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MANIFOLDS IN FORMAL DIFFERENTIAL GEOMETRY

-A: Kock and G.E. Reyes

This paper is the fourth in a series whose general theme
may be described as formal differential geometry (the other three
being [6],[7], and [11] ). The basic idea, which goes back to
Lawvere [8], is to work in a category with a ring object A
("the line") and another object D ("the generic tangent vector",
or alternatively "a point with an infinitesimal linear neighbour-
hood"), by means of which one may interpret directly geometric
entities on suitable "manifold" objects M of the category, and

their combinatorial relationships, by performing simple operations

of the category on M,A, and D. Thus, the tangent bundle of

M becomes the exponential object MD, the double tangent bundle

becomes (MD)D = DXD,

M etc. To the extent that geometric entities
and their relations are considered as primitives, we may view this
study as synthetic differential geometry. To the extent that no
limit processes are involved in these geometric constructions be-
sides the formal operations of the category, this study may be
considered as a generalization of certain aspects of "differential
calculus on schemes" appearing in algebraic geometry (see §§4 and
5, and [11]).

We should point out, however, that we do not yet have a‘model
for the axiomatic approach which comprises "classical" differential
geometry.

The specific purpose of the present paper is to investigate
conditions for the tangent bundle of M to have good fibrewise
vector space structure (or rather A-module structure), and to

prove that certain classical geometric objects, like Grassmannian

manifolds, satisfy these conditions. Part of the conditions



are on the ambient category E and on a given, basic ring object
A in it. In particular, we construct in §4 Grassmannian manifolds
"internally" in this situation generalizing [5] slightly. How-
ever, for the differential-geometric structure of the constructed
manifolds we need further that A 1is of line type [6], a notion
which we recall in §1.

The two main general tools are the notion of etale descent,
and of free group actions. These are treated in §2 and 3 respec-
tively. For the concrete models which we exhibit in §5, our etale-
ness and infinitesimal linearity is closely related to the
"classical" notion, as exposed, say in [4].

We benefited from several discussions with Gavin Wraith.




§1. Infinitesimal linearity

Let E be a category with finite inverse limits, and let

A be a ring object in  E. We let D be the subobject of A
- - 2 _
D =D(1) = [a€eA|a” = 0]

(formally, D>A 1is the equalizier of the squaring map A-A
and the constant-zero map A -» A; we shall use set theoretic
notation throughout, both for describing subobjects (defined by
finite limits), and maps between such). As in [6] we say that A
is of line type if D is exponentiable in E, and the map

6: AxA > AD, exponential adjoint of <ao,a1,d> — ao-kd-a1,

is invertible. Throughout the paper, we assume A to be of line
type.

More generally, we consider the subobject

D(n)>— A"

defined by

D(n) = [(a1,...,an) |ai°aj =0 vi,j=1,...,nl.
We have n "inclusion maps" ir: D(1) -» D(n) (r =1,...,n)
given by ir(d) = (0,¢e0.,0,d,...,0) with the d placed in

r'th position. We shall henceforth assume that each D(n) is

exponentiable.

We say that an object M is infinitesimally linear if

for each n

WD (n) , (1)

makes




into an n-fold product of M°: MY LM in E/M.

this also by saying: MD(n) is an n-fold pull-back of MD(1)

(We express

over M.)

In particular, for n = 2, the condition says that

i,
M
WD (2) WD)

i

w2 (1)

— M

MO
is a pull-back diagram in E, In [11] §1 1is proved that this

implies

Theorem. The object in E/M

MO

(1.1) Y AR S,

is an abelian éroup object in E/M, with addition given by
MA
W WD) D(2) W2 (1)
M
where A: D(1) — D(2) 1is given by d |— (d,4d). (In fact, (1.1)

is really an A-module object in E/M).

So for infinitesimally linear objects M, we have a tangent
bundle MD with good algebraic properties: it is fibrewisel
linear. (Our assumptions so far do not imply that A itself is
infinitesimally linear, but it is so in all models we know of for
our axiomatics).

We note that if an object M is infinitesimally linear, and
J 1is any exponentiable object, then MJ is infinitesimally
linear. This follows because the functor (—)J preserves limits,

in particular those n-ary pull-backs which define the notion of

infinitesimally linear objects.

