SYNTHETIC CHARACTERIZATION OF REDUCED ALGEBRAS

Anders KOCK

Matematisk Institut, Aarhus Universitet, Aarhus, Denmark

Communicated by C.J. Mulvey Received 1 November 1983

1. Introduction and statement of main results

We pursue in this note the line of thought that the toposes one constructs in algebraic and differential geometry provide a basis on which a simple-minded synthetic reasoning can take place and be made useful, as the development of synthetic differential geometry shows. But such reasoning also pertains to pure algebraic geometry; here, we may quote [3] as an early pilot project. The present note considers an 'internal-infinitary' analogue of a main result in there, about the generic local ring R, which lives in the Zariski topos 3. In loc. cit. we proved (Proposition 2.2) that for $R \in 3$ we have (for any natural number n)

(*)
$$V(r_1, ..., r_n) \in \mathbb{R}^n: \quad \neg \left(\bigwedge_{i=1}^n (r_i = 0) \right) \Rightarrow \bigvee_{i=1}^n (r_i \text{ invertible}).$$

We now ask: when does this result hold if the externally indexed family $r_1, ..., r_n$ is replaced by an 'internally indexed family' $\{r_x \mid x \in M\}$ where M is an object of 3. So we ask: when do we have

$$(\neg e^{-1} \qquad \vdash \forall f \in \mathbb{R}^M: \ \neg (f \equiv 0) \Rightarrow \exists x \in M: \ f(x) \text{ is invertible.}$$

(Here, " $f \equiv 0$ " is short for " $Vx \in M$: f(x) = 0".) We give an answer for the case where $3 = 3_k$, meaning the Zariski topos over an algebraically closed field k (= the classifying topos for local k-algebras), and where M is affine, i.e. represented by some finite type k-algebra A; we write $M = \overline{A}$. Note that $R = \overline{k[x]}$. The result then is

Theorem 1. The principle (**) holds for $M = \overline{A}$ if and only if the k-algebra A is reduced.

Recall that "A reduced" means: 0 is the only nilpotent element in A. By Hilbert Milstellensatz, this is equivalent to saying: if an element $g \in A$ is killed by all $A \rightarrow k$, to en g = 0.

In [4, Theorem III.10.1], we proved that (*) holds for the "Dubuc topos $\tilde{\mathcal{A}}^{\text{op}}$ ", where \mathcal{A} is the category of germ-determined \mathbb{T}_{∞} -algebras A (i.e. $A = C^{\infty}(\mathbb{R}^n)/I$

274 A. Kock

where the ideal I is of local character, Dubuc [2]), and with $R = C^{\infty}(\mathbb{R})$. Also here, we can say exactly for which representables $M = \overline{A}$ $(A \in \mathcal{B})$ (**) holds:

Theorem 2. The principle (**) holds for $M = \overline{A}$ if and only if the \mathbb{T}_{∞} -algebra A is point-determined.

Recall from [4, Definition III.5.9] that "A point-determined" means that if an element $g \in A$ is killed by all $A \to \mathbb{R}$, then g = 0.

The proofs of these two theorems are closely related; we give the proof for the Zariski-topos case, with parenthetical remarks about modifications for the Dubuctopos case.

2. Generalities concerning the toposes

The Zariski topos over an algebraically closed field k and the Dubuc topos have some interesting common features. We let \mathscr{E} denote either of them and otherwise keep the notation of Section 1. We let \mathscr{B} denote the site of definition of either.

In these sites, the trivial algebra $\{0\}$ occurs, and is the only object covered by the empty family. The non-trivial algebras A in the two sites have a common feature: There exists a k-algebra map $A \rightarrow k$ (respectively, there exists a \mathbb{T}_{∞} -algebra map $A \rightarrow \mathbb{R}$). The former fact follows again from Hilbert Nullstellensatz (the objects of \mathscr{B} being finitely presented k-algebras), and the latter is immediate from the definition of "germ-determined" (in fact, Dubuc [2] motivated us to invent this notion). We refer to both these facts as "Nullstellensatz".

Now the following proposition is almost immediate, and more or less well known.

Proposition 2.1. The terminal object 1 of δ has no proper subobjects.

Proof. The initial object \emptyset of $\mathscr E$ is given as the functor which to each non-trivial algebra in $\mathscr B$ associates the empty set, and to the trivial algebra associates a one-point set. Now assume that U is a subobject of the terminal object, and that $U \neq \emptyset$. Then for some non-trivial $B \in \mathscr B$, we have $U(B) \neq \emptyset$. But B being non-trivial, there exists by Nullstellensatz some $B \to k$ (respectively $B \to \mathbb R$). This means that there exist maps $\mathbb I \to \overline B$ and $\overline B \to U$, thus also $\mathbb I \to U$. Since U is a subobject of $\mathbb I$, $U = \mathbb I$.

