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The set of  physical quantities is partitioned into equivalence classes called 
dimensions: length, area, speed, mass, ... I shall describe some further mathe- 
matical structure on non-vanishing quantities and on dimensions which, on the 
one hand, has straightforward physical interpretation and, on the other hand, is 
so strong that it supports a result that corresponds to the ~r-Theorem of dimen- 
sional analysis. The description given in Sections 1 and 2 is closely related to 
descriptions of BRAND [1], BUNGE [2], CARLSON [3], DROBOT [4], LAWVERE (un- 
published), WHITNEY [6], and others. In the final section, some comments are 
given on the relation between some of  these accounts and the present one. 

1. The vector space of quantifies 

It is a well known concept that any two physical quantities may be multiplied 
together. For  instance, a given length be multiplied by a given force to yield a 
torque, or a given length may be squared to yield an area. This multiplication 
has nothing to do with measuring the given quantities in question, but may be 
achieved by purely physical or geometrical construction. Also, quantities may be 
divided and raised to fractional powers, although it is sometimes not  possible to 
describe this in purely physical terms. Certain relations hold between these algebraic 
operations on the set P of  physical quantities, namely those that define the notion 
of  a multiplicatively written vector space over the field Q of rational numbers. (This 
is a standard notion, as used, for example, by CARLSON [3] in his Axiom 1.) 

The set D of physical dimensions (length, area, force . . . .  ) also forms a multi- 
plicatively written vector space over Q, and this structure may in fact be defined 
by requiring that the map d:  P ~ D which to a physical quantity associates its 
dimension is a Q-linear map. 

Finally, every physical quantity may be multiplied by any positive real number 
2 to yield a new quantity of the same dimension. In fact, •+, as a multiplicatively 
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written vector space over Q, is a linear subspace of P; it is customary to call R+, 
as a subspace of P, the 'set of pure, or dimensionless, quantities'. Let us denote 
by i : R+ --~ P the inclusion map. 

We summarize the discussion in the following statement: There is a sequence 
of  Q-linear maps between (multiplicatively written) vector spaces over Q 

R + - - , / P  d D. (1.1) 

This sequence is furthermore short -exact:  this means that d is surjective, i is an 
inclusion, and the kernel of  d equals the subspace given by the inclusion. 

The :z-Theorem of  dimensional analysis is, in the theory to be presented below, 
a theorem about  short-exact sequences of  vector spaces. It will be formulated and 
proved in the next section where, however, standard additive notation for vector 
spaces will be used. 

2. An abstract .-r-Theorem for short-exact sequences 

We consider vector spaces over an arbitrary but fixed field K; we say ' linear'  
instead of  K-linear, and we use additive notation. 

Consider a short-exact sequence of vector spaces 

E = ( S ~  P ~ D). (2.1) 

Together  with E, we shall consider the group G(E)  = Lin (D, S) of  linear maps 
f rom D to S, under pointwise addition. 

For  M E  D, we shall denote d - l ( M )  by [M], and so aE [M] if and only if 
d ( a ) = M ;  and S =  [0]. Also, f o r a l  and a2 elements of [M], a ~ - - a 2  is i nS ,  
since 

d(al  - -  a2) = d(a~) - -  d(a2) = M - -  M = O. 

Similarly, for a E [ M ] ,  2 E S ,  we have 2 + a E [ M ] .  

R e m a r k .  For  the short-exact sequence (1.1), these statements read, when re- 
turning to multiplicative notation : " i f  at and a2 are quantities of  the same dimen- 
sion, then their ratio is a pure quantity, i.e. a number  in R+";  and " i f  a is a quan- 
tity of  dimension M, then so is 2 �9 a for every 2E R+".  

By a spli t t ing o~ of E we mean a function a : D -+ P with d ( ~ ( M ) )  = M ,  
for every M E  D, or equivalently, with a (M)E  [M]. Each such function 
gives rise to a function fl : P - +  S, given by t3(a) = a - -  ~(d(a))  (which clearly 
is in the kernel of  d). Furthermore,  if or is linear, then so is t3. 

