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SYNTHETIC REASONING IN DIFFERENTIAL GEOMETRY
by

Anders KOCK

All manifolds acquire in the context of synthetic dif-
ferential geometry (SDG) a binary relation, the "neighbour”
relation ~, which is symmetric and reflexive, but not tran-

sitive. For instance, on the line R, the relation is given
by

xn~y iff x-y =D (=[d =Rr[d%=0]).

It is nreflexive (x ~ x) because 0 D, and symmetric
(Xx vy =y~ x) because d «D = -d D, but not transitive,
since D is not stable under addition: if d% = 0 and d% =0,

(@'+a®)? = a2+ a2+ 24,4, = 0+0+2d,4, ,
but there is no reason for d1d2 to be zero.

Even in the category of sets, a reflexive symmetric
relation ~ on a set M gives rise to interesting combinatorial
notions. In §1, we describe some of these. The logical char-
acter of this descriptions is evidently so that the notions
described make sense in any topos, in particular in models
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of syntetic differential geometry where the notions acquire a
geometric meaning. This meaning also motivates the termino-
logy we shall use. It even jusitifies the terminology, a fact
we shall, however, not prove.

§1. Combinatorial notions* derived from a reflexive symmetric
relation ~ on a set M.

Let such M, ~ be given. If x ~ y, we say that x and y
and nedighbour points. The set M(1) < MxM given by

M(1) = [(x,y) = (MxM) | x ~ ¥]

is called the §inat neighbounhood of the diagonaf. It contains
(the image of) the diagonal A:M»+ MxM.
For any x « M, the set M1(x) = M given by

Moo = lyeMlx vyl

is called the 1-monad around x.
If x~vyand y v z, and also x ~ z, we say that the
three elements x,y,z form an infinitesimal triangle:

Z

Y

X y

the lines indicating the relation ~. We say the triangle is
degenenate if x = y or if x = z or if y = z.

A map-M1(x) + F (F any set) is called a 1-jet at x
(with values in F).

% Some of these notions were, in the present form, first considered by
Joyal.
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A map w:E - M (E any set) is called a bundfe over M,
and, for x « M, the set n-1(x) < E is called the fibre ovexr
x, and may be denoted Ex‘

A connection on a bundle E + M is a law V, which to any

pair x ~ y of neighbour points in M associates a map V(x,y):
Ex > Ey’ such that

V(x,x) = V(y,x)oV(x,y) = identity map of Ex'

(for many bundles in the context of synthetic differential
geometry, V(x,x) = id will imply Y(y,x)eV(x,y) = id
¥x ~ o y).

The effect of the connection V may be drawn:

B (B
Pi—Jdveno |F

X y

In particular, [3], consider the bundle proj1:MU) + M
(which to x ~ y associates x). The fibre over x is M1(x). A
connection in this bundle is thus a law V(x,y) which to zvx
associates V(x,y)(z) ~ y. If we write A(x,y,z) for V(x,y)(z),
we see that a connection in the bundle M(1) + M is the same
as a partially defined ternary operation X on M, with A(x,y,z)
defined whenever x ~ y and x ~ z, and with A(x,y,z) ~ y. (In
the context of SDG, it will then usually §offow that also
A(x,y,z) ~ z). The effect of the operation A may be drawn:

z > A(x,y,z)

b'd > Y
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where the lines indicate the relation ~. So it gives a way
of completing a configuration

Z

[

X y

jnto a quadrangle, and quadrangles defined this way may be
called the "infinitesimal parallellograms" of the connection
A. Note that we cannot conclude A(x,y,z) = A(x,z,y) (if this
holds, we say the connection is torsifon §nee). Connections in
the bundle M(1) correspond, in the context of SDG, to the
classical notion of '"connection on the tangent bundle TM + M
of M".

Consider again the general case of an arbitrary bundle
E - M, and let V be a connection. For an infinitesimal tri-
angle x,y,z (see (1.1)), we may ask: do we have

V(X’Z) = V(}’,Z)°V(X,Y) (1-2)

Or equivalently

idEx = V(z,x)eV(y,z)eV(x,Y) (1.3)

If this holds for all infinitesimal triangles, we say that
the connection is cuirvatunre-gree.

