
SOME PROBLEMS AND RESULTS IN

SYNTHETIC FUNCTIONAL ANALYSIS∗

Anders Kock

This somewhat tentative note aims at making a status about “functional
analysis” in certain ringed toposes E , R, in particular, duality theory for R-
modules in E . This is an area where knowledge still seems fragmentary, but
where some of the known facts indicate the importance of such theory.

The first §, however, does not deal with specific toposes, but is of very
general nature, making contact with the general theory of monads on closed
categories, [3]-[6].

Most of the results and problems in this note were presented at the work-
shop. Closely related viewpoints were contained in Lawvere’s workshop-
contribution on Intensive and Extensive Quantities, which have also influ-
enced the presentation given in the following pages.

1 Restricted double dualization monads

Let R be a ring in a topos E and let R-Mod denote the E-category of R-
modules (left R-modules, say). The E-valued hom-functor for it is denoted
HomR(−,−). If X ∈ E and V ∈ R-Mod, there is a natural structure of
R-module on V X = ΠXV , and for any U ∈ R-Mod

HomR(U, V X) ∼= (HomR(U, V ))X ,

naturally in X,U, and V . This expresses that V X is a cotensor of V with X
(cf. e.g. [2]). Equivalently, it expresses that, for fixed V , we have a E-strong
left adjoint V (−) : E → (R-Mod)op to the functor HomR(−, V ). Thus we
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get by composition an E-strong monad on E , which is in an evident way a
submonad of the monad “double dualization into V ” (V just considered as
an object of E)

HomR(V X , V ) ⊆ V V X

.

(This latter monad arises similarly from the adjointness V (−) ⊣ V (−), cf. e.g.
[4].) Hence the name “restricted double dualization”.

We want to describe the monad-theoretic combinators [3], [5] and [6], for
these monads. We shall be interested in the case V = R mainly, and in fact
mainly for the case where R is commutative. We introduce the notation

E(X) := HomR(RX , R).

It should be thought of as the R-module of distributions (with compact
support) on X; this remark will be elaborated in §3. For the description of
the combinators, we use notation as if E were the category of sets. Also, if
φ ∈ E(X), f ∈ RX , we shall sometimes write

(1.1)

∫
f(s) dφ(s) for φ(f).

The unit η = ηX : X → E(X) of the monad E is easily seen to be given by,
for x ∈ X

η(x)(f) = f(x).

Similarly, the multiplication µ = µX : E(E(X)) → E(X) is easily seen to be

(µ(Φ))(f) = Φ(E(X)
evf - R)

where evf(φ) = φ(f).
The “tensorial strength” t′ = tX,Y of the functor E (cf. [3] and [6])

E(X) × Y
t′- E(X × Y )

is given by
t′(φ, y)(f) = φ(x 7→ f(x, y))

where f ∈ RX×Y , and similarly for t′′ : X × E(Y ) → E(X × Y ). Note that
in the notation (1.1), we may write

t′(φ, y)(f) =

∫
f(x, y) dφ(x).
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Combining the two tensorial-strength combinators t′ and t′′ with the multi-
plication µ, we obtain the monoidal structure ψ on E, given as the composite

E(X) ×E(Y )
t′- E(X ×E(Y ))

E(t′′)- EE(X × Y )
µ- E(X × Y ),

and similarly we get a monoidal structure ψ̃ when we interchange the role of
t′ and t′′. The “set-theoretic” description of ψ is then, not surprisingly, (with
f ∈ RX×Y )

ψ(φ1, φ2)(f) = φ1(x 7→ φ2(y 7→ f(x, y)))

or

(1.2) ψ(φ1, φ2)(f) =

∫∫
f(x, y) dφ2(y) dφ1(x),

whereas

ψ̃(φ1, φ2)(f) =

∫∫
f(x, y) dφ1(x) dφ2(y).

