A coherent theory of sites
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We describe in coherent ( = finitary geometric) language a notion of site. For a site T in an
elementary topos ¥, we describe likewise in coherent terms, the notion of model for T in any
$-topos &; and we describe an f-topos sh(T) of sheaves on T. This topos classifies T-models

(Theorem 12. below).

The coherent formulations of the notions of site and model make base change along inverse
image functors of geometric morphisms q : ¥ - 9! immediate. In particular, using the classification
theorem, one deduces that sh(q*T) appears as a pull-back of sh(T) along q in the category of
toposes (Corollary 13 below).

The notion of site goes back to Grothendieck, cf. [1] Expose 3. A notion of internal site in a
topos ¥ was considered by Lawvere and Tierney and utilized by Diaconescu [2], and many others:
namely an internal category C in ¢, together with a Lawvere-Tierney topology j on the topos
ffcop. Base change for sites, in this context, has been considered in [7] and [8]. A site notion which is
e;(pressed in explicit small but higher order terms, has been considered in Johnstone [4] (cf. also [3]),
also aiming at base change. Finally, Joyal-Tierney [5}, Moerdijk [6] and others have utilized internal
sites where the structure is given in terms of certain ’families’ of arrows that are congidered to be
covering, so this is implicitly an ’indexed’ notion; and it is not clear to us what the theory of base

change for such notions is.

Conventions. All constructions and arguments that take place inside one topos ¥ are
performed as if ¥ were the category of sets, and with free use of higher order constructions in f.
Notation and terminology are as in [3], except that we compose arrows of a category backwards; and

so, for a category object Cin ¥,
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means pulling back along the codomain map d: C;— Cy , which is the opposite of the convention in

[3] p-47 (footnote).

1. Sites.

A site T in an elementary topos ¥ is defined as a category object C in ¥, with some
further structure. We don’t assume that C has pull-backs; the usual assumption that ’pull-backs of
covers are covers’ is replaced by a certain further structure of algebraic nature, called o; the choice of

o does not affect neither the models nor the sheaves of T.

Consider a category object C in ¥

with composition o.

Definition 1. A site structure T = (T,s) on C consists of i) a commutative square

(1.1) B

such that <f,y>: B = A x C, is monic (so B may be identitied with a subset of A x C,); and ii),

a map

(1.2) Ax, Cy—s A
3 XCO 1

satisfying the conditions

(1.3) V(a,g) : o(o(ag)) =dog
(1.4) V(a.gh): (o(ag)h) € B = Jg'h':(ah’) € B A geh=h'og’ ;

where a €& A, and where ghg'h! are assumed to satisfy the book-keeping condition
that



makes sense. A site is a category object with a site structure.

The heuristics of the definition is that an a € A is a name for a covering of «(a) € C, and
B consists of pairs (a,g) € AxC; such that g is in the covering named by a (or equivalently,
ﬁ"l(a) is an index set for the covering named by a). So we shall sometimes write g €1 a for (a,8)

€ B.

!

Further, o(a,g) € A is a name a' for some covering which refines the pull-back along g of

the cover of d{(g) named by a.

The existence of ¢ implies the property
(1.5) Vag Ja' Vhepa' 3gh': (b €pa A goh=h'og))

which is a standard way of expressing the desired stability property for the covering notion. However,

(1.5) is not a coherent sequent.

The o only enters, via the property (1.5), in the construction of a certain object L that

appears in Proposition 6 below and is not used otherwise.

Since (1.3) and (1.4) are coherent sequents, we get that if (T,o) is a site structure on C in

$,and q: ¥/ = ¥ is a geometric morphism, (q*T,q"*7) is a site structure on g*C in ¥,

Example 2. Let A: Ly — C, have a right action by C, so defining an object L in .‘fcop. Let
L'= L, be a subobject, stable under the action. Then we have a site structure, denoted by T[L!- L),
on C,given by A =1L, B=](lLg) € Ly xCOC1 =L, | l.g € L'], and ¢ is the action map
L, xcocl - L.

We may make L, and B into objects over Cy by (1,g) — do(g), and, as such, they acquire

a right action by C, namely by composition. With these structures, B appearsin a pull-back diagram
. cer
in ¥

B I,

(1.6)

Lis———— [,

op
Let in particular L be a subobject of the subobject classifier Q of g€ , and assume that



true : 1 - 2 factors through L.

