A Godement theorem for locales

By ANDERS KOCK Aarhus Universitet, Aarhus, Denmark

(Received 29 June 1988)

The classical Godement Theorem for manifolds, characterizing kernel pairs for submersions (cf. e.g. [15], LG IV §5), has been used by Pradines [12] as a crucial property for having a good theory of differentiable groupoids; in fact, he developed an axiomatic theory of categories in which Godement's and some other exactness properties hold, under the name of 'Godement diptych'.

Establishing such theorems for locales therefore has as a corollary that the groupoid-theoretic technique developed by Pradines and others [1, 13, 14], for studying the category of 'orbital varieties' (e.g. quotient 'spaces' for foliations) becomes available for studying the category of toposes. This is because the category of orbital varieties appears as a fraction category (see [14]) of the category of differentiable groupoids in the same way as the category of toposes appears as a fraction category of localic groupoids (see [9, 10], extending [6]). So, also, the notion of orbital variety may be considered as the smooth analogue of the notion of topos:

 $\frac{\text{differentiable groupoids}}{\text{orbital varieties}} = \frac{\text{localic groupoids}}{\text{toposes}}.$

To state the results, let us fix some terminology.

By an α -open equivalence relation on a locale X, we mean a sublocale $i: R \hookrightarrow X \times X$ which is an equivalence relation in the standard sense (a finite limit notion), and such that the composite α of i with $\operatorname{proj}_0: X \times X \to X$ is an open surjection. We say that the equivalence relation is *closed*, open, etc. if $i: R \hookrightarrow X \times X$ is.

Our main result, which is a kind of Godement theorem, may be stated as follows.

THEOREM A. Any closed α -open equivalence relation R on X is the kernel pair of its quotient map $X \rightarrow X/R$.

This also holds when 'closed' is replaced by 'weakly closed', in a sense recently introduced by Johnstone [5].

Combining this with the closed-subgroup theorem of [3], we obtain as a corollary that every normal subgroup of a localic group is a kernel.

All our results, except possibly this corollary, hold in any topos; and in fact, the constructive version of the closed-subgroup theorem proved in [5] combines with our result to yield a constructive version of the corollary on normal subgroups.

For completeness, we shall prove also a result which is reminiscent of Theorem A, and is due to Moerdijk [9]:

THEOREM B. Assume $X \rightarrow 1$ is an open surjection. Then any open (hence α -open) equivalence relation R on X is the kernel pair of its quotient map.

Such equivalence relations are somewhat more special than those of Theorem A, since the quotient locale X/R is discrete in this case.

We use the locale/frame terminology of [4], but the notation of [6], in which the frame corresponding to a locale X is denoted O(X), and the frame homomorphism corresponding to a locale map $f: X \to Y$ is denoted $f^-: O(Y) \to O(X)$. If f^- has a left adjoint, in particular if f is open, the left adjoint is denoted f^+ (where [6] has \exists_f).

We tacitly work with locales/frames in an arbitrary topos, where the initial frame is denoted Ω . For the reader who prefers to think classically (in the category of sets), Ω consists of just the two elements 0 and 1, and $\Omega \rightarrow O(X)$ sends 0 to 0 and 1 to 1.

A preliminary, somewhat different version of the present work appeared in preprint form as [7].

1. Some generalities concerning α -open localic categories

We consider a localic category, i.e. a category object in the category of locales,

$$\underset{\beta}{\overset{a}{\Rightarrow}} X, \tag{1.1}$$

X and R being the locale of objects, respectively of arrows, and α and β being domainand codomain-formation, respectively. We say that (1.1) is an α -open localic category if α is an open locale map (and so necessarily an open surjection).

We have the pull-back diagram which defines the object H of composable pairs

$$\begin{array}{ccc}
H & \xrightarrow{a} & R \\
b & \downarrow & \downarrow & \beta \\
R & \xrightarrow{a} & X,
\end{array}$$
(1.2)

and since α is an open surjection, then so is a, and the Beck-Chevalley condition

$$\beta^- \alpha^+ = a^+ b^- \tag{1.3}$$

holds, cf. [6]. Furthermore we have the composition map $c: H \to R$ which satisfies $\alpha c = \alpha a$ and $\beta c = \beta b$, thus

$$c^-\alpha^- = a^-\alpha^- \tag{1.4}$$

$$c^{-}\beta^{-} = b^{-}\beta^{-}. \tag{1.5}$$

We also have the identity formation map $i: X \to R$ which is right inverse for both α and β , so

$$i^{-}\beta^{-} = \mathrm{id}_{O(X)} = i^{-}\alpha^{-}.$$
 (1.6)

The subset $O(Q) \hookrightarrow O(X)$ given by

$$O(Q) = \{ u \in O(X) \mid \beta^{-}(u) \leq \alpha^{-}(u) \}$$

$$(1.7)$$

is evidently a subframe, so we get a locale map $q: X \to Q$, with q^- the inclusion $O(Q) \hookrightarrow O(X)$. It clearly satisfies

$$q\beta \leqslant q\alpha$$
,

and is in fact universal with this property, so it is the 'sub-coequalizer' of β and α . This does not depend on α being open, but if it is, we can say more.

464

Recall that a closure operator \downarrow on a poset O is an order-preserving map $\downarrow: O \rightarrow O$ with

$$u \leq \downarrow u \quad \text{and} \quad \downarrow \downarrow u \leq \downarrow u$$
 (1.8)

for all $u \in O$ (the second inequality is then in fact an equality). An element $u \in O$ is closed for \downarrow if $u = \downarrow u$; and if $O' \subseteq O$ is the set of closed elements, the inclusion q^- : $O' \subseteq O$ has a left adjoint q^+ determined by $q^-q^+ = \downarrow$.

PROPOSITION 1.1. Let (1.1) be an α -open localic category. Then $\alpha^+\beta^-: O(X) \to O(X)$ is a closure operator \downarrow , and its closed elements are the elements of O(Q), described in (1.7). In particular, the inclusion $q^-: O(Q) \hookrightarrow O(X)$ has left adjoint q^+ which satisfies

$$q^+q^- = \alpha^+\beta^- = \downarrow.$$

The locale map $q: X \rightarrow Q$ thus defined is characterized as the sub-coequalizer of β, α .

Proof. Let us verify the two inequalities in (1.8) for $\downarrow = \alpha^+ \beta^-$. We have, for $u \in O(X)$, $u = i^- \beta^-(u) \leq i^- \alpha^- \alpha^+ \beta^-(u) = \alpha^+ \beta^-(u)$,

using (1.6), a front adjunction, and (1.6) again; thus $u \leq \downarrow u$. For the other inequality, $a^+ e^- a^+ e^- = a^+ a^+ b^- e^-$ by (1.2)

$$\begin{aligned} & +\beta^{-}\alpha^{+}\beta^{-} &= \alpha^{+}a^{+}b^{-}\beta^{-} & \text{by (1.3)} \\ & = \alpha^{+}a^{+}c^{-}\beta^{-} & \text{by (1.5)} \\ & \leq \alpha^{+}a^{+}c^{-}\alpha^{-}\alpha^{+}\beta^{-} \\ & = \alpha^{+}a^{+}a^{-}\alpha^{-}\alpha^{+}\beta^{-} & \text{by (1.4)} \\ & \leq \alpha^{+}\beta^{-}. \end{aligned}$$

where the two inequality signs are obtained by a front adjunction and two back adjunctions, respectively.

We can now easily identify the set of closed elements for \downarrow as O(Q), for we have $\downarrow u = u$ if and only if $\downarrow u \leq u$ if and only if $\alpha^+\beta^-(u) \leq u$ if and only if $\beta^-(u) \leq \alpha^-(u)$ (by adjunction $\alpha^+ \rightarrow \alpha^-$).

The conclusion of the proposition then follows, by the above generalities about closure operators.

If (1.1) is an α -open localic groupoid, the codomain map β is open as well, using the inversion map $R \rightarrow R$. By symmetry, it follows from Proposition 1.1 that $\beta^+ \alpha^-$ is also a closure operator \uparrow on O(X), but we also have

LEMMA 1.2. For an α -open localic groupoid, the closure operators $\alpha^+\beta^-$ and $\beta^+\alpha^-$ on O(X) agree.

Proof. For a groupoid object in a category with finite limits, we have many more pull-backs than $(1\cdot 2)$; we shall exploit three of these (which occur in [2]). We identify a localic groupoid with its nerve, which is a simplicial locale G_* .

Thus, for the groupoid (1·1), $G_0 = X$, $G_1 = R$, and G_2 is the object H of composable pairs that occurs in (1·2); the face operator $d_i: G_{n+1} \to G_n$ 'projects away' the *i*th factor, so $\alpha = d_1$, $\beta = d_0$; and $a = d_2$, $c = d_1$, and $b = d_0$, in the notation of (1·2). There are three identities among the iterated face operators $G_2 \to G_0$; and each of the three squares whose commutativity express these equations, is in fact a pull-back square,

with all four maps open surjections. The three identities thus give rise to six Beck-Chevalley conditions. We display for completeness all nine equations:

$$\begin{aligned} d_0 d_0 &= d_0 d_1 \\ d_0^- d_0^+ &= d_0^+ d_1^- \\ d_0^- d_0^+ &= d_1^+ d_0^-, \end{aligned}$$
 (1.9)

$$d_{0}d_{2} = d_{1}d_{0} \qquad \begin{aligned} & d_{0}^{-}d_{1}^{+} = d_{2}^{+}d_{0}^{-} \\ & d_{1}^{-}d_{0}^{+} = d_{0}^{+}d_{2}^{-}, \end{aligned}$$
(1.10)

$$d_1 d_1 = d_1 d_2 \qquad \begin{array}{c} d_1^- d_1^+ = d_1^+ d_2^- \\ d_1^- d_1^+ = d_2^+ d_1^-. \end{array}$$
 (1.11)

Note that (1.10) is (1.2), and $(1.10)_1$ is (1.3).

Now to prove $\alpha^+\beta^- = \beta^+\alpha^-$, which the lemma claims, means in the simplicial notation to prove $d_1^+d_0^- = d_0^+d_1^-$. By symmetry it suffices to prove the inequality ' \leq ' here. This inequality is by adjointness equivalent to $d_0^- \leq d_1^-d_0^+d_1^-$. We have

$$\begin{aligned} d_0^- &\leq d_0^- d_0^- d_0^+ & \text{(front adjunction)} \\ &= d_0^- d_0^+ d_1^- & \text{by } (1 \cdot 9)_1 \\ &= d_0^+ d_1^- d_1^- & \text{by } (1 \cdot 9)_1 \\ &= d_0^+ d_2^- d_1^- & \text{by } (1 \cdot 11) \\ &= d_1^- d_0^+ d_1^- & \text{by } (1 \cdot 10)_2, \end{aligned}$$

which is the desired inequality. This proves the lemma.

From Lemma 1.2, and Proposition 1.1 applied twice, we get the symmetric version of Proposition 1.1.

PROPOSITION 1.3. Let (1.1) be an α -open localic groupoid. Then $\alpha^+\beta^- = \beta^+\alpha^-$ is a closure operator on O(X), and its set O(Q) of closed elements is the equalizer of α^- and β^- . In particular, the inclusion $q^-:O(Q) \hookrightarrow O(X)$ has a left adjoint q^+ which satisfies $q^-q^+ = \alpha^+\beta^- = \beta^+\alpha^-$. The locale map $q: X \to Q$ thus defined is the coequalizer of α and β ; and q is an open surjection.

Proof. Only the last assertion has yet to be established; we have to prove that q^+ satisfies the Frobenius reciprocity law $q^+(u \wedge q^-v) = q^+u \wedge v$, but this is a simple calculation using $\alpha^-q^- = \beta^-q^-$ and Frobenius reciprocity for β^+ .

COROLLARY. If an α -open localic groupoid acts on a locale Y, then the action induces a closure operator 'orbit formation' on O(Y).

Proof. Apply Proposition 1.2 to the action groupoid Y.

2. A density theorem for localic categories

We first remind the reader of the notion of a sublocale being strongly dense, introduced by Johnstone in [5]; for locales in **Sets**, it is equivalent to the standard density notion of [4], II.2.4. Recall that, for any locale X, we have a unique locale map $m: X \to 1$, thus a unique frame map $m^-: O(1) = \Omega \to O(X)$, which one conveniently omits from notation.

466

Definition ([5]). The locale map $i: R \to S$ has strongly dense image if for all $\theta \in \Omega$ and $w \in O(S)$, the inequality $i^-(w) \leq \theta$ implies $w \leq \theta$. If in addition *i* is an inclusion, *R* is called a strongly dense sublocale of *S*.

We consider now, as in §1, an α -open localic category $\alpha, \beta: R \Rightarrow X$, and form, as there, the sub-coequalizer $q: X \rightarrow Q$ of α and β ; then we form the sub-kernel-pair of q: by this we mean the comma square of q with itself

$$\begin{array}{cccc} X \leq {}_{\mathbf{Q}}X \xrightarrow{a} & X \\ b & \downarrow & \leq & \downarrow q \\ X \xrightarrow{q} & Q. \end{array}$$
 (2.1)

'Comma square' is a standard notion in 2-dimensional category theory, in particular in **Loc**, the category of locales, and for this category, an explicit construction is given in [11], §3. However, for the case at hand, a sub-kernel-pair for a q where q^- has a left adjoint q^+ , the following alternative description is available. Recall (from [4], II.2, for example) that the product locale $X \times X$ has the property that $O(X \times X)$ is generated as a sup-lattice by 'open rectangles' $u \times v$, where u and $v \in O(X)$, and where

$$u \times v = \operatorname{proj}_0^-(u) \wedge \operatorname{proj}_1^-(v)$$

 $(\operatorname{proj}_i: X \times X \to X \ (i = 0, 1)$ being the two projections). We consider the frame congruence \equiv on $O(X \times X)$ generated by

$$u \times v \equiv (u \land \downarrow v) \times v, \tag{2.2}$$

where $\downarrow v = q^-q^+(v)$. We then define $X \leq_Q X \subseteq X \times X$ by letting $O(X \leq_Q X)$ be the quotient frame of $O(X \times X)$ modulo the frame congruence thus defined. Let $j:X \leq_Q X \hookrightarrow X \times X$ denote the inclusion. The locale maps a and $b:X \leq_Q X \to X$ are then just restrictions of proj_0 and $\operatorname{proj}_1: X \times X \to X$ along j. We do have the inequality asserted in (2.1), since if $v \in O(Q) \subseteq O(X)$, i.e. if $v = \downarrow v$, then

$$b^-(v) = j^-(1 \times v) = j^-(\downarrow v \times v) = j^-(v \times v) \leqslant j^-(v \times 1) = a^-(v),$$

the second equality sign by $(2\cdot 2)$.

To check the universal property of $X \leq_Q X$ thus constructed, let $\alpha, \beta: Z \rightrightarrows X$ be arbitrary locale maps with $q\beta \leq q\alpha$; then, for any open rectangle $u \times v$,

$$\begin{aligned} \langle \alpha, \beta \rangle^{-} (u \times v) &= \alpha^{-}(u) \wedge \beta^{-}(v) = \alpha^{-}(u) \wedge \beta^{-}(\downarrow v) \wedge \beta^{-}(v) \\ &\leq \alpha^{-}(u) \wedge \alpha^{-}(\downarrow v) \wedge \beta^{-}(v) = \langle \alpha, \beta \rangle^{-} ((u \wedge \downarrow v) \times v). \end{aligned}$$

The opposite inequality is obvious, so $\langle \alpha, \beta \rangle : Z \to X \times X$ factors through $X \leq_o X$.

We may in particular apply this universal property of the sub-kernel-pair of q to the given localic category $\alpha, \beta: R \Rightarrow X$, since $q\beta \leq q\alpha$ by construction of the sub-coequalizer q of β, α . So we get a comparison map $i: R \rightarrow X \leq Q X$.

THEOREM 2.1. Let $\alpha, \beta: R \Rightarrow X$ be an α -open localic category. Then the comparison map i from R to the sub-kernel-pair $X \leq_Q X$ of the sub-coequalizer $q: X \rightarrow Q$ of β, α has strongly dense image.

Proof. Let $w \in O(X \leq_Q X)$ satisfy $i^-(w) \leq \theta$ for some $\theta \in \Omega$. We must prove $w \leq \theta$. Since elements of the form $j^-(u \times v)$ generate $O(X \leq_Q X)$ as a sup-lattice, it suffices to consider the case $w = j^-(u \times v)$. So

$$\alpha^{-}(u) \wedge \beta^{-}(v) = i^{-}j^{-}(u \times v) \leqslant \theta = \alpha^{-}(\theta),$$

whence by adjointness $\alpha^+(\alpha^-(u) \wedge \beta^-(v)) \leq \theta$. We have, by Frobenius reciprocity and Proposition 1.1,

$$\alpha^+(\alpha^-(u)\wedge\beta^-(v))=u\wedge\alpha^+\beta^-(v)=u\wedge\downarrow v,$$

so $u \wedge \downarrow v \leq \theta$. But then clearly $(u \wedge \downarrow v) \times v \leq \theta$, whence

$$j^{-}(u \times v) = j^{-}((u \wedge \downarrow v) \times v) \leq j^{-}\theta = \theta.$$

This proves the theorem.

We proceed to derive some corollaries.

THEOREM 2.2. Let $\alpha, \beta: R \Rightarrow X$ be an α -open localic groupoid. Then the comparison map i from R to the kernel pair $X \times_Q X$ of the coequalizer $q: X \rightarrow Q$ of α, β has strongly dense image.

Proof. By Propositions 1.1 and 1.3, the coequalizer of α , β is the same as the subcoequalizer, in this case. Furthermore the kernel pair $X \times_Q X$ is clearly a sublocale of the sub-kernel-pair $X \leq_Q X$, and $i: R \to X \leq_Q X$ factors through it, since $q\alpha = q\beta$. But $i: R \to X \leq_Q X$ has strongly dense image, by Theorem 2.1, hence so has its factorization through $X \times_Q X$.

COROLLARY 2.3. Let $R \rightrightarrows X \times X$ be a localic equivalence relation with

$$R \to X \times X \xrightarrow{\text{proj}_0} X$$

an open map. Then R is a strongly dense sublocale of $X \times_{O} X$, where Q = X/R.

Proof. Consider the equivalence relation as a groupoid $R \rightrightarrows X$, and apply Theorem 2.2.

It is not in general true that $R = X \times_Q X$, as the following example shows. Let X be the set $\mathbb{N} \cup \{\infty\}$ with its natural linear ordering. Make it into a topological space by letting O(X) consist of sets of form $[n, \infty] = \{k \mid n \leq k \leq \infty\}$, and \emptyset . This is a sober topological space. All open sets are compact, so in particular, X is coherent, by [4], II.3.4.

Let $R \subseteq X \times X$ be the subset consisting of (∞, ∞) and all (m, n), with m-n an even number. Clearly R is an equivalence relation on X in the category of topological spaces. But the finite inverse limits needed to express this consists of coherent topological spaces and coherent maps (see [4], II.34). Moreover the natural functor O from the category of coherent spaces and coherent maps to locales preserves all limits, since via Stone Duality (see [4], II, corollary 34) it corresponds to the formation of free frame on a distributive lattice, which is left adjoint to the forgetful functor (see [4], II.211).

So we conclude that R is also an equivalence relation on X in the category of locales. We now argue that it is α -open. Consider any open subset V of R, say $V = R \cap U$ where $U \hookrightarrow X \times X$ is open. We must prove that $\operatorname{proj}_{0}(V)$ is open in X, i.e.

is an upper set. Let $n \in \text{proj}_0(V)$, so there exists m with $(n, m) \in R \cap U$. Let $n' \ge n$. We then have $(n', m) \in U$ and $(n', m+1) \in U$, since U is an upper set in both directions. But one of these two pairs must be in R, hence in V, and in either case, we get a witness that $n' \in \text{proj}_0(V)$.

To calculate the locale quotient X/R, we just have to calculate the quotient space and then make it sober. The quotient space has three points, 'even', 'odd', and ∞ , but it has chaotic topology. When sobrifying, we get the one point space. So the kernel pair of the quotient map is $X \times X$.

For finite locales (i.e. finite as frames), α -open equivalence relations are always kernel pairs; this will be discussed elsewhere.

3. The Godement theorem, and related results

Along with the notion of 'strongly dense' inclusion, Johnstone[5] introduced the notion of 'weakly closed' inclusion of locales. Again, for classical locale theory (i.e. locales in **Sets**), weakly closed is the same as closed; in general, it is weaker.

One has the following facts.

(1). An inclusion of locales which is weakly closed as well as strongly dense is an isomorphism. This is immediate from the construction of weak (= fibrewise) closure in [5], corollary 1.4.

(2). If a composite $A \to B \to C$ of inclusions is weakly closed, then so is $A \to B$. This is immediate from the pull-back stability of weak closedness (see [5], corollary 1.8).

We now have the following Godement theorem.

THEOREM A. Any α -open equivalence relation R on X with $R \hookrightarrow X \times X$ weakly closed, is the kernel pair of its quotient map $X \to Q$.

Proof. By Corollary 2.3, R is strongly dense in $X \times_Q X$, but it is also weakly closed there, by fact (2) above. Hence $R \cong X \times_Q X$, by fact (1) above.

We leave it to the reader to derive similarly from Proposition 1.1 an isomorphism result for α -open, weakly closed preorders R on $X: R \cong X \leq _{o} X$.

Johnstone proved in [5] the following constructive version of the closed subgroup theorem of [3]: if $H \hookrightarrow G$ is a subgroup of a localic group G, and if $H \to 1$ is open, then H is weakly closed in G. Combining this with Theorem A, we can prove

THEOREM 3.1. If H is a subgroup of a localic group G, and if $H \to 1$ is open, the kernel pair of the map $G \to G/H$ is given by the action of H. In particular, if H is normal (and $H \to 1$ is open), H is the kernel of the group homomorphism $G \to G/H$.

Proof. The inclusion $i: H \times G \hookrightarrow G \times G$ given by $(h,g) \mapsto (hg,g)$ is an equivalence relation on G; and its β is the projection $H \times G \to G$ which is open since $H \to 1$ is open. Also there is a pull-back diagram

where $n(g_1, g_2) = g_1 g_2^{-1}$, and since $H \hookrightarrow G$ is weakly closed, so is *i*, by the pull-back stability of this notion (see [5], corollary 1.8). From Theorem A it follows that $H \times G$

is the kernel pair of $G \rightarrow G/H$, which in view of the description of *i* yields the first assertion of the theorem. The second assertion is then derived by purely elementary properties of pull-back diagrams.

To prove Theorem B, we present a result which may have some independent interest. (It holds without the assumption of i being open; I thank Ieke Moerdijk for supplying me with a proof of this generalization.)

PROPOSITION 3.2. Let $R' \stackrel{i}{\hookrightarrow} R \hookrightarrow X \times X$ be α -open equivalence relations on X, and assume i open. Let $u, v \in O(X)$. If $(u \times v) \cap R \subseteq R'$, then $(\bar{u} \times v) \cap R \subseteq R'$, where \bar{u} is the saturation of u under the equivalence relation R'.

Proof. Let $r \in O(R)$ define R', so that $i^-: O(R) \to O(R')$ is just $-\wedge r$. Then clearly saturation on O(X) with respect to R' can be written $\overline{u} = d_1^+(r \wedge d_0^-(u))$ (where d_1 and d_0 are the α and $\beta: R \to X$, using the simplicial notation, as in the proof of Lemma 1.2). The assumption says that $d_1^-(u) \wedge d_0^-(v) \leq r$, so that

$$d_0^-(r) \ge d_0^-(d_1^-(u) \wedge d_0^-(v)) = d_2^- d_0^-(u) \wedge d_1^- d_0^-(v), \tag{3.1}$$

from (1.9) and (1.10). The transitivity of R' is expressed by the first inequality sign in

$$d_{1}^{-}(r) \ge d_{2}^{-}(r) \wedge d_{0}^{-}(r) \ge d_{2}^{-}(r) \wedge d_{2}^{-} d_{0}^{-}(u) \wedge d_{1}^{-} d_{0}^{-}(v),$$

the second inequality sign by (3.1). By adjointness, we therefore get the inequality

$$\begin{split} r &\geq d_1^+(d_2^-(r) \wedge d_2^- d_0^-(u) \wedge d_1^- d_0^-(v)) = d_1^+(d_2^-(r) \wedge d_2^- d_0^-(u)) \wedge d_0^-(v) \\ &= d_1^+(d_2^-(r \wedge d_0^-(u))) \wedge d_0^-(v) = d_1^-(d_1^+(r \wedge d_0^-(u)) \wedge d_0^-(v) = \overline{u} \times v, \end{split}$$

where we used Frobenius and $(1.11)_1$.

We can use this Proposition to prove a sharpened version of Moerdijk's Theorem B, mentioned in the introduction:

THEOREM B'. Let $R' \stackrel{i}{\hookrightarrow} R \stackrel{j}{\hookrightarrow} X \times X$ be two α -open equivalence relations on X. If they have the same quotient, and if i is open, then i is an isomorphism.

Proof. The idea of the following proof is essentially from Moerdijk [9]. Let Q = X/R = X/R'. We may then consider all diagrams involved as diagrams in Loc/Q, the category of locales over Q, which by [6] is equivalent to the category of all locales in the topos sh (Q) of sheaves on Q. So, changing to the topos sh (Q), we may assume that Q = 1, and that $q: X \to 1$ is an open surjection. Then $O(X \times X)$ is generated as a sup-lattice by rectangles $u \times v$, with $u, v \in O(X)$ satisfying

$$q^{+}(u) = q^{+}(v) = 1 \tag{3.2}$$

(essentially by lemma V·5·2 in [6]). So O(R) is generated by elements $(u \times v) \cap R$ with u, v satisfying (3·2). Since $R' \to 1$ is surjective and since $R' \hookrightarrow R$ is open, some such $(u \times v) \cap R$ is contained in R'. So take one. Applying Proposition 3·2 to it twice we conclude that $(\bar{u} \times \bar{v}) \cap R \subseteq R'$. But

$$\bar{u} = q^{-}q^{+}(u) = q^{-}(1) = X,$$

by (3.2), and similarly $\bar{v} = X$. So $(X \times X) \cap R \subseteq R'$, and thus R = R'.

We now prove Theorem B as stated in the introduction. Openness of $R \hookrightarrow X \times X$ and of $X \to 1$ imply that R is α -open. Moreover openness of R in $X \times X$ implies openness of R in $X \times_Q X$, and Theorem B' can then be applied to $i: R \hookrightarrow X \times_Q X$ to yield that it is an isomorphism. To state our final theorem, let us say that a sublocale $R \subseteq S$ is weakly locally closed if it is open in its weak closure. Then we can combine Theorems A and B' to get the following result; I am indebted to Ieke Moerdijk for pointing out an error in my first version of this ([7], theorem 8).

THEOREM 3.3. If $R \subseteq X \times X$ is a weakly locally closed equivalence relation, with weak closure \overline{R} of R a-open, and with $X \times_Q X \subseteq X \times X$ weakly closed (where Q = X/R), then $R = \overline{R} = X \times_Q X$.

Proof. Since $X \times_Q X$ is weakly closed, \overline{R} is contained in $X \times_Q X$, and so R and \overline{R} have the same quotient Q. By Theorem B', $R = \overline{R}$. So R is weakly closed in $X \times X$, and hence by Theorem A, $R = X \times_Q X$.

The author thanks the Universities of Toulouse (Paul Sabatier), Sussex, Cambridge, and Louvain-la-Neuve for hospitality and support, Jean Pradines and Gavin Wraith for fruitful discussions leading to the preliminary version [7], and Martin Hyland, Peter Johnstone and Andy Pitts for discussions leading to the present improvements of it. In particular, Martin Hyland suggested that [7] could be simplified and generalized, by taking seriously the 2-dimensional nature of the category of locales, thus considering a sub-kernel-pair (2·1) instead of a kernel pair; and he suggested that in $\S1$ one could consider localic categories instead of localic groupoids. The results of $\S1$ in their present unsymmetric form were known to him, and probably to others also; a special case of the symmetric form also appears in [9].

This research was supported by the Danish Natural Science Research Council, and by Aarhus Universitets Forskningsfond.

REFERENCES

- [1] A. A. ALTA'AI. Ph.D. thesis, Université Paul Sabatier, Toulouse (to appear).
- [2] P. GABRIEL. Constructions de Préschémas Quotient. Sem. Géom. Algebrique (SGA 3), Lecture Notes in Math. vol. 151 (Springer-Verlag, 1970).
- [3] J. ISBELL, I. KRIZ, A. PULTR and J. ROSICKY. Remarks on localic groups. In Proc. of Louvainla-Neuve Conference 1987. Lecture Notes in Math. vol. 1348 (Springer-Verlag, 1988).
- [4] P. T. JOHNSTONE. Stone Spaces. Cambridge Studies in Advanced Math. no. 3 (Cambridge University Press, 1982).
- [5] P. T. JOHNSTONE. A constructive 'closed subgroup theorem' for localic groups and groupoids, Cahiers Topologie Géom. Differentielle Catégoriques (to appear).
- [6] A. JOYAL and M. TIERNEY. An Extension of the Galois Theory of Grothendieck. Memoirs Amer. Math. Soc. no. 309 (American Mathematical Society, 1984).
- [7] A. KOCK. A Godement theorem for locales. Aarhus Preprint Series 1987/88 no. 15.
- [8] I. MOERDIJK. Continuous fibrations and inverse limits of toposes. Compositio Math. 58 (1986), 45-72.
- [9] I. MOERDIJK. The classifying topos of a continuous groupoid. I. Trans. Amer. Math. Soc. (to appear).
- [10] I. MOERDIJK. The classifying topos of a continuous groupoid. II. (To appear).
- [11] A. PITTS. Applications of sup-lattice enriched category theory to sheaf theory. Proc. London Math. Soc. (3) 57 (1988), 433-480.
- [12] J. PRADINES. Building categories in which a Godement's theorem is available. Cahiers Topologie Géom. Differentielle Catégoriques 16 (1975), 301-306.
- [13] J. PRADINES. Charactérisation universelle du groupe fondamental d'un éspace de feuilles. (Preprint, 1985.)
- [14] J. PRADINES. Lecture at Louvain-la-Neuve Category Meeting, 1987.
- [15] J. P. SERRE. Lie Algebras and Lie Groups (Benjamin, 1965).