—— R —




We shall now introduce the auxiliary notion of 1-&tale map

(Def. 1.1 below), whose purpose are that they allow "descent of

infinitesimal linearity" which will be the content of §2.

We shall say that an object J of form

J = D(n1) X eoe X D(nr)

is a 1-small object. Any 1-small object is pointed in the sense

that there exists a canqnical map

<0,¢..,0>
1 - > D(n1)x ... xD(n.)

(which we just denote 0). Since we have assumed that each D(ni)

is exponentiable, it follows that each 1-small object J is ex-

ponentiable.

Definition 1.1. Amap f: M > N in E is called 1-&tale

the diagram

if for any 1-small object J,

J
MJ £ » NJ
(1.2) Mol lNO
M — — N
£

is a pull-back. (In the present article, we often write "é&tale"

instead of "1-&tale".)
By taking exponential adjoints, 1-&taleness is seen to be

equivalent to the condition that any commutative square

Xx0
X > XxJ
//
(1.3) m l Be i n
M & > N




has unique commutative fill-out t. (If £ is monic one may
think of this as'eXpressing: The subobject M of N is stable

under 1-small extensions.)

Proposition 1.2. Let h: J » K be a 0O-preserving map between

1-small objects. If f: M > N 1is {1-&tale, then the diagram

(1.4) Mkl iNh

is a pull-back.

Proof. Place the square (1.4) on top of the square (1.2).
Then the total rectangle is a pull-back since f satisfies the
étaleness condition with respect to K. And the lower square
is a pull-back since f satisfies the étaleness condition with
respect to J. By a well know diagram lemma (see e.g. [9],
Ex.8(b) p.72), the top square (which is (1.4)) 1is then also a

pull-back.

Proposition 1.3. If the square

sl s

_—

is a pull-back and f is 1-&tale, then g 1is 1-&tale.

Proof. Easy from the fact that functors ( )J commute

with pull-backs, and the above mentioned diagram lemma.

Proposition 1.4. Let f: M - N be any map between infinite-

simally linear objects. If the diagram (1.2) is a pull-back for




for J = D(1), then it is a pull-back for all 1-small J (or

equivalently: then £ is 1-&tale).

Proof. We first prove it for J a 1-small objects of form

D(n). The argument is by induction in n. For n =1, it is
the assumption. Assume now that it holds for J = D(n-1). By

infinitesimal linearity of M

yP(m) _ yp(n=1) , ,D(1)

M 14

and similarly for N. Now it is a pure diagrammatic argument

that if
Ml___>N| M"—’N“
Lo oo
M —N M —N
£ f

are pull-backs, then so is

Ml X Mll 3 NI X N]l

M N
M — N
Apply this for M' = MP™71) ye o P g o PN g

Nll =ND(1).

To prove the desired conclusions for any 1-small J, it
suffices to see that if (1.2) is a pull-back for J = K and
J =1L (K and L arbitrary pointed objects) then it is a pull-

back for J = K«x L.




Consider the commutative diagram

L.K
(ML)K (f7) s (NL)K
L
£
(1.5) Mk , NK
M > N ;
£

here the lower square is a pull-back by the assumption on K. The

upper square is obtained by applying the functor (—)K to the

square 1.2 with J = L. Since ( )K preserves pull-backs, the
upper square is a pull-back by the assumption on L. Thus the
total rectangle (1.5) is a pull-back. Under the identification
(M7)" =M it becomes that diagram which we wanted to prove to

be a pull-back. g

The notion of subobject of units of a commutative ring object

A makes sense in any category with finite lim, namely as (again

using set theoretic notation)

u(a) = [(x,y) €A% | x-y = 11 ;
The composite
proj,
(1.5) U(A) > AxA —— A

is monic, due to the uniqueness of multiplicative inverses in

commutative rings, and in this way U(A) may be considered a sub-

object of A.

The specific 1-&tale map which we shall use later will

ultimately stem from the following




Proposition 1.5. Assume that A is of line type and in-

finitesimally linear. Then U(A) 1is infinitesimally linear, and

the map U(A)>—>A 1is 1-é&tale.

