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Introduction

In this article, we develop so much standard linear and
multilinear algebra over a commutative local ring object A
which is needed for constructing the Grassmann manifolds and
proving their basic combinatorial properties (in particular,
for constructing "the projective plane" over A; this is a
"global" form of classical "Ring-Geometrie", [2], [7]1). We
push this programme to the algebraic theorem which gives the
duality between p-planes and (n-p)-planes in n-space (Corol-
lary 3.3). The geometric motivation for having this theory is
given in [8]; a version of [8], simplified by means of the
present paper, is in preparation, [9].

When A 1is a field (in the category of sets), the lin-
ear and multilinear algebra given here is standard and can be
found for instance in Bourbaki [3]. When A is a (commuta-—
tive) local ring (in the category of sets), there seems to be

no explicit reference; however, in that case it is standard
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technique to lift the results from the field case by means of
the Nakayama lemma.

For the application we have in mind [9], the universal
local ring in the Zariski topos, that technique does not
work so well, mainly becase even linear algebra over a field
object in a site or a non-boolean topos is not (yet) worked
out. Such a linear algebra is in some sense equivalent to in-
tuitionistic linear algebra, as developed by Heyting, [5],
[6]. Furthermore, the Nakayama lemma does not seem to be
there, which makes it natural to take the two steps at once,
partly leaving the category of sets in favour of an arbitra-
ry site, partly working over a local ring object instead of
a field object.

In the present exposition, I have tried to do things
in a direct ad hoc manner, thereby neglecting any attempt
of showing how concepts introduced (like the concept of lo- ’ -
cal ring object, or rank of a matrix) are canonical inter-
pretations of certain 1st order logic expressions express-
ing the same concept in the category of sets. (One observes
that all mathematical notions dealt with here (local ring,
rank, ...) are formulated in that fragment of 1st order lan-
guage which Joyal, Reyes and others have called geometric
logic, [12].)

In §1, we give the preliminaries about tensor products,
duality, and exterior powers, in a very general setting; §2
deals with module theory for an arbitrary commutative ring
object in an arbitrary site with products; finally, the re-

sults of §3 give the main theorems (3.2 and 3.3), which fur-

ther depends on the ring object being local (in the sense,
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slightly generalized, of Hakim [4]). Remark that the site
structure (the notion of covering) is needed precisely where
the mathematical notions come to involve existential quan-

tifiers.

§1. Tensor products and duality for free module objects

Let E be a category with finite products, and A a
commutative ring object in it, that is, A comes equipped
with

+ - .
AxA > B, A~+A, AxA > A, 1 - A, 1 - &

satisfying associativity, distributivity, etc. (all of which
can be expressed in terms of commutativity of certain dia-
grams in E, as is well-known (see e.g. {101, Chapter III, §6)).
We consider the category Mod(A) of A-module objects M, i.e.
the category of abelian group objects M in E equipped with

an A-action (associative etc.):
AxXxM » M;

morphisms in Mod(E) being maps M > M' compatible with the
abelian group structures and the actions.

Then Mod(A) is an additive category (in the sense of
(101, ch.III, §2, say), with the biproduct M, &M, Dbeing
given as M1 XM2 with suitable (obvious) A-action and abelian
group structure. This means that we can describe maps in terms
of matrices:

A map

n
31

being given by the mxn matrix whose ij'th entry is

J'.nclj.a.proji (see e.g. [10],VIII, §2).
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We shall say that an A-module object M is free if it
is isomorphic in Mod(A) to an object of form

A" = pno...01 (n times).

For each X € |El and each ME€ |IMod(RA)], homE(X,M)
carries a canonical structure of an (ordinary) module over
hom(X,A) (which canonically is a commutative ring). For each

£: X' - X, the induced map
hom (X,M) - hom(X',M)

is a hom(X,A)-module homomorphism.
The maps M1 -+ M2 in Mod(A) are called A-linear maps.
But we have also a notion of A-bilinear map.

M ¥

x M M

1 2 37

where the M, 's are A-module objects. This notion can be

described by means of four commutative diagrams in E, or,
more economically, by saying that for each X €1E|, the com-

posite

hom (X,v)

hom(X,M1) Xhom(X,Mz) hom(X,M1 XM2) — hcm(X,M3)

is hom(X,A)-bilinear.