Proposition 2.2. Let $h: \bar{E} \to R$ be a map from a representable object into R, such that, for any point $p: \mathbb{1} \to \bar{E}$, $h \circ p$ is an invertible (global) element of R. Then h itself is an invertible (generalized) element of R, i.e. factors through the subobject $Inv(R) \to R$.

Proof. In the site \mathcal{B} , the assumption expresses that $h \in E$ has the property that any $p: E \to k$ (respectively $p: E \to \mathbb{R}$) takes h into a non-zero element. But then h must

be invertible in E, for otherwise, E/(h) would be a non-trivial algebra in \mathscr{M} (for the Dubuc-topos case, the fact that $E \in \mathscr{M} \Rightarrow E/(h) \in \mathscr{B}$ follows from [4, Theorem III.6.3]), and thus there would, by Nullstellensatz, exist some $E/(h) \rightarrow k$ (respectively $E/(h) \rightarrow \mathbb{R}$), whose composite with $E \rightarrow E/(h)$ would take h to 0, contrary to assumption.

3. Froof of the theorems

Let $A \in \mathcal{B}$ be reduced (respectively point-determined), and let

$$f \in_{\bar{B}} R^{\bar{A}}$$

(where $B \in \mathcal{B}$). The exponential adjoint of $f: \bar{B} \to R^{\bar{A}}$ is a map $\bar{B} \times \bar{A} \to R$ which we denote \hat{f} . Now R and the terminal object are representable. The full subcategory of ℓ consisting of representable (= affine) objects is closed under finite inverse limits, so that $\hat{f}^{-1}(0)$ is an affine subobject \bar{C} of $\bar{B} \times \bar{A}$. In fact, \hat{f} corresponds to an element f^{\vee} in the algebra $B \otimes_k A$, and \bar{C} is represented by $C = B \otimes_k A/(f^{\vee})$. (For the Dubuc topos case, $B \otimes_k A$ is replaced by $(B \otimes_{\infty} A)^{\wedge}$, using notation of [4, III §§5, 6].)

We consider the largest subobject S of \bar{B} so that $\vdash_S \forall x \in \bar{A}$: f(x) = 0. So

$$S = [y \in \overline{B} \mid \forall x \in \overline{A} : \hat{f}(y, x) = 0]$$

$$= [\![y \in \overline{A} \big| \ \forall x \in \overline{A} \colon (y, x) \in \overline{C}]\!] = \mathcal{V}_{\pi} \overline{C}$$

where $\pi: \bar{B} \times \bar{A} \to \bar{B}$ is the projection, and V_{π} is "right adjoint to pulling-back along π ". The assumption $\vdash_{\bar{B}} \neg (f \equiv 0)$, i.e.

$$\vdash_{\bar{B}} \neg (\forall x \in \bar{A} : f(x) = 0)$$

is thus equivalent to $V_{\pi}\bar{C} = \emptyset$.

Consider now an arbitrary point of \overline{B} , i.e. a map $y: \mathbb{1} \to \overline{B}$, and consider $\pi^{-1}(y) \subseteq \overline{B} \times \overline{A}$. Then we do not have $\pi^{-1}(y) \subseteq \overline{C}$, for this would be equivalent to $y \subseteq V_{\pi}\overline{C}$ which equals \emptyset . So the inclusion

$$\pi^{-1}(y) \cap \bar{C} \subseteq \pi^{-1}(y) \tag{3.1}$$

defines a proper subobject of $\pi^{-1}(y)$. Identifying $\pi^{-1}(y)$ with \bar{A} , this subobject sits in the pull-back

$$\pi^{-1}(y) \cap \bar{C} \longrightarrow \mathbb{1} \times \bar{A} \cong \bar{A}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

276 A. Kock

since affines are closed under finite inverse limits, $\pi^{-1}(y) \cap \bar{C}$ is affine, and comes from a pushout in \mathcal{B}

for some E which is a quotient algebra of A, since C is a quotient algebra of $B \otimes_k A$. (For the Dubuc topos case: replace \otimes_k by \otimes_{∞} .) Since (3.1) is a proper subobject, the kernel I of $A \to E$ is non trivial, and since A is reduced (respectively point-determined), there is some $x: A \to k$ (respectively $A \to \mathbb{R}$) with $x(I) \neq 0$, i.e. which does not factor over $A \to E$. This x represents a point $x: \mathbb{I} \to \overline{A}$ which does not factor across $\pi^{-1}(y) \cap \overline{C}$. We have thus proved: to every $y: \mathbb{I} \to \overline{B}$, there is some $x: \mathbb{I} \to \overline{A}$ with (y, x) not in \overline{C} , or equivalently, with

$$\mathbb{1} \xrightarrow{(y,x)} \bar{B} \times \bar{A} \xrightarrow{\hat{f}} R \tag{3.2}$$

different from $0 \in R$.

