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ON THE INTEGRATION THEOREM FOR LIE GROUPOIDS

ANDERS Kock, Aarhus

(Received September 26, 1986)

The theorem referred to in the title says that any infinitesimal representation of
one Lie groupoid into another extends uniquely to an actual representation (under
certain connectivity conditions); and it has some other basic integrability theorems
as immediate corollaries. The theorem was first formulated and proved by Qué,
[12] p. 35 (and seems to be related also to work of Pradines [11]).

Our formulation of the theorem dispenses with the sheaf of Lie algebras which is
the carrier of the classical (Qué-) formulation, and considers instead the “first
neighbourhood of the diagonal” of a manifold as a basic combinatorial structure.
This notion, although dating back to Grothendieck, Malgrange [9] and others in
the late 1950’s, obtains its real simplicity only when considered in the context of
synthetic differential geometry (SDG, for short; see e.g. [3]). This means in particular
that the category of smooth manifolds is embedded fully into a topos E (“a well
adapted topos”), about which we shall talk as if it were the category of sets. According
to [1], for each manifold M, there is in E a sub “set” M;, = M x M, “the first
neighbourhood of the diagonal”’; we write x ~ y for (x, y) € M ;,. The relation ~ is
reflexive and symmetric, but not transitive.

I want to point out that the notions and results we consider make sense for any
set equipped with a reflexive symmetric ~, so they should have a combinatorial
significance besides the differential-geometric (cf. also [5] for this viewpoint). So in
principle, they are more general than the corresponding notions and results of
differential geometry out of which they were paraphrased. However, for me, their
virtue is not primarily the added generality, but their simplicity, allowing insight
into differential geometry at very low cost (no mathematical analysis involved).

The content of the present paper has to a certain extent been announced in [6].

1. GENERAL NOTIONS

In the present paper, the word ‘graph’ means ‘oriented graph with identities and
inversion’, that is, a set M of vertices or objects, a set @ of edges or arrows, and maps

0p, 0@ >M; iiM->0; (>0,
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satisfying
do(i(a)) = 04(i(a)) =a VYaeM,

() ' =« Vae @,
do(a™) = 0,(x) Voed,
05(a™) = 9o(a) Yoe .

We write (&, M) or even just @ for such a graph, when the rest of the data can be
understood from the context.

A graph map (¢, M) — (¥,N) is a pair T = (Ty, Tp) of maps, T,;:d — ¥,
To: M-— N, commuting in an evident way with 0y, 9y, i, and ( )™'. Also, a subgraph
of (@, M) is a pair @ = ¢, M’ = M, stable under 0y, d;,i, and ()™'. If M = N
and T, is the identity map, we say that T'is a graph map over M. Similarly, a subgraph
(@', M) as above is a subgraph over M if M’ = M.

Any groupoid (= small category with all arrows invertible) may be considered
a graph, by forgetting the composition structure, and a functoer between groupoids
is in particular a graph map.

For any set M, we have the codiscrete groupoid over M, which is (M x M, M),
with the projections to first and second factor as d, and d,, respectively, and with

composition given by
(. 2) o (x,9) = (x,2)

(we compose from right to left).
Any group may be considered a groupoid with the one-element set 1 as object set.
A functor from a codisrete groupoid (M x M, M) to G is thus a map

Mx M->FG
which satisfies
F(b,c). F(a,b) = F(a,c) Va,b,ceM,
and (hence) F(a, a) = e (neutral element of G), and (F(a, b))™* = F(b, a).
For any fixed element i € M, there is a 1-1 correspondence between the set of such

functors, and the set of all functions f: M — G with f(i) = e, namely to F associate
f = F(i, —), and to f associate F = df: M x M — G given by
(1.1) F(a, b) = df(a, b): = f(b) . f(a)™".

A subgraph M, over M of the codiscrete groupoid (M x M, M) is the same
thing as a reflexive symmetric relation ~ on M:

a~b iff (a,b)eMycMx M.

We shall consider the quéstion: when can a graph map r: My - G be extended
to a functor M x M — G? More generally, let (9', M) be a subgraph over M of
a groupoid (@, M); then we shall consider the question: when can a graph map

r:(®', M) - (¥,N) into a groupoid (¥,N) be extended to a functor & — ¥?
Clearly, a necessary condition for such an extension to exist is that r preserves those
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composites that happen to exist in @', more precisely, » must be curvature free in the
following sense:

Definition 1.1. A graph map r: @' — ¥ (with ¢’ = ® and ¥ as above) is called
curvature free if for any composable pair «, f in @ with , f, and ff o « € @', we have

r(Boa)=r(B)or(x)
in ?.

