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A NOTE ON FRAME DISTRIBUTIONS

by Anders KOCK and Gonzalo REYES

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XL-2 (1999)

Resum6. Dans le contexte de la th6orie constructive des locales ou des

cadres (c’est-a-dire de la th6orie de locales sur un locale de base), nous
6tudions quelques aspects des "distributions sur les cadres" , i.e., des ap-
plications sur un cadre a valeurs dans un cadre de base preservant les
suprema arbitraires.

Nous obtenons une relation entre certains résultats dus a Jibladze-
Johnstone et d’autres dus a Bunge-Funk. De plus, nous donnons des
descriptions de l’op6rateur "interieur de fermeture" d6fini sur les parties
ouvertes d’un locale en termes des distributions sur les cadres ainsi qu’en
termes des op6rations de double negation g6n6ralis6e.

Introduction

This paper grew out of an interest in studying constructive locale theory,
and thus continues the tradition from [6], [5], [3], [8], [1], and many other

More precisely, we study locales in a topos, and in particular, locales over
a given base locale; so our study comprises what [5] calls fibrewise notions,
like fibrewise dense, and fibrewise closed. The methods are of algebraic
nature, with emphasis on frames, nuclei, and lattice theory in general.

The paper is divided into three sections, all three of elementary lattice
theoretic character. In the first, we derive the Jibladze-Johnstone Theorem
(characterizing relatively closed sublocales) by analyzing a certain pair of
adjoint functors. We use this, in the second section, to derive a relation-
ship between certain "intensive" and "extensive" quantities (in the sense of
Lawvere [10]) on an open locale; the extensive quantities in question being
certain "frame distributions" , suggested by Lawvere [9] [10], and studied by
Bunge and Funk in [1]. We give an alternative proof of their result which

1 A preliminary version "Frame distributions and support" was made available on the
internet in January 1996 (as announced on the Categories Mailing List); a later version
with same title as the present one appeared as a Aarhus BRICS report RS-97-33
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identifies these frame distributions on a locale M with certain sublocales of

M.

In the third section we prove that three closure operators on an open
frame coincide; one of these derives from the adjoint pair relating opens and
frame distributions, the other from interior and relative closure on sublo-
cales, and the third being a generalized double negation nucleus.

We would like to thank Marta Bunge and Steve Vickers for fruitful dis-
cussions on some of the topics treated here. Also, we thank the referee for
a careful reading of the manuscript. The research of the second author was
partly supported by a grant from the National Research and Engineering
Research Council of Canada. 

1 The Jibladze-Johnstone correspondence
The title of this section refers to a bijection between "fibrewise closed" nuclei
on a frame A, relative to a fixed base frame 0 : B -&#x3E; A, and a certain
equationally described class of maps B -&#x3E; A, called the B-nuclei on A.
We shall give an alternative, elementary, description of this correspondence,
deriving it from an adjointness, and using a "generalized double negation
nucleus" .

Let A be an arbitrary frame, and O : X-&#x3E; A a family of elements in
A (X being an arbitrary set; in the Jibladze-Johnstone case [3], X would
be the base frame B and O would be a frame map) . We shall keep X fixed
in what follows, and often omit the map O from the notation, i.e. we shall
consider X as a subset of the frame A. Let NA denote as usual the frame

of nuclei on A, under the pointwise order (so NA is the dual lattice of the
lattice of sublocales of the locale corresponding to A) . Also, let AX be the
frame of all maps from X to A (with pointwise frame structure). We have
a map 4) : NA -&#x3E; AX , namely restriction along 0 (so 0 takes a nucleus
j : A -&#x3E; A to the map j o 0 : X -&#x3E; A) . Since infima are computed pointwise
in NA as well as in AX , it follows that -D preserves infima, and thus has a
left adjoint W. The fixpoint sets of the two composites (D 0 BII and W o O are
therefore isomorphic, via (D and W. We shall prove that this isomorphism is
the correspondence of [3]. ,

We first prove that the formula of Johnstone and Jibladze (Lemma 1.1
of [3]) provides the left adjoint W of the "restriction" map O:
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Proposition 1 If k: X -&#x3E; A is any map, W(k) is the nucleus

where the join is taken in the frame NA, and where c(k(x)) denotes the
closed nucleus k(x) V - on A and o(x) denotes the open nucleus x -4 - on
A.