A map U as above which is A-~bilinear, and is universal
among A-bilinear maps out of M1 xMZ, is called a tensor-pro-

duct of M1 and M2 and is dencoted

-~ M, 9M
2 1A2

M1><M
(or just M1 @Mz if it causes no confusion). It depends bi-
functorially on those M1,M2 for which it exists. It always
exists for a pair of free modules. It suffices to see that

2" ®a™ exists. Here AN

= alea™ is going to work. The uni-
versal bilinear map v is constructed by commutativity of the

diagrams
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An 3 Al'l'l V An ® Al'l‘l = Anm
proj; X;_prOle l Proj y 4,
A XA - ¥ A

for each <i,j>€ nxm. Since proji and projj are linear,
and . 1is bilinear, one easily gets that vy is bilinear. To
see its universality: let : A"« 2™ .+ M be bilinear. To con-
struct o: A M, take the unique 6 which makes all the dia-
grams

N R

inecl , .
<1l,]>
<incl_i_,inclj> 0]

An X Am —_—M
[0
commute (using that AP 35 also a coproduct of its nm factors).

From the explicit construction of A" 9a™ and from the fact

that it works in any category with x, we conclude that for each

pair of free A-module objects M1 and MZ’ MAI @Mz exists and
that for each X € |El, the canonical

hom(X,M1) ®hom(X,M2) > hom(X,M1 @Mz)
(derived from the universal property), is an isomorphism of

hom (X,A)-modules.
By similar explicit constructions, we conclude that for M2
and M3 free module objects, we can form the A-module object

[MZ'M3] with the property that
hom (M, 8 M,,M;) = hom(M;,[M,,M;])

natural in M1,M2,M3 (M1 any A-module object), in particular,
we can form the linear dual M* of a free module object M;

the duality is described in terms of a bilinear pairing

MxMme—<"r"> g,




550 KOCK

and again, hom(X,-) preserves formation of linear duals; M*
and the pairing is universal among all A-module objects N
equipped with a bilinear b: MxN + A; given such b, there
exists a unique A-linear b: N + M*¥ with id xb.<-,-> = b,

A morphism in Mod(A)

M2 E

where E further is equipped with the structure of a graded

A-algebra object

is said to be an exterior algebra for M (in analogy with e.qg.

[11], XXI, §6) if ¢ 1is an isomorphism with degree 1 part
E1 of E, if the multiplication Ey xEq > E, is the zero map,
and if M f E 1is universal with this property. For M a free

module object, such exterior algebras exist; it suffices to con-

struct them for A", we may take the p'th grading of E to be

. A(g)
P
and E = EO ®... eEn. Multiplication A in E is given "by
the usual formulas":
G I (o)

AP XAq—A)

n n n,, N
A(p) @A(q) =A(P) ()

where m is given by the

n n n
(p+q) X(p) (q)
matrix, which in its (L, (H,X))'th place has 0 if HUK is

not L, and +1 or -1 if HUK = L (depending on the parity

of the permutation needed to reorder HUK into L).
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If an exterior algebra for a module object M exists, we
denote it AM (and its p'th grade is denoted gM). Choosing
for each M, for which an exterior algebra exists, a definite
one and denoting it AM, it follows from the universal property
of exterior algebras that A depends functorially on M. Fur-
thermore, from the above explicit (and "absolute") description
of A(An), it follows that for any X € |E| the canonical map
(derived from the universal property of A)

Ahom(X,An) > hom(X,AAn)

is an isomorphism of hom(X,A)-algebras. This therefore also
holds for any other free module object M in place of A",
If M is a free module object, then we have that AM is a
free module and its linear dual (AM)* exists; in fact, we
may use A(M*) for this linear dual by means of a certain bi-
linear pairing

AM x A(M*) - A

whose construction (in the set case and with M==An) involves
determinants, see e.g. [111, Ch.XvI, §9, or [3], Ch.III, §8 No.3.
Here we get it from the set case via the Yoneda Lemma and the

identifications
hom(X,aAM) = aAhom(X,M); ham (X,AM*) = alhom(X,M))*,
which are natural in X.

