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Abstract

We give an account, in terms of synthetic differential geometry, of some of Sophus Lie’s geo-
metric theory of first order differential equations. This theory is, in modern terms, formulated
in terms of vector fields on manifolds.

I owe credit to Gonzalo Reyes for long collaboration on the particular subject in the present
note; some of this is documented in our joint preprint [10], as well as in our article [11].

1. Some algebra of nilpotent elements

We consider a commutative ring R. Recall that a ∈ R is nilpotent if ak = 0 for some natural
number k = 1,2,3, . . .. We are mainly concerned with the case k = 2, and define

D := {d ∈ R | d2 = 0}.

The letter ‘d’ will hence forward be reserved to elements of D.
Note that commutativity of R implies that d ∈ D⇒ r · d ∈ D, for any r ∈ R, in particular

−d ∈D. So the subset D is closed under multiplication. However, it is not closed under addition;
indeed (d1 +d2)

2 = d2
1 +d2

2 +2d1 ·d2 = 0+0+2d1 ·d2, which is not necessarily 0.
The 2-dimensional analogue of D⊆ R is the subset D(2)⊆ D×D given by

D(2) := {(d1,d2) ∈ R×R | d2
1 = 0, d2

2 = 0, d1 ·d2 = 0}.

For x and y in R, we write x∼ y if (x−y)2 = 0. If R has the property that x+x = 0 implies x = 0
(which we henceforth assume), we therefore have
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1.1. PROPOSITION. For d1 and d2 in D,

d1 +d2 ∈ D iff d1 ·d2 = 0 iff d1−d2 ∈ D iff (d1,d2) ∈ D(2) iff d1 ∼ d2.

The n-dimensional analogue of D(2) is D(n)⊆ Dn, described by

D(n) := {(d1 . . . ,dn) ∈ Rn | di ·d j = 0 for all i, j = 1, . . . ,n}.

By binomial expansion, one sees that (d1, . . . ,dn) ∈ D(n) implies ∑di ∈ D.
We shall not in the present note have occasion to consider nilpotent elements of higher

degree, such as D2 ⊆ R given by {x ∈ R | x3 = 0}. Note that we have D ⊆ D2. Also note that,
for (d1,d2) ∈ D×D, we have d1 +d2 ∈ D2; this follows by binomial expansion.

2. Synthetic differential geometry

We present a short review of the version of synthetic differential geometry (SDG) which will be
used here; see e.g. [5] or [12]. It is an axiomatic theory dealing with a Cartesian closed category
E equipped with a commutative ring object R. We think of R as the number line, or as the ring
of scalars. We use language as if E were the category of sets. We sometimes call the objects of
E spaces.

The use of nilpotent scalars provides a tool that allows definition of notions of “infinitesi-
mals” of various order; thus the intuition behind d ∈ D is that d is an infinitesimal of order 1
(and elements in D2 are infinitesimals of order 2, etc.)

2.1. THE SDG AXIOMATICS. We shall need only one axiom scheme, Axioms 2.7 for n =
1,2, . . .. The n = 1 case is particularly important, and we state it separately: 1

2.2. AXIOM. For every f : D→ R, there exists unique a and b in R such that f is of the form
f (d) = a+d ·b.

In diagrammatic terms, this basic Axiom 2.2 can be expressed by saying that a certain map

γ : R×R→ RD

is an isomorphism. In set theoretic terms, this γ has the description,

(a,b) 7→ [d 7→ a+d ·b].

The assumption that E is Cartesian closed implies that this description does indeed make sense,
with the displayed square bracket expression defining an element in the function space object
RD in E .

Putting d = 0, one gets immediately that a= f (0); the unique b may suggestively be denoted
f ′(0). From uniqueness of b, one immediately gets that

(∀d ∈ D : d ·b = 0)⇒ b = 0 (1)

1There is an axiom scheme, comprising all the various axioms that have been used in the development of SDG,
one axiom for each “Weil algebra”, see e.g. [5], [12] or [1].
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(“principle of cancelling universally quantified ds”), and hence, by iteration, one also gets

(∀(d1,d2) ∈ D×D : d1 ·d2 ·b = 0)⇒ b = 0.

From the Axiom 2.2, one gets

2.3. PROPOSITION. For any f : D×D→ R,

f (d1,d2) = f (0,0)+d1 ·b1 +d2 ·b2 + c ·d1 ·d2

for unique b1, b2 and c ∈ R.