Proof. We prove the two inequalities

for any nucleus j on A, and 

for any map k : X - A. As for the first, this amounts to proving

so for each x E X , we should prove c( j (x))Ao(x)  j, i.e. for each a E A, we
should prove ( j (x) V a) A (x -&#x3E; a)  j(a). Using distributivity of A over V,
this amounts to proving that the two inequalities j (x) A (x -&#x3E; a) j(a) and
an (x -&#x3E; a)  j (a) hold. The former follows from zA (z -&#x3E; a)  a by applying
j and using that j preserves A; the second follows from a A (x -&#x3E; a) = a and
a  j(a).

For the second inequality, we should prove for each y E X that

it suffices to prove k(y)  (c(k(y))Ao(y))(y), i.e. k(y) (k(y)Vy)A(y -&#x3E; y),
which is clear, without any assumptions on k.

By the adjointness T F O, it follows that the fixpoints for Wo O: NA -
NA consist of those elements j which are minimal in O-1 (O(j)), i.e. consists
of nuclei j which are smallest among those with a given restriction along
X -&#x3E; A. This is precisely the definition of j being closed relative to X -&#x3E; A
( "fibrewise closed" in the terminology of [3]). This identifies the fixpoint
lattice of T o O as the relatively closed nuclei on A (relative to X -&#x3E; A) .
(And the operator T o O is closure-relative-to-X. The word ’closure’ refers
really to the dual lattice of sublocales of the corresponding locale.)
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Theorem 1 A map k : X-&#x3E; A is a fixpoint for O 0 BII : AX -+ Ax if and
only if k satisfies the equation

for all x, y E X .

(Recall that x -&#x3E; k(y) in full notation would be O(x) -+ k(y); the equa-
tion of the theorem is of course the definition in [3] of the notion of an
X-nucleus. So in some sense, our result gives a "proof" of that definition,
i.e. derives it from an adjointness.)

Proof. If j E NA is a nucleus, then its restriction along O : X -&#x3E; A

satisfies the equation ( 1); this is essentially Corollary 3.2 in [3], and is

anyway an immediate consequence of the MacNab law ([11], [3])a -&#x3E;j(&#x26;) =
j (a) -&#x3E;j(b) that holds for all nuclei j. Since any fixpoint of O o T is in the
image of O, this proves that fixpoints satisfy the equation. Conversely,
assume that k : X -&#x3E; A satisfies the equation ( 1). To prove k =O(w(k)),
it suffices to prove

O(W(k))  k,
since the adjointness takes care of the other inequality. Let us, for x E X ,
denote the nucleus c(k(x)) A o(x) by jx; so that we should show Vxjx k.
The join here is not formed pointwise; the trick is to find a generalized
double negation nucleus which is an upper bound for the constituents.

Specifically, we first prove that ( 1) implies that, for every x E X , jx o k =
k. We have in fact, for x, y E X that

Using the law j a A (a -&#x3E; b)  j b already noticed, we therefore have, for all
x, y in X and a in A,
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and so jx (a)  (a -&#x3E; k(y)) -&#x3E; k(y). Thus we have for each x that

Since the right hand side here is a (generalized double negation) nucleus, we
get in NA that

Applying the two nuclei appearing here on an arbitrary z C- X, we get

the last equality follows from 0  k which in turn follows from the con-
sequence z -&#x3E; k(z) = k(z) -&#x3E; k(z) = 1 of (1). This proves the desired

inequality and thus the Theorem.