Proof. For any exponentiable object K, (—)K preserves

limits, so takes ring objects to ring objects; in particular AK

is a ring object. For K = D(1), it is proved in [76i] that A

being of line type implies that we have a ring isomorphism

AP T are

the right hand side being A x A made into a ring by using the

idea of ring-of-dual-numbers over A. To a%: AD(1) - A corre-

.gponds pB: AxA - A, projection onto first factor. It follows

D(n) = 1

now from infinitesimal linearity that A A with the n

maps Ain

AD(n) ~ An+1 — AD(1) . N2

given by

Since the forgetful functor from Rings-in-E to E creates limits,

. . i +
we can also describe the ring structure on AD(n) in terms of A" 1,

namely
=AY = A[e1,...,8n]

where the multiplication table for this latter ring is given by

e.e. =0 vi,j.

D (n)

Since (=) commutes with limits, it commutes with the

object-of-units construction U:

D{(n)

D(n)y = (y(a)) .

Uu(a
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But it is easy to see from the "multiplication table" of

n+1:

A[e1,.._.,sn] = A that
o™ = u@) xal
and thus
w@ENP™ = u@ «a 7T w@n® = v xa
—_—

with the n displayed maps given by the n projections A" 5 A,

But this is clearly an n-fold pull-back over U(A). This proves
that U(A) is infinitesimally linear. To see that U(A) > A

is 1-étale, it suffices, by Proposition 1.4 to see that

: (P AD(1)

| |

Uu(A) —— A

is a pull-back. But again this follows from AD(1)

D(1) D(1))

= Ax A and

Uu(a) = U(A = U(A) x A.
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§2. Etale descent of infinitesimal linearity

In this paragfaph, we need more exactness assumptions on
the ambient category E. For simplicity, we shall assume that
E is a regular category in the sense of [2]. Recall that in such
a category, regular epimorphisms (= epics that occur as co-

equalizers) are stable under pull-back and composition. We shall

need

Lemma 2.1. If we have a pull-back diagram

g

Xl > Yl

a | o

£

X — Y

in a regular category E, with p regular epic and g iso,

then f 1is iso.

Proof. Since both g and p are regular epic, then so is

their composite pog = foq Assume therefore that fog 1is co-
equalizer for a pair of maps r,s: Z - X'. By pull-back stability
of regular epics, g 1is regular epic, and in particular epic.
Then it is easy to see that £ 1is coequalizer for gor, gos,

and thus is regular epic. An easy diagram chase gives that £

is monic. But monic and regular epic implies iso.

Theorem 2.2 (Etale descent). Let p: M—sN be any map

which is regular epic and 1-&tale. Then

M infinitesimally linear = N infinitesimally linear.

Proof. Consider the diagram
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~ n

MD(n). N — nM MD(1) _H M

D(n)
T
n D(1)
ND (1) >y N v , N
n
where HM denotes n-fold product in E/M, i.e., n-fold pull-
n

back over M, with 1y the structural map, and similarly HN for

product in E/N. Now the functor "pull-back along p",
p*: E/N - E/M

preserves products (it has a left adjoint "composing with p"),
and p*(ND(1) - N) = (MD(1) -+ M) by etaleness assumption. These
two things imply that the right hand square is a pull-back. The
total diagram is a pull-back, again by 1-&taleness of p. From
a well known diagram lemma (see e.g. [ML], Ex. 8(6) p.72) we
conclude that the left hand square is also a pull-back. The map
ﬂp is regqular epic because the right hand square is a pull-back

and p 1is regular epic. From Lemma 2.1 we then conclude that

n

—)TINN

D (n) D(1)

is iso, which means that N is infinitesimally linear.

There is a dual, but easier, statement about "étale restriction";

for that, we only need that E has finite limits:

Proposition 2.3. Let m: M>—>N be any map which is monic

and 1-&tale. Then

N infinitesimally linear = M infinitesimally linear

Proof. The functor ( )D(n) preserves monic maps. SO the

top map in the diagram




mD(n)
TD(n)) NP (n)
D(1) D(1)
1‘ D T
M > > N
m

is monic. The right hand column is an n-fold pull-back; each of
the n upper squares is a pull-back, by étaleness of m and Pro-

position 1.2. Now it is ean easy diagram chase to conclude that

the left hand column displays MD(n)

W2 (1)

as an n-fold pull-back of

over M, which is the desired conclusion.

