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1. Introduction and statement of main results 

We pursue in this note the line of thought that the toposes one constructs in 
algebraic and differential geometry provide a basis on which a simple-minded 
synthetic reasoning can take place and be made useful, as the development of  
synthetic differential geometry shows. But such reasoning also pertains to pure 
aLgzbraic geometry; here, we may quote [3] as an early pilot project. The present 
nc..e considers an ' internal-infinitary'  analogue of a main result in there, about the 
generic local ring R, which lives in the Zariski topos 3. In loc. cit. we proved 
(Proposition 2.2) that for R e 3 we have (for any natural number n) 

(,) V(r l , . . . , r , )  ~ R": -1 (r, = O) = V (r, invertible). 
t = l  t = l  

We now ask: when does this result hold if the externally indexed family r~,. . . ,  r ,  is 
replaced by an ' internally indexed family' { r x [ x ~ M  } where M is an object of 3. 
So we ask: when do we have 

(---~, ~ V f  ~RM: -~ ( f - O ) = J x ~ M :  f(x)  is invertible. 

(Here, " f - = 0 "  is short for " V x e M : f ( x ) = O " . )  We give an answer for the case 
where 3 =3k, meaning the Zariski topos over an algebraically closed field k (=  the 
classifying topos for local k-algebras), and where M is affine, i.e. represented by 
some finite type k-algebra A; we write M =  A. Note that R = k[x]. The result then is 

Theorem 1. The principle (**) holds fo r  M = A  i f  and only i f  the k-algebra A is 
reduced. 

Recall that "A reduced" means: 0 is the only nilpotent element in A. By Hilbert 
'.'~ .:!tstellensatz, this is equivalent to saying: if an element g ~ A is killed by all A ~ k, 
z. en g=0 .  

In [4, Theorem III.10.1], we proved that (,) holds for the "Dubuc topos .2 °p' ' ,  
where ~ is the category of  germ-determined T~-algebras A (i.e. A = C ~ ( ~ n ) / I  
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where the ideal I is of local character, Dubuc [2]), and with R = C~(~) .  Also here, 
we can say exactly for which representables M=.z] (A e .~) (**) holds: 

Theorem 2. The principle (**) holds for  M = A  if  and only i f  the 7o~-algebra A is 
point-determined. 

Recall from [4, Definition Ill.5.9] that  "A point-determined" means that if an 

element g e A is killed by all A---, ~, then g = 0. 
The proofs of  these two theorems are closely related; we give the proof  for the 

Zariski-topos case, with parenthetical remarks about modifications for the Dubuc- 

topos case. 

2. Generalities concerning the toposes 

The Zariski topos over an algebraically closed field k and the Dubuc topos have 
some interesting common features. We let d denote either of them and otherwise 
keep the notat ion of Section 1. We let .~ denote the site of  definition of  either. 

In these sites, the trivial algebra {0} occurs, and is the only object covered by the 
empty family. The non-trivial algebras A in the two sites have a common feature: 
There exists a k-algebra map A ~ k  (respectively, there exists a q]-o~-algebra map 
A ~  IP). The former fact follows again from Hilbert Nullstellensatz (the objects of 
,~ being finitely presented k-algebras), and the latter is immediate from the defini- 
t ion of  "germ-determined"  (in fact, Dubuc [2] motivated us to invent this notion). 
We refer to both these facts as "Nullstel lensatz" 

Now the following proposit ion is almost immediate, and more or less well known. 

Proposition 2.1. The terminal object ~ o f  ~" has no proper subobjects. 

Proof. The initial object 0 of  ~° is given as the functor which to each non-trivial 
algebra in .~ associates the empty set, and to the trivial algebra associates a one- 
point set. Now assume that U is a subobject of the terminal object, and that Ug:0. 
Then for some non-trivial B e  ~2, we have U(B)~eO. But B being non-trivial, there 
exists by Nullstellensatz some B ~ k  (respectively B ~ ~). This means that there exist 
maps 0 ~ /~  and B ~ U, thus also ~-* U. Since U is a subobject of  ~, U=  ~. 

Proposition 2.2. Let h : E ~ R  be a map f rom a representable object into R, such 
that, for  any point p : 11 --* E, h o p  is an invertible (global) element o f  R. Then h itself 
is an invertible (generalized) element o f  R, i.e. factors through the subobject 
Inv(R)-*R. 