Remark. For any k E AX , we may form a generalized double negation
nucleus as in the proof of Theorem 1; let us denote it Lk, so for a E A,

The following was suggested by the referee: If k happens to satisfy (1), we
may see that Lk (y) = k (y) for all y E X, in other words, for any y E X ,

This can be seen as follows. The inequality  follows by taking x = y and
using (y -&#x3E; ky) -4 sky = ky, which in turn follows from y -&#x3E; ky = ky -&#x3E;
ky = 1 (using (1)). To prove the inequality the other way means proving
that ky  (y -&#x3E; kx) -&#x3E; kx, for arbitrary x E X, which in turn is immediate
from (1) by twisted exponential adjointness.

Also, still assuming (1) for k, we may prove that Lk is the largest among
all nuclei j with j (x) = k (x) for all x E X . Indeed, for such j, we have

so j o k = k, and the same argument that led to (2) now leads to j  Lk.
Summarizing, the class of nuclei j having a given restriction k along

X -&#x3E; A has a maximal element Lk (and also a minimal one, namely the
common relative closure of the nuclei in the class O-1(O(j)).
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2 Distributions and support

We consider in this section frames A in an arbitrary topos (of which we
talk as if it were the category of sets). We also consider the frame Q of
"truth values" in the topos. It is the initial frame, and the unique frame
map Q - A we denote by 0. We are then in the situation of the previous
section, with X = Q, Since the x E X now are truth values, we find it more
natural to denote them A, A’, etc. Top and bottom will be denoted by 1 and
0, though, not ’true’ and ’false’.

We collect in the following two Propositions some, probably well known,
facts from intuitionistic lattice theory.

Proposition 2 The (unique) frame map O : Q -+ A is the smallest among
all maps (order preserving or not) that preserve 1.

Proof. Let k : Q - A preserve 1. Since in Q, A = V{1 I A} and O
preserves suprema and 1, we get O(A)= V{1A I Al. To prove V{1A l A} 
k(A), it suffices to prove 1A  k(A) assuming that A holds , i.e. under the

assumption that A = 1, which is clear since k(1) = lA by assumption.

Proposition 3 Let p : A -&#x3E; S2 be sup preserving. Then we have the "Frobe-
nius law"

for all a EA and AEQ.

(The Proposition holds even when A is just assumed to be a sup lattice,
and O preserves sup and 1.)

Proof. We note that 03BCo O  identity Q. For, Q is the free sup lattice on
one generator 1, and certainly 03BC (O(1))  1. The proof of the Proposition is
now obvious: vie.wing the two sides of the Frobenius law as defining maps
A X Q -&#x3E; Q, we just have to see that the subobjects of A X Q classified by
the two sides are equal. But to prove this, it is enough to assume that the
left hand side (for a given a, À) is 1 and prove that so is the right hand side,
and vice versa. This is trivial, using 03BC(O(A))  A.

Proposition 4 Assume k : Q -&#x3E; A is inf preserving, or equivalently, that k
has a left adjoint. Then it is an Q-nucleus, i. e k satisfies the equation (1),
and hence, by Theorem 1, is fixed for the construction -1) o W.
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Proof. For A and A’ in Q, we have must prove

The inequality &#x3E; holds just because O  k by Proposition 2. For the other
inequality, assume that a in A satisfies a  (O(A) -&#x3E; k(a’)), or equivalently
aAO(A)  k(A’). If it denotes the left adjoint of k, we thus have 03BC(aAO(A)) 
A’, hence by the Frobenius identity (Proposition 3), we have ¡t(a) A A  A’.
Thus 03BC(a)  (A -&#x3E; A’), and hence by adjointness a  k(A - A’). But

since k preserves A, we have k(A - A’)  k(A) -&#x3E; k(A’). So we conclude
a  k(A) -&#x3E; k(A’), and since this holds for all a, we get the other inequality
 and the Proposition is proved.