(Note: This Proposition cannot be used to simplify the
proof of Prop. 1.5, because there we used infinitesimal linearity

as a tool for concluding etaleness.)
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§3. Equivalence relations and free group actions

Fsr our ultima£e sufficient conditions for infinitesimal
linearity, we need two further assumptions on the category E
and the ring object A in it. The assumption on E 1is that it
is an exact category ([2]), i.e. a regular category where equi-
valence relations are kernel pairs of their coequalizers
("equivalence relations are effective" (Terminology of SGA4,[1]).
The assumption on A is (besides A Dbeing of line type and

infinitesimally linear) that the 1-small objects are internally

projective: an object J in E 1is called internally projective

if it is exponentiable, and the functor (—)J preserves regular
epics. (In §4 we shall use "internally projective" in a stronger
sense: ( )J commutes with finite colimits.)

Proposition 3.1. Assume PorPq: R i M 1is an equivalence

relation with Po and P4 1-&tale maps. Then the coequalizer
M+ M/R 1is 1-é&tale. If further M 1is infinitesimally linear,

then so is M/R.

Proof. Let J be 1-small, and consider the diagram

- S — VY
Lo |
R___ M —— M/R

the horizontal maps in the left hand diagram being pg,pg,po, and
Pq respectively. By the &taleness condition on PorPqr each of
the left hand squares is a pull-back. The lower row is exact by
definition of M/R. The upper row is exact because J is in-
ternally projective. By a well known diagram lemma for exact cate-

gories (see e.g. Barr [2],p. 73 ), we conclude that the right
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hand square is a pull-back, which proves that M -» M/R 1is 1-E&tale.
Since M - M/R is furthermore regular cpic, evidently, we conclude
by the étale descent Theorem 2.2 that M/R is infinitesimally

linear if M is.

One way in which one obtains equivalence relations (not étale
relations in general) is by free group actions. Let the group
object G act on the object M 1in an associative and unitary way.
The action a 1is called free if

a

(3.1) GxM M
—_—
proj,
is jointly monic. In this case, (3.1) is an equivalence relation.

Its coequalizer is denoted M -» M/G.

Proposition 3.2. Let G act freely on M, and assume that

both M and G are infinitesimally linear. Then M/G is in-

finitesimally linear.

Proof. Consider the diagram

~ n
uP (0) = mo o) M
M
c
n . g
(M/G)D(n) — T (M/G)D(11——» M/G
' MG
c
n
with the notation My etc. as in the proof of Theorem 2.2. We
want to prove that the comparison map c¢' is iso. Apart from the

operating with exponential objects with set theoretic notation, we
shall now also do the exactness argument required in the category
of sets. This is justified by Barr's Meta theorem,[2] 6.8. The

D (n)

internal projectivity assumptions first gives that p is

surjective. Now let us first prove that the middle vertical map
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n
m pD(1) is surjective. Let <§1,...,§n> € nM/G (M/G)D(1).
Thus ir: D(1) » M/G. By the surjectivity of pD(1), each ir
can be written pox,. for some xy: D(1) » M. The n-tuple
‘ n n
<x1,...,xr> €En MD(1) is not necessarily in UM MD(1), but we
have, for unique g2,...,gnEZG
x1(0) = gr°xr(0)> . r=2,...,n
since ir(O) = p(xr(O)) is independent of r. Now G acts on
MD(1), since it acts on M. Consider
n
A X D(1)
<x1,g2 x2,...,gn xn>v€ﬂ M
s YR
This element is seen to belong to the required subobject HM M ’
and to go to <§1,...,§n> by the required map. This proves sur-
jectivity of ITpD(1), and thus since ¢ 1is iso, and
ITpD(1)oc _ c.OPD(n)
and we see that «c¢' is surjective.
We now prove c¢' monic. Because D(n) is internally pro-
jective, we may make the identification
and similarly for D(1). We are thus considering the comparison
map
D(n) ,.D(n) . D(1) ,D(1)
M /G M/ M /G

To prove this monic is essentially a finite inverse limit

argument which we again shall do in the category of sets.
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Assume 2z and z' are elements in MD(n) which represent ele-
ments z and z' in MD(n)/GD(n). Assume c'(z) = c'(z'). This

means that‘for each r =1,...,n

. . D(1)
(3.2) zoi, = z'<)1r mod G .