In general (even for commutative R), ψ(φ1, φ2) 6= ψ̃(φ1, φ2), but cases of
equality will be encountered below for special X, Y .

For completeness, let us also describe the combinator λ, “the cotensorial
strength”, [5], of E

E(XY )
λ- E(X)Y ;

we have

λ(φ)(y)(f) = φ(XY evy - X
f - R)

where φ ∈ E(XY ), y ∈ Y, f ∈ RX ; or equivalently, λ(φ) is given by

y 7→
[
f 7→ φ(α 7→ f(α(y)))

]

where α ∈ XY .
These considerations and descriptions apply whether or not R is commu-

tative, and could be applied for any algebraic category over E . For instance,
if R is a commutative ring (respectively a T∞-algebra, cf. [8]) in E , we may
consider R-Alg, the category of commutative R-algebras (respectively the
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category of T∞-algebras in E under R). Then we have the restricted double
dualization monad G,

G(X) := HomR−Alg(R
X , R)

(G for “Gelfand”), which is a submonad of E.
The description of the combinators η, µ, t′, t′′, ψ, ψ̃ and λ are the same as

for E, in fact these descriptions work for any restricted double dualization
monad in any cartesian closed category.

2 Some calculations in certain presheaf cate-

gories

Let C be a small category of commutative rings, more precisely, C should
be equipped with a functor � to the category Rng of commutative rings.

We assume C has finite coproducts ⊗̂ and an initial object k. Let E be the
functor category SetC, and let R ∈ SetC = E be the composite “forgetful”

functor C
�
→ Rng → Set. So R is a commutative ring object in E . If A ∈ C,

we denote by A the representable functor C(A,−) ∈ E .
Then we have

Proposition 2.1. An element of RA at stage B is the same as an element
of A⊗̂B.

Proof. Via the conversions

B −→ RA

A× B −→ R

A⊗̂B −→ R

∈ A⊗̂B

Proposition 2.2. An element of HomR(RA, RC) at stage B is the same as

an R-linear map RA → RC⊗̂B.

Proof. Via the conversions
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B −→ HomR(RA, RC)

B ×RA −→ RC R-lin. in 2nd variable

RA −→ (RC)B = RC⊗̂B R-linear.

Proposition 2.3 An R-linear map RA → RB is the same as a natural trans-
formation φ : R(A⊗̂−) → R(B⊗̂−) such that each component of φ

A⊗̂C
φC - B⊗̂C

is C-linear w.r. to the natural C-algebra structures. (Recall that R : C → Set
is just a forgetful functor, so may be omitted from notation).

Proof. A map RA → RB is a family φC : RA(C) → RB(C), natural in C.

But RA(C) = R(A⊗̂C), by Proposition 2.1 and Yoneda’s lemma. The given
map is R-linear iff φC is C-linear ∀C.

Corollary 2.4 An element of E(A) at stage B is the same as a natural
transformation φ : R(A⊗̂−) → R(B⊗̂−) such that each component φC is
C-linear.

Proof. Via the conversions

B −→ E(A)

B −→ HomR(RA, R)

RA −→ RB R-linear;

Now apply Proposition 2.3.

Assume that � : C → Rng factors through k-alg (= category of commuta-
tive k-algebras, k ∈ Rng, and that � : C → k-alg preserves finite coproducts,

so ⊗̂ = ⊗k. Then a natural transformation φ like in Proposition 2.3 or Corol-
lary 2.4 is completely given by its component at k: φk : A ⊗k k → B ⊗k k,
which we shall identify with a k-linear map φk : A→ B. For now

φk ⊗k C : A⊗k C → B ⊗k C

makes sense and is easily proved equal to φC , by the following argument: let
γ ∈ A⊗k C. Write

γ =
∑

ai ⊗ ci ai ∈ A ci ∈ C.
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Then

φC(γ) = φC(
∑

ai ⊗ ci) =
∑

φC(ai ⊗ 1) · ci (C-linearity of φC)

=
∑

φk(ai) · ci (naturality of φ)

= (φk ⊗k C)(
∑

ai ⊗ ci).

