a unique λ ∈ R. From this follows,
for any vector space A:

Proposition 12 Let p : A→ R be a surjective linear map, and let q : A→ R be any
linear map. If the kernel of p is contained in the kernel of q, then q = λ · p for a
unique λ ∈ R.

Proof. Contemplate the commutative diagram with exact rows

0 - Ker(p) - A
p - R - 0

0 - Ker(q)

incl

?
- A

id

?

q
- R

?

.

The right hand vertical map exists by exactness of top row, and is multiplication by
a unique scalar.

Let p : A→ R be a linear map, and let r ∈ R. If p(x0) = r, then the solution
set of the equation p(x) = r is the coset x0 +Ker(p). As a Corollary of the above
Propostion, we then have
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Proposition 13 Let p : A→ R be a surjective linear map, and q : A→ R any linear
map. Let r,s ∈ R. If the solution set of p(x) = r is contained in the solution set of
q(x) = s, then there is a unique λ ∈ R so that q = λ · p and s = λ · r.

Proof. Take some x0 ∈ A such that p(x0) = r, using p surjective. The assumption
then implies that q(x0) = s. The solution sets of the two equations are, respectively,
x0+ker(p), and x0+ker(q), and the assumed inclusion relation then clearly implies
ker(p)⊆ ker(q). By the previous Proposition, there is a unique λ ∈R with q= λ · p.
We then have

λ · r = λ · p(x0) = q(x0) = s.

Proposition 14 Consider two linear equation systems given by the augmented ma-
trices [

p1 p2 r1
p1 p2 r2

]
(19)

and [
q1 q2 s1

q1 q2 s2

]
(20)

respectively, and assume that at least one of the pis is invertible. Assume that the
solution set of the first is contained in the solution set of the second. Then there
exists a unique λ ∈ R with

λ · (q1,q2,s1,s2) = (p1, p2,r1,r2).

Proof. Without loss of generality, we may assume that p2 is invertible. Assume
(x,y) solves p1x+ p2y = r1; then there is a (unique) z so that (x,y,z) solves the
system (19). Hence by assumption, it solves (20), and so (x,y) solves q1x+q2y =
s1. From Proposition 13 then follows that there exists a λ such that q1 = λ p1,
q2 = λ p2 and s1 = λ r1. We prove that also s2 = λ r2: with the unique z already
considered, we have p1y+ p2z = r2; multiplying this equation by λ , we get q1y+
q2z = λ r2, but the left hand side here is s2 since (x,y,z) solves (20). This proves
the Proposition.
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