A special case is:

2.4. PROPOSITION. Any f : D×D→ R which for all d ∈D satisfies f (d,0) = f (0,d) = f (0,0)
is of the form f (d1,d2) = g(d1 ·d2) for a unique function g : D→ R.

PROOF. The assumptions give b1 = b2 = 0; and then the unique function claimed is given by
(d1,d2) 7→ f (0,0)+ c ·d (where c is as in Proposition 2.3).

We note that Proposition 2.4 implies the following parametrized version:

2.5. PROPOSITION. A function f : M×D×D→ R which for all d ∈ D satisfies f (m,d,0) =
f (m,0,d) = f (m,0,0) is of the form

f (m,d1,d2) = f (m,0,0)+g(m) ·d1 ·d2

for a unique function g : M→ R.

2.6. DEFINITION. An object M ∈ E has the property W if any f : D×D→M which satisfies
f (d,0) = f (0,d) = f (0,0), is of the form f (d1,d2) = g(d1 ·d2) for a unique g : D→M.

Note that Proposition 2.4 says that the object R has property W.
We leave to the reader to prove that if M and N are objects which have the property W, then

so does M×N. In particular Rn has the property W. More generally, if M has property W, then
so does MX for any object X .

The basic Axiom 2.2 is the special case (for n = 1) of the following Axiom Scheme, whose
nth case is:

2.7. AXIOM. For every f : D(n)→ R, there exists unique b1, . . . ,bn in R, such that f is of the
form

f (d1, . . . ,dn) = f (0, . . . ,0)+d1 ·b1 + . . .+dn ·bn.

From this axiom, one immediately gets (taking n = 2)

2.8. PROPOSITION. Given maps f1 : D→ R and f2 : D→ R with f1(0) = f2(0), there exists a
unique g : D(2)→ R with g(−,0) = f1, and with g(0,−) = f2.
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2.9. DEFINITION. An object M ∈ E has the property IL2 if for τ1 : D→ M and τ2 : D→ M
with τ1(0) = τ2(0), there exists a unique g : D(2)→M with g(−,0) = τ1 and with g(0,−) = τ2.

Proposition 2.8 says that R has property IL2. And just as for property W, we have that if M
and N are objects which have the property IL2, then so does M×N. In particular Rn has the
property IL2. Also, if M has property IL2, then so does MX for any object X .

There are completely analogous properties ILn for n = 3,4, . . ..

2.10. DEFINITION. A tangent vector τ to a space M is a map D→M; the point τ(0) = m is
called the base point of τ .

This is essentially a paraphrasing of Ehresmann’s notion that a tangent vector at m ∈M is
the 1-jet at 0 of a map R→M.

2.11. TANGENT VECTORS AND TANGENT BUNDLES. The space of tangent vectors τ to M is
the space MD. It comes equipped with a base-point map MD→M (or natural projection), with
description τ 7→ τ(0). Writing T (M) for MD, we have the base point map T (M)→M, making
T (M) the tangent bundle of M. The fibre over m ∈M in T (M), i.e. the space of tangent vectors
with base point m, is denoted Tm(M).

There is an action of the multiplicative monoid of R on any Tm(M), given by (t · τ)(d) :=
τ(t ·d) for t ∈ R. In fact, if M has properties IL2 and IL3, Tm(M) is canonically an R-module,
see e.g. [12] 3.1.1.

The functor T given by T (M) := MD is an endofunctor on E . (Many differential geometric
notions and arguments can be expresse entirely in terms of such endofunctor T , see Rosicky
[19], and the Canadian school, see e.g. [2] and the references therein).

The property IL2 for an object M can be used to define addition of tangent vectors on M
with same base point: define τ1 + τ2 by putting (τ1 + τ2)(d) := g(d,d), where g is as in the
Definition 2.9. If property IL3 holds for M, one can prove associativity of this addition; more
completely (cf. e.g. [5] Proposition I.7.2):

2.12. PROPOSITION. If M has the properties IL2 and IL3, Tm(M) carries a canonical structure
of R-module.

2.13. DEFINITION. An R-module V is called a Euclidean R-module (or a KL vector space) if
it satisfies the following generalization of Axiom 2.2: For every f : D→ V , there is a unique
b ∈V in R so that f is of the form f (d) = f (0)+d ·b.

This unique b deserves the name f ′(0), or the principal part of f .