Since $hom_{\delta}(1, R) = k$ (respectively = \mathbb{R}), this means that the element (3.2) is actually invertible.

Let the algebras A and B be presented as

$$k[X_1,...,X_n]/I$$
 and $k[Y_1,...,Y_m]/J$

respectively (in the Dubuc topos case, replace $k[X_1, ..., X_n]$ by $C^{\infty}(\mathbb{R}^n)$, etc.). These presentations induce, in \mathscr{E} , inclusions

$$\bar{A} \rightarrow R^n$$
, $\bar{B} \rightarrow R^m$.

The $\hat{f}: \bar{B} \times \bar{A} \to R$ we consider, is represented by $f^{\vee} \in B \otimes_k A$ (respectively $\in B \otimes_{\infty} A$), and we pick $F^{\vee} \in k[Y_1, ..., Y_m, X_1, ..., X_n]$ (respectively $\in C^{\infty}(\mathbb{R}^{m+n})$) that maps to f^{\vee} by the canonical $k[Y_1, ..., X_n] \to B \otimes_k A$ (respectively ...).

Synthetically in \mathcal{E} , this means that we have a commutative diagram:

We may identify $\hom_{\delta}(\mathbb{I}, R^n)$ with k^n (respectively \mathbb{R}^n), and $\hom_{\delta}(\mathbb{I}, \bar{A})$ with $Z(I) \subseteq k^n$ (respectively $Z(I) \subseteq \mathbb{R}^n$), the zero set of the ideal I. Similarly for \bar{B} : $\hom(\mathbb{I}, \bar{B}) = Z(J) \subseteq k^m$ (respectively $\subseteq \mathbb{R}^m$).

The result above now implies: to every $y \in Z(J)$, there exist $x \in Z(I)$ so that $\hat{F}(y, x)$ is invertible. For each $y \in Z(J)$, we *pick* one such x and denote it x(y).

We can now construct a Zariski-open covering of k^m (respectively, an "ordinary" open covering of \mathbb{R}^m); it consists of U_0 = complement of Z(J), and of

$$U_v = \{ y' \in k^m | \hat{F}(y', x(y)) \text{ is invertible} \}$$

for every $y \in Z(J) = \text{hom}(\mathbb{I}, \overline{B})$, (respectively,...).

construction of x(y), $y \in U_y$, so the sets U_0 and the U_y 's do cover k^m (respectively of \mathbb{R}^m), and are open. They provide a (co-) cover in \mathscr{B} of $k[Y_1, ..., Y_m]$ (respectively of $C^{\infty}(\mathbb{R}^m)$) with respect to the Zariski Grothendieck-topology on \mathscr{B}^{op} (respectively with respect to Dubuc's Grothendieck topology on \mathscr{B}^{op} [4, Definition III.7.2]).

We push this co-cover out along $k[Y_1, ..., Y_m] \twoheadrightarrow B$ (respectively $C^{\infty}(\mathbb{R}^m) \twoheadrightarrow B$) to get a co-cover in \mathcal{B} of B

$$\{B \rightarrow B_v \mid y \in Z(J)\}$$

(note that U_0 pushes out to the trivial algebra, which is co-covered by the empty family, so may be dropped).

For each $y \in Z(J)$, consider the map in \mathcal{E}

$$\tilde{x}_{y} = \left(\bar{B}_{y} \to \bar{B} \to \mathbb{I} \xrightarrow{x(y)} \bar{A}\right). \tag{3.3}$$

For every $y': \mathbb{I} \to \overline{B}$ which factors through \overline{B}_y , we have, by construction of U_y and hence of B_y , that f(y', x(y)) is invertible. So the composite map $\widehat{f}(-, \widetilde{x}_y): \overline{B}_y \to R$ has the property that it takes any $\mathbb{I} \to \overline{B}_y$ to an invertible $\mathbb{I} \to R$. From Proposition 2.2 it follows that $\widehat{f}(-, \widetilde{x}_y)$ factors through $\operatorname{Inv}(R) \to R$, or, equivalently, that the (generalized) element \widetilde{x}_y in (3.3) of \overline{A} (defined at stage \overline{B}_y) has

$$\vdash_{\bar{B}_y} f(\tilde{x}_y)$$
 is invertible.