For E + M, we can construct a groupoid FULL(E - M) with
M as its set of objects, and where an arrow X =— Yy is a bi-
jective map E, + Ey.

Also, we can construct a groupoid HOM, with M as its
set of objects, and for any x, y in M. there is exactly one
arrow x-— y, denoted (x,y).

An integnaf for the connection V is now defined as a
functoxn v :HOM + FULL(E + M) with V(x) = x for any object
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X =M, and with

V(x,y) = Vix,y) for x~y (1.4)

Clearly, if the connection V has an integral V,it is curva-

ture-free. For to say that V is a functor means that it pre-
serves composition:

V(x,2) = V(y,z)°V(x,y), Vx,y,z €M (1.5)

But if x,y,z form an infinitesimal triangle, we may write V
instead of V in (1.5), because of (1.4). Then (1.5) becomes
(1.2).

Many fundamental questions in differential geometry can
be formulated as: for which bundles is it true that every

cunvature-free connection has an integral (in fact a unique
one)?

Given a bundle %:E + M, a distrdibution on E Zhansversal
to the {ibres of m, is a law D which to each p « E associates
a subset D(p) satistying

p =0(p) (1.6)
qe0(p) < pe=0(q) (1.7)

and
m maps D(p) bijectively to Ml(ﬂ(p)). (1.8)

Such a distribution can be daawn:
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p(p)

3

M1(x) "

(The drawing reflects (1.6) and (1.8), but not (1.7). Howev-
er, for many bundles in the context of SDG, (1.7) will be
implied by (1.6) and (1.8)).

There is a natural 1-1 correspondence between connec-
tions Vv on E + M, and such distributions: given V define,
for p = Ee»

D(p):= (V(x,Y)(P) | ¥ = My ()},

and given P, define V by

V(x,y)(p):= unique element in Eyﬂ ?(p)

for p = E,.

To the notion of integral of connections corresponds
a notion of sofution of the distribution: a certain bijective
map to E from a product-bundle, MxF -+ E, for a suitable F.
We shall not go into it.

Let G be a group, written multiplicatively, and with
neutral element e.

A 0-form on M with values in G is a map f:M + G.

A 1-form on M with values {n G is a map w:M(l) + G,
with

w(x,x} = e and w(x,y) = m(y,x)_1 ¥x vy,
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(In the context of SDG, the second equation will usually fol-
low from the first).

A 2-form on M, with vatues £{n G is a law O which to any
infinitesimal triangle x,y,z associates an element 0(x,y,z)=G,
and associates e if the triangle is degenerate. The zexro

2-form, denoted 0, takes value e on aff infinitesimal trian-
gles.

To a 0-form f we associate a 1-form df:
(df) (x,y) = £ -£(x) 7,

and to a 1-form w, we associate a 2-form duw:
(dw) (x,y,2) := w(z,x) w(y,z) wlx,y)-

(Think of the right hand side here as the curve integraf of
w around the boundary of the triangle x,y,z).

Clearly, d(df) = 0. A 1-form w with dw = 0 is called
closed. A 1-form w which can be written w = df, for on £:M+G
which is unique, modulo multiplication on the right by a fixed
a = G, is called exact. Because d(df) = 0, exact 1-forms are

closed. If w = df, we say f is a paimitive of w.

Many fundamental question in differential geometry can
be formulated as: for which (M,v), G is it true that eveay
closed G-valued 1-form onMis exact ?

Let N and M are sets, each equipped with a symmetric-
reflexive relation ~. Let w be a G-valued (0,1, or 2-) form
on M. Let h:N + M be a map preserving ~. Then we get a (0,1,

or 2-) form h*s on N by putting (for the 1-form case):

(h"w) (n,n,) := w(h(n),h(h,))
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*
(n1 v D, in N). Similarly for 0 or 2-forms. Clearly d(h w) =
®
h " (dw). In particular

w closed = h*w closed.

Let F be a fixed object. We denote by Diff(F) the group
of all bijective maps F » F.

