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The classical Godement Theorem for manifolds, characterizing kernel pairs for
submersions (cf. e.g. [15], LG IV §5), has been used by Pradines[12] as a crucial
property for having a good theory of differentiable groupoids; in fact, he developed
an axiomatic theory of categories in which Godement's and some other exactness
properties hold, under the name of 'Godement diptych'.

Establishing such theorems for locales therefore has as a corollary that the
groupoid-theoretic technique developed by Pradines and others [1,13,14], for
studying the category of 'orbital varieties' (e.g. quotient 'spaces' for foliations)
becomes available for studying the category of toposes. This is because the category
of orbital varieties appears as a fraction category (see [14]) of the category of
differentiable groupoids in the same way as the category of toposes appears as a
fraction category of localic groupoids (see [9,10], extending [6]). So, also, the notion
of orbital variety may be considered as the smooth analogue of the notion of
topos:

differentiable groupoids _ localic groupoids
orbital varieties toposes

To state the results, let us fix some terminology.
By an a-open equivalence relation on a localeX, we mean a sublocale i.Rc+XxX

which is an equivalence relation in the standard sense (a finite limit notion), and such
that the composite a of { with proj 0: X x X ->• X is an open surj ection. We say that the
equivalence relation is closed, open, etc. if i:Rc+XxX is.

Our main result, which is a kind of Godement theorem, may be stated as
follows.

THEOREM A. Any closed a-open equivalence relation R on X is the kernel pair of its
quotient map X-+X/R.

This also holds when 'closed' is replaced by 'weakly closed', in a sense recently
introduced by Johnstone[5].

Combining this with the closed-subgroup theorem of [3], we obtain as a corollary
that every normal subgroup of a localic group is a kernel.

All our results, except possibly this corollary, hold in any topos; and in fact, the
constructive version of the closed-subgroup theorem proved in [5] combines with our
result to yield a constructive version of the corollary on normal subgroups.

For completeness, we shall prove also a result which is reminiscent of Theorem A,
and is due to Moerdijk[9]:

THEOREM B. Assume X^-i is an open surjection. Then any open (hence a-open)
equivalence relation R on X is the kernel pair of its quotient map.
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464 A N D E R S K O C K

Such equivalence relations are somewhat more special than those of Theorem A,
since the quotient locale X/R is discrete in this case.

We use the locale/frame terminology of [4], but the notation of [6], in which the
frame corresponding to a locale X is denoted 0(X), and the frame homomorphism
corresponding to a locale map / :X->F is denoted f~:O(Y)^-O(X). If/~ has a left
adjoint, in particular if/ is open, the left adjoint is denoted/"1" (where [6] has 3 )̂.

We tacitly work with locales/frames in an arbitrary topos, where the initial frame
is denoted Q. For the reader who prefers to think classically (in the category of sets),
Q. consists of just the two elements 0 and 1, and £l-+O(X) sends 0 to 0 and 1 to 1.

A preliminary, somewhat different version of the present work appeared in
preprint form as [7].

1. Some generalities concerning a-open localic categories

We consider a localic category, i.e. a category object in the category of locales,

X and R being the locale of objects, respectively of arrows, and a and fi being domain-
and codomain-formation, respectively. We say that (1-1) is an a-open localic
category if a is an open locale map (and so necessarily an open surjection).

We have the pull-back diagram which defines the object H of composable pairs

HR
(1-2)

and since a is an open surjection, then so is a, and the Beck-Chevalley condition

fi~a+ = a+b~ (1-3)

holds, cf. [6]. Furthermore we have the composition map c:H^-R which satisfies
CLC = oca and fie = fib, t hus

c~oT = a~a~ (1-4)

c'fi' = b'fi-. (1-5)

We also have the identity formation map i:X->R which is right inverse for both a
and fi, so

i'fi- = id0(Ar) = i-ar. (1-6)
The subset 0(Q) c> O(X) given by

(1-7)

is evidently a subframe, so we get a locale map q:X-+Q, with q~ the inclusion
O(Q) c* O(X). I t clearly satisfies

qfi < qa,

and is in fact universal with this property, so it is the ' sub-coequalizer' of fi and a.
This does not depend on a being open, but if it is, we can say more.
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A Godement theorem for locales 465

Recall that a closure operator j on a poset 0 is an order-preserving map j : 0 -*• 0
with

u ^ \u and \.[u ^ \u (1-8)

for all ueO (the second inequality is then in fact an equality). An element ueO is
closed for \. if u = |M ; and if 0 ' c* 0 is the set of closed elements, the inclusion q~:
0' c->0 has a left adjoint q+ determined by q~q+ = | .

PROPOSITION 1-1. Let (1-1) be an a-open localic category. Then a*fi~: 0(X) -*• 0(X) is
a closure operator j , and its closed elements are the elements of 0(Q), described in (1'7).
In particular, the inclusion q~: 0(Q) c+ 0(X) has left adjoint q+ which satisfies

q+q~ = a+/T = | .

The locale map q:X->Q thus defined is characterized as the sub-coequalizer of fi,a..

Proof. Let us verify the two inequalities in (1-8) for | = a+0~. We have, for

ueO(X), u = r . ^ i-ora+B-(u) = a^B'iu)

using (16), a front adjunction, and (1-6) again; thus u ^ |w. For the other
inequality,

a+fl~a+fi- = x+a+b~p- by (1-3)
= a.+a+c~/3- by (1-5)

= a+a+a~a-a+p- by (1-4)

where the two inequality signs are obtained by a front adjunction and two back
adjunctions, respectively.

We can now easily identify the set of closed elements for | as 0(Q), for we have
[u = u if and only if [u < u if and only if a.+ft~(u) < u if and only if /?~(M) ^ <x~(u)
(by adjunction a + H a~).

The conclusion of the proposition then follows, by the above generalities about
closure operators.

If (11) is an a-open localic groupoid, the codomain map /? is open as well, using the
inversion map R-*-R. By symmetry, it follows from Proposition 1-1 that fi+oT is also
a closure operator f on 0(X), but we also have

LEMMA 1-2. For an a-open localic groupoid, the closure operators a+/?~ and ft+a~ on
0(X) agree.

Proof. For a groupoid object in a category with finite limits, we have many more
pull-backs than (1-2); we shall exploit three of these (which occur in [2]). We identify
a localic groupoid with its nerve, which is a simplicial locale G*.

Thus, for the groupoid (11), Go = X,G1 = R, and G2 is the object H of composable
pairs that occurs in (1*2); the face operator d{:Gn+l->• Gn 'projects away' the ith
factor, so a = dlt ft = d0; and a = d2,c = dx, and b = d0, in the notation of (1-2). There
are three identities among the iterated face operators G2 -*• Go; and each of the three
squares whose commutativity express these equations, is in fact a pull-back square,
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466 A N D E R S K O C K

with all four maps open surjections. The three identities thus give rise to six
Beck-Chevalley conditions. We display for completeness all nine equations:

dl a[ =

(1-10)

(1-11)

Note that (1-10) is (1-2), and (1-10)! is (1-3).
Now to prove a+/?~ = y?+a~, which the lemma claims, means in the simplicial

notation to prove d^d^ = d^d\. By symmetry it suffices to prove the inequality ' ^ '
here. This inequality is by adjointness equivalent to d$~ < d\d%d±. We have

do ^ d^ do~ d% (front adjunction)

= d-,d$d- by

by (1-11)

by(M0)2,

which is the desired inequality. This proves the lemma.
From Lemma 12, and Proposition 1-1 applied twice, we get the symmetric version

of Proposition 11.

PROPOSITION 1*3. Let (1*1) be an a-open localic groupoid. Then a.+ft~ = fi+oc~ is a
closure operator on 0(X), and its set 0(Q) of closed elements is the equalizer of aT and
fi~. In particular, the inclusion q~: O(Q) o> O(X) has a left adjoint q+ which satisfies
q~q+ = a+fi~ = fi+a~. The locale map q:X->-Q thus defined is the coequalizer of a
and fi; and q is an open surjection.

Proof. Only the last assertion has yet to be established; we have to prove that
q+ satisfies the Frobenius reciprocity law q+(u A q~v) = q+u A v, but this is a simple
calculation using a~q~ = fi~q~ and Frobenius reciprocity for /?+.

COROLLARY. If an a-open localic groupoid acts on a locale Y, then the action induces
a closure operator 'orbit formation' on 0(Y).

Proof. Apply Proposition 1-2 to the action groupoid Y.

2. A density theorem for localic categories

We first remind the reader of the notion of a sublocale being strongly dense,
introduced by Johnstone in [5]; for locales in Sets, it is equivalent to the standard
density notion of [4], II.2-4. Recall that, for any locale X, we have a unique locale
map m: X -> 1, thus a unique frame map m~: O( 1) = Q -*• O(X), which one conveniently
omits from notation.
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A Godement theorem for locales 467

Definition ([5]). The locale map i:R->S has strongly dense image if for all deQ. and
weO(S), the inequality i~(w) < 6 implies w < 6. If in addition i is an inclusion, R is
called a strongly dense sublocale of S.

We consider now, as in §1, an a-open localic category a.,fi:R^X, and form, as
there, the sub-coequalizer q:X^>Q of a and ft; then we form the sub-kernel-pair of
q: by this we mean the comma square of q with itself

(2-1)

X

' Comma square' is a standard notion in 2-dimensional category theory, in particular
in Loc, the category of locales, and for this category, an explicit construction is given
in [11], §3. However, for the case at hand, a sub-kernel-pair for a q where q~ has a left
adjoint q+, the following alternative description is available. Recall (from [4], II.2,
for example) that the product locale XxX has the property that O(XxX) is
generated as a sup-lattice by 'open rectangles' uxv, where u and veO{X), and
where

(M) Aproj7(t;)

(Tproji:XxX->X (i = 0,1) being the two projections). We consider the frame
congruence = on O(X x X) generated by

uxv = (uh[v)xv, (2-2)

where [v = q~q+(v). We then define X^QX^XxX by letting 0(X^QX) be
the quotient frame of O(X x X) modulo the frame congruence thus defined. Let
j:X ^QXC+XXX denote the inclusion. The locale maps a and b:X ^QX->X are
then just restrictions of proj0 and projj :X xX^-X alongj. We do have the inequality
asserted in (2-1), since if veO(Q) £ O(X), i.e. if v = \v, then

b'(v) = j~(l xv) = j~(\,vxv) =j~{vxv) ^j~(vx 1) = a~(v),

the second equality sign by (2-2).
To check the universal property of X^QX thus constructed, let a,/3:Z^X be

arbitrary locale maps with qfi ^qat; then, for any open rectangle uxv,

<a, PY (uxv) = oT{u) A fi-(v) = oT{u) A ^~([v) A 0-{v)

^ oT(w) A aT{\v) A fi~(v) = <a, /?>- ((w A iv) x v).

The opposite inequality is obvious, so <a, fly-.Z-*XxX factors through X ^QX.
We may in particular apply this universal property of the sub-kernel-pair of q to

the given localic category tx,fi:R^X, since qfi ^ qa by construction of the sub-
coequalizer q of /?,a. So we get a comparison map i:R->X ^QX.

THEOREM 2-1. Let a,fi:R^}X be an a-open localic category. Then the comparison
map i from R to the sub-kernel-pair X ^QX of the sub-coequalizer q:X-»• Q of ft, a has
strongly dense image.
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468 ANDEES KOCK

Proof. Let weO(X ^QX) satisfy i~{w) < 8 for some deQ.. We must prove w^8.
Since elements of the form j~(u x v) generate O(X < QX) as a sup-lattice, it suffices to
consider the case w =j~(u xv). So

oT{u) A (T(v) = i~j~(u x v ) ^ 8 = oT(d),

whence by adjointness <x+(a~{u) Afi~(v)) < 8. We have, by Frobenius reciprocity and
Proposition 11,

a+(a~(u) A P~{v)) = uA a+fi~(v) = uA[v,

so u A iv ^ 8. But then clearly (u A \v) x v < <9, whence

j~(it x»)= j~((u A jv) x y ) ^ j~0 = 8.

This proves the theorem.

We proceed to derive some corollaries.

THEOREM 2-2. Let a,/3:R^tX be an a-open localic groupoid. Then the comparison
map % from R to the kernel pair Xx QX of the coequalizer q.X->Qofoc,fi has strongly
dense image.

Proof. By Propositions 1-1 and 13, the coequalizer of a,/? is the same as the sub-
coequalizer, in this case. Furthermore the kernel pair X x QX is clearly a sublocale of
the sub-kernel-pair X ^QX, and i: R-+X < QX factors through it, since qct = qft.
But i: R^~X < QX has strongly dense image, by Theorem 2-1, hence so has its
factorization through X x QX.

COROLLARY 2-3. Let R^tXxX be a localic equivalence relation with

0

R^XxX >X
an open map. Then R is a strongly dense sublocale of Xx QX, where Q = X/R.

Proof. Consider the equivalence relation as a groupoid R^tX, and apply
Theorem 2-2.

It is not in general true that R = X x QX, as the following example shows. Let X
be the set N U {oo} with its natural linear ordering. Make it into a topological space
by letting O(X) consist of sets of form [n, oo] = {k | n ^ k ^ oo}, and 0 . This is a sober
topological space. All open sets are compact, so in particular, X is coherent, by [4],
II.3-4.

Let i J c J x I b e the subset consisting of (oo, oo) and all (m, n), with m — n&n even
number. Clearly R is an equivalence relation on X in the category of topological
spaces. But the finite inverse limits needed to express this consists of coherent
topological spaces and coherent maps (see [4], II.34). Moreover the natural functor
0 from the category of coherent spaces and coherent maps to locales preserves all
limits, since via Stone Duality (see [4], II, corollary 3-4) it corresponds to the
formation of free frame on a distributive lattice, which is left adjoint to the forgetful
functor (see [4], 11.211).

So we conclude that R is also an equivalence relation on X in the category of
locales. We now argue that it is a-open. Consider any open subset V of R, say
V = R n U where U c» X x X is open. We must prove that proj0 (V) is open in X, i.e.
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A Godement theorem for locales 469

is an upper set. Let neproj0(F), so there exists m with (n,m)eR n U. Let n' ^ n. We
then have (n', m)e Uand (n',m+l)eU, since Uis an upper set in both directions. But
one of these two pairs must be in R, hence in V, and in either case, we get a witness
that n'eproj0(F).

To calculate the locale quotient X/R, we just have to calculate the quotient space
and then make it sober. The quotient space has three points, 'even', 'odd', and oo,
but it has chaotic topology. When sobrifying, we get the one point space. So the
kernel pair of the quotient map is X x X.

For finite locales (i.e. finite as frames), a-open equivalence relations are always
kernel pairs; this will be discussed elsewhere.

3. The Godement theorem, and related results

Along with the notion of 'strongly dense' inclusion, Johnstone[5] introduced the
notion of 'weakly closed' inclusion of locales. Again, for classical locale theory (i.e.
locales in Sets), weakly closed is the same as closed; in general, it is weaker.

One has the following facts.
(1). An inclusion of locales which is weakly closed as well as strongly dense is an
isomorphism. This is immediate from the construction of weak (= fibrewise) closure
in [5], corollary 1-4.
(2). If a composite A^-B^-C of inclusions is weakly closed, then so is A -+B. This is
immediate from the pull-back stability of weak closedness (see [5], corollary 1-8).

We now have the following Godement theorem.

THEOREM A. Any oc-open equivalence relation R onX with R<->XxX weakly closed,
is the kernel pair of its quotient map X-+Q.

Proof. By Corollary 23, R is strongly dense in X x QX, but it is also weakly closed
there, by fact (2) above. Hence R = Xx QX, by fact (1) above.

We leave it to the reader to derive similarly from Proposition 11 an isomorphism
result for a-open, weakly closed preorders R on X:R = X ^QX.
. Johnstone proved in [5] the following constructive version of the closed subgroup

theorem of [3]: if H c* G is a subgroup of a localic group G, and if H -*• 1 is open, then
H is weakly closed in G. Combining this with Theorem A, we can prove

THEOREM 3-1. If H is a subgroup of a localic group G, and if H-+lis open, the kernel
pair of the map G^-G/H is given by the action of H. In particular, if H is normal (and
//->-1 is open), H is the kernel of the group homomorphism G-+G/H.

Proof. The inclusion i:HxGc+GxG given by (h,g)i-+ (hg,g) is an equivalence
relation on G; and its /? is the projection H xG->G which is open since H -> 1 is open.
Also there is a pull-back diagram

pro]

H
'1 I'

where n(gltg2) = j/ij/^1' ar>d since Hc+ G is weakly closed, so is i, by the pull-back
stability of this notion (see [5], corollary 1-8). From Theorem A it follows that HxG
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470 A N D E R S K O C K

is the kernel pair of 0 -»• O/H, which in view of the description of i yields the first
assertion of the theorem. The second assertion is then derived by purely elementary
properties of pull-back diagrams.

To prove Theorem B, we present a result which may have some independent
interest. (It holds without the assumption of i being open; I thank Ieke Moerdijk for
supplying me with a proof of this generalization.)

PROPOSITION 32. Let R'z+Rc+XxX be a-open equivalence relations on X, and
assume i open. Let u,veO(X). If (u x v) f] R £ R', then (u x v) n R £ R', where u is the
saturation of u under the equivalence relation R'.

Proof. Let reO(R) define R', so that i~:0(R)^0(R') is just - Ar. Then clearly
saturation on 0(X) with respect to R' can be written u — d\(r A d^{u)) (where d1 and
d0 are the a and fi:R^-X, using the simplicial notation, as in the proof of Lemma 1-2).
The assumption says that a\{u) A d^(v) ^ r, so that

do(r) > d^(d~(u)Ad^(v)) = d^d^u) Ad^d^v), (3-1)

from (1-9) and (MO). The transitivity of R' is expressed by the first inequality sign in

dj-(r) > di(r) A d^(r) > dl{r) A d; «£(») A d^ d~(v),

the second inequality sign by (3-1). By adjointness, we therefore get the inequality

r ^ d+(d~(r) A dl d^(u) A d\d^(v)) = df(d;(r) A d^d~(u)) A dj(w)

= d+(d~(r A do (u))) A do(v) = rfi~(di"(r A do (u)) A do(v) = ux.v,

where we used Frobenius and (Ml)!.

We can use this Proposition to prove a sharpened version of Moerdijk's
Theorem B, mentioned in the introduction:

THEOREM B'. Let R' c* R c+ X x X be two a-open equivalence relations on X. If they
have the same quotient, and if i is open, then i is an isomorphism.

Proof. The idea of the following proof is essentially from Moerdijk [9]. Let Q =
X/R = X/R'. We may then consider all diagrams involved as diagrams in Loc/Q,
the category of locales over Q, which by [6] is equivalent to the category of all locales
in the topos sh (Q) of sheaves on Q. So, changing to the topos sh (Q), we may assume
that Q = 1, and that q-.X^l is an open surjection. Then 0(XxX) is generated as a
sup-lattice by rectangles uxv, with u, veO(X) satisfying

q+(u) = q+(v) = 1 (3-2)

(essentially by lemma V-5-2 in [6]). So O(R) is generated by elements (uxv) OR with
u, v satisfying (32). Since R' -^-1 is surjective and since R' c+R is open, some such
(uxv) OR is contained in R'. So take one. Applying Proposition 32 to it twice we
conclude that (u x v) 0 R £ R'. But

u = q~q+(u) = q-(l) = X,

by (3-2), and similarly v = X. So (X x X) n R £ R', and thus R = R'.

We now prove Theorem B as stated in the introduction. Openness of R c , l x l
and of X^-l imply that R is a-open. Moreover openness of R in XxX implies
openness of R in X x QX, and Theorem B' can then be applied to i :R c+ X x QX to
yield that it is an isomorphism.

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100077835
Downloaded from https://www.cambridge.org/core. Aarhus Universitets Biblioteker, on 20 Feb 2019 at 13:35:23, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100077835
https://www.cambridge.org/core


A Godement theorem for locales 471

To state our final theorem, let us say that a sublocale R c* S is weakly locally closed
if it is open in its weak closure. Then we can combine Theorems A and B' to get the
following result; I am indebted to Ieke Moerdijk for pointing out an error in my first
version of this ([7], theorem 8).

THEOREM 3-3. IfR c + l x l is a weakly locally closed equivalence relation, with weak
closure R of R a-open, and with Xx QXc^lxl weakly closed (where Q — X/R), then
R = R=XxQX.

Proof. Since Xx QX is weakly closed, R is contained in X x QX, and so R and R
have the same quotient Q. By Theorem B', R = E. So R is weakly closed in X x X, and
hence by Theorem A, R = X x QX.

The author thanks the Universities of Toulouse (Paul Sabatier), Sussex,
Cambridge, and Louvain-la-Neuve for hospitality and support, Jean Pradines and
Gavin Wraith for fruitful discussions leading to the preliminary version [7], and
Martin Hyland, Peter Johnstone and Andy Pitts for discussions leading to the
present improvements of it. In particular, Martin Hyland suggested that [7] could be
simplified and generalized, by taking seriously the 2-dimensional nature of the
category of locales, thus considering a sub-kernel-pair (2-1) instead of a kernel pair;
and he suggested that in § 1 one could consider localic categories instead of localic
groupoids. The results of §1 in their present unsymmetric form were known to him,
and probably to others also; a special case of the symmetric form also appears in
[9]-
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