Thus, ⊗k has what probably should be called a nuclearity property, and we
get

Proposition 2.5 For C as above (where ⊗̂ = ⊗k), an element of E(A) at
stage B is the same thing as a k-linear map A→ B.

More generally, an element of HomR(RA, RC)at stage B is the same as
a k-linear map A→ C ⊗k B.

We quote below (Theorem 2.7) a result about E(A) with a ⊗ which is
not ⊗k.

We next consider the monad G where a much simpler result holds. Again,
we assume that � : C → Rng factors through k-alg, � : C → k-alg.

Proposition 2.6. If � : C → k-alg is full and faithful and k ∈ C, then

A→ G(A) is an isomorphism for any A ∈ C.

Proof. We have the conversions

(2.1)

B −→ G(A)

B −→ HomR-Alg(RA, R)

RA −→ RB R-algebra homomorphism;

this latter data is equivalent to a family

A⊗̂C
φC- B⊗̂C

(C ∈ C) natural in C and with each component a C-algebra homomorphism
(C-alg = C ↓ k-alg). This implies, for trivial categorical reasons, that φC =

φk⊗̂1, where φk is a k-algebra homomorphism. Thus the list of conversions
continues with
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A
φk

−→ B k-algebra homomorphism

A −→ B morphism in C

B −→ A (Yoneda)

We leave it to the reader to “internalize” further to get, under the as-
sumptions of the Proposition:

(2.2) HomR-Alg(RA, RB) ∼= A
B
.

Since this proof was purely categorical, it applies for any algebraic theory T,
with C a full subcategory of T-Alg, having finite coproducts, and with R the
forgetful functor C → Set. Then R-Alg denotes the category R ↓ T-alg(E)
where E = SetC. (One should think of Proposition 2.6 as a kind of finiteness
property of affine objects A, since, for E = Set, T = theory of boolean
algebras, R = 2, X → G(X) is an iso iff X has no non-principal ultrafilters.)

Using the notation of [8], I.12, we have

A = SpecR(A)

and hence

A
B

= SpecR(A)B = SpecRB(A),

so that (2.2) gives

(2.3) HomR-Alg(RA, RB) ∼= SpecRB(A)

for any A,B ∈ C.
A stronger conclusion holds if the inclusion C →֒ T-Alg preserves finite

coproducts; then, in (2.3), RB can be replaced by an arbitrary R-algebra
object C in E :

Theorem 2.7. Under these assumptions,

HomR-Alg(R
A, C) ∼= SpecC(A)

for any R-algebra C in E .

Proof. See [7] or [8] III Theorem 1.2 (for a slightly more general result, and
a more precise statement).
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Problem. To what extent does this result hold for C = B →֒ T-alg, the
category used for constructing the Dubuc-Topos G (see e.g. [8] p. 230 (p. 165
in 2nd ed.)). It holds, by [8] III Theorem 1.2 when A is a Weil algebra. But
does it hold for A = C∞(Rn), say (which would imply that RRn

∈ G is the
free T∞-algebra in n generators in G).

For the case T = T∞, C = category of finitely generated T∞-algebras, the
results about G hold. Proposition 2.5 about E fails, but at least a special
case holds when the word “k-linear” is replaced by “continuous R-linear”.

Theorem 2.8. (Quê-Reyes [9].) Let C be as above, and let M be a manifold.
Then a global element of E(C∞(M)) is the same as an R-linear continuous
C∞(M) → R (i.e. a distribution-with-compact-support on M).

Here C∞(M) is equipped with the standard Whitney [[Frechet]] topology.
– We have quoted this theorem to show that the synthetic distribution no-
tion, E, does, in certain models, contain notions from “classical” functional
analysis.