Given a splitting ~ of  E,  the map S •  P given by (s, M) ~--~ s + a(M) 
has an inverse P - +  S •  D given by a ~ (fl(a), d(a)), where/5 is associated to 
as above. I f  o~ is a linear splitting of E, the bijection S • D -+ P thus given is a 
linear isomorphism. 

By an n-ary relation on P, we understand any subset F of pn  = p • . . .  • p 

(n times). We say that F is a G(E)- invariant  n-ary relation if for every 0 E G ( E )  = 
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Lin (D, S), we have tha t  
(al  . . . . .  an) E F 

implies 

(al + O(d(al)) . . . . .  a. + O(d(an)) ~ F. 

Clearly, every F ~ S n ~  pn is G(E)- invariant ,  since if (al ,  . . . ,  an) is in S, then 
O(d(a~)) ---- O, i = 1 . . . . .  n. 

Consider  elements  A~ . . . .  , A m and B~, . . . ,  B,  in D, and assume tha t  the A~'s 
are l inearly independent  and tha t  each Bj belongs to the linear subspace spanned  
by  the A~'s, so 

Bj = ~ ki~A~ (2.2) 

for  j = 1, . . . ,  n. With  these assumpt ions ,  we can state an abs t rac t  ~r-Theorem: 

Theorem 2.1. L e t  F C= [A1] • . . .  • [A,,] • [BI] • . . .  • [B,] be a G(E)- invar-  
iant relation. There  ex is t s  a subset  ~ C= S ~ such that f o r  every  (a~, . . . ,  b~) with 
a i E [ A i ] ,  bjE[Bi] ,  i =  1 , . . . , m , j - -  1 , . . . , n  

(al  . . . . .  am, bl . . . . .  bn) E F 
i f  and  only i f  (2.3) 

(bl  - -  ~ k l i a i  . . . . .  bn - -  Z k~iai) E q~. 

Proof .  Since the m a p  d in (2.1) is surjective, a l inear splitting for  it exists; 
choose one, fixed in wha t  follows, and  call it o~ ~ We then define q) = S n by  

= ((21 . . . . .  ~n) E S n ] (~~  . . . ,  s~ 21 + ~O(B1) . . . .  , ~, + ~~ E F}. 

(2.4) 

We shall p rove  tha t  (2.3) holds.  Le t  (al  . . . . .  am, bl  . . . . .  bin) be given with ai E [Ai], 
bj E [Bj]. By extending the l inearly independent  list A~, . . . ,  A m to a basis for  D, 
one sees tha t  one m a y  const ruct  a l inear split t ing o~ : D --> P o f  d with o~(A/) ---- ai 
(i = 1 . . . . .  m). Thus  (a~, . . . ,  b,) E F is equivalent  to 

(o~(A1) . . . . .  o~(Am), 61 . . . . .  bn) E r .  (2.5) 

Consider  the linear m a p  0 : D ---> P given by  or ~ - -  or Since bo th  o~ ~ and o~ are 
splittings o f  d, it is clear tha t  their  difference 0 takes values in the kernel  S o f  d, 
thus 0 E G(E) .  We can now apply  the assumpt ion  o f  G(E)- invar iance of  F for  the 
e lement  0 E G(E).  Rela t ion  (2.5) then  implies 

(o~~ . . . . . .  o(.~ b~ - -  c~(B~) + o~~ . . . .  , b,  - -  o~(Bn) + ~~ E F ,  (2.6) 

and conversely,  (2.6) implies (2.5), by  using the assumpt ion  o f  G(E)- invariance 
for  the element  - -0  E G(E) .  But by  the definition (2.4) o f  ~ ,  (2.6) is equivalent  
to  