Consider the product bundle w:MxF - M. Then there is a

natural 1-1 correspondence between

connections V on MxF » M

and

Diff(F)-valued 1-forms w on M.
For, given w define V by
V(x,y) (x,u) := (y,u(x,y)(w)), (ueF) (1.9)

and given V, define w (''the connection foam") by

w(x,y) (u) := proj,(V(x,y)(x,u)). (1.10)

It is easy to see that V is curvature-free if and only if w
is closed. Furthermore, if f is a primitive of w, df = w, we
can construct an integral V of ¥ by

T, y) (x,u) i= (v, £ (E) W), (weF)  (179)

and given an integral V of V, we can construct a primitive

f of w by choosing X, €M, and putting

£(y) () 1= proj, (F(xy,y) (xg,m). (1710)

If we had chosen X4 instead of X, we would get another prim-
itive, g, with g.a = f where a «Diff(F) is the constant ele-
ment in Diff(F) given by
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a(u) := projz(ﬁ(xo,x1)(xo,u)) (u =F).

From this follows that (for product bundles) the question of
integrals V for V is equivalent to the question of primitives
of the corresponding w, and that the integral is unique iff
the primitive is unique modufo right multiplication by a
constant.

Many differential-geometric data present themselves
naturally as connections (or distributions) on product bun-
dles. The above considerations now prove that the question
of the integration of the data reduces to the problems of
finding primitives of closed G-values 1-forms, where G =
Diff(F), i.e. to the problem of exactness of closed G-valued
1-forms. This question will be considered in the next numer-
al.

EXAMPLE. Consider an ordinary 15t order differential
equation of the form

y' = h(x,y).

The standard picture one draws of this has, in the present
context,a mathematical status, namely as the picture of a
distribution P on the bundle RxR + R

D(x,y) = {(x+d,y+h(x,y)-d) | d « D}

We leave to the reader to write down the explicit formula
for the connection V and the connection form w associated
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to this distribution. Also he many verify that a solution of
D (respectively an integral for V,respectively a primitive
for w) "is" a solution of the differential equation.

Similarly, a partial differential equation of form

=]
N
I

=l
N
!

= h,(x,y,2)

presents itself as a distribution on the product bundle
RZXR > Rz. Unlike in the 1-dimensional case above, it is easy
to construct examples where such differential equation has no
solution: 1-forms on R2 need not be closed, whereas 1-forms
on R1, in the context of SDG, always turn out to be closed

(for reasonable value-groups, like (R,+) or Diff(R)).

§2. When are closed G-valued 1-forms on M exact?

In the context of SDG, we give a sufficient condition
for this to be the case, which consists of two conditions:
i) a condition on G ("G admits integnration'), which does not
depend on M,

ii) a condition on M ("M is path connected and simply connec-
Zed"), which does not depend on G.

The context of SDG implies the existence of an order-
ing € on “the line" R, so that it makes sense to talk about
the "unit interval™ I = [0,1].

We say that a group G admiis Aintegraiion if any G-val-
ued 1-form on I is exact. If G = (R,+), this is the usual in-
tegration axiom. The group Diff(R) does not admit integration
(see example below), but it has many large subgroups which
do.

EXAMPLE. The differential equation y' = yz on I co-
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rresponds to a Diff(R)-valued 1-form which is not exact,
since many of the solutions y = (a—x)_1 do not extend over
the whole of I. Expressed in terms of a connection and its

integral, ¥, V(0,1) can not be defined on (0,u) with u > 1:

/

4

/

(0,u)

<o
—

(There should be a weaker sense in which Diff(R) admits in-
tegration, namely in a focaf sense: for any Diff(R)-valued
1-form w on I, there exists a functor &:HOI -+ DiffLOC(R),
extending w, where DiffLoc(R) is the groupoid of bijective
maps from one open subset of R to another, for a suitable

notion of open-ness).

We shall not discuss here the condition "G admits in-
tegration” any further. We shall sketch the proof of

THEOREM. 1§ G < Diff(R™) 44 a subgroup which admits
integration and M has connectedness propenties (ii) above,
then closed G-valued 1-forms on M anre exact.