2.14. REMARK. The reason we consider the properties W and ILn is that they are coordinate
free; they are basic for the early developments of SDG. They will be sufficient for the arguments
we are to give for the Theorems of Lie referred to in the Introduction, as (partly) paraphrased
in Theorems 3.10 and 5.5 below. The letter ’W’ refers to Wraith, who made this property
explicit (1972), as subsumed in [18]; the letters ILn stand for “Infinitesimal Linear”, a notion
originally made explicit by Bergeron (1980). The properties W and ILn are instances of a
“property scheme”, subsumed under the name “microlinearity”; see Appendix D in the 2006
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edition of [5]. Common to all the microlinearity properties is that the axioms in the basic axiom
scheme for SDG (as parametrized by the category of Weil algebras) imply that R satisfy all of
these microlinearity properties. For a succinct account of Weil algebras and microlinearity, see
Chapter 2 in [12].

3. “Vector fields = Infinitesimal transformations”

The notion of transformation is central in Lie’s work. In modern terms, a transformation on a
(smooth) manifold M is a diffeomorphism M→M. They form a group Aut(M), and although
not finite dimensional, Aut(M) allows for a rich differential geometry, relevant for instance to
the theory of differential equations, cf. e.g. Lie’s book [16]. In this book, he considers in par-
ticular infinitesimal transformations, reasoning synthetically and geometrically with infinitesi-
mals; but (in a related paper) he admits that he found it “difficult” to “give a clear exposition
on synthetic investigations” except by expressing them in analytic terms.2 The present note is
hopefully a contribution to give a synthetic exposition of some of these investigations, by utiliz-
ing concepts and methods that have developed since the time of Lie, notably category theoretic
ones.

Lawvere’s seminal 1967 conception (in [13]) was that the category E of spaces should be
Cartesian closed, and that the tangent bundle formation should be representable by an object
D as the functor (−)D.

So the tangent bundle T (M) = MD is the space of maps D→M. In the setup presented in
Section 2 with the R and D as described there, there is a “base point” map: MD→M (evaluation
at 0∈D). This gives the projection map of the tangent bundle. So a vector field on M is a section
M→MD of the projection map. This is the formulation in (3) below.

But, as Lawvere pointed out, exponential adjointness then gives two further equivalent for-
mulations of the notion of vector field on M:

M×D
X

- M with X(m,0) = m; (2)

M
X̂
- MD with X̂(m)(0) = m; (3)

D
X
- MM with X(0) = id: M→M. (4)

We shall also use the notation X(d) = Xd , or equivalently Xd(m) = X(m,d).
We shall mainly use the formulation (2), an action of D on M. The formulation (3) is the

classical “section of the tangent bunde”; and (4) is the formulation which is considered by Lie,
and he uses the name “infinitesimal transformation”. In our formulation, this is justified by the
fact that each individual Xd (for d ∈ D) is a map M→M bringing each m to an “infinitesimal

2A complete quotation of these statements of Lie may be found (in translation) in the preface to [5], and (in the
original language) in [15], 1876. The latter is paraphrased in SDG terms in [9].
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neighbour” of m, (written Xd(m) ∼ m, see the Subsection 3.3). So in our exposition, it is the
individual Xds that are the infinitesimal transformations, where with Lie, it is the collection of
all the Xds, i.e. the map X , which is an infinitesimal transformation.

3.1. PROPOSITION. Let X be a vector field on M, and assume that M has the property IL2.
Then for (d1,d2) ∈ D(2), we have

X(X(m,d1),d2) = X(m,d1 +d2). (5)

PROOF. Note that the right hand side makes sense, since d1+d2 ∈D by Proposition 1.1 and the
assumption (d1,d2) ∈ D(2). Now use the uniqueness assertion in the property IL2 (Definition
2.9).

The following is an immediate consequence:

3.2. PROPOSITION. For all d ∈ D, we have X(X(m,d),−d) = m. In particular, the map Xd :
M→M is invertible with inverse X−d .

3.3. A NEIGHBOUR RELATION∼. A genuine differential-geometric theory of spaces M should
preferably allow the use of some notion of (first order) neighbour relation between points of M.
It should be a reflexive and symmetric relation. There are several ways for how this can be
done, depending on the category E and the object in question. In algebraic geometry, one has
the notion of first neighbourhood of the diagonal of an affine scheme; it is derived from the idea
“A⊗A/I2,” where A is the coordinate ring of the scheme, and I ⊆ A⊗A is the kernel of the
multiplication map A⊗A→ A.