Problem. It is not clear to me to what extent the analogous result holds
when C = B, the category which defines the Dubuc model G.

3 Tensor products of distributions

The general theory of strong (= E-enriched) monads gave, as explained in

§1, two monoidal structures ψ and ψ̃ on the functor part of the restricted
double dualization monad E,

E(X) ×E(Y )
ψ-

ψ̃
- E(X × Y ).

If we think of E(X) and E(Y ) as the object of distributions on X and Y ,

respectively (which Theorem 2.8 partially justifies), then ψ and ψ̃ are to be
thought of as tensor product formation of distributions, as (1.2) indicates.

We can be more specific about what ψ and ψ̃ do in the case considered in
Proposition 2.5 (i.e. where ⊗̂ = ⊗k), and where X and Y are affine:

Proposition 3.1 The maps ψ and ψ̃ : E(A1) × E(A2) → E(A1 × A2) are
equal; the value on the pair

B
s1- E(A1) B

s2- E(A2)
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is, under the identification of such elements with k-linear maps Ai → B
(i = 1, 2), equal to the k-linear map

(3.1) A1 ⊗k A2

s1 ⊗ s2- B ⊗B
µ - B

where µ is the multiplication.

Instead of giving the proof, we give the diagram which is the scene of the
proof; we give it in the general case where ⊗̂ is not assumed to be ⊗k, so
that the data of S1 : B → E(A1) means an SC

1 : C ⊗ A1 → C ⊗ B for all C,
of Corollary 2.4. The diagram then is (writing ⊗ for ⊗̂)

B ⊗ A2 ⊗ A1
∼= B ⊗ A1 ⊗ A2

SB⊗A1

2 - B ⊗ A1 ⊗ B ∼= (B ⊗ B) ⊗ A1
µB ⊗ A1- B ⊗ A1

B ⊗ A2 ⊗ B ∼= B ⊗ B ⊗ A2

SB⊗A2

1

? SB⊗B
2 - B ⊗ B ⊗ B

1 ⊗ τ- B ⊗ B ⊗ B

SB⊗B
1

? µ ⊗ 1 - B ⊗ B

SB
1

?

B ⊗ A2

µ ⊗ 1

?

SB
2

- B ⊗ B

µ ⊗ 1

?

µ
- B;

µ

?

here, τ is the twist map. The upper left hand square does not in general
commute, but in case ⊗ = ⊗k it takes b ⊗ a2 ⊗ a1 into, respectively, b ⊗
S2(a2) ⊗ S1(a1) and b⊗ S1(a1) ⊗ S2(a2) (where Si = Sk

i ), and thus the total
diagram commutes, in this case.

4 Representable and corepresentable R-modules

The present § (whose content is essentially from [10]) deals with the case
considered for Proposition 2.5, i.e. when C is a category of k-algebras, such
that the forgetful functor � : C → k-alg preserves finite coproducts (so ⊗k is
coproduct in C). As in §2, we let E = SetC, and R = the forgetful functor; it
is a ring object on E .
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Let V be a k-module. We then get an R-module object Ṽ ∈ E , namely

Ṽ (C) := V ⊗k C

whose R-module structure comes about because V ⊗k C carries a natural C-
module structure. Such R-modules are called corepresentable ([10])(“corep-
resented by V ”). Also, we get another R-module object V v ∈ E , namely

V v(C) := homk(V, C),

whose R-module structure comes about because homk(V, C) carries a natural
C-module structure. Such R-modules are called representable ([10]) (“repre-
sented by V ”).

We have

Proposition 4.1 Let A ∈ C. Then RA = Ã (where, on the right, we consider
the underlying k-module of A).

Proof. Immediate from Proposition 2.1.

Since R is commutative, the category ModR of R-module objects in E is
closed (symmetric closed, in fact), so thatHomR(U, V ) is an R-module object
whenever U and V are. In particular, denote by U∗ the “dual” R-module of
U , meaning HomR(U,R).

