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Some matrices with nilpotent entries, and

their determinants.

Anders Kock

The present note is really a Section in a forthcoming treatise [4] on differ-
ential forms in the context of Synthetic Differential Geometry (elaborating
on [2], [3], [1]); but since the methods of this Section fall entirely within ele-
mentary linear algebra over a commutative ring R, we believe that it might
be of more general interest, and worthwile a separate publication.

The base ring R over which we work is implicitly supposed to have a rich
supply of nilpotent elements, in particular elements d ∈ R with d2 = 0, since
otherwise the theory collapses to the “theory of 0-matrices”.

For the applications which motivated the present research, R is the num-
ber line in a model of Synthetic Differential Geometry (SDG), but no as-
sumptions in this direction are needed for what we develop here. The only
extra assumption on R that we do make, is that “2 is cancellable in R”,
meaning that for all x ∈ R, x+ x = 0 implies x = 0. This will be a standing
assumption.

1 Matrices

We consider a commutative ring R. We use the word “vector space” as
synonymous with “R-module”, and “linear” means “R-linear”. A vector
space is called finite dimensional if it is linearly isomorphic to some Rn.

We begin by describing some equationally defined subsets of R, of Rn

(=the vector space of n-dimensional coordinate vectors), and of Rm·n (=the
vector space of m× n-matrices over R).

The fundamental one is D ⊆ R,

D := {x ∈ R | x2 = 0}.
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More generally, for n a positive integer, we let D(n) ⊆ Rn be the following
set of n-dimensional coordinate vectors x = (x1, . . . , xn):

D(n) := {(x1, . . . , xn) ∈ Rn | xjxj′ = 0 for all j, j′ = 1, . . . , n},

in particular (j = j′), x2j = 0, so that D(n) ⊆ Dn ⊆ Rn. The inclusion
D(n) ⊆ Dn will usually be a proper inclusion, except for n = 1. Note also
that D = D(1). Note that if x is in D(m), then so is λ · x for any λ ∈ R,
in particular, −x is in D(m) if x is. In general, D(n) is not stable under
addition.

The notation for D and D(n) is the standard one of SDG. The follow-

ing set D̃(m,n) was first described in [2] §I.16 and §I.18, with the aim of
constructing a combinatorial notion of differential m-form.

The subset D̃(m,n) ⊆ Rm·n is the following set of m × n matrices [xij ]
(m,n ≥ 2):

D̃(m,n) := {[xij ] ∈R
m·n | xijxi′j′ + xi′jxij′ = 0

for all i, i′ = 1, . . .m and j, j′ = 1, . . . , n}.

– We note that the equations defining D̃(m,n) are row-column symmetric;

equivalently, the transpose of a matrix in D̃(m,n) belongs to D̃(n,m). Also

clearly any p × q submatrix of a matrix in D̃(m,n) belongs to D̃(p, q). For
if the defining equations

xijxi′j′ + xi′jxij′ = 0 (1)

hold for all indices i, i′, j, j′, they hold for any subset of them. And since
each of the equations in (1) only involve (at most) four indices i, i′, j, j′, we

see that for and m× n matrix to belong to D̃(m,n) it suffices that all of its

2× 2 submatrices belong to D̃(2, 2).

If [xij ] ∈ D̃(m,n), we get in particular, by putting i = i′ in the defining
equation (1), that for any j, j′ = 1, . . . , n

xijxij′ + xijxij′ = 0.

Since 2 is assumed cancellable in R, we deduce from this equation that
xijxij′ = 0, which is to say that the ith row of [xij ] belongs to D(n). –
Similarly, the jth column belongs to D(m).
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The equations (1) defining D̃(m,n) can be reformulated in terms of a
certain bilinear map β : Rn×Rn → Rn2

, where β(x, y) is the n2-tuple whose

jj′ entry is xjyj′ + xj′yj. Then an m× n matrix X (m,n ≥ 2) is in D̃(m,n)
if and only if β(ri, ri′) = 0 for all i, i′ = 1, . . . , m (ri denoting the ith row of
X).

Note that this description is not row-column symmetric. But it has the
advantage of making the following observation almost trivial:

Proposition 1 If an m × n matrix X is in D̃(m,n), then the matrix X ′

formed by adjoining to X a row which is a linear combination of the rows of
X, is in D̃(m+ 1, n).