Finally, we can get an A-bilinear map

P q 9P
AM x AM*¥*— A M (a2p)

with the property that, applying hom(X,-) and the various na-

tural isomorphisms, the induced map

p q 4 a-p .
Ahom (X,M) x A hom(X,M)* =— A hom(X,M)
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is that canonical hom(X,A)-bilinear map with this name, which

is described in [3], Ch.III, §8 No.4.

§2. Basis, Prebasis, Span

In the rest of the article, we assume that E 1is a cate-
gory with finite products and equipped with a notion of "cover-
ing family" (a pretopology, [1], Exposé II,Def.1.3), making it
into a site. If ©® is a property of morphisms in E ending in
MEIEl, then one says that ¢ holds locally for v: X » M if

there is a covering family of X

{8y X; » x|1€1}

such that for each i€I, & holds for Bi.v . The property
® 1is called a local property if it holds for a v whenever it
holds locally for vw. (This use of the word 'local' has nothing
to do with the other use it has here, namely in the phrase 'lo-
cal ring'.)

Let A be a commutative ring object in E, and let M
be an A-module object. For each X € |1El, hom(X,M) is then a

hom(X,A)-module, and therefore it makes sense to say that an

n-tuple of elements !1""’!n in hom(X,M),
!j: X - M, i=1,+..,n,
is a basis for hom(X,M) ([3]1, II,§1 No.11, Def.10), that is,

establishes a bijective correspondence of hom(X,M) with
(hom(X,A))™ (= hom(x,a™)). 1f Vqre-.s¥, is a basis for

hom(X,M), and a: ¥ +» X is arbitrary, then the n-tuple

(@ ¥5) 521,

of elements in hom(Y,M) is again a basis (for hom(Y,M) as
a hom(Y,A)-module). (Note that if hom(Y,A) has only one

element, it is the zero ring, and thus any p-tuple (for any p)
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is a basis for hom{Y,M); also note that hom(Y,A) isnever
empty.)

Let \_71,...,zr be an r-tuple of elements in hom(X,M) .
It is called a Prebasis for M if "locally it can be extended
to a basis", i.e. if there exists a covering {Bi: Xi+ X | i€1}
such that for each i €I, the n-tuple

By -Yqr---rBy-¥p

is part of a (finite) basis for hom(Xi,M) S

Note that if Vqres1¥yr as above, is a Prebasis, then
so is OeVqreser O, for an arbitrary o: Y > X. The reason
we use capital letter in spelling 'Prebasis’ is that it is not
a property which can be decided on basis of knowledge of the
single module hom(X,M), but requires knowledge of the whole
of E (including the hom(Xi,M)) 5 (There is a similar reason
for spelling Rank, Span, and Decomposable with capital initial
later on.)

Let again Vyree1¥, be a set of elements in hom(X,M).
By span (\11,...,1]:) we mean, as usual’, the submodule of

hom(X,M) consisting of linear combinations of the gj's with

coefficients from hom(X,A). We say that

u€ Span(\_r.I - ’Xr)
if locally u € span (21,.. . ,zr) , that is, if there is a cover-
ing {Bi: X; > X |i€1} and for each 1i€T an r-tuple of
scalars

t:.(’i):xi—>A, J=T,eee4L,
such that

I e g vy = 8, .u.
j

j i*=j i'=
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Clearly span (Tyree. 1Y, ) € Span (Vqreee +¥,). (The converse im-
plication holds provided Vyreeer¥, is a Prebasis and provided
"the topology of the site is less fine than the canonical", [1],
Exposé II, 2.5; this is then an example of the "unique existence

implies global existence™ principle, compare [8].)
Now, assume that M is a free A-module, M:An; an element
v: X -+ IE\JM

is called a Decomposable p-vector provided it "locally is of form

VyAeeen zp where Vire-. ’Xp is a Prebasis", or, equivalently,

provided there exists a covering {B,: X. » X | i €I}, and for
i i

each i€I a basis

P :
such that
L

- (1)
Bi.v =v . Azp

(under the identification hom(Xi,/\M) B Ahom(Xi,M)).

Proposition 2.1. Let z.‘,...,y_p: X-> M (M=2a") be aPre-

basis, and consider the Decomposable p-vector

v = 21 A eea A!p € hom(X,M)

If z: X > M has the property zav = 0, then Zz Dbelongs to
Span(_v:1 Poos ,zp) . (The converse implication holds if the topolegy

of E is less fine than the canonical.)