Thus the covering $\{\bar{B}_v \to \bar{B} \mid y \in \text{hom}(\mathbb{I}, \bar{B})\}$ and the elements \tilde{x}_y witness validity of

$$\vdash_{\bar{B}} \mathcal{I}^{\chi}: f(\chi)$$
 is invertible.

This proves one implication in Theorem 1 and 2. Conversely, if \bar{A} is such that (**) holds for $M = \bar{A}$, it is easy to see that A is reduced (respectively point determined). For, let $f \in A$ be killed by all $x : A \to k$ (respectively $x : A \to \mathbb{R}$). In ℓ , f represents a map $\bar{A} \to R$, i.e.

$$f \in_{\mathbb{I}} R^{\bar{A}}$$
.

Consider C = A/(f). Then

$$\bar{C} = [\![a \in \bar{A} \mid f(a) = 0]\!] \subseteq \bar{A}.$$

Now consider $V_{\pi}\bar{C} \subseteq \mathbb{I}$. By Proposition 2.1, either $V_{\pi}\bar{C} = \emptyset$ or $V_{\pi}\bar{C} = \mathbb{I}$. In the former case. $\vdash_{\mathbb{I}} \neg (f \equiv 0)$, so by assumption, $\vdash_{\mathbb{I}} \exists x : f(x)$ is invertible. This is con-

278 A. Kock

trary to the assumption that f is killed by all $x : A \to k$ (respectively $\to \mathbb{R}$). In the case $V_{\pi}\bar{C} = \mathbb{I}$, we get $\bar{C} = \bar{A}$, so f = 0. This proves the converse implication in Theorems 1 and 2.

4. Applications

Both the toposes studied here have R as a model of synthetic differential geometry. In particular, there exists a differentiation process

$$\frac{\partial}{\partial x}: R^R \to R^R.$$

The theorems proved hold for M = R since $R = \overline{k[x]}$ (respectively $R = C^{\infty}(\mathbb{R})$) which is reduced (respectively point determined). We then have

Corollary 4.1. We have

$$\vdash_{1} Vf \in R^{R}: \neg \left(\frac{\partial f}{\partial x} \equiv 0\right) \Rightarrow \exists x: f(x) \text{ is invertible.}$$

Proof. It suffices, by the theorems, to prove $\neg (f \equiv 0)$, i.e. to derive a contradiction from $f \equiv 0$. But $f \equiv 0$ implies, by the rules of differentiation $\partial/\partial x$ that $\partial f/\partial x \equiv 0$. This contradicts $\neg (\partial f/\partial x) \equiv 0$.

Corollary 4.2. For any reduced (respectively point-determined) A, the apartness relation # on $R^{\bar{A}}$ given by

$$f \# g \quad iff \quad \neg (f \equiv g)$$

is separated, i.e. satisfies

$$f \# g \Rightarrow (h \# f) \lor (h \# g) \quad Vf, g, h.$$

Proof. Assume f # g, i.e. $\neg (f \equiv g)$. By Theorems 1 and 2 $\exists x$ with f(x) - g(x) invertible in R. Since R is a local ring f(x) - h(x) or h(x) - g(x) must be invertible. In the former case, h # f, in the latter, h # g.

We finally present a problem related to the theorem: if we replace the condition " $\neg (f \equiv 0)$ " by " $\neg (f \text{ factors through } \Delta)$ " (where $\Delta \subseteq R$ is the subobject $\neg \neg \{0\}$), for which M is then the conclusion " $\exists x \in M$: f(x) is invertible" valid?

Acknowledgement

The present research was inspired by Bunge's [1], where she attempts the beginn-

ings of a synthetic functional analysis, in the sense that she investigates neighbour and apartness relations, i.e. some weak kind of topology, on function space objects like R^R , in the Dubuc topos.

References

- 11 \sim Bunge, Synthetic aspects of C^{∞} -mappings, J. Pure Appl. Algebra 28 (1983) 41-63.
- [2] \subseteq . Dubuc, C^{∞} -schemes, Amer. J. Math. 103 (1981) 683-690.
- [3] A Kock, Universal projective geometry via topos theory, J. Pure Appl. Algebra 9 (1976) 1-24.
- [4] A Kock, Synthetic Differential Geometry, London Math. Soc. Lecture Note Series 51 (Cambridge Univ. Press, Cambridge, 1981).