(There is of course a similar Proposition for columns.) Combining this

Proposition with the observation that the rows of a matrix in D̃(p, n) are in
D(n), we therefore have

Proposition 2 If X is a matrix in D̃(m,n), then any row in X is in D(n),
and also any linear combination of rows of X is in D(n). – Similarly for
columns.

We have a “geometric” characterization of matrices in D̃(m,n), which de-
pends on the following definition. We say that two vectors x = (x1, . . . , vn)
and y = (y1, . . . , yn) in Rn are neighbors (more precisely, first order neigh-
bours) if x − y ∈ D(n). It is clearly a reflexive and symmetric relation. To
say that x ∈ D(n) is thus equivalent to saying that x is a neighbour of the
zero vector 0 ∈ Rn. (This “neigbour”-relation is closely related to “the first
neighbourhood of the diagonal” known for schemes in algebraic geometry,
see e..g. [1]; this is a fundamental relation in SDG.)

The geometric characterization of D̃(m,n) is now the equivalence of 1)
and 2) (or of 1) and 3)) in the following

Proposition 3 Given an m × n matrix X = [xij ] (m,n ≥ 2). Then the

following three conditions are equivalent: 1) the matrix belongs to D̃(m,n);
2) each of its rows is a neigbour of 0 ∈ Rn, and any two rows are mutual
neighbours; 3) each of its columns is a neigbour of 0 ∈ Rm, and any two
columns are mutual neighbours. 2’) any linear combination of the rows of X
is in D(n); 3’) any linear combination of the columns of X is in D(m).
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Proof. We have already observed (Proposition 2) that 1) implies 2’), which
in turn trivially implies 2).

Conversely, assume the condition 2). Let ri denote the ith row of the
matrix. Then the condition 2) in particular says that the ri and ri′ are
neighbours; this means that for any pair of column indices j, j′,

(ri − ri′)j · (ri − ri′)j′ = 0

where for a vector x ∈ Rn, xj denotes its jth coordinate. So (xij − xi′j) ·
(xij′ − xi′j′) = 0. Multiplying out, we get

xijxij′ − xijxi′j′ − xi′jxij′ + xi′jxi′j′ = 0. (2)

The first term vanishes because ri ∈ D(n), and the last term vanishes because
ri′ ∈ D(n). The two middle terms therefore vanish together, proving that

the defining equations (1) for D̃(m,n) hold for the matrix. This proves
equivalence of 1), 2), and 2’). The equivalence of 1), 3), and 3’) now follows

because of the row-column symmetry of the equations defining D̃(m,n).

Remark. The condition 2) in this Proposition was the motivation for

the consideration of D̃(m,n), since the condition says that the m rows of
the matrix, together with the zero row, form an infinitesimal m-simplex, i.e.
an m + 1-tuple of mutual neighbour points, in Rn; see [2] I.18 and [3]. (In
the context of SDG, the theory of differential m-forms, in its combinatorial
formulation, has for its basic input-quantities such infinitesimal m-simplices.
The notion of infinitesimal m-simplex, and of affine combinations of the ver-
tices of such, make invariant sense in any manifold N , due to some of the
algebraic stability properties (in the spirit of Proposition 13 below) which

D̃(m,n) enjoys.)

2 Stability properties

We begin with a “coordinate free” characterization of D(n) ⊆ Rn. Recall
that we assume that 2 is cancellable in R. (Another characterization is given
in Proposition 7 below.)

Proposition 4 Let x ∈ Rn. Then x ∈ D(n) if and only if for any linear
α : Rn → R, α(x) ∈ D.
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Proof. Assume x ∈ D(n). Let α have matrix (a1, . . . , an), so that α(x) =∑
j ajxj . Then

(α(x))2 = (
∑

j

ajxj)(
∑

j′

aj′xj′),

which is a sum of n2 terms ajxjaj′xj′ = ajaj′xjxj′ , each of which vanish
because xjxj′ = 0.

Conversely, assume α(x) ∈ D for all linear α : Rn → R. Taking α to
be projj (=projection onto the jth coordinate), the assumption gives that
x2j = 0. Then taking α to be projj +projj′, the assumption gives that (xj +
xj′)

2 = 0. In view of x2j = 0 and x2j′ = 0, this says 2xjxj′ = 0, and since 2 is
cancellable, xjxj′ = 0.

The following is an immediate Corollary:

Proposition 5 Let f : Rn → Rm be a linear map. Then f maps D(n) into
D(m).