In the setting of SDG, the relevant first order∼ derives ultimately from D. Thus, on R itself,
there is the canonical ∼, namely with x∼ y iff (x− y)2 = 0. Therefore, for d1 and d2 in D , we
have d1 ∼ d2 iff d1−d2 ∈ D iff d1 +d2 ∈ D iff d1 ·d2 = 0, cf. Proposition 1.1.

For the purpose of the present article: for m1 and m2 points in a space M, a sufficient
condition for m1 ∼ m2 is that there exists a τ : D→M and a d ∈ D such that either τ(0) = m1
and τ(d) = m2, or τ(0) = m2 and τ(d) = m1. In this case, we say that m1 ∼ m2 is witnessed by
τ and d. Note that ∼ thus defined is a reflexive relation. The “either. . . or . . . ” in the definition
is to ensure that ∼ is a symmetric relation. For M = R, m∼ n is equivalent to (m−n)2 = 0.

If m1 ∼m2 in M, witnessed by τ and d ∈D, then for any map f : M→ N, we have f (m1)∼
f (m2), witnessed by f ◦ τ and d. For future reference, we record this fact:

3.4. PROPOSITION. Any map f : M→ N preserves the relation ∼. Hence any invertible map
preserves and reflects ∼.

A subspace M of a space V is called formally open if it is stable under the ∼-relation, i.e. if
m∼ n and m ∈M imply n ∈M. Assume that V is a Euclidean R-module, and M ⊆V a formally
open subspace. A tangent vector field X on such a M ⊆V is of the form X(m,d) = m+d · f (m),
for m∈M and with f (m)∈V , so f (m) is the principal part of the tangent vector X(m,−). So we
have a map f : M→V , called the principal part function of X . We call X a proper vector field
if all values f (m) of f are “cancellable” in the sense ∀t ∈ R, t · f (m) = 0 implies that f (m) = 0.
For instance, in Rn, any element (n-tuple) with at least one invertible entry, is proper.



TWO THEOREMS OF LIE ON INFINITESIMAL SYMMETRIES OF DIFFERENTIAL EQUATIONS 7

More generally, for any space M, a tangent vector τ : D→M is proper if it preserves and
reflects ∼, and a vector field X on M is proper if for all m ∈M, Xm is a proper tangent vector.

3.5. FLOW AND STREAMLINES OF A VECTOR FIELD. Given a vector field X : M×D→ M.
A map F : M×R→M, with F(m,d) = X(m,d) for all m ∈M and d ∈ D, is called a complete
flow of X , if it satisfies, for all t1 and t2 in R,

F(F(m, t1), t2) = F(m, t1 + t2), (6)

in particular, for d2 ∈ D
X(F(m, t1),d2) = F(m, t1 +d2) (7)

and likewise F(X(m,d1), t2) = F(m,d1+ t2), for all m ∈M and for all t1 and t2 in R, and d1 and
d2 in D, cf. [11]. Note that validity of the equation (5) is a necessary condition for the existence
of such an extension F of X .

3.6. REMARK. Existence and uniqueness of a flow of a vector field in this sense is an integra-
tion question, and is therefore a question of, say, real analysis, or it may be posed axiomatically.

Example: the vector field on M = R given by X(m,d) = m+ d ·m has the complete flow
F(m, t) = m · et (provided that the category E contains the exponential function et : R→ R).
Not all vector fields admit a complete flow M×R→M. For example, the vector field X on R,
given by X(m,d) = m+d ·m2, is an example of a vector field which does not admit a complete
flow. So there are less ambitious notions of flow. An example of this is a map F : M×D∞→ R
satisfying (6), where D∞ ⊂ R is the space of all nilpotent scalars, i.e. t ∈ R with tk = 0 for some
natural number k. The equation makes sense, since D∞ is a subgroup of the additive group of
R. Call such a F : M×D∞→ R a formal flow. For M microlinear (in a suitably strong sense),
formal flows always exist, and uniquely so, see [10] Theorem 2. This is in essence a solution in
terms of a formal power series.

For simplicity of exposition, we shall only consider vector fields X on M which have a
complete flow F . Such F is in fact unique, using an induction principle, essentially: if f ′ is
constant 0, then f is constant. Then for fixed m∈M, the map F(m,−) : R→M is a parametrized
curve, so it is of kinematic nature. Its image, as a subset of M, is called a streamline or orbit
of X (or of F). By being unparametrized, it is of a geometric/static nature, and pictures can be
drawn (cf. [16]). The family of streamlines of such X is the subject of Section 5.4 below.