In the (Lawvere) conceptual framework mentioned in the introduction,
the frame O(M) associated to a locale M may be thought of as an "al-

gebra" of intensive quantities on the "space" M (in particular, it behaves

contravariantly with respect to locale maps M -&#x3E; N) . One then gets a space
O’ (M) of extensive quantities (behaving covariantly) on M by taking the
dual of O (M) in an appropriate "linear" category, which we (in the spirit of
[6]) take to be the category sl of sup-lattices, with Q as the dualizing object.
This general viewpoint was advocated by Lawvere in [9], [10], and studied
in several special cases by Bunge, and in the particular one here, by Bunge
and Funk [1]. We follow them in thinking of O’(M) as consisting of a kind
of "distributions" on M. So by definition,

and this set inherits a (pointwise) sup-lattice structure from that of Q (be-
cause the theory of sup-lattices is "commutative" in an appropriate sense) .
In general, O’ (M) will neither be a frame nor a coframe. Since every sup
lattice map p : A -&#x3E; Q has a right adjoint k : Q - A, there is an order-

isomorphism m : il (Q,O(M))op=-&#x3E; sl (O (M) , Q), where il (-, -) denotes the
partially ordered set of inf -lattice maps. (The letter ’m’ stands for ’mat-
ing’.) Also, by the standard correspondence between nuclei on O (M) and
sublocales of M, we have an isomorphism n : sub (M) =-&#x3E; N(O(M))op. (The
letter ’n’ stands for ’nucleus’.) Let us denote by sub. (M) the lattice of those
sublocales M’ C M with the property that M’ -&#x3E; 1 is open, i.e. is such that
the unique frame map O : Q -&#x3E; O (M’) has a left adjoint. This is easily seen
to be equivalent to saying that the map j o 0 : Q - O(M) has a left adjoint
(or equivalently, preserves infima), where j is the nucleus corresponding to
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M’ C M. Let us call the lattice of these nuclei N. (O(M)). So the O con-
struction of Section 1 restricts to a map: O : N. (O(M)) -&#x3E; il(Q,O(M)).
Also, the construction T (restricted to il(Q,0(M))) factors through N,; for
if k : Q -&#x3E; O(M) is inf preserving, it is a fixpoint for V 0 ’l1 by Proposition
4, meaning that k = W (k) o 0, so W (k) o 0 is inf-preserving since k is. It

follows that the adjoint pair W -l O of Section 1 restricts to a pair of adjoints
between il(Q, O(M)) and N.(O(M)).

Thus, we get a pair of adjoints

Since inf-lattice maps k are fixed under Q o W, as we just observed, it fol-

lows that sl (O (M), Q) is fixed under the adjoint pair displayed. Since the

fixpoints for the composite W o O are the relatively closed nuclei, it follows

that the fixpoints on the right in the displayed pair of adjoints are those
relatively closed sublocales M’ C M which furthermore belong to sub, (M),
i.e such that M’ - 1 are open. This is the Bunge-Funk correspondence,
[1] Theorem 2.1. One may think of the M’ C M corresponding to a frame
distribution p : O (M) -&#x3E; Q as its support.

3 Regularization
In this section we extend to open locales M the well known topological
interpretation of the double negation operator on opens of a topological
space M: -,-, U = "interior of closure" . The operator "interior of closure", or
equivalently -,-, applied to U, is called the regularization of U. The regular
opens of M constitute (classically) a complete Boolean algebra, Reg(M),
which is not spatial, in general. In our context, closure and "negation" will
be replaced by relative notions.

Let M be a locale and let o : O(M) - Sub(M) be the natural inclusion
which to an U E O (M) associates the open sublocale o(U) of M given
by the nucleus U -&#x3E; -. Since o preserves suprema, it has a right adjoint
o F interior, as is well known. (We shall give an explicit formula for it in
Lemma 1 below, but this formula is not needed in the proof of the main
Theorem 2.)
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We shall consider the map

given by (f U) (V) = pos ( U n V), where pos is left adjoint to the unique
frame map o : Q-&#x3E; O (M) ; the existence of such left adjoint is the open-ness
assumption on M. 2 Since also U n - is a left adjoint, U n - -1 (U -&#x3E; -),
it follows that 

I

so in particular, f U is sup preserving, so f U E O’ (M) . The reader may
think of f U as fU, i.e. as f 9 fu f dA.