Proof. Let x ∈ D(n). To see that f(x) ∈ D(m), it suffices, by Proposition 4,
to see that for any linear functional α : Rm → R, we have α(f(x)) ∈ D. But
α◦f is a linear functional on Rn, and thus takes x into D, by the Proposition
4 again.

The set of matrices D̃(m,n) was defined for m,n ≥ 2 only, but it will

make statements easier if we extend the definition by putting D̃(1, n) =

D(n), D̃(m, 1) = D(m) (here, of course, we identify Rp with the set of 1× p
matrices, or p× 1 matrices, as appropriate). By Proposition 2, the assertion

that p×q submatrices of matrices in D̃(m,n) are in D̃(p, q) retains its validity,
also for p or q = 1.

Proposition 6 Let X ∈ D̃(m,n). Then for any p ×m matrix P , P · X ∈

D̃(p, n); and for any n× q-matrix Q, X ·Q ∈ D̃(m, q).

Proof. Because of the row-column symmetry of the property of being in
D̃(k, l), it suffices to prove one of the two statements of the Proposition, say,
the first. So consider the p × n matrix P · X . Each of its rows is a linear
combination of rows fromX , hence is inD(n), by Proposition 2. But also any
linear combinatinon of rows in P · X is in D(n), since a linear combination
of linear combinations of some vectors is again a linear combination of these
vectors. So the result follows from Proposition 3.

Here is an alternative characterization of D(n) ⊆ Rn:
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Proposition 7 Let x ∈ Rn. Then the following conditions are equivalent:
1) x ∈ D(n);
2) for any bilinear φ : Rn × Rn → R, φ(x, x) = 0;
3) for any symmetric bilinear ψ : Rn × Rn → R, ψ(x, x) = 0.

Proof. Any bilinear φ : Rn×Rn → R may be written ψ+φa with ψ bilinear
symmetric and φa bilinear alternating, in particular, φa(y, y) = 0 for any
y. Therefore, 2) and 3) are equivalent. Assume 2). For any pair of indices
i, i′ = 1, . . . , n, we have the bilinear map

(x, y) 7→ xi · yi′ . (3)

The assumption 2) applied to this bilinear map and to the given x gives that
xi · xi′ = 0 for all such pairs i, i′, and this is the defining set of equations
for D(n), so x ∈ D(n), proving 1). Finally, 1) implies 2), since any bilinear
Rn × Rn → R is a linear combination of the special bilinear maps listed in
(3).

3 Coordinate free aspects

Consider an arbitrary vector space (= R-module) V . We let Ds(V ) ⊆ V be
the set defined by

{v ∈ V | ∃ linear f : Rn → V (for some n) and ∃x ∈ D(n) with f(x) = v}.

Also, we let Dw(V ) ⊆ V be the set defined by

{v ∈ V | ∀ linear φ : V → R, φ(v) ∈ D}. (4)

From Proposition 4 follows immediately that Ds(V ) ⊆ Dw(V ) (whence the
subscripts s and w, for “strong” and “weak”). However,

Proposition 8 If V is finite dimensional (i.e. if V ∼= Rm for some m),
Ds(V ) = Dw(V ) (denoted D(V )); for V = Rm, D(V ) = D(m).

(An alternative characterization of D(V ), in terms of quadratic maps, may
be obtained from a coordinate free version of Proposition 7 above.)

Proof. Since both constructions Ds(−) and Dw(−) are preserved under
linear isomorphisms, it suffices to prove the result for V = Rm, i.e. to prove
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D(m) = Ds(R
m) = Dw(R

m). Clearly D(m) ⊆ Ds(R
m); for, the witnessing f

may be taken to be the identity map. Also Ds(R
m) ⊆ Dw(R

m), as observed
for a general V . And finally Dw(R

m) ⊆ D(m) by Proposition 4.

Since m × n matrices may be identified with linear maps Rn → Rm, we
would like a characterization of the matrices in D̃(m,n) in terms of the vector
space Lin(Rn, Rm).

Let V and W be finite dimensional vector spaces (V ∼= Rn, W ∼= Rm,
say).

Proposition 9 For a linear map F : V → W , the following conditions are
equivalent:

1) for all v ∈ V , F (v) ∈ D(W ).
2) for all v ∈ V and all linear functionals y :W → R, y(F (v)) ∈ D.

3) (if V = Rn, W = Rm): F ∈ D̃(m,n).