(ir denoting, as in §1, the r'th inclusion D(1) - D(n)). By

D(1)

(3.2) we can find (unique) elements gr€(3 with

(3.3) gr-(zoir) = z'oir

View g, as a map D(1) » G, and evaluate (3.3) at 0. This

yields
(3.4) g,.(0)-z(0) = z'(0),

independent of r. Since the action of G on M is free, we

conclude from (3.4) that gr(O) is independent of r. Thus

n
<Gqreeer9y> € g P = GD(n),

the isomorphism by infinitesimal linearity of G. So there is
D(n)

an X E€G with

(3.5) xt)ir = 9, r=1,...,n.
We shall now prove

(3.6) Xez = z' D(n) - M.

Since M 1is infinitesimally linear, it follows that this can be

proved by proving, for each r = 1,...,n

(x:z)oi_ = z'oir : D(1) - M

r
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We compute on the left hand side

(x-z)oir = (xoir)-(zoir)
= gy - (z0oi)) by (3.5)
— T :
= z'oi_ by (3.3).
This proves (3.6), and thus z = z', and thus that the comparison

map c¢' is monic.
Since we have also seen it to be regular epic, we conclude

that it is iso, which.proves M/G infinitesimally linear.

§4. Manifolds, and Grassmannians in particular

Let A be a ring object of line type and infinitesimally
linear in a category E. If M is any object in E, and V
is an A-module object, proj1: MxV - M 1is an A-module object in

E/M.

Definition 4.1. Let M be infinitesimally linear. We say

that M is parallelizable if there is a fibrewise A—-linear iso-
morphism ¢:

)
MD — MxV

N

for some A-module object V in E. Alternatively, ¢ is an A-

module morphism in E/M. V 1is called the fibre.

We shall only be interested in the case where V = a% for

some n.
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Definition 4.2. Let N be an arbitrary object. We say that

N 1is a manifold (of dimension n) if there is a 1-&tale,
regular epic M — N with M infinitesimally linear and
parallelizable with fibre AP.

(Heuristically, if {N, < Nl a€al} is an open covering of
N by Na's diffeomorphic to open subjects of HJE_LLNG —» N
will serve as such M- N.) Note that by Theorem 2.2 (é&tale

descent), any manifold N is infinitesimally linear.

Proposition 4.3. ("Invariance of dimension"). Assume that

the ring hom(4,A) is non-trivial (0#1), and let N be an
n-dimensional manifold with full support (i.e. the unique map

N-1 is regular epic). If N also is m—-dimensional, then n=m.

Proof. Assume that M (respectively M') 1is parallelizable

n-dimensional (respectively m-dimensional) with M-N, M' >N
1-etale regular epics. Let P =M *N M'. Then we have PD = pxa®
and PP T pxa™ in E/P. Going over to E/P, A remains non-
trivial (since P-4 is epic), and, furthermore, A" = a™ by
means of an A-linear isomorphism. Taking global sections, we.

obtain a linear isomorphism F(An) = F(Am) where T (A) is a
P

non-trivial ring (in Set). By standard commutative algebra, n=m.
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We proceed to show that certain specific geometric cbjects,
namely the Grassmannians, which can be constructed from a ring
object A in a sufficiently exact category, are in fact manifolds
(of correct dimension), provided A is of line type and each
1-small object J is internally projective in the sense that (—)J

commutes with finite colimits.

—

We shall further assume that E 1is an exact category with
disjoint and universal coproducts (SGA 4,[1], II.4.5). In par-
ticular, it has stable sup in the sense of [10]. Therefore,
any first order formula ¢ about elements in at which is

built from pblynomial equations and A,v,3, has an extension
L (xqseeerx) ol

which is a subobject of ar.

- A e e
— ———

Let us remark that all assumptions made hold for the generic

FP Rlngs' But

ring object A which lives in the topos E = Sets
they also hold for the generic local ring object A in the Zariski
topos [3]. That A is of line type in these cases is proved in [6].
The internal projectivity of 1-small objects is trivial in the

former case, but requires a slight argument in the latter (see

below, §5).

We proceed to construct the Grassmannian objects. We first

define the "Stiefel manifold V(k,n)" ; it is defined as that

subobject of Akn which is the extension of the following formula

about elements in Akn (= kxn-matrices over hom(X,3)):

T S S P
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"At least one kxk minor is invertible",
(or in case A is local, by the equivalent
"the kxk minors generate the unit ideal of A".)

The "at least" here is an (i)—fold disjunction, namely over

the possible kxk submatrices of a kxn-matrix. Minors

()
(= determinants) are formed purely equationally, and invertibility
is defined by an 3 quantifier. Thus the extension exist.