The flow of a vector field X is in Lie’s terminology called the “1-parameter group” (“einglied-
riche Gruppe”) generated by X .

3.7. DIRECTIONAL DERIVATIVES. We consider a Euclidean R-module V (cf. Definition 2.13).
A tangent vector τ with base point m ∈ V is of the form d 7→ m+d · v for some unique v ∈ V .
The vector v is called the principal part of τ . The basic Axiom 2.2 in SDG says that R itself is
a Euclidean R-module.

A vector field X on a Euclidean R-module V (or on a formally open subset U of V ) is
therefore of the form

X(u,d) = u+d ·g(u)
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for some unique g : U →V , called the principal part function of the vector field.
If X is a vector field on M and f : M→V is a function to a Euclidean R-module V , one may

construct a new function ∂X( f ) : M→ V , called the directional derivative of f in the direction
X , namely: ∂X( f ) maps m ∈ M to the principal part of the tangent vector f ◦ X(m,−). So
∂X( f )(m) is characertized by the validity, of

∀d ∈ D : f (X(m,d)) = f (m)+d ·∂X( f )(m). (8)

Another commonly used notation for ∂X( f ) is X( f ).

3.8. VECTOR FIELDS AS DIFFERENTIAL OPERATORS. For V = R, the differential operator
f 7→ ∂X( f ) is a derivation in the algebraic sense. Lie calls this differential operator the symbol
of X . Classically (for smooth manifolds), X can be reconstructed from its symbol, and one may
for suitable spaces M define a vector field to be such a differential operator. This depends,
however on existence of enough functions M→ R; and it is not a geometric viewpoint allowing
pictures to be drawn. The description of the Lie bracket of two vector fields given in Sections
4 and 5 below does not use the “vector fields as differential operators” viewpoint, but is purely
geometric.

3.9. LIE “THEOREM 7”. Recall that a map f : M → U is a regular epimorphism if it is a
coequalizer. Then it is also a coequalizer of its kernel pair Ker( f ), as displayed in the top of the
following diagram; and f is said to admit an invertible ξ : M→M if ξ preserves the kernel pair
of f (i.e. if the left hand square is “pairwise” commutative):

M×U M
Ker( f )

-- M
f
- U

M×U M

ξ ×U ξ

?
-

Ker( f )
- M

ξ

?

f
- U

ξ̂

?

Verbally in the category of sets: ξ maps each fibre (level set) of f to some fibre of f . In this
case, ξ descends to a map ξ̂ : U →U with ξ̂ ◦ f = f ◦ξ as displayed in the right hand square,
using the universal property of f as a coequalizer.

If X : M×D→M is a vector field on M, we say that f admits X if f admits the infinitesimal
transformations Xd : M→M, for all d ∈ D, or that X is an infinitesimal symmetry of f . So for
each d ∈ D, we have a similar diagram, with ξ replaced by Xd and ξ̂ replaced by X̂d : U →U :

M×U M
Ker( f )

-- M
f
- U

M×U M

Xd×U Xd

?
-

Ker( f )
- M

Xd

?

f
- U

X̂d

?

(9)
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This family of maps X̂d , as d ranges over D, may be subsumed in a map X̂ : U×D→U ,

X̂(v,d) := X̂d(v).

Now X0 is the identity map on M, so X̂0 is the identity map of U . So X̂ is a vector field on U .
Since U is a formally open subset U ⊆V of a Euclidean R-module V , X̂ is of the form

X̂(v,d) = v+d ·g(v)

for a unique g : U →V , i.e. g is the principal part function of the vector field X̂ on U .
The following is (a contemporary formulation of) “Theorem 7” in Lie’s [16], p. 91:

3.10. THEOREM. Let f : M→U be a regular epimorphism, with U a formally open subspace
of a Euclidean R-module V . If the kernel pair of f admits a vector field X, then there exists a
function g : U →V (necessarily unique) so that ∂X( f ) = g◦ f .

PROOF. The description of a vector field X̂ on U , and its principal part function g : U →V , has
been given above. We shall prove that this g satisfies ∂X( f )(m) = g( f (m)) for each m ∈M. For
this, it suffices (by the principle of cancelling universally quantified ds) to see that for all d ∈D,
we have d ·∂X( f )(m) = d ·g( f (m)), or equivalently, by adding f (m) to both sides, to prove

f (m)+d ·∂X( f )(m) = f (m)+d ·g( f (m)).

The left hand side is f (X(m,d)) by definition (8), and the right hand side is similarly X̂( f (m),d);
they agree by commutativity of the right hand square in (9). This proves the Theorem.