Proof. The equivalence of 1) and 2) follows from Proposition 8, applied to
F (v); 3) implies 1), by Proposition 6. Finally (assming V = Rn, W = Rm),
to say that 1) holds is now equivalent to saying that the matrix product
F · v is in D(m) for any n-dimensional column vector v, or, equivalently,
that any linear combination of the columns of F is in D(m). This implies by

Proposition 3 that F ∈ D̃(m,n).

For arbitrary finite dimensional vector spaces V and W , we may now
define a subset D̃(V,W ) ⊆ Lin(V,W ) by saying that F ∈ D̃(V,W ) if the

equivalent conditions 1) and 2) in the Proposition hold. Then D̃(Rn, Rm) =

D̃(m,n) (note the unfortunate interchange of the order of the arguments.)
Also, under the identification of V with Lin(R, V ), D(V ) gets identified with

D̃(R, V ).
Note that if V and W are finite dimensional, Lin(V,W ) is finite dimen-

sional, and so D(Lin(V,W )) ⊆ Lin(V,W ) makes sense; it will in general be

strictly smaller than D̃(V,W ); in matrix terms, let V = Rn,W = Rm, and
let A = [aij ] ∈ Lin(V,W ). Then to say that A ∈ D(Lin(V,W ) is to say that
aijai′j′ = 0 for all i, i′, j, j′, which is a strictly stronger assertion than (1) (the
fact that it is strictly stronger follows from the description of the “generic”
matrix in D̃(m,n) given at the end of the next Section.)

Let us finally record the “ideal-” properties of Proposition 6 when ex-
pressed in coordinate free terms; V,W , as well as U , U ′, denote finite dimen-
sional vector spaces.

7



Proposition 10 Let F ∈ D̃(V,W ). Then for any linear maps P : W → U

and Q : U ′ → V , P ◦ F ◦Q ∈ D̃(U ′, U).

4 Determinants

We now consider square matrices, say n×n. They form the R-algebra gl(n);

the subset D̃(n, n) ⊆ gl(n) satisfies the ideal property, Proposition 6, (but it

is not an ideal, since it is not stable under addition). Recall thatX ∈ D̃(n, n)
means that the equations (1) hold. Some of the determinant theory depends
only on a smaller set of equations, namely on the equations

xijxi′j′ + xi′jxij′ = 0 (5)

for i 6= i′ and j 6= j′. For brevity, we call a matrix satisfying this restricted
set of equations a special matrix. Thus, a 2× 2 matrix [xij ] is special if

x11x22 + x12x21 = 0;

a matrix is special iff all its 2× 2 submatrices are special. Unlike matrices in
D̃(n, n) (which always are nilpotent), special matrices may be invertible, to
wit for instance the 2× 2 matrix over Q

[
1 −1
1 1

]
.

Recall that the trace of an n × n matrix X is the sum of its diagonal
entries, tr(X) =

∑
i xii. The product of the diagonal entries is usually not

very interesting, but it will be significant here; for brevity, we call it the
multiplicative trace of the matrix,

trm(X) :=
∏

i

xii.

Proposition 11 For special matrices (in particular for matrices in D̃(n, n)),
multiplicative trace is a multilinear alternating function of the columns (or
of the rows) of the matrix.
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Proof. We do the column case. Multilinearity is clear. For the alternating
property, it suffices to see that if we interchange two columns of a special
matrix, then the multiplicative trace changes sign. For simplicity of notation,
let us consider interchange of the two first columns of a special matrix X ,
with resulting matrix X ′. Then

trm(X) = x11x22u

where u is the product x33 · . . . · xnn, and

trm(X
′) = x12x21u,

with the same u. These two expressions differ by sign, by (5), and this proves
the Proposition.

Recall the standard formla for the determinant of an n× n matrix X ,

∑

σ∈Sn

sign(σ)
n∏

i=1

xiσ(i). (6)

The product in the σth term may be viewed as trm(X
σ), where Xσ comes

about by permuting the n columns of X according to σ.
Thus, we can write the standard formula for the determinant of any n×n

matrix X as follows:

det(X) =
∑

σ

sign(σ) trm(X
σ).

If X is special, it follows from the Proposition that

trm(X
σ) = sign(σ) trm(X);

since sign(σ) · sign(σ) = 1, we have that all the n! terms in the sum (6) are
equal, namely equal to trm(X).