By a ‘global integration theorem’, we understand presently a theorem, whose
conclusion is the converse, that is, a theorem with conclusion that curvature free
graph maps uniquely extend to functors. The present paper interrelates some such
global integration theorems.

The basic type of global integration theorem is for the case when @ is a codiscrete
groupoid (so @’ is a reflexive symmetric relation), and ¥ is a group:

. Definition 1.2. Let M be a set equipped with a reflexive symmetric relation ~
(or equivalently, with a subgraph My = MxM over M), and let G be a group.
We say that the pair (M, ~), G) admits integration if every curvature free graph
map M, - G cxtends uniquely to a functor M x M — G.

If ie M is a given element, a functor F: M x M — G is, by (2.1) of form df for
a unique f: M — G with f(i) = e, so that we have

Proposition 1.3. The pair (M, ~), G) admits integration if and only if the fol-
lowing conditions hold: 1) A graph map w: M, — G is curvature free iff there
exists f: M — G with df = o, i.e. with

f(b).f(a)™' = w(a,b) Va ~b;
and, 2) such f is unique if one requires furthermore f(i) = e.

Graph maps M(;, — G are considered in [4] under the name: G-valued 1-forms
on M, and saying that the pair (M, ~), G) admits integration can thus be expressed
verbally by “closed G-valued 1-forms w are (uniquely) exact”, i.e. of form df for
a unique f: M — G with f(i) = e; f deserves the name: primitive of the 1-form w.
In the standard well adpated models for SDG, we have by the main theorem in [4]
(in conjunction with [9] — see Theorem 3.5 in [9]) that if M is a connected simply
connected manifold, and G a Lie group, then the pair (M, ~), G) does admit
integration.

Proposition 1.4. If the pair (M, ~), G) admits integration, and f: M - G
satisfies f(c) = f(d) whenever ¢ ~ d, then f is constant.

Proof. Consider the function F = df given by (1.1). By the assumption, the
restriction of F to M(;y © M x M has constant value e; this, however, is also the
restriction of the map M x M — G with constant value e, and since this map is
a functor as well, it equals F, by the uniqueness assumption in Definition 1.2. So
F =e,orf(b).f(a)™" = eVa,b,so f(a) = f(b)Va, b.

We present finally a few auxiliary concepts.
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A trivialization of a graph (@, M) is a graph map Q: M x M — & over M; so for
any pair of elements a, b in M, Q selects an arrow Q(a, b) from a to b. A graph &
is called locally trivializable if it admits a trivilization. (When ¢ is a groupoid,
we don’t assume Q to be a functor; this would give a stronger notion, which we do
not consider here).

If (®, M) is a graph, and a, b e M, we denote by ®(a, b) the set of arrows a with
Oola) = a, d,(a) = b. If @ is a groupoid, P(a, a) is a group, called the vertex group
of & at a.

If (¥, N)is a groupoid, and T: M — N a map, we get a groupoid (¥r, M) over M
by a standard pull-back procedure: for a, be M

¥1(a, b): = ¥Y(T(a), T(b))

(‘the full image along T, in standard category theoretic terminology). If ¥ is locally
trivializable, then so is ¥r.

2. THE INTEGRATION THEOREM

The integration theorem deals with two groupoids (@, M) and (¥, N); the set ¢
of arrows of the first is assumed to be equipped with a reflexive symmetric relation ~,
compatible with the groupoid structure in the sense that

(2.1) B~yeB Tt~y
(2.2) Br~y<fod~yod,
(2.3) B~y<dof~doy,

for the two last under the assumptions that the composites make sense, (thus for

(2.2): 00(B) = 0o(y) = 94(9)).

We say that an arrow f e @ is a near-identity if
B ~ i(3,(B)) and B ~ i(3,(B)).

(At the cost of some complications of formulations, we could have carried the theory
through with only the first of these assumptions, but in the applications in SDG,
the first implies the second). Clearly, the set @ < @ of near-identities is a subgraph
over M. Also, if B and y are arrows with do(B) = o(y), then y o f~* makes sense,
and is a near-identity iff B ~ y; similarly with y~"' o B if 8,(B) = 9,(y). This is an
easy consequence of (2.1)—(2.3).

We note that, for a € M, the subset @, = @ defined by

®, = {aed|do(x) = a}

inherits a reflexive symmetric relation ~ from that of @, and can then state the main
theorem.

Theorem 2.1. Let (&, M) be a groupoid with a reflexive symmetric relation ~
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on &, satisfying (2.1)—(2.3), and let @' <= @ be the set of near-identities. Let
(¥, N) be a locally trivializable groupoid. Assume that for each a € M and each
vertex group G of ¥, the pair (@, ~), G) admits integration. Then any curvature-
free graph map r: (@', M) - (¥, N) extends uniquely to a functor R: ® —» V.