Definition 3. A site structure on C of the form T[ltw L] for some such L is called an

ideal site structure on C.

2. Models for sites.

If § is an Y-topos in virtue of a geometric morphism p: 8 = ¥, we let Functy(C,S) denote
the category of internal covariant functors from C € ¥ to &, that is, the category of objects
u: M = p*Cjin 8 equipped with a left action by the category object p*C in 8.If r: g+ 8 isa
geometric morphism over ¥, r* induces a functor r*": Functy(C,8) — Funct(C,8'). Sometimes one

writes M : C - & for such internal functors, and C Mgt g for ' (M).

We shall consider full subcategories Flatg(C,S), and, given a site structure T on C,
Modﬂ,(T,S),

Mody(T,S) C Flaty(C,S) C Funct&,(C,S).

The subcategory Flatﬂ,(C,B) is the full subcategory of flat internal functors M : C - & in the
standard sense [2], [3] (meaning that the internal category of ’elements of M ’ is inverse filtering, or
equivalently that a certain functor —® M, see (3.1) below, is left exact). To describe the subcategory
Mod(T,8) we need the following

Construction 4. Let T, as in (1.1), be a site structure on C, and let M € Functj,(C,S). We

define a subobject
(2.1) T(M) C p*A XCOM

by
T(M) := [(a,m)| 3g € p*C, Im' € M: gom' =m A (ag) € p*B],

where the book-keeping conditions are u(m') = do(g) and p(m) = a(a) = d,(g), and where
denotes the action of p*C on M.

Because of the coherence of the formula describing T(M),

(2.2) r(T(M)) = T(:*(M))



whenever r: 8 — & is a geometric morphism over .

Definition 5. If T is a site structure on C, Mod&.(T,S) is the full sub- category of Functﬂ,(C,
8) consisting of such M which are flat, and where (2.1) is an equality.

If r:8 —» & isasabove, r*: Functy(C,8) - Funct:f(C,S') is known to restrict to a functor

Flat,(C,8) — Flaty(C, g'), and by (2.2) it further restricts to a functor r*: Mod(T,§) - Mod:f(T,S').

Proposition 6. For any site structure T! on C, there exists an ideal site structure T =

op
T[1l— L] (LCQe $C ) such that for any f-topos 8, Modj,(T',S) = Modg(T,S).

Proof. Let A’,B',a’ etc. denote the data which enter into the site structure T'. For u € Co

define L(u) to consist of the maximal crible on u plus all cribles which contain one of the coverings

[5€Cilgeyal

(recall that g GT, a means (a,g) € B'), for some a with a’(a) =u).

!

The existence of o' then gives that

Ly := L(u)

]
ueC,
with its natural map A: Ly - Cy, is stable under the right action of C on , thus defines a subobject

op
L of @ in $€ ; and it clearly contains true: 1 - Q. Thus we have an ideal site structure T =
T[1 - ] on C. To argue that T! and T have the same models, we introduce two auxiliary notions,

order and refinement :

Let T, as in (1.1), be an arbitrary site structure on C. An order on T is a partial order on
A and a given map t: Cy - A, satisfying the book-keeping condition a; < a; = a(a) = o(ay),

and the conditions

Vajas g : ay<a; = (g€pa = gE€pay )
and

Vg: g € t(dy(g))-

A commutative diagram

(2.3) |8 |
A A Co




where the right hand square is T, and where the total square is a site structure T', is said to exhibit

T as a refinement of T' if

(2.4) Va'eA! vgeqr(a) aheT,a' 3n': g = hoh'
and
(2.5) VaeA: (a=t(a(a)) v Fa'eA': 4(a/) <a).

Lemma 7. If the ordered site T is a refinement of a site T/, then for any ¥-topos &,

Mody(T,8) = Mody(T',8).

