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As the title suggests, this is a rather formal paper: it genera-
lizes some notions just in order to have a perfect symmetry of con-
cepts. Thus we symmetrize the set up of our paper "Fibre bundles in
general categories" |8|, and arrive at what may be called "Haefliger
structures" in general categories; such structures occur in foliation
theory, cf. |4| and |10|. We intend the present paper to be readable
without knowledge of |6],|7], or |8].

We shall work in a category E with finite inverse limits, and
we shall talk about the objects of E as if they were sets. If q:

C + B is a stable regular epimorphism, we may represent 'elements'
of B by ‘'elements' of C, provided the outcome is independent of
choice of representatives.

We shall in particular comnsider such stable regular epimorphisms
which are descent maps, in a sense we shall recapitulate, and which
is a crucial concept in any fibre bundle theory, allowing one to glue
objects together out of compatible lecal data.

I acknowledge fruitful discussions with J. Pradines and J. Duskin;
some of the formalisms of the present paper are closely related to
ideas occuring, in some form, in their work, |9], and |1}, §5. Also
the debt to Ehresmann's groupoid theoretic foundations of differential
geometry is obvious. Finally, I would like to thank S. Eilemberg for
pushing me into adopting a notation that makes calculations obvious
(rather than the one of |[6]|,|7],|8]|). The paper is in final form.

§1. Double equivalence relations,and pregroupoids.

A double equivalence relation is a special case of a double cate-
gory, in the same way as an equivalence relation is a special case
of a category. This in fact defines the notion, but let us make it
more explicit:

A double equivalence relation on an object XcE is a subobject A

< X4 (a 4-ary relation), such that

1) the two binary relations H and V on X given by
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H(X,y) iff A(X,Y,X,Y)

and
V(X,Z) lff A(X,X,Z,Z),
respectively, are equivalence relations on X,

2) the binary relation ~ O X2 given by

(x,y) ~y (z,u) 1iff AX,¥,2Z,u)

is an equivalence relation on H, and the binary relation ~_ oOR X

given by

(x,2) ™, (y,u) iff AX,¥,2z,u)

is an equivalence relation on V.

(In particular, A(x,y,z,u) implies (x,y)eH, (z,u)eH, (x,2z)eV,
and (y,u)eV.) 7

We depict the statemen A(X,¥,2,u) By a diagram

(1.1)

We say that a double equivalence relation is a Eregroupoid, or
a pregroupoid structure on X, if for any X,¥,Z with (x,y)e H

and (x,z)eV, there exists a unique u such that A(x,y,z,u). Then
this u may be denoted yx—lz.

This pregroupoid notion is more general than the one of |7| or
|8], since there we assume that H = XxX.

Example 1.1. Let H be the set of arrovs of a groupoid, with
S as set of objects. Let AeS, BeS be two subsets. We construct

a pregroupoid structure on H by putting AMx,y,z,u) whenever

do(x) = do(y) e A

dl(x) = dl(z) ¢ B
and

U = TVeX ©Z
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This example is a case of a slightly more structured pregroupoid
notion: let X be given, together with maps a:X +A, B:X+B, for
some objects A and B. A pregroupoid structure on X with respect

to A < X-g* B 1is just a pregroupoid structure on X such that

H is the kernel pair of o and V is the kernel pair of B.

In this case, the pregroupoid structure A on X may be given
in terms of the termary operation yxflz, defined whenever
B(z) =B(x) and a(y) =a(x). (This is the approach of |6| and |7],
where A =1, and yx—lz is denoted A(x,y,z).)

§2. Descent; and the groupoids associated to a regular pregroupoid.

We assume some familiarity with internal category theory in E,
as in |5| 2.1. When we say that H = (H2A) is a category object in
E, we mean that A is the 'set' of objects, H is the 'set' of arrows,
and the two displayed maps are do and d1 (domain and codomain for-
mation), respectively. We call H a groupoid if there is an inver-
sion map ( )_1: H-+H with the expected properties.

An internal diagram, or a left action for H = (H $A) consists
of data ¢:F +A, together with a left action by H, so h+*f makes

sense whenever ¢ {f) = dg(h), andthen ¢ (h.f) = dl(h); an associative
and unitary law is assumed. The information of such internal diagram
may be encoded by a certain category object F = (Fli FO) (with

F0 = F), together with a functor F +H (with certain properties: a
discrete opfibration). We call F the total category and F-H the

discrete opfibration of the internal diagram, or of the left action.