In particular V(k,k) >—->Ak2 is the object of kxk matrices
with invertible determinant, which is the same as the object
GL(k) = GL(k,A) of invertible kxk matrices. It carries a group
object structure, namely matrix multiplication. This group acts
6n V(k,n) by matrix-multiplication from the left. If n > k,
it is easy to see that the action is free in the sense of §3.

For n>k, we define G(k,n) to be the object V(k,n)/GL (k)

("Grassmannian object of k-planes in n-space".)

Theorem 4.1. The Grassmannian G(k,n) is a manifold. Its

dimension is k- (n-k).

We first look at V(k,n). Being the extension of an
(n)-fold disjunction, V(k,n) is a union (sup) of (n) sub-
k k
kn

We consider a typical one of these, Q where

objects of A .

H = {i1 < e <ik} is a subset of {1,2,...,n}; QH is the ex-
tension of the formula "the kxk submatrix with column indices
from H has invertible determinant". Clearly QH is stable

under the action (matrix multiplication from the left) of GL(k).

Denote by PH the quotient QH/GL(k). It is a subobject of
V(k’n)/GL(k) = G(k,n), and since the union of the QH's is
V(k,n), the union of the P_. 's is G(k,n).

H
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Tt is easy to see that Py = ak-(n=k) o simplcity of

notation, consider the case where H = {1,...,k}. Then the follow-

ing composite is invertible:

Ak-(n—k) & O —s QH/GL(k) - p

“H H

where the first map has description

[lvs)
——
l=a}

(for B any kx(n-k) matrix, and where E is the unit kxk

k
matrix).

We now want to argue that the inclusion Py >G(k,n) is
1-&tale. We first note that QH:»ﬁ V(k,n) 1is etale; for, there

-exists a pull-back square

QH > v(kln)

I

UA>—>A

where dH to a kxn matrix associates the determinant of the
submatrix with column indices from H; U(A) >»A is &tale by
Proposition 1.5, and pulling back an &tale map along anything
yields an étale map by Proposition 1.3.

Now we can prove étaleness condition for Py > G(k,n)

with respect to an arbitrary 1-small object J. We must prove

that the front square in the box

:Qg > » V(kQ‘J
\\\% .
! Pﬂ:*— I —> G(k,n)J
QH\ l > V(k,n)
P__> > G(k,n)
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is a pull-back. This is a pure diagram chasing argument using
only the facts 1) that the maps indicated by —s are regular
epic (for the two upper ones this follows from internal projec-
tivity of J), 2) that Qg > V(k,n) 1is monic and stable under
that equivalence relation which defines G(k,n) out of V(k,n)
and 3) the fact that the back square is a pull-back (which is
the é&taleness of QH:»» V(k,n) Just proved). The diagram chase
argument may, by Barr's Metatheorem ([2], Theorem 6.8) be proved
in the category of sets: Let gEEG(k,n)J and p)EPH meet each
other in G(k,n). Pick representatives g'GEV(k,n)J and p'€Q

HI
respectively. Then p' may not meet g' in V(k,n), but since

they meet in G(k,n), they are equivalent. Since QH is stable
under the equivalence relation, we may replace p' by p" such
that p" meets g' in V(k,n). Using that the back square is

a pull-back, we get a q'(EQg whose image in PJ

q will hit g

and p under the relevant maps.

s Ak' (n—k) ,

Since P Py is parallelizable of dimension

H

k= (n-k), and since PH:>+G(k,n) is etale and the PH's cover
G(k,n) the Theorem will be proved when the following two general

lemmas have been established.

Lemma 4.2. A finite coproduct of parallelizable objects Xi

of dimension r is parallelizable of dimension r.

Lemma 4.3. If {gi: X, » X111 €I} is a finite family of

étale maps, then the induced map lei -» X 1is étale.

Proof of Lemma 4.2. First, we must prove lei infinitesimally

linear. Consider

(x P == ([lx)HPM %,

—_—
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By the internal projectivity assumption, (llXi)D(n) may be re-
written ll(x?(n))’ .and similarly for D(1). Each

D(n) —— ,D(1)

i ) i i
_

X

is an n-fold pull-back. If we take a coproduct of such, we again

get an n-fold pull-back, using that coproducts are assumed dis-
joint and universal.