Proof-sketch. Given a closed G-valued 1-form w on M,
to construct a primitive f of it, choose X, €M, and choose
for each x €M a map hx:I + M with hx(O) = X4 hx(1) = X
("hx is a path from x, to x"; the existence of such path is
the pathwise connectedness-assumption on M). The crucial
point of the proof is to prove that

f(x) := £ W (2.1
X
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is independent 0§ the choice of the path hx' By the " curve
integral" fhxm, we mean g(1)-g(0)_1, where g: 1 -~ G is a
primitive of the 1-form h;(m) on I. If we had chosen another
such path, k,, instead of hy, the assumption of simply con-
nectedness of M implies the existence of a map H:IxI + M
which restricts on the four sides of the square, to, respec-
tively,

hx’ constant X, kx’ constant Xx.
Since the two sides, whereH is constant, do not contribute
to the curve integral of H*» around the periphery, we get
that fp.w = kaw iff the integral of H"w around the peri-
phey yields e =G. Now H*» is a closed 1-form on IxI which
is the zero form on two opposite sides (where H is constant).
So to prove w = w, it suffices to prove:

1Y Ihx ka ’ P

LEMMA. Let 0 be a closed 1-form on IXI with values in
G. Then fa(IXI)o = e.

Proof. There are two steps in this proof, one concep-
tual, one arithmetic, but both typical for synthetic rea-
soning. The conceptual one reduces the question from the
‘finite' rectangle IxI to 'infinitesimal' rectangles

[t,t+d] x [s,s+8]  ((d,8) =DxD),

and is a two fold "infinitesimal induction": prove 'by in-
duction" in t < [0,1] that

= €

g([O,t]xI)o

by proving that the integral around a([O,t]xI) equals the
integral around 3([0,t+d]xI) ¥d =D, whence the derivative
of this integral, as a function of t, has to be 0, so the
integral ifself has to be constant, in fact (take t = 0) the
constant e. How are the two integrals in question proved to
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be equal? By proving that theintegral around the strip [t,t+d]xI
equals e, which in turn is achieved by a second infinite-
simal induction in s for

i 0
a([t,t+d]x[0,s])

which reduces the question to that of the infinitesimal rec-
tangle 3([t,t+d]x[s,s+6]). The infinitesimal induction ap-
plied here reads:

kK(0) = 0 A (k(t) =k(t+d) vt,d) =k = 0;

there is a stronger induction principle; which should hold
for anafytic functions:

k(0) = 0 A (k(t) =0= k(t+d) =0 Vt,d)= k = 0).

The proof of the lemma would noWw, of course, be fin-
ished if we had used the 'cubical' definition of forms (cf.
the contribution of Moerdijk and Reyes), since, with that
definition, srectangufar infinitesimal Stokes theorem hold
by definition. So

/ 0=/ d
a([t,t+d]x[s,s+s]) [t,t+d]x[s,s+6]
since d0 = 0. But with the "combinatorial' definition we
employ, it is the triangufar infinitesimal Stokes theorem
which holds by definition. So the arithmetical step of the
proof is essentially to compare the '‘curve integral" of a
1-form 0 around an infinitesimal triangle in IxI, and an
infinitesimal rectangle in IxI:

For ease of notation, we shall generalize and consider
an arbitrary R™ instead of IxI. The relation x ~ y (for X =
(X1, .05Xp), = (y1,...,yn) ) is defined by
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x~vy iff (xy)=D@m) (= I[(d1,...,dn) =R di-dj =0 vi,j )

Also, we shall change the infinitesimal rectangle considered
to an arbitrary parallellogram P(x,d,d):

x+d+$
/ (d,8) = D(m)xP(n)
X+

d

Recall that the "curve integral'" of ¢ around this is just
the product (in G) of 0(x,x+d) with three other similar fac-
tors, and this product must he proved = e. The closedness
of 0 tells us that we get e if we take the curve integral
of 0 around an arbitrary infinitesimal triangle T(x,d,§):

Q (d,8) =D(2,n) =D(n)xD(n)
X x+d

where D(2,n) = D(n)xD(n) consists of those (d,8) = D(n)xD(n)
with d ~ §. I£ 4d = (d1""’dn)’ 8§ = (61,...,6n), this means

(di'ai)'(dj"sj) =0 Vi,j,
or, in view of di-dj = 0 and Gi-aj = 0, that
d16J + dj61 =0 Vi,j. (2.2)

The arithmetical part of the proof thus consists in proving
for any G-valued 1-form ¢, that

f 0 =e ¥(d,5) = D(2,n)
T(x,d,%)
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implies

/ 0=ce V(d,8) = D(n)xD(n) (*
P(x,d,6)

A proof of this for a general value group G may be found in
[1]. Here, we shall just do the case G = (R,+). The point of
the proof is that it utilizes some stronger versions of the
KL-axiom:

Axiom 1. Any map D(n) + R extends uniquely to an aff<ine map
R" - R.

In particular, a map D(n) » R with 0 » 0 extends unique-
ly to a fLinean map R™ + R. We express this by saying: "D(n)
classifies linear maps". In particular

0(x,x+d) = A(x;d) ¥d = D(n)
where A(-,-) depends finearfy in the second variable. Also,
A(x+8;d) = A(x;d) + D-IA(}_("_i,é)

where D1A(-;-,-) depends bilinearily in the two last varia-
bles. It is now easy to calculate

I 0

T(x,d,8)

A(x;d) + A(x+d;6-d) + A(x+8,-8)

= A(x;d) + A(x;8-d) + DyA(x;6-d,d)

+ Ax;-8) + DA(X,-8,8).

But if B(-,-) is any bilinear map then B(d,d) = 0 V¥d =D(n),
so, using this, and linearity in the variables after the sem-
icolons, the above reduces to
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/ 0 = D,A(x;8,d).  V(d,8) = D(2,n) (2.3)
T(x,d,8)

A similar calculation gives

/ 0 = DiA(x38,d) - DyA(x;d,8)
P(x,d,98)

V({d,§) « D(n)xD(n).

We note that, because of (2.2), any symmetric bilinear map
R"xR™ + R vanishes on D(2,n). The bilinear map D1A(§;-,-)
may be written uniquely as the sum of a a symmetric bilinear
map and a skew bilinear map, call the latter C(-,-), so
Clu,v) =% (D4A(x;u,V) - D4A(x;V,u)). Thus

/ 0 = C(x;36,d) ¥(d,8) = D(n,n) (2.4)
T(x,d,8)

and
/ 0 = 2C(x;6,d) ¥(d,§) = D(n)xD(n) (2.5)

P(x,d,$)
We may pose still another version of KL:

Axiom 1": any map D(2,n) » R extends uniquely to a map
R"xR" - R, which is the sum of an affine map and a skew bi-
linear map. Briefly "D(2,n) classifies skew bilinear maps".

The proof of the implication (*) (for G = (R,+)) is
now immediate: the assumption of closedness of 0 gives that
(2.4) vanishes, thus the skew bilinear C(-,-) map vanishes
on D(2,n). Since D(2,n) classifies skew bilinear maps, it
follow, that C(-,-) is the zero map, in particular (2.5)
vanishes.

The argument for the theorem can now easily be com-
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pleted. Essentially, we have proved that the construction of
f in (2.1) is independet of choice of the path hx' It remains
to be shown that df = w, and that f is unique modulo right
multiplication by a constant from G. We leave this to the
reader (for the case M = Rm, say), or refer to [1].

REMARK 1. Essentially the same calculations as those
used in the arithmetic part of the proof may be used to es-
tablish a direct comparison between 2-forms in the "trian-
gular'" and "rectangular" senses. This is also possible for

n > 3 (provided the values are R) but it is then more del-
icate, see [2] 1.18.

REMARK 2. One might think that a ''geometric" proof of
the implication (*) could be achieved by '"covering" or
"paving'" the infinitesimal parallellogram with infinitesimal
rectangles. I have tried in vain to do it, and conjecture
that it can be proved to be impossible.

REMARK 3. The reader may ask: how often do we want to
pull another KL-axiom out of the hat? The answer is that
they are all special cases of one 'uniform' axiom, called
Axiom 1V in [2]. It says that whenever an infinitesimal ob-
ject b c:Rk has been defined as the zero set of an ideal
Ic chRn) of finite codimension then:

Axiom ID: any function B + R extends to a function Rk + R
which is uniquely determined modulo the ideal I. (The finite
codimension of I allows one to choose definite representa-
tives, like when for k = 1, I = (tz), an equivalence class
of maps mod I has a unique affine representative, a state-
ment which, when internalized, is the appropriate axiom).
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