Proposition 5 The map f : O (M) -&#x3E; O’ (M) is a sup-lattice map which
preserves 1.

Proof. Preservation of suprema follows from the fact that suprema in

O’(M) = sl (O (M) , Q) are computed pointwise. The last assertion is that
f (M) is the largest frame distribution. But since f (M) = pos, this means
that for any frame distribution M, we have p  pos. By considering the right
adjoints k and O of 03BC and pos, respectively, this is equivalent to 0  k. But

0 is the smallest map preserving the top element, by Proposition 2.

Corollary 1 The map f : O(M) -&#x3E; O’(M) has a right adjoint i.

The map i should be thought of as some kind of density-function for-
mation, cf. also Bunge and Funk’s [2] (their Proposition 3.4 seems to be
analogous to part of the following). We don’t have an explicit formula for
i, but we do have one for its composite with f in the following Theorem.
Recall that the fixpoints for TOP o Oop : N (O(M))-&#x3E; N(O(M)) correspond
under the identification n : (sub(M))op -&#x3E; N(O(M)) to the relatively closed
sublocales, and in fact is is clear from the adjointness between O and T that
this composite corresponds in fact to the relative closure formation. We
shall denote it closure. Then we have

Theorem 2 The following operators on O(M) coincide:

20ur J’ is a restriction of the map X : sub(M) -&#x3E; sl(O(M), sub(1)) considered in [1]. In
[2], they analyze it in terms of the multiplicative action of intensive quantities on extensive
ones, the "intensive" u E O(M) being sent to u . e,, where e, is the distribution "total",
which is synonymous with our pos.
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(ii) AAEQ(- -&#x3E; 4(A)) -&#x3E; 4(A) (which we shall denote LQ(-) );

(iii) interior o closure o o.

In particular, this operator is a nucleus on O(M).

Proof. We investigate the effect of these three operations on a fixed
element V E 0(M). For short, when we say that we "prove (i) = (ii)" , we
mean that we prove that the result of applying the operator in (i) to V is
equal to the result of applying (ii) to V.

To show that (i)=(ii), we prove that U E O(M) satisfies U  i(fV) if
and only if it satisfies U  AA(V-&#x3E; O(A)) -&#x3E; O(A). Now

if and only if

if and only if

(by "mating", using (4)), which in turn holds if and only if for all A E S2,

for all A E Q.

By twisted exponential adjointness, this is equivalent to U  (V -&#x3E; O(A)) -&#x3E;

O(A), and to say that this holds for all A is equivalent to saying U  AA (V -&#x3E;
O(A)) - O(A).

The equality (i)=(iii) follows from Theorem 3 below, but it may also be
seen as a consequence of the observation that

which is in fact a reformulation of formula (4). Taking the right, adjoint on
both sides, we get 

and a simple calculation now goes
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= interior o closure o o.

This proves that the three operators agree. Since the second one is a (gen-
eralized double negation) nucleus, the last assertion follows.

Generalized double negation nuclei appear also in [5] and [8]. The LQ of
the Theorem will be denoted just by L in the following. So ML denotes the
locale whose frame of opens is the frame of fixpoints for L. (They are the
"relatively regular opens" .) It is a sublocale of M, and in fact, according
to [5] Lemma 1.2, is the smallest dense sublocale of M, for the appropriate
relative notion of density (cf. also the Remark at the end of Section 1.) The
following result is an immediate consequence of results in loc. cit. (notably
Lemma 1.11 (ii)), but we shall give a direct proof, not utilizing these:

Proposition 6 If M is an open locale, then so is the locale ML

Proof. It is immediate that every O(A) is fixed for L, so that O : Q -
O(M) factors across the inclusion I : Fix(L) -&#x3E; O(M), by an order pre-
serving map 0’, say, i.e. 0 = I o 0’ Then also O’ = a o O, where a -l I , so
0’ is a frame map. Since I is full and faithful and pos 0, it follows that

pos o I -l Q’, i.e. ML is open (Frobenius identity being automatic for left
adjoints into Q, by Proposition 3).