Next
x® = Lo = lxg= 2% = (Uxaf

proves the parallelizability.

Proof of Lemma 4.3. Let J be 1-small. We must prove the

following diagram to be a pull-back

(Uxi)J I

l l

lei X

but rewriting (lei)J as ,thg) (again by internal projectivity
of J), this again becomes an easy consequence of coproducts being

disjoint and universal.

Note that the argument which gave that QH > V(k,n) is

étale also will give that QH:>+Akn is @&étale. Specializing to

k = n, we get that GL(k) >—+Akk

is étale, and thus by Propo-
sition 2.3 that GL(k) 1is infinitesimally linear. Using Propo-
sition 3.2, we get another proof that PH (= QH/GL(k)) is infinite-

simally linear.
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§5. Models for the axioms

We shall prove in this paragraph that "the generic ring",
the "generic local ring", as well as the "generic strictly local
ring" satisfy all the axioms which have been used in §§1-4. Re-
call from Hakim [3], III.3 that the functor category (topos)
§gER (where R = category of finitely presented rings) has a ring
object A: R » Set, hamely the forgetful functor, and that this
ring object is the generic (commutative) ring, in the sense of
classifying toposes; §gER contains subtoposes ("étale topos" and

"Zariski topos")
(5.1) Et c 5 < Set .

The Yoneda embedding y: R°P - set® factors through Et, and
since A = y(Z [X]), A 1lives in each of these two subtoposes,
and AEZ) is the generic local ring object, A €Et is the

generic strictly local ring object. (Hakim's notation is 0 _,S

o’'"o
for A, §gER, 01,31 for A, ., and 02,32 for A,Et.)

In [6], Theorem 12, it is proved that A‘€§EER is of line
type, and from ibid., Remark 13, it follows that A€Et and AE€Y
are likewise of line type.

Also, A considered in each of the three toposes in (5.1)

is infinitesimally linear. This follows from

Proposition 5.1. Each representable functor y(B) (considered

in any of the three toposes of (5.1)) is infinitesimally linear.

Proof. We remark that

(5.2) D(n) = y(Z [eqse..re 1) (with ey78y = 0vi,J3),

and that
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—_—

Zle 00,6 + Zle] — 7

n _—

is an n-fold pull-back in R, which is preserved as such by any

functor for form C® - (CE€R). Now the left exactness of

D(n) D(1)

5 y (B)

_

(5.2) y (B) — y(B)

can be checked by proving that for each C €R, the functor
[y(C),-1 takes (5.2) into a left exact sequence in Set. This
is easy, using the above remark.

We now prove a property of 1-small object which was used

in the axiomatic approach of §§3 and 4 (internal projectivity).

Theorem 5.2. In each of the toposes Et,J, and SetR ’

1-small objects J are internally projective (meaning (-)J

commutes with all colimits).

Proof. The case SetR is easy. First observe that each J
is built by finite limits from A, and since the Yoneda em-
bedding preserves finite limits, each 1-small J 1is representable,

i.e. of form y(B) for suitable B €R. But we have a general

categorical fact:

op
Proposition 5.3. In any functor category Set9 (with C

small), if B€C has the property that CxB exist for any

CceC, then the functor

op op
( )Y(B): Setg —_— Set9

has adjoints on both sides, and in particular preserves limits

and colimits.
coP
Proof. For any F € Set~ it is easy (using Yoneda Lemma)

to see that FY(B) is the composite functor
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op
so that the endofunctor ( )Y(B) on Setg is isomorphic to

SetB

where B: C » C is the functor -xB. But any functor of
form §gEB has adjoints on both sides: the Kan extensions along
B.

We next deal with the J-case. This is deduced from the §gER

case already established, by means of

Lemma 5.4. Let r: SetR *65 denote the sheaf reflection

functor. Then for any 1-small object J, and any XEESetR

From the lemma, we easily get the theorem: denote colimits

R

in 3 and Set by l&m and 1lim , respectively. Then for any

S
diagram {Xi | i€I} in &, we have

(Limg(x, )7 = (x(1im %007 = r((@im x7),

using the lemma, and then, using internal projectivity of J in

SetR r WwWe continue:

= r(1im(x})) = 13m5(xi} .