4. The Lie bracket of two vector fields

The property W for an object M (cf. Definition 2.6) is at the heart of the construction of the Lie
bracket of two vector fields on M.

4.1. GROUP THEORETIC COMMUTATORS GIVE LIE BRACKETS. We consider two vector fields
X and Y on a space M (where M is assumed to have the properties IL2 and W). Recall that Xd
denotes the map m 7→X(m,d). Thus Xd is a map M→M (for d ∈D). It is invertible with inverse
(Xd)

−1 = X−d , by Proposition 3.2. Following the paraphrasing of Lie provided by Reyes and
Wraith in [18], we may therefore, for d1 and d2 in D, consider the group theoretic commutator
of Xd1 and Yd2: composing from right to left, this is the map M→M given as

{Xd1,Yd2} := Y−d2 ◦X−d1 ◦Yd2 ◦Xd1,

and its value on a given m ∈M is therefore the r, displayed in the following geometric figure.
This “pentagonal” picture is (for fixed m) a member of a family of figures (parametized by
(d1,d2) ∈ D×D).
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From [18], we quote

4.2. THEOREM. Given two vector fields X and Y on M, there exists a unique vector field [X ,Y ]
on M such that, for any (d1,d2) ∈ D×D,

[X ,Y ]d1·d2 = {Xd1,Yd2}. (10)

So [X ,Y ]d1·d2(m) = r, as indicated by the dotted arrow. Note that the bracket [X ,Y ] is con-
structed without reference to vector fields as differential operators.

In this figure, each straight line connect neighbour points (in the sense of ∼), by construc-
tion, and the dotted arrow also connect two neighbour points, witnessed by [X ,Y ] and d1 · d2.
But we in fact also have

4.3. PROPOSITION. The points n and r are neighbours: n∼ r.

PROOF. We have p∼ q. By Proposition 3.4, Y−d2 preserves the neigbour relation ∼, so we get
n∼ r.

5. Proper vector fields

5.1. PROPER TANGENT VECTORS. We say that τ : D→M is a proper tangent vector if τ is a
monic map and it preserves and reflects the relation ∼.

For a tangent vector τ on the Euclidean R-module Rk, it is clear that if the principal part
of τ is a proper vector, then the tangent vector τ itself is proper. (A vector (v1, . . . ,vk) ∈ Rk is
proper if at least one of the vis is invertible; this is a positive way of formulating that it is not
the null vector.) A proper vector field on a space M is a vector field X where all the individual
X(m,−) : D→M are proper.

Let X be a proper vector field on a space M. Let m and n be points on M. Then we say
that n is an X-neigbour of m, if n is of the form n = X(m,d) for some d ∈ D (which is unique,
by properness of X). In this case, we write n ≈X m. This is a reflexive relation: m ≈X m since
X(m,0) = m; if M has property IL2, it is also symmetric, because Xd has X−d as inverse, by
Proposition 3.2, so that X(m,d) = n iff X(n,−d) = m. So we have
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5.2. PROPOSITION. Assume M has the property IL2. Then the relation ≈X is reflexive and
symmetric. And m≈X n implies m∼ n.

The relation ≈X is not transitive in general. However, ≈X is “transitive relative to ∼”3 in
the sense of the following key Lemma

5.3. LEMMA. Assume that X is a proper vector field on M, and that M has the property IL2.
Then given m, n and r in M, we have

(m≈X n≈X r and m∼ r) implies m≈X r.

PROOF. We have by assumption that X(n,d1) = m and X(n,d3) = r for some d1 and d3 ∈ D;
(note that the d1 here corresponds to −d1 in the above pentagon picture); they are unique with
this property, by properness of X . Trivially, we have d1 = d3+(d1−d3). Now X(n,−) : D→M
reflects the neighbour relation ∼, by properness of X(n,−), so the assumption m ∼ r implies
d1 ∼ d3 in D, hence d1− d3 ∈ D, by Proposition 1.1 Therefore, Proposition 3.1 implies the
*-marked equality sign in

m = X(n,d1) = X(n,d3 +(d1−d3))
∗
= X(X(n,d3),d1−d3) = X(r,d1−d3)

proving m≈X r, as witnessed by d2 := d1−d3.