We have

Proposition 4.2 Let V be k-module. Then V v = (Ṽ )∗.

Proof. We have the conversions

B −→ Ṽ ∗ = HomR(Ṽ , R)

Ṽ −→ RB R-linear

Ṽ (C) −→ (RB)(C) nat. in C, C-linear

V ⊗k C −→ B ⊗k C nat. in C, C-linear

by Proposition 2.1. But the “nuclearity argument” preceding Proposition 2.5
(which works even when A is just a k-module), this data is equivalent to a
k-linear V → B, so the string of conversions continues
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V −→ B k-linear

∈ V v(B)

B −→ V v

[[proving the Proposition.]]

5 On the Waelbroeck property

Lawvere stressed some years ago the importance of a Theorem of Waelbroeck
[11], which states that the vector space of distributions [[with compact sup-
port]] on a manifold has the universal property to be the free R-module on
the manifold, with respect to a certain subcategory (“b-spaces”). Since E(X)
is like the space of distributions [[with compact support]] on X, he was led
to ask two, related, questions:

1) which universal propert does η : X → E(X) have?
(or, what is the category of algebras for E)?
2) to what extent is the monad E commutative?

We have some partial results. Let C be a small full subcategory of the cate-
gory k-alg of k-algebras, stable under finite colimits and such that, whenever
C ∈ C, the S•

kC ∈ C where S•
kC is the symmetric k-algebra on (the underlying

k-module of) C. We consider again E = SetC, with R forgetful C → Set.

Proposition 5.1 For any A ∈ C, E(A) = S•
kA.

Proof. Via the conversions

B −→ E(A)

A −→ B k-linear (by Proposition 2.5)

S•
kA −→ B in C (universal property of S•A)

B −→ S•A Yoneda.

Under the same assumptions, we have the following “Little Waelbroeck
Theorem”:

Theorem 5.2 Composition with η : A→ E(A) mediates an isomorphism

HomR(E(A), R) ∼= RA.
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Verbally, “R perceives E(A) to be the free R-module on A”.

Proof. We have the conversions

B
β

−→ HomR(E(A), R)

E(A) −→ RB R-linear

S•
kA −→ RB R-linear (by Proposition 3.1)

S•
kA× B −→ R R-linear in 1st variable

S•
kA× B −→ R× B R-linear in E/B = SetB/C

β ∈ S•
kA⊗k B = S•

B(A⊗k B) homogeneous of degree 1

where for the last conversions use (with C = B/C, A = A⊗k B, k = B).

Lemma 5.3 An element β ∈ S•
k(A) represents an R-linear map S•

k(A) → R
iff it is homogeneous of degree 1.

Proof. This is well known, cf. [10] p. 93. Thus, the string of conversions
continues

β ∈ A⊗k B

B −→ RA (Proposition 2.1)

We shall say that an R-module V has the Waelbroeck property w.r.to the
object X if composition with η : X → E(X) mediates an isomorphism

HomR(E(X), V ) ∼= V X ,

i.e. V perceives E(X) to be the free R-module on X.

A purely formal calculation gives that if V has the Waelbroeck property
w.r.to X, then so does HomR(U, V ), for any U :

HomR(E(X), HomR(U, V )) ∼= HomR(U,HomR(E(X), V ))

∼= HomR(U, V X)

∼= (HomR(U, V ))X .

In particular, the theorem has the following
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Corollary 5.4 Any dual module U∗ has the Waelbroeck property w.r.to any
affine object A.

The reader may note that the category of R-modules with the Wael-
broeck property w.r.to a given class of objects is closed under inverse limits
and cotensors, etc., just like the class of infinitesimally linear objects, so
should form a reflexive subcategory of R-Mod. A serious category theoretic
study of such kind of “orthogonal subcategories” is still lacking in the present
“enriched” case. [[See Kelly’s book, Chapter 6, for an account.]]