Proof of Lemma 5.4. Since any 1-small J is a product of
objects y(zﬂe1,...,en]), it suffices, by iteration, to see |
Lemma 5.4 for J =jy(z[s1,...,en]). We have to use an explicite
construction of the sheaf reflection functor «r: §g§R-+5, namely
the classical r = 208 of SGA 4, ([1] Exposeé II), where

L(F) (B) = ]-;Lm [RIF]I
ResB

R running over the filtered system of covering cribles of B.
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This means that an element of

-

Q/(XY(Z [81’..."61').])) (B)

is given by an element in

[R'xy(z [81,...,en])]

r

for some R, or equivalently, by a compatible family of elements

in [y®p] D,x¥ Blerrenly ghere
{B — B[b?] | i€e1}

is some co-cbvering for the Zariski (co-) site structure on R.
Such a compatible family, by exponential adjointness and Yoneda

Lemma is equivalent to a compatible family of elements in

-1 .
X(B[bi ,51,...,5n]) ieI.

Similarly, an element of

(rx)Y B Leqreeen) gy~ (x) Bleq,.nn,e D)

is given by a Zariski co-covering

1o ie1ny

{Bleqreeere ] — Bleqs-.ope 1B ')

and a compatible family of elements in

1

X(Bleqraeey bi" 1)

n’

But it is easy to see that there is a 1-1 correspondence between
Zariski co-coverings of B and Zariski-co-coverings of

B[s1,...,en], essentially because an element

' —3
b co + £1C4 + e + €.%h
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in B[e1,...,en] is invertible if and only if 5 is invertible

in B. In that case one has furthermore

1 1

] = B[c; rEqree-se .

B[s1,...,en,b'_ n

We conclude £(x7) = 2(X)Y, and since r = 208, we get the
result stated in the lemma for r.

We shall finally deal with the case of the topos Et. The
proof of internal projectivity of 1-small objects J in Et is
similar to the one given for the case 5 r Provided we can prove
the analogue of Lemma 5.4, for the sheaf reflection functor

R - EE; As in the proof of Lemma 5.4 for the <5 case, it

r: Set
is sufficient to see that there is a natural 1-1 correspondence
£etween étale cocoverings of B[s1,...,an] and étale cocoverings
of B. Recall (from [3], say), that an étale covering of a

B€E€R is a finite family
{B;: B> B; | T€TI}

such that (i) each prime ideal in B comes from a prime ideal
in some Bi' (ii) the Bi are essentially of finite presentation

(iii) the B; are formally étale. We recall the latter notion

(see e.g. [4], II.1.6): a morphism of commutative rings g: B - B'

is formally étale if whenever C 1is a commutative ring, with a

nilpotent ideal I, then any commutative square (full arrows)

B——— B'

v’
/
e

'd
4

/7
’

4
C —— C/I
admits a unique commutative fill-in map B' - C (dotted arrow).

(This étaleness-notion is closely related to the one we consider

in §1. In fact y(B') -» y(B) will be 1-&tale in SetR if
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B » B' 1is formally étale).
Now, the 1-1 correspondence between &tale cocoverings of B

and B[s1,...,sn] follows immediately from

Lemma 5.5. Assume that B 1is a commutative ring and that

£ B[81,...,en] - K is formally étale. Then
K = R[e1,...,sn]
where
K =R/(£(eq) ..., E(E)).

Proof. Applying the functor ]B to f vyields
n

_®B[e1,...,s
amap f: B » K which is again formally &tale (formally étale
_morphism being stable under tensoring up, see e.g. [4] II.1.7).
Tensoring up B - K along the zero-section B - B[e1,...,en]

yields f[s1,...,sn]: B[s1,...,en] - R[s1,...,en] which again

is formally étale (for the same reason). We then have a commutative

square
£
B[e1,...,sn] e K
f[s1,...,sn] u B
v
Rle,,o..,6_] » K
1’ “n =
(t being the ring map with 7T(¢;) = 0 Vi). Since f is formally

étale and T has kernel of square zero, we get the map u making
the traingles commute. Similarly, using that f[s1,...,en] is
formally étale and B has kernel of square zero (namely
(f(eq),s...,f(epn)), we similarly get the map v making the triangles
commute. The fact that u and v are mutually inverse follows

from the uniqueness assertion contained in the definition of

formal étaleness, by considering the squares Bof = RBof and

TOf[S.I,...,En]'=T0f[81,..o,sn].
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