Proof. By assumption we can find a covering {Bi: X, > Xlie1},
and for each i€1I, a basis of form
(1) (i),
n ’

(2.1) 81'21""’81'25)’ AT RN

also Si.g can uniquely be written as a linear combination of

these elements in hom(Xi,M) ; with coefficients in hom(Xi,A);
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denote these coefficients t1(i) ""'tr(mi) . By the assumption
zAv =0 (and thus B ;.24 Bi.v=0) , and because Si.\_rj ABy-v=0
for j=1,...,pP, we conclude
n .
7 tjgl)-(z. ABy.v) =0,
j=p+1 ’
but the zj A (Bi.v) = !j A Bi"—’-1 Asss ABi-Xp for j=p+1,...,n,
+
form (modulo sign changes) part of the basis for p/\ﬁiom(xi,M)
derived from the basis (2.1) for hom(Xi,M) . Therefore
(1) _ _ (1) _
tp+1 =...=t =0,
whence Bi.g_e span(Bi.E,l,.. R ,Bi.y_p) . This holds for each 1i€71;
Thus 2z € Span (y_.l P ,gp) .

We shall not prove the converse statement in the parenthesis,

since we are not going to use it here.

n n
Let M=A", and let e': X + AM be a basis (A M being

one-dimensional). Then we get an isomorphism
R AP
@: hom(X, AM) » hom(X, A M*),
namely ®(v) = vde' (moduld the identifications hom(X, AM) =

Ahom(X,M), etc.). With this notation,

Proposition 2.2. If v is Decomposable, then so is o(v) =

p(v) =vde'.

Proof. The conclusion is local, so we may assume that v

is of the form VoA A\_{P, where Vire--1¥y is a basis for

hom(X,M). Let f1""’fn be the dual basis for hom(X,M)* =
n

hom(X,M*). Then e" = f1 Aees Afn is a basis for A hom(X,M*)

n
= hom(X, AM*), and, by [3], III §8, formula (24), we have

v e = fp+1/\.../\fn.
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But e' and e" differ by an invertible scalar t in hom(X,3),

and 4 1is hom(X,A)-bilinear. Thus

v S e' = (t'fp+1) Afp+2A..- Afn,

and thus is Decomposable.

We conclude this section with some matrix theoretic notions
which make sense in the setting of a commutative ring object A
in a site E with finite products. Since we, for arbitrary
X € |El, may identify hom(X,Amn) with hom(X,A)mn, a map

: X - A

{llos}

may be identified with an mxn matrix over the ring hom(X,A).

Given such a matrix B = {bij} where bij €hom(X,a), we say

that Rank(B) > r 1if "locally there is an invertible rxr sub-

determinant in g", that is, if there exists a covering

{Bi: Xi +> X |i €I}, and for each 1€I, an rxr submatrix of
Bi.g with invertible determinant. Note that Rank(B) > r is a
local property and that, for any a: ¥ » X, Rank(g) >r im-

plies Rank(a.B) > r.

If one views B as an n-tuple of elements in hom(X,Am)
(the n-tuple of columns), and Rank(B) > n, then that n-tuple
is a Prebasis. This is easy to see. The converse is not true

in general, but will be true provided A is a local ring ob-

ject in the sense of the next section.

§3. The Steinitz exchange theorem over a local ring object

In this section, A will denote a commutative ring object
in a site E with finite products; furthermore, A will be as-
sumed to be a local ring object in the sense of Hakim (4], that
is, for each X €lElI, if a.: X->A (jJ=1,...,n) is an n-tuple

J
of elements such that




LINEAR ALGEBRA IN LOCAL RINGED SITE 557

1 +-a2 + ...t a, = 1

a
(= the multiplicative unit of the ring hom(X,A)), then there
is a covering {Bi: Xi > X |i €I} such that for each 1i€I, at

least one of the elements
Bye@qre--sBi-ay

is an invertible element in the ring hom(xi,A).
Note that A being a local ring object does not imply that

hom(X,A) is a local ring (not even "locally").

Proposition 3.1. Let B: X ~» Amn be an mxn matrix whose

n columns X - A" is a Prebasis. Then Rank(g) 2n (and con-

versely) .