Remarks. In the context of SDG, if @ and ¥ are differentiable groupoids, and ~
the first neighbourhood of the diagonal, such a curvature free graph map r: @' —» ¥
can be proved the same thing as an “‘infinitesimal representation” of @ in ¥ in the
terminology of [ 12] (cf. § 3 for some indications in this direction), so that the theorem
in this case has for conclusion that any infinitesimal representation is induced by
a unique actual representation (= functor).

Proof of the theorem. By replacing (¥, N) by the full image along ro: M - N
(where r = (ry. o). we immediately reduce to the case where M = N, and ry is the
identity map. This reduction will make notation easier, and has no other purpose;
it allows us in particular to writc r and R instead of r, and R,.

We first prove uniqueness. Let R! and R? be functors @ — ¥ extending r. Pick
some trivialization Q of ¥. For each a € M, we have maps f,, and f,:

9, -l W(a,a) j=1,2

given by
(2.4) f{B) = Q(b, a) o RI(B) (where b = ,(B)).
We clearly have f,(i(a)) = f4(i(a)) = i(a). Let B~y in &,, with b = 3,(B), ¢ =
= 04(y). Then, for j = 1.2,
(2:5) dfi(B,v) = fiv) o fB)”

= Q(c, a) o RI(y) o RI(B)™" o Q(b,a)™!

= 0(c,a)s Ri(yo ") Q(b, a)™*

= Qc,a)or(yo p7") o Q(b,a)™",

since R’ is a functor, and it agrees with r on the near-identity y o 7. By the
uniqueness assertion of Proposition 1.3 (with ¥(a, a) for G), we conclude that
f1 = f,. Multiplying (2.4) on the left by Q(b, a)™", we get R'(B) = R*(B). So
R' = R%

To prove existence of R: ¢ > ¥, we again pick some trivialization Q of ¥. We
shall for each a € M use Q to define a map R,: &, — ¥, and the collection of these
R.’s will be our R. Let @ = w,: (®,), — ¥(a, a) be the graph map given by the
right hand side of (2.5), i.e.

o(p, ) = Qc,a)or(y o p~") o Q(a, b)
= Q)7 or(ye 7)o Qb)
(writing Q(b) for Q(a, b), and similarly Q(c) for Q(a, ¢) = Q(c, a)™"). We attempt
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to use Proposition 1.3 to construct a primitive f = f,: ®, » ¥(a, a) for this w, so
we wish to prove that o is curvature free. Let f, y, and 0 be elements of @, with
p ~7y~d~ Band with b, ¢, and d, respectively, as codomain. Then

a(y,8) e (B, 7) = Qd)™ o307 o Qc)o Q(c) " o r(y o B71) o Q(b)
=Qd) ter(doy ) or(yo )0 Q(b)
= Q) o r(5+ B1) - Q(b) = lB. 3),
where the penultimate equality follows by the assumption that r is curvature {ree,
so that it preserves those composites of near-identities which are near-identities. So w

is curvature free, and by Proposition 1.3, there exists a unique f: @, — lP(a, a) with
f(i(a)) = i(a) and with df = o, i.e. with (for B ~ y)

(2:6) J@) o f(B)™ = (B, y) = Qc)" o r(y o B71) - Q(b).
For y € @, with codomain ¢, we then put
(2.7) Rv): = Q) f(y) e ¥(a, c).

We shall prove that the collection of these R,’s is a functor @ — ¥ extending r;
(by the uniqueness already proved, it therefore follows also that the choice of the
trivialization Q has no influence on the result of the construction).

First we prove that R does extend r. Let y € ®(a. ¢) be a near-identity. Then with
f=f,and o = v, as above

R(z) = Ry) = Q(c) - /(7)
0(c) = f(7) o f(i(a))
0{c) « df(i(a). y)
0(c) « wfi(a), /)
= Qc) o 0(e)" oy o ifa)™) 5 Oa) = r(y),
since Q(a) = O(a, a) = i{a}.

We must next prove that R is a functor, i.e. commutes with composition. Let
p:a — band 6: b — ¢ be arrows; we should prove

(28) R(3- ) = R(3) - R(B).

We first do the special case where 4 is a near-identity, so R(3) = r(0). Let y = 0 o f,
so B ~ yin &, By (2.7) and (2.6), we have

R(y) o R(B)™ = Qlc) o f(3) - S(B)"" - Q(b)™ "
= 0Qc)oQe) " or(ye B7') o Qb) - Q(b)™
=r(y.p7")

r(0) R((S

and the total equation here is equivalent to (2.8), so the special case is proved.