(bl  - -  or . . . ,  bn - -  or E ~ ,  
and  we have  

( Bj) = o~(S kj ,Ai)  = S kjicffA,) = S kjla~, 

by (2.2) and  the l inearity of  g. This  proves  the theorem.  
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In the applications, one is often more interested in functions than relations, 
more specifically functions whose domain and codomain are sets of  form 
[A1] x . . .  • [B~] and [C], respectively, with A t , . . . ,  B~, CE D. I f  such a function 
is given 

[Aa] • .. .  • [B,] _c [C], (2.7) 

we shall call it G(E)-invariant if its graph F is a G(E)-invariant relation on P. 
Thus the condition of G(E)-invariance of f may be expressed 

f ( a t  + O(A1) . . . .  , b,, + O(B,,)) : e + O(C) (2.8) 

for all al  E [A1], . . . ,  bn E [B,,], c E [C], and 0 E G(E). 

Proposition 2.2. I f  the function (2.7) is G(E)-invariant, then C belongs to the 
linear span o f  A 1, . . . ,  B~. 

Proof. I f  not, we may construct a linear map 0 : D ~ S with O(AI) . . . .  
. . . .  O(B~) = 0 and O(C) ~= O. Take an arbitrary al E [All, . . . ,  bn E [B~], and 
let c = f ( a t  . . . .  , b~). The two sides of  (2.8) are c and c + O(C), respectively, 
contradicting O(C) ~ O. 

The abstract :r-Theorem, for functions rather than relations, can now be 
formulated as follows. As in Theorem2.1,  we consider elements A1 . . . . .  Am, 

BI, . . . ,  Bn in D, with the Ai's linearly independent, and with the B/s  linear com- 
binations of  the A,.'s with coefficients kji as in (2.2). 

Theorem2.3.  Let  f :  [Aa]• ...  •  .. .  •  [C] be a G(E)- 
invariant function. Then C belongs to the linear subspace spanned by the Ai's, 

C : S koiAi ,  

and there is a function 9 : Sn-+ S such that for  all (al,  . . . ,  b~) E [A1] • .. .  • IBm], 
we have 

.f(al . . . . .  am, bl . . . . .  bn) = q~(bl - -  S kliai . . . . .  bn - -  S kniai) -]- S koiai. (2.9) 

Proof. The first assertion follows immediately from Proposition 2.2. For  the 
remainder, consider the graph F of f .  By assumption, F is a G(E)-invariant relation, 
and so we may apply Theorem 2.1 to find a subset q~ ~ S n+l, relating to F as 
in (2.3) (with n + 1 instead of n), and it is straightforward to see that this 

~ S n+l is the graph of  a function ~ : S n -~ S, which relates t o f b y  (2.9), because 
relates to F by (2.3). 

3. Interpretation and comparisons 

Interpretations of  the three vector spaces S, P and D of  (2.1) as the set of  pure 
quantities ( =  R+), all quantities, and dimensions, respectively, were given in 
Section 1. The arguments bj - -  Y, kjiai in (2.3) and (2.9) are the dimensionless 
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products that occur in all formulations of  the zc-Theorem; in the multiplicative 
notation appropriate  in the interpretation, they would of  course read bj.Hai-kJ ~. 

For  the sequence (1.1), it is clear that  to give a splitting 0r o f  d, i.e. to give an 
offM) E [M] for each M, is to be interpreted: for each dimension M, pick some 
quantity 0ffM) of  that dimension; in other words, a splitting 0~ of  d is a choice of  
unit o f  measure for each dimension. To say that  a splitting 0~ is linear says that  
the choice of  units is a coherent one. I f  Ms . . . . .  M m t o r m  a basis for D, any 
assignment of  values 0~(M~) E [Ms] (i = 1 . . . . .  m) extends uniquely to a linear 
splitting o~ : D -+ P of  d. Thus, for mechanics, D is 3-dimensional, with the di- 
mensions of  mass, length, and time as one possible basis, and a coherent choice 
of  units is then completely determined by choices of  a unit mass, a unit length, 
and a unit time. 