Proof. The conclusion being local, we may assume that the
columns 91""'2n: X - A™ of B are part of a basis 21,...,
En""'gm of hom(X,Am), so that we have an invertible mxm
matrix é whose first n columns form B. We now take the

[llerXi

Laplace expansion ([3],III §6 No.4) of the determinant of

along its first n columns, and get

det(B) = | *det(K)-det(®)
S

where K runs over the set of nxn submatrices of the first n

. A
columns of B, and K denotes the "complementary (m-n) x (m-n)

submatrix of the last (m-n) columns of é. Since A was as-
sumed to be a local ring object, we conclude that there exists

a covering {Bi: X, » X|i€1I} such that, for each 1i€I, at

i
least one of the

B;-det(K) = det(B;.K)

is invertible. So this covering is a witness that B (= the

first n columns of g) has Rank n.

v
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The converse implication is easy (does not use that A 1is

a local ring object). We omit the proof.

Theorem 3.2 ("Steinitz Exchange"). Let M be a free module
over the local ring object A. Let u be a Decomposable g-vec-
tor and v a Decomposable p-vector over M. If u locally di-
vides v, then there exists a Decomposable (p-q)-vector w such

that

UAW = V.

The conclusion being local, we may assume

VE YA Ay

where

reee sV

v one gV
X A n

P
is a basis for hom(X,M), and that

u=ugA... Aldg

where

21""’5q""’3n

is also a basis for hom(X,M), and that, finally, there is a
4 prqhom(X,M) so that uaz = v. We consider the invertible

nxn matrix U whose i'th column contain the coordinates of u,

with respect to Yqre-es¥,. We claim that the matrix has locally
the form
P <
g = D rn
n-p { 0
that is, that
(3.1) giESpan(_\11,...,gp) for i=1,...,q.
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For, since u, Al = 0 for i=1,...,9, and u divides Vv, we
conlude that u, Av = 0 and thus, by Proposition 2.2, that (3.1)
holds, thus U has locally the form indicated. By Proposition 3.1,

the 'nmxg matrix

o e

has Rank > g. We can thus find a covering {si: X, ~ X | i€1}
such that for each 1€I, some gxg subdeterminant of € is
invertible. Consider a fixed 1i€I, for simplicity, one for which
the top gxq subdeterminant of B,.C is invertible, = d, say.

The matrix

G
pd| Bi-E ’ :
0 E
then has invertible determinant (=4} (where E is the unit

(n-q) x (n-g) matrix). Since the top left pxp determinant of
this matrix is likewise invertible (=d), we conclude (by com-

puting in

Aspan(si.\_71,...,si.gp))
that
Bi-(uqg .. Au_quq+1A...AY_P) = d'Si.(!‘A...A\lp),

so in hom(xi, AM), the desired Decomposable (p-q)-vector w
is

%(B 1/\.../\Bi.!).

i'y—q+ D
E

(In case the topology of is less fine than the canonical one,
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not only has U locally the form indicated, but has this form
"globally".)

A corollary of this form of Steinitz Exchange Theorem is the
following, whose geometric interpretation is the self-duality of
the Grassmannians viewed as combinatorial structures. Recall the

isomorphism
n-
hom (X, }'/3M) 4 hom (X, APM*)

considered in Proposition 2.2.

Corollary 3.3. If A is a local ring object, then the du-
ality isomorphism ¢ inverts the order of local divisibility among

Decomposable elements.

Proof. Let u and v be Decomposable elements X - AM of
degree g and p respectively, g £p, and assume that u di-
vides v locally. We must prove that o¢(v) locally divides wo(u).
This conclusion being of local nature, we may, by Theorem 3.2,

assume that we have a basis

(3.2) ‘_1.1""'qu Xq+1""’xp’ !p+1""’zn
with
u = u,A ..qu
and
V=uiA... AEqAXq+1A...A!p.

Let f1""'fn be the dual basis to (3.2) for the module

hom(X,M*). Then as in Proposition 2.2,
w(u) = t-(fqu Aeas l\fn)
Q(v) = t.(fp+1 Aeee /\fn)
for some invertible +t. Then fq_'_1 Aseoo AT witnesses the di-

visibility of o@{u) by o(v).
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