Proof. In the site ~ ,  the assumption expresses that h e E has the property that any 
p:E--*k  (respectively p : E ~ )  takes h into a non-zero element. But then h must 
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be invertible in E, for otherwise, E/(h) would be a non-trivial algebra in .~ (for the 
Dubuc-topos case, the fact that E~.~ =E/(h)~.# follows from [4, Theorem 
I11.6.3]), and thus there would, by Nullstellensatz, exist some E/(h)---,k (respectively 
E/(h)---'~), whose composite with E~E/(h) would take h to 0, contrary to 
assumption. 

3, ?roof of the theorems 

Let A ~,~ be reduced (respectively point-determined), and let 

f ~ R  A 

(where B e  #). The exponential adjoint of f :  B ~ R  ~ is a map B × A ~ R  which we 
denote f.  Now R and the terminal object are representable. The full subcategory of 
: consisting of representable (= affine) objects is closed under finite inverse limits, 
so that f - l (0 )  is an affine subobject C' of B×A. In fact, f corresponds to an 
element fv  in the algebra B®k A, and 0 is represented by C=B®~ A/(fv) .  (For 
the Dubuc topos case, B®kA is replaced by (B®ooA) ̂ , using notation of [4, 
IIi ~§5,6].) 

~,, e consider the largest subobject S of B so that ~s VxeA: f(x) =0. So 

S=~y~BI Vx~A: j(y,x)=O] 

=IIY~B[ Vxe. A: (y ,x)~ C] = V~C 

where n : B x A---,B is the projection, and Vn is "right adjoint to pulling-back along 
n".  The assumption ~- -1  ( f = 0 ) ,  i.e. 

~-~ ~(Vx~.4: f(x) = 0) 

is :bus equivalent to V~C'=0. 
Consider now an arbitrary point of B, i.e. a map y : ~ B ,  and consider 

7r-~(y) c_B×A. Then we do not have ~z-l(y)_c O, for this would be equivalent to 
y c_ V~C' which equals 0. So the inclusion 

r:-l(y) N C'c_ rr -l(y) (3.1) 

defines a proper subobject of 7r-1(y). Identifying rr -1 (y) with A, this subobject sits 
in the pull-back 

zr-Z(y)nC 

0 

,11xA--A 

J y x A  

, B x A  ; 
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since affines are closed under finite inverse limits, r r -](y)fqC is affine, and comes 
from a pushout in ,~ 

E , ,  A 

C "  B ®  k A 

for some E which is a quotient algebra of A, since C is a quotient algebra of 
B ® k A .  (For the Dubuc topos case: replace ®k by ®~.)  Since (3.1) is a proper 
subobject, the kernel I of A ~ E  is non trivial, and since A is reduced (respectively 
point-determined), there is some x :  A ~ k  (respectively A ~ )  with x(1)~O, i.e. 
which does not factor over A --*E. This x represents a point x :  ~ ---,A which does not 
factor across 7r- l (y)OC '. We have thus proved: to every y : ~ B ,  there is some 
x : l ] ~ A  with (y ,x)  not in C, or equivalently, with 

(y,x) ? 

different from 0 ~ R. 
Since hom,; (9, R) = k (respectively = ~), this 

actually invertible. 
Let the algebras A and B be presented as 

(3.2) 

k[X  l , . . . , X n ] / l  and k[Yl , . . . ,  Y, n l / J  

means that the element (3.2) is 

respectively (in the Dubuc topos case, replace k[X1, ...,Am] by C~*(~"), etc.). 
These presentations induce, in #, inclusions 

fi~ ~-. R n, B ~--~ R m. 

The f :  B × A ~ R  we consider, is represented by f v  ~ B ®k A (respectively ~ B ® ~  A), 
and we pick F v ~  k[Y1, .... Ym, XI ,  ..., Xn] (respectively e C~(IW"+n)) that maps to 
f v  by the canonical k[ Y1, ... ,  An] ~ B®k A (respectively...). 

Synthetically in d°, this means that we have a commutative diagram: 

BxA , R  

R m X R  n 

We may identify horn: (9, R n) with k n (respectively [R"), and horn,, (9, .4) with Z(I)c_ 
k n (respectively Z(I) c_ ~"), the zero set of the ideal I. Similarly for B: hom(~, B) = 
Z(J)  c_ k m (respectively c_ ~m). 
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The result above now implies: to every y E Z(J),  there exist x ~ Z(I) so that F(y, x) 
is invertible. For each y ~ Z(J) ,  we pick one such x and denote it x(y). 