Given a splitting 0r : D -+ P of the short-exact sequence (2.1), the bijection 
S •  D ~ P resulting from it becomes, in the interpretation, the bijection which to 
a pure number  2 E S = R+ and a dimension M associates that particular quantity 
which customarily is denoted by 20ffM). Thus, if M is the dimension of volume, 
and 0ffM) = liter, say, is the chosen unit quantity for volume, and if 2 is the num- 
ber 4, say, then '2a(M) '  would read '4 liter', the notation for the quantity four liters. 
Furthermore,  if the splitting 0~ is linear, i.e. is a coherent choice of  units, the map-  
ping S •  D ~ P becomes a linear isomorphism. 

However, to identify the vector space P with S •  implies in particular that 
one considers a coherent choice of  units as par t  of  the fundamental mathematical  
structure of  P. This means introducing an element of structure in P which is not 
objectively there, and is in fact analogous to considering a choice of  basis as part  
o f  the structure of  a vector space. And therefore, also, it leads to formulations of 
the z~-Theorem in terms of  matrices, rather than in terms of  abstract linear algebra. 
This is the approach taken by CARLSON [3]; cf. his Axiom II. 

The accounts of  DROBOT [4] and WHITNEY [6] are, on the other hand, genuinely 
coordinate-free, like the present one. WHITNEY, however, has a more complicated 
structure, due to the fact that  he wishes to include vanishing and negative quantities 
in the theory. The s t ruc ture /7  considered by DROBOT is in essence the same as the 
present P, and the group G(E), in terms of which the z~-Theorem was formulated 
above, is isomorphic to a subgroup of the group of  what DROBOT calls dimensional 
transformations P--+ P. 

To describe the correspondence, let 0 E G(E) = Lin (D, S) be given. We can 
then construct a linear bijection T:  P - +  P by postulating 

T(a) ---- a --  O(d(a)); 
this T clearly satisfies 

To i : i, do T :  d, (3.1) 

(in the notat ion of  (2.1)) and in fact the mapping 0 ~-> T is a group isomorphism 
from G(E) to the group of  linear bijections satisfying (3.1). DROBOT considers 
relations on P invariant under the larger group of those bijective linear T:  P ~ P 
that  satisfy the first of  the two equations (3.1) only. 

Furthermore,  the n-Theorem of  DROBOT deals with functions f :  pn__~ p,  
rather thart with functions [,41] • . . .  • [Bn] --> [C]. The latter seems more realistic. 
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I do not claim to have given any argument why, or when, physically defined 
relations or functions are invariant under G(E), as required in Theorem 2.1 and 2.3. 

Finally, it should be pointed out that LAWVERE (unpublished, but see the article 
of  KOCK [5]) proposed to study the structure of  physical quantities in terms of  a 
category, whose objects are the physical dimensions, and whose morphisms are 
the physical quantities. Thus, any given speed may be construed as a morphism 
from the dimension time to the dimension length, but also as a morphism from the 
dimension mass to the dimension momentum,  say. The category is equipped with 
a further structure |  corresponding to the multiplication of  quantities. A cate- 
gory of this kind can be constructed out of  the short-exact sequence (1.1); in the 
more abstract terms of  the short-exact sequence (2.1), this construction goes as 
follows. The objects of  the category are the sets o f  form [M], where M E D; the 
morphisms f rom [M] to [N] are those maps f :  [M]-+  IN] that satisfy 

f(2 -]- a) = 2 + f (a)  a E [M], 2 E S .  (3.2) 

Such anfdef ines ,  and is defined by, a unique g E [N --  M], namely g = f (a)  - -  a 
(for every a E [M]), and can therefore, in the case of  (1.1) (with multiplicative 
notation), be identified with a quantity of  dimension M - 1 N .  Note that unless 
M = N, no map f :  [M] ~ IN] in this category can be G(E)-invariant, because 
of  Theorem 2.3. 
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