Theorem 5.5. ([10] II..1.1.2) Any corepresentable R-module is reflexive (ca-
nonically isomorphic to its double dual), provided S•

kV ∈ C.

Proof. This is very much like the proof of Theorem 5.2, which is actually a
special case (see below). For, if S•

kV ∈ C, then

V v(B) = homk(V,B) ∼= hom
k-Alg(S•

kV,B),

so that
V v = S•

kV .

Then we have the conversions (the first one by Proposition 4.2):

B −→ Ṽ ∗∗ = (V v)∗ = S•
kV

∗

S•
kV −→ RB R-linear

β ∈ S•
B(V ⊗k B) homogeneous of degree 1

β ∈ V ⊗k B

B −→ Ṽ

where the second is as in the proof of Theorem 5.2.

Theorem 5.2 is a special case: take V = A, considered as a k-module.
Then if Ã = Ã∗∗, we have

RA = Ã = Ã∗∗ = (RA)∗∗ = E(A)∗,

which is the isomorphism of Theorem 5.2.

Problem. For which M and E is it true that the tangent bundle TM →

M is a reflexive R-module object in E/M . (This is certainly so if M is a
manifold, and E is a well-adapted model for synthetic differential geometry.)
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6 Symmetric-algebra formation as a monoidal

monad

As in the previous §, we consider a small full subcategory of the category
k-alg of k-algebras, stable under finite colimits, and such that, whenever
C ∈ C, then S•

kC ∈ C.
In particular, we have a comonad S•

k on C, namely the composite of the
forgetful C → k-mod and its left adjoint S•

k : k-mod → C (where k-mod
is the full subcategory of k-modules, consisting of underlying k-modules of
algebras in C).

We now have the situation

Cop E = SetC

M

S•
k

M

E

-⊂ y

where the (E-strong) monad E restricts to the monad S•
k on Cop, by Propo-

sition 5.1. By Prop. 3.1, the two monoidal structures ψ, ψ̃ on the func-
tor E agree for objects of Cop, and y preserves the monoidal structure,
y(A ⊗k B) ∼= yA × yB, y(k) = 1. In [3], we proved that ψ = ψ̃ implies
that the monad is a symmetric monoidal monad (i.e. that µ is a symmetric
monoidal transformation). Inspecting the proof there (diagram (3.2)), we see
that in order to conclude commutativity of

(6.1)

T 2A⊗ T 2B
ψ- T (TA⊗ TB)

T 2(A⊗ B)

T (ψ)

?

TA⊗ TB

µ× µ

?

ψ
- T (A⊗B),

µ

?
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we need only that ψA,BT = ψ̃A,BT (T (ψA,BT ) and T (ψ̃A,BT ) form the possibly
non-commutative upper right hand corner of the diagram [3] (3.2) whose
total commutativity yields (6.1)).

Taking T = E, we therefore get

Theorem 6.1 The comonad S•
k(−) on C (in particular on k-Alg) carries a

canonical structure of symmetric monoidal monad on Cop (w.r.to the monoidal
structure ⊗k on C).

[[Labels in this section have been corrected from the incorrect 5.?? to 6.??.]]

7 Problems.

Most of the positive results quoted deal with the “purely algebraic” case,
where ⊗̂ = ⊗k, which is not the primary concern of synthetic differential
geometry, which is more interested in ⊗∞, where the proof of the key result
Proposition 2.5 fails. The main question is really: is there a notion of “module
over a T∞-algebra A” such that ⊗∞ makes sense not just for C-algebras,
but for C-modules? Perhaps the basic commutative algebra for T∞-algebras
and their modules should be based not on the topos of sets, but the topos
of bornological sets, as described by Lawvere (site of definition: countable
sets; the family of coverings generated by finite disjoint coverings). Any
T∞-algebra C∞(M) has a natural bornology, cf. [1], and hence so does any
quotient C∞(M)/I.
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