Proof. Since the notions site, order, refinement and model are all formulated in coherent
language, it suffices to consider the case 8 = ¥. So assume M is a model of T, and let (a’,m) €
Al xCOM. Since M is a T-model, (y(a'),m) € T(M), so there exists (g,m;) with g € v(a') and
g-m; = m. By (2.4), there exists h GT, a’ and h' with g = hoh'. So h-h’-m; = m, and thus h
and h'-m1 witness that (a’,m) € T'(M). Conversely, assume M is a T'-model, and let
(a,m) € A xCOM. Either a = t(a(a)), and then (a,m) € T(M) in virtue of id, .,y € t(a(a)); or
there exists a’ with y(a') < a. Then since M isa T'-model there exists g ET, a' and m; e M
with g-m; = m. By commutativity of the left hand square in (2.3), g € ~(a'), and since y(a') < a,
g €pa.So g'm; =m witnesses (a,m) € T(M). This proves the lemma.

Returning, then, to a site structure T!, as in the Proposition, and the ideal site T = T[1 = L]
constructed out of T’, we note that the A-part of T is L, which, as a subobject of €, carries a
natural order relation in $C o , so that L as an object L, in ¥ carries a partial order satisfying
the conditions for an order on a site with t = true. With this order T refines T’; for a' € A/, we let
v(a') € Ly be the crible generated by the covering named by a'; then (2.4) will hold, To define 7!, let

(a’,g) € B/, where g:u—v isan arrow in C. Then

g €7 7(a)) € L(a(a)) = L(v) € Q)

and so idy € g'l('y(a’)), and so g'l('y(a’)) is the maximal crible on u. (In the notation of Example
2, this would read 7(a')-g belongs to the subobject L' (=true: 1 -1L)). So (v(a'),g) belongs to the
B for the site T = T[1 — L], and this defines 7. So T[l - L] refines T/, and, by the lemma,

Proposition 6 follows.



3. The topos of sheaves for a site.

A sheaf for a site T, as in (1.1), will be an internal functor C°? » ¥ with certain properties,
but we do not attempt to describe these properties explicitly; rather, we describe in non-explicit terms,
a Lawvere-Tierney topology j(T) on .‘fcop, such that the category sh(T) of sheaves for T is the
category of sheaves for j(T).

op
Recall that the internal Yoneda functor Y : C —» $C i given by <d;,dy> : C; — p*Cy,
op
with left action by p*C given by composition (where p : &‘C — ¥ is the canonical geometric

morphism).

Definition 8. A site structure on C has the crible property if it satifies
Va,gh: g €pa = goh €ra

where a(a) = dy(g) and d;(h) = d(g).
Any site of the form T[L' -+ L] (Example 2) has the crible property.

Note that
dO
A XCOCI -— Cl - CO

op

equipped with a right action by C given by composition, defines an object in $€" which may be

identified with p*A X Cy; and T has the crible property iff B — A XC(,Cl is stable under the
o

action; and under the identification mentioned, it is easily seen that

Proposition 9. If T has the crible property, then the subobject

T(Y) g P Axp*cocl
equals

B C AXCOCP

Cap i N COP :
Let 36 C ¥ be a subtopos with t*: ¥~ — 3t as reflection functor.

op
Proposition 10. If L' 5 L is a mono in g€ which is inverted by r*, then r*(Y)
(=r*0Y) is a model for the site structure T[L! » L).

Proof. This follows from Proposition 9 and the pull-back diagram (1.6).

Recall that a flat M : C - & (8 an ¥-topos in virtue of p: 8 =+ ¥) has a classifying



= op .
geometric morphism M : & - g€ , whose inverse image functor M* we denote _®CM' For

op
Le¥ C7 it may be described as the coequalizer
(3.1) p'Ly xp..cop C,; xp"‘COM — p'L xp.COM — L®C M

the two parallel maps are induced by the actions.
c’?
With such M, and with L' 2L in $“ , we have

Proposition 11. f M is a model in & for the site structure T[L'> L], then
L ®CM — L®CM is an isomorphism.

Proof. The map in question is monic, since —® ~M is left exact by flatness of M. To prove
’ C

it epi, it suffices, by coherence of the notions involved, to consider the case 8 = ¥ = Sets .

Consider an arbitrary element x in L®CM. By (3.1), it is represented by an element
(a,m) € LxCOM. Since M is a model for T, T(M) =L XCOM’ so there exists (g,m’) so that
gm' = m and (ag) € B. This means by construction of T[L'-L] that a-g € L' Then
(a-g, m') € L’xCOM represents an element x' in L'®CM. But

(a-g, m’) = (a,g-m’) = (am)
where = denotes the equivalence relation on L xCOM which defines L® M, by (3.1). Thus x!

maps to X, witnessing the surjectivity of the map in question, and this proves the Proposition.