5.4. PERMUTING THE STREAMLINES. Let M be a space which has the properties IL2 and
W. We consider two vector fields X and Y on M, with X proper. We shall study the question:
when does X admit all the infinitesimal transformations Yd belonging to Y , i.e. when do the
Yds permute the streamlines (viewed as unparametrized subsets) of X . In [16] Theorem 9 (p.
105), Lie provides an answer. The geometric clue in the Theorem is the following infinitesimal
version of it (seeing {n ∈M | n≈X m} as an infinitesimal part of a streamline of X).

5.5. THEOREM. If X is a proper vector field, and Y is any vector field (both vector fields on
M), then the following conditions are equivalent

(i) each Yd preserves the relation ≈X ,
(ii) [X ,Y ] = g ·X for some g : M→ R (which is unique, since X is proper).

PROOF. Assume (i). Consider the pentagon which is displayed below, so r is the value at m of
the commutator {Xd1,Yd2}.

3Such “relative transitivity” of a reflexive symmetric refinement ≈ of ∼ was studied in [6] to formulate a
combinatorial/geometrical version of Frobenius integrability; the phrase “≈ is involutive” was in loc.cit. used for
such relative transitivity.
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The five points depend on m,d1 and d2, thus in particular r = r(m,d1,d2). We have m ≈X n
and q ≈X p, both assertions witnessed by ±d1. Since by assumption, Y−d2 preserves ≈X , and
q ≈X p, we have r ≈X n. Finally, m ∼ r, as witnessed by [X ,Y ] and d1 · d2. So Lemma 5.3
yields that m ≈X r, so r(m,d1,d2) = X(m,δ (m,d1,d2)) for some δ : M×D×D→ D (unique
since X is proper). If d1 = 0, δ returns 0, and similarly if d2 = 0. So by Proposition 2.5,
δ : M×D×D→ D⊆ R is of the form δ (m,d1,d2) = g(m) ·d1 ·d2 for some unique g : M→ R.
We therefore have

[X ,Y ](m,d1 ·d2) = r(m,d1,d2) = X(m,g(m) ·d1 ·d2),

and cancelling the universally quantified d1 and d2, we get [X ,Y ](m,−) = g(m) ·X(m,−). Since
this holds for all m ∈M, we have [X ,Y ] = g ·X .

Conversely, assume (ii). Let q ≈X p by virtue of d1. Apply the transformation Yd2 , to get
points r and n. We shall prove r ≈X n. Define m to be X(n,−d1), so n = X(m,d1). So we have
r = [X ,Y ](m,d1 · d2), as in the figure. By assumption, this equals X(m,g(m) · d1 · d2), hence
r ≈X m. Since m ≈X n by construction of m, and r ∼ n by Proposition 4.3, Lemma 5.3 gives
r ≈X n, as desired.

5.6. STREAMLINES OF A COMPLETE VECTOR FIELD. Let M be a space having the property
IL2. Let X be a complete and proper vector field on M. So it has a flow F : M×R→ M.
For any m ∈ M, we have the map F(m,−) : R→ M, the flow of m, generated by X . It is a
“kinematic” entity, describing a motion of m. We want to describe its image C(m)⊆M, called
the streamline of m. It is no longer kinematic, but a purely geometric entity. Likewise, the
“infinitesimal” version of the flow of m, namely the subspace {n ∈M | n≈X m} is a geometric
entity (even though it admits a parametrization by X(m,−)).

For this, it is convenient to introduce the notion of an étale map. Let R and M be two spaces,
with R equipped with a symmetric reflexive relation∼, and let M be equipped with a symmetric
reflexive relation ≈.

5.7. DEFINITION. A map p : R→M is étale if
1) it has the preservation property that s∼ t in R implies p(s)≈ p(t) in M,

and
2) p(s)≈ m⇒∃!t ∼ s with p(t) = m (for s and t in R and m in M).
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5.8. PROPOSITION. Let X be a proper vector field on M, with a complete flow F : R→M. Then
for any m ∈ M, the image C(m) of F(m,−), as a subspace of M, admits a surjective R→ M
which is étale w.r.to the relations ∼ on R and ≈X on M.

PROOF. The map F(m,−) itself maps R onto its image C. Also, if s∼ t in R, we have t = s+d
for some d ∈ D, by definition of ∼ on R; so F(m, t) = F(m,s+d) = X(F(m,s),d), by the flow
equation. Therefore F(m,s)≈X F(m, t), witnessed by X(F(m,s),−) and d. This is the required
preservation property 1). To see 2), we have to that prove if F(m, t) ≈X n in C, then there
exists a unique d ∈ D such that F(m, t + d) = n. Let the assumed F(m, t) ≈X n be witnessed
by X(F(m, t),d) = n. This d is unique since X(F(m, t),−) is a proper tangent vector. But
F(m, t + d) = X(F(m, t),d) by the flow equation, and X(F(m, t),d) = F(F(m, t),d), So there
is a unique d ∈ D with F(F(m, t),d) = n.