Proposition 7 The construction M -&#x3E; ML defined on open locales is idem-
potent. Locales of form ML are precisely the open pre-boolean locales, in the
sense of [8].

Proof. The first assertion may be deduced from Johnstone’s density
characterization of the ML construction, as quoted above, together with the
fact that a composite of two dense maps is dense. A more elementary proof
goes as follows. We want to prove that the "generalized double negation"
nucleus L’ for the frame Fix(L) is the identity. Factorize 0 as before, 0 =
I o 0’. Since I : Fix(L) C O(M) has a left adjoint, it preserves arbitrary
meets. Furthermore, it preserves -&#x3E;. This means that I preserves all the

building blocks for L’. Thus I o L’ = L o I, i.e. the restriction of L to

O (ML) = Fix(L) is L’. Since L is certainly the identity operator on Fix(L),
it follows that so is L’, proving the first assertion. The second assertion

follows from the openness assertion of the previous Proposition.

Remark. The functor M 9 ML in fact is a coreflection from the category
of open locales onto the subcategory of open pre-boolean locales.
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We finish with a generalization of the equality (ii)=(iii) of Theorem 2.

Let X be an arbitrary subset of a frame O (M) . If j is a nucleus on O (M),
we denote by closurex (j) the closure of j with respect to X, which by
Proposition 1 is given as V x c(j (x)) A o(x), the smallest nucleus agreeing
with j on X. (It is less than or equal to j in the frame N(O(M)); the word
"closure" refers to the dual lattice Sub (M) .)

Recall also that o : O(M)-&#x3E; Sub (M) has a right adjoint interior :

Sub (M) -&#x3E; O (M). We then have

Theorem 3 For any set X C O(M), we have

where LX is the generalized double negation nucleus

Proof. Recall that N (0 (M)) under the pointwise ordering is a frame,
in particular a Heyting algebra, so that - makes sense in it. We shall need

Lemma 1 Given a nucleus j, then interior(n-1(j)) E O (M) is the element
(-,j)(0).

Proof. This will follow by proving that (-,j)(0) satisfies the two adjunc-
tion inequalities characterizing the right adjoint of n o o. They are

for all y in O(M)

and an inequality in N(O(M))op, which in the dual poset N(O(M)) is

for all j in N(O(M)),

respectively. The former is actually an equality: the open nucleus o(y) has
a complement, namely the closed nucleus c(y) = y V -, which is thus -o(y),
and certainly c(y) (0) = y. The second inequality means that

for all y. But
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since meets are computed pointwise, and the bottom nucleus j A -j is the
identity map of O(M). From this, the desired inequality follows by expo-
nential adjointness, and the Lemma is proved.

We shall need yet another calculation.
If x, y, z are elements in any Heyting algebra A, with x  z, then

For

by modus ponens
by distributivity
since x  z

by modus ponens,
so by exponential adjointness, we get (5).

If now A is a frame O(M), and x  z, the inequality (5) implies that
the composite o(z) o c(x) of the nuclei c(x) = x V - and o(z) = (z -&#x3E; -)
is an idempotent map. But it is well known, and easy to see, that the
composite jl o j2 of two nuclei is a nucleus iff it is idempotent, in which case
jl o j2 = jl V j2 in the frame of nuclei. It follows that for x  z, o(z) o c(x)
is a nucleus and is the join o(z) V c(x) in the frame of nuclei. (Nuclei of
this form are exactly those that correspond to locally closed sublocales of
M, cf. e.g. [7].) Applying this to the case where z = u -&#x3E; x, we conclude in
particular that

Therefore

(meets of nuclei being computed pointwise). On the other hand, Proposition
1 applied to the nucleus o(u) gives

(a non-pointwise sup of nuclei), so
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and hence, by (6), we conclude that

By the Lemma, the left hand side here is

interior o n-1 o (n o closureX (o(u)))= interior o closurex o o(u).

This proves the Theorem.
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