Let T be a site structure on C, and let T[1 trug L] be some ideal site structure on C which
has the same models as T, using Proposition 6. Let j be the smallest Lawvere-Tierney topology on

op
$C" for which true:1— L is dense; such exists, by [3].

op
Theorem 12. The $-topos sh(j) —— $C€7 4 9 s the classifying topos for T-models, with
op X
c Y, 9C I, sh(j) as generic model. In particular, sh(j) only depends on T and may be written

sh(T). So we have an equivalence of categories
(3.2) Mody(T,8) ~ Topy(8,sh(T))

with q: & — sh(T) = sh(j) corresponding to the model gq*o r*o Y.

op
Proof. Since ¢ C™ (lassifies flat functors (cf. [3]), it suffices to prove that for a flat functor
op
M: C - § —®CM ; fl’C — & factors across r* iff M is a model for T. If M is a model,
true®CM : 1®CM - L®CM is iso, by Proposition 11, so -—®CM inverts the monic which defines



the topology j, so factors across r*. Conversely, since r*inverts 1 -+ L, r’oY is a model for T, by
Proposition 10. So if -®cM factors across 1", as —®c M = q*o ¥, say, then M = g*(r"o Y), and

since r*o Y is a model, M is. This proves the Theorem.

If q: ¥ 1,9 isa geometric morphism, we get a functor
Xq: Topy,—t Topy
namely the one which to an $'-topos p: 3% = ¥ ! associates the ¥-topos 36 By Sy Also, for a site
structure T on C in ¥, we get a site structure q*T on q*C in #!, by coherence of the site notion.
We evidently have

Functy,(q‘C,JG) =~ Functy(C,Xql6)

and inspecting the Construction 4 and Definition 5 (and the notion of flatness), we get that this

restricts to an equivalence
(3.3) Mody,(q*T,f}G) ~ Mody(T,qu}G).
In particular, combining this with Theorem 12, we have the equivalence (natural in 3 € Top ¢ )
Top‘?,(flﬁ,sh(q‘T)) o~ Mod:r,(q"‘T,f}G) = Modﬂ,(T,qu}{a) ~ Top:f(qu}{-},sh(T)),

proving

Corollary 13. The following diagram is a pull-back (in the usual lax sense) in the category of

toposes

sh(q*T) —— ¢/

sh(T) — ¢

the left hand vertical geometric morphism classifies the q*T-model in %q(sh(q*T)) corresponding to
the generic T-model in Mod ?,(q"‘T,sh(q*T)) under (3.3).



4. Examples

We shall consider two examples: site structures on the terminal category 1 of ¥, and the

canonical site structure on any frame X (= locale) in ¥.

A site structure T on 1 is given by a commutative square

B— 1
8 id
A =

with B mono; a o always exists, namely the identity map on A. This site has the crible property.

By Proposition 6, this site has the same models as a suitable ideal site T[1 — L] where
L C ©, and the Lawvere-Tierney topology associated to T{l — L] is the smallest for which 1 - L is
dense. In the present case, we shall prove that this topology may also be described as the smallest one

for which 8 : B = A is dense.

There is, up to isomorphism. exactly one flat internal functor M: 1 — & (where & is an
$-topos in virtue of q: 8 = ¥), namely q*c Y where Y:1 - is the (internal) Yoneda functor.

By Proposition 9
T(M) = T(q"Y) = q(T(Y)) = ¢'B

so the unique flat functor 1 —» & is a T-model iff q*B = q*A, iff q" inverts B : B - A. (This
example is implicit in [7] §1.)

We next consider an internal frame X in ¥. Let Idl(X) denote the set of lower sets
X' € X (ie. subsets satisfying x, < x, € X' = x, € X' ). Let A = IdI(X), and let
B= { (xX" |x e X'e Idl(X)}. We have a commutative square

"
B

IA

p d,

A———X

sup

(where < is the set of (x;,x,) € X x X with x,<x,) with B(xX" = X/, v(x,X")=(x,supX’). We
define o : AxXS -+ A by



o( X', (ysupX')) = {x/\y| xex’}

The distributivity of A over sup guarantees validity of (1.3); (1.4) is obvious.

The site thus defined may be denoted T(X). Then sh(T(X)) = sh(X) in the sense of [5].
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