Il

I
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To prove (2.8) in general, we fix f:a — b in @ and let 6: b — ¢ vary. For 6 ~ &
in @,, we consider the commutative diagram

1

where y = 8o f, p=¢of, and n = €00~ ! = poy~!; y is a near-identity. From
the special case already proved (applied to &, and to <1),,), we get that R transforms the
two small triangles involving # into commutative triangles in ¥. The function
k: @y — lP(a, a), which measures the possible ‘lack of functorality’, i.e.

k(d): = R(6 o B)~" o R(6) - R(B)
therefore takes same value on ¢ as it does on J, and thus must be constant, by
Proposition 1.4. Its value on § = i(b) clearly is i(a), so k(8) = i(a) for all é € &,
s0 R(8 o B) = R(8) - R(B) V5 € ®,. This proves that R is a functor, giving thus the
existence part of the theorem. :

3. SOME COROLLARIES

Let M be a set equipped with a reflexive symmetric relation ~, i.e. a subgraph M ,,
of M x M. Let ¥ be a groupoid over M. A connection on ¥ is a graph map
V: M, — ¥ over M. This is a combinatorial paraphrasing of Ehresmann’s notion
of ‘infinitesimal connection in differentiable groupoid’, [2], cf. also [6], [7], and [8].

We assume that the set M x M can be equipped with a reflexive symmetric
relation = such that

(3.1) (a,b) = (a', b') = (b,a) = (b, a")

(3.2) (a,b) ~ (a',b)=>a~a and b~
(3.3) a~a = (a, b) ~ (a’, b)

(3.4) b~ b = (a, b) ~ (a, b').

(Note that in (3.3) and (3.4), we may write <> instead of =, in virtue of (3.2).) One
may get one such relation by delcaring (a, b) ~ (a’, b’) iff: either a = a’ and b ~ b’,
orb = b"and a ~ a'. This is clearly the smallest relation = that satisfies (3.1)—(3.4).
One may get another such relation &~ by declaring (a, b) ~ (a’, b’) iff a ~ a’ and
b ~ b’, which is clearly the largest one. In the context of SDG, when ~ is the first
neighbourhood of the diagonal, the interesting &~ on M x M lies strictly between
these two extremes, in general.

429



We then have the following global integration theorem for curvature free con-
nections, first proved in combinatorial form in [8]:

Corollary 3.1. Assume that the pair (M, ~), ¥(b, b)} admits integration, for all
be M, and that ¥ is locally trivializable. Then any curvature free connection
V: M, — ¥ admits a unique integral (i.e. an extension to a functor M x M — ¥
over M).

Proof. For any reflexive symmetric relation & on M x M satisfying (3.1)-—(3.4),
the assumptions (2.1)—(2.3) (with @ = M x M) are satisfied; and (a, b)e @ is
a near-identity iff

(a.a) ~ (a, b) ~ (b, b),
which by (3.2)—(3.4) is equivalent to a ~ b; so @' = M,,. Also, foraeM fixed,
@, = {(a, b)| be M} = M, with ~ on &, corresponding to ~ on M, in virtue of
(3.2) and (3.4). Thus, the assumptions of the theorem are satisfied, and we get
a functor R: & — ¥ extending V: &' —» ¥. Since ® = M x M, this is the desired
result.

Of course, the very assumption on (M, ~), G) admitting integration comes out
in turn as a special case of the conclusion of the Corollary, namely by taking ¥ =
= M x G x M, which in an evident way is a trivialized groupoid over M, all of
whose vertex groups are G.

We finally consider a group G, equipped with a reflexive symmetric relation ~ such
that (2.1)—(2.3) are satisfied V,7y,0€ G. Let G = G be the set {ge G|g ~ e},
where e is the neutral element.

Corollary 3.2. Let G and G be as above, and assume H is a group such that the
pair (G, ~), H) admits integration. Then for any map r: G -~ H satisfying
(3.5) , B .a) = r(B). r{x)
whenever a, B, and . a € G, there exists a unique group homomorphism R: G - H
extending r.

Proof. This is just the special case of the theorem where M = N = 1, the one-point
set.

In the context of SDG, this implies one of the fundamental facts of Lie group
theory. For, if G and H are Lie groups, and G is connected simply connected, the
pair ((G, ~), H) admits integration, by [4] and [9], and a map R: G —» H with
r(e) = e can be proved to be the same thing as a linear map ¢: T,G — T,H between
the respective tangent spaces. Essentially the same calculation as in [4] shows that the
condition (3.5) is equivalent to ¢ preserving Lie brackets (T,G and T,H being of
course Lie algebras); the Corollary thus establishes a bijection between Lie algebra
homomorphisms ¢: T,G — T,H, and Lie group homomorphisms R: G — H.

One advantage of the synthetic formulation is that instead of getting this cor-
respondence by some inducing process (“R induces o), we get the correspondence
by restriction (““R restricts to r”).
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