We can now construct a Zariski-open covering of  k rn (respectively, an "or -  
dinary" open covering of  Era); it consists of U0 -- complement of Z(J), and of  

Uv = { y" ~ km [l~(Y , x(y)) is invertible} 

for every y ~ Z(J) = hom(~, B), (respectively,...). 
construction ofx (y ) , y~  Uy, so the sets U0 and the Uy's do cover k m (respec- 

tive.:" ~m), and are open. They provide a (co-) cover in .',A of  k[Yl, . . . ,  Y,n] (respec- 
tively of C°~(~m)) with respect to the Zariski Grothendieck-topology on ~op 
(respectively with respect to Dubuc's  Grothendieck topology on .~op [4, Definition 

III.7.2]). 
We push this co-cover out along k[Yt, ..., Y,n]--*B (respectively C°~(~'n)--~B) to 

get a co-cover in /A of B 

{B~BylY~Z(J)}  

(note that U 0 pushes out to the trivial algebra, which is co-covered by the empty 
family, so may be dropped). 

.-,~r each y~Z(J) ,  consider the map in ~' 

£)' (By ~ B  ~ x(y) ) = ,.,~ . (3.3) 

For every y': ~ --*B which factors through By, we have, by construction of  Uy and 

hence of By, that f(y' ,  x(y)) is invertible. So the composite map f ( - ,  £y) : By --,R 
has the property that it takes any ~--,By to an invertible 1--,R. From Proposit ion 
2.2 it follows that f(-, .~y) factors through Inv(R)--,R, or, equivalently, that the 
(generalized) element £y in (3.3) of  A (defined at stage B~) has 

~-~ f(~y) is invertible. 

Ti ~s the covering {B~--'Bly e hom(~, B)} and the elements )?y witness validity of 

~ :_Tx: f(x) is invertible. 

This proves one implication in Theorem 1 and 2. Conversely, i f /1  is such that (**) 
holds for M = A ,  it is easy to see that A is reduced (respectively point determined). 
For, let f e A  be killed by all x :  A ~ k  (respectively x :  A--,~). In ~, f represents a 
map A- ,R ,  i.e. 

f e a R  "4. 

Consider C = A / ( f ) .  Then 

C= 1a e.Zt If(a) =0D c_A. 

Now consider V, rC'C_1. By Proposi t ion 2.1, either Vr~C=0 or V,~C=~. In the 
former case. ~ -~-~( f -0 ) ,  so by assumption, F-~ ffx:f(x) is invertible. This is con- 
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t rary to the assumption that f is killed by all x :  A---,k (respectively~ ~). In the case 
V,~C' = ~, we get C' =.4,  so f =  0. This proves the converse implication in Theorems 
1 and 2. 

4. Applications 

Both the toposes studied here have R as a model of  synthetic differential 
geometry. In particular, there exists a differentiation process 

• R R - - . R  R. 
Ox 

The theorems proved hold for M = R  since R =k[x] (respectively R = C=(IR)) which 
is reduced (respectively point determined). We then have 

Corollary 4.1. We have 

--1 - 0 = 3x: f(x)  is invertible. 

Proof .  It suffices, by the theorems, to prove -1 ( f - O ) ,  i.e. to derive a contradiction 
f rom f -  O. But f =  0 implies, by the rules of  differentiation a/Ox that a f / O x -  O. This 
contradicts -1 ( O f /Ox) - O. 

Corollary 4.2. For any reduced (respectively point-determined) A, the apartness 
relation # on R A given by 

f # g  i f f  -~(f=-g) 

& separated, i.e. satisfies 

f # g  = ( h g f ) v ( h # g )  Vf, g,h. 

Proof. Assume f #  g, i.e. --1 ( f - -  g). By Theorems 1 and 2 Yx with f (x)  - g(x) inverti- 
ble in R. Since R is a local ring f ( x ) -  h(x) or h(x ) -  g(x) must be invertible. In the 
former  case, h # f ,  in the latter, h # g .  

We finally present a problem related to the theorem: if we replace the condition 
"--1 ( f - 0 ) "  by " ~ ( f  factors through d ) "  (where d c_ R is the subobject ~ ~ {0}), 
for which M is then the conclusion " J x ~  M: f(x) is invertible" valid? 
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