5.9. REMARK. Note that the étaleness condition in some sense says that F(m,−) is “locally
bijective”. However, one will not in general expect that it is globally bijective; it is well known
that there are complete proper vector fields, where the streamlines of the flow are closed curves,
e.g. on M = a punctured plane, or on M = a circle.

I conjecture that the property in Proposition 5.8 characterizes the streamlines of m under the
flow F of X . And these conditions are expressed entirely in terms of ≈X . So (under the two
equivalent conditions stated in Proposition) the transformations Yd preserve≈X , hence preserve
the property of being a streamline. So assuming the conjecture holds, we can augment the
Theorem 5.5 by a third equivalent condition:

(iii) The family of streamlines X admits all transfornations Yd . This is Lie’s “Theorem 9”,
[16] p. 105.

The proof of (iii) given in [4], Proposition 5, depends on existence of “integrals” of the
vector field X , meaning functions φ : M→ R which are constant on the streamlines.

References

[1] M. Bunge, F. Gago and A.M. San Luis, Synthetic Differential Topology, London Math.
Soc. Lecture Notes Series no. 448, Cambridge Univ. Press 2018.

[2] J.R.B. Cockett and G. Cruttwell, Differential structure, tangent structure, and SDG, Appl.
Categ. Structures 22, p. 331-417 (2014).

[3] A. Kock, A simple axiomatics for differentiation, Math. Scand. 40, 183-193 (1977).

[4] A. Kock, On the synthetic theory of vector fields, in Topos Theoretic Methods in Geometry,
Aarhus Matematisk Institut Various Publication Series No. 30, p. 139-157 (1979).

[5] A. Kock, Synthetic Differential Geometry, London Math. Soc. Lecture Notes Series no.
51, Cambridge Univ. Press 1981 (2nd ed. London Math. Soc. Lecture Notes Series no.
333, Cambridge Univ. Press 2006).



14 ANDERS KOCK

[6] A. Kock, First neighbourhood of the diagonal and geometric distributions, Univ. Iagel-
lonicae Acta Math. 41, 307-318 (2003).

[7] A. Kock, Synthetic Geometry of Manifolds, Cambridge Tracts in Mathematics no. 180,
Cambridge Univ. Press 2010.

[8] A. Kock, Synthetic theory of geometric distributions, lecture held at Luminy, June 2010.
Available at https://tildeweb.au.dk/au76680/luminy.pdf .

[9] A. Kock, Theory of characteristics for first order partial differential equations, arXiv
1011.5586 (2010).

[10] A. Kock and G.E. Reyes, Some differential equations in SDG, arXiv 0104164 (2001).

[11] A. Kock and G.E. Reyes, Ordinary differential equations and their exponentials, Central
European Journ. of Math. 4, p. 64-81, (2006).

[12] R. Lavendhomme, Basic Concepts of Synthetic Differential Geometry, Kluwer 1996.

[13] F.W. Lawvere, Categorical dynamics, Chicago 1967, in Topos Theoretic Methods in Ge-
ometry, Aarhus Matematisk Institut Various Publication Series No. 30, p. 1-28 (1979).

[14] F.W. Lawvere, Outline of SDG, Buffalo (1998).

[15] S. Lie, Allgemeine Theorie der partiellen Differentialgleichungen erster Ordnung, Math.
Annalen 9, (1876).

[16] S. Lie (with G. Scheffers), Vorlesungen über Differentialgleichungen (1891). (Reprint by
Chelsea Publ. Co. 1967).

[17] S. Lie (with G. Scheffers), Berührungstransformationen (1896). (Reprint by Chelsea Publ.
Co. 1977).

[18] G.E. Reyes and G. Wraith, A note on tangent bundles in a category with a ring object,
Math. Scand. 42, 57-63 (1978).

[19] J. Rosicky, Abstract tangent functors, Diagrammes 12, 1-11 (1984).

June 18, 2024

Aarhus University, Dept. of Mathematics
Email: kock@math.au.dk


	Some algebra of nilpotent elements
	Synthetic differential geometry
	``Vector fields = Infinitesimal transformations''
	 The Lie bracket of two vector fields
	Proper vector fields