So we get in particular

Corollary 12 If X is a special n× n matrix, in particular, if X ∈ D̃(n, n),
then we have

det(X) = n! trm(X).
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Remark. The contention of this section is that for a matrix X ∈ D̃(n, n)
(n ≥ 2), its determinant is of interest. Clearly, over suitable rings R, there

do exist non-zero matrices in D̃(n, n), – take e.g. the n × n matrix all of
whose entries are equal to d ∈ R, where d ∈ R has d2 = 0. This matrix,
however, has determinant zero. Do there, for suitable R, exist X ∈ D̃(n, n)
with non-zero determinant ? The answer is yes, namely one may take R to
be the commutative k-algebra containing the generic X ∈ D̃(n, n) (here, k
is a field of characteristic 0). By this, we mean the k-algebra

R := k[X11, X12, . . . , Xnn]/J

obtained from the polynomial k-algebra in n2 indeterminates Xij, by dividing

out the ideal J , where J is generated by the defining equations (1) for D̃(n, n).
In this ring R, the matrix [Xij] formed by the indeterminates satisfies the

defining equations for being in D̃(n, n), by construction (in fact, it is what
one would call the generic such matrix, for k-algebras); and its determinant
is non-zero, by Theorem I.16.4 in [2]. For instance, if n = 2, the theorem
quoted implies that R, as a vector space over k, is 6-dimensional, having for
its basis the (classes modulo J of) the six polynomials

1, X11, X12, X21, X22,

∣∣∣∣
X11 X12

X21 X22

∣∣∣∣ .

More generally, the k-algebra R containing the generic matrix X in D̃(m,n)
is finite dimensional, having for its basis the determinants of all p × p-
submatrices of X (the 0×0-matrix is taken to be he constant polynomial 1);
see loc.cit.

5 Non-linear aspects

Assume that g : Rm → Rl is a map, not necessarily linear. Then if X is an
m × n matrix, we get an l × n matrix g · X by applying g to each of the n
columns of X . If g is linear, so given by an l ×m matrix, g · X is just the
standard matrix product of g and X .

If a ∈ Rn (viewed as a column matrix), X · a ∈ Rm is a linear combi-
nation of the columns of X (with coefficients the entries of a). Any linear
map g : Rm → Rl preserves linear combinations, which in matrix theoretic
formulation says

g · (X · a) = (g ·X) · a, (7)
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which is just the associative law for matrix multiplication. A crucial property
of matrices X ∈ D̃(m,n) is the following Proposition:

Proposition 13 Let X ∈ D̃(m,n), and let g : Rm → Rl be a 0-preserving
polynomial map. Then g preserves linear combinations of the columns of X,
i.e. the law (7) holds.

Proof. It is enough to consider the case where l = 1. To say that g is a
0-preserving polynomial map is to say that

g(u) = g1(u) + g2(u, u) + . . .+ gp(u, . . . , u)

with gk : Rm × . . . × Rm → R k-linear symmetric. We shall do the case of
“degree-2” polynomials only, so

g(u) = g1(u) + g2(u, u)

with g1 linear and g2 bilinear symmetric. Since (7) holds for g = g1, it suffices
to see that it holds for the g given by u 7→ g2(u, u); it does so, because both
sides of (7) then give 0, as we shall argue. First X ·a ∈ D(m), by Proposition
2, and it is therefore killed by u 7→ g2(u, u), by Proposition 7. On the other
hand, the matrix g2 · X has for its columns g2(cj, cj), and since g2(−,−) is
symmetric bilinear, these columns are all 0, again by Propositions 2 and 7.

Remark. Consider for a moment the real numbers R. If g : Rm → Rl

is a smooth zero preserving map, then it may be written gl + h with gl
linear, and h a remainder of the form u 7→ g2(u, u) · k(u) with g2 bilinear
symmetric (and k smooth). This assumption on g (except the smoothness),
makes sense also for a general commutative ring R instead of R. Inspecting
the proof of Proposition 13, we see that we might as well have proved the
following Proposition; we did not present it as our “primary” formulation,
because its seems like a more ad hoc result. It is, however, in this form that
it is applied in SDG. (In fact, in SDG, the decomposition assumed in the
Proposition obtains for any zero-preserving map g : Rm → Rl.)

Proposition 14 Let g : Rm → Rl be a zero preserving map, and assume g
may be written gl + h with gl linear, and h a remainder of the form u 7→
g2(u, u) · k(u) with g2 bilinear symmetric. If X ∈ D̃(m,n), g preserves linear
combinations of the columns of X, i.e. the law (7) holds.
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