Note that the total category for an action by a groupoid is itself
a groupoid.

The category of internal diagrams for H is denoted EH. There
is a dual notion of right actions for H, they form a category ;f .

We call a left action by a groupoid free if the associated total

category F is an equivalence relation, meaning that F1-> FOxFO

is mono (and symmetric - this is automatic here). And we call the

action principal homogeneous if the associated total category F is

codiscrete, meaning that F1 - FOXFO is iso.

An internal functor q:G+H gives rise to a functor gq¥*: Eﬂa-EG,
essentially by pulling back along q. If H = (H*B) is a category,
and g:C*B 1is a map, we may form a category G = (G=C) by pulling
H=> BxB back along gxq:CxC+ BxB. This is the "full image"” of H along

q; it comes with a functor back to G. In particular, if H = B is

the discrete category on B (meaning H = (B#* B)), the full image of
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q:C+B is just the kernel pair Rq = (R3C) of q; it comes with
a functor to B.

It is easy to see that if q is a stable regular epi, then the
induced functor

(2.1) E/B= P 9%, gBq

is full and faithful. We say that q is a descent map if q 1is stable
regular epi, and if the functor (2.1) is an equivalence of categories.
An equivalent, less sophisticated version of the notion is given in
|8|. It is anyway quite standard (perhaps rather under the name effec-
tive descent map). Yet another simple, but non-elementary, way of de-
scribing the notion is in terms of the full and faithful left exact
embedding i: E -+ E, where E is the topos of sheaves for the canoni-
cal topology on E; it takes stable regular epis to epis, and a stable
regular epi gq is a descent map if 1i(q) has the property that pulling
back along it reflects the property of being representable (= in the
image of 1i).

Using this description, one may see that descent maps are stable
under composition and pull-back, and that qop descentspq descent.

By a descent situation in E we mean a diagram
¢ —3 F —>

R

R—3 X —> B

in which tHe right hand square is a pull back, each of the two rows

exact (kernel pair/coequalizer), and the left hand square is the dis-

crete opfibration associated to an action of the category R=*X on F +X,
We say that an equivalence relation R = (R3C) is a descent

equivalence (-relation) if it has a coequalizer g, of which it is

a kernel pair, and which is a descent map. In a topos, any equivalence
is a descent equivalence, and any epi is a descent map.

Let X,A be a pregroupoid. We call it regular if the equivalence
relations H and V on X, derived out of A as in §1, are descent

equivalences. Thus there are descent maps
a : X+A, B: X » B,

such that H = XxAX, vV = XxBX. The equivalence relation vy o on H =
XxAX now comes about as total category of a left action of XxBX:#X
on  py: XXAX+ X, namely the one given by

1

(x,2z)+(x,y) := (z,yx ~2z),
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and since X+ B was assumed a descent map, it follows that we have

an object X* + B in E/B participating in a descent situation

Wy /= Xx,X ——>X*
2.2
(2.2) | o l d,
Xx X —— X > B
in particular
(2.3) XxpgX* = XxuX.

We shall denote B'(x,y) by yx L. Note that

yx-l = uz_1 iff u = yx—lz .

We have a groupoid structure X**B on X* given by

do(yx™D) 1= gx)  d (xl) = gy

(tu-1)°(yx-1) = (tu—ly)x_l

(here we use that g':XgAX+ X* 1is stable regular epi, which means
that we may represent elements in X* by elements (x,y)e XxAX).
The checking of independence of choice of representatives is easy from
the definitions. We note that d0 is the map X*+ B occurring in
(2.2), and by the stability properties of descent maps, d0 is a des-
“cent map.

The groupoid X* acts on the left on B: X+ B, the action being
given by

—1). -1

(yx Z = YX “zZ.

For each aceA, Xa 1= a_l(a) is stable under the X*-action, and
the action of X* on Xa is principal homegeneous: to_?ny X,y eXa,
there exists a unique g €X* with ge-x = y, namely yx .

By completely symmetric arguments, the equivalence Wv on V =
XXBX comes about by a left action of Xx,X*> X on Pyt XxBX* X, namely
the one given by

(x,y)* (x,z) := (y,yx 'z),

and since X +A was assumed a descent map, it follows that we have

an object X,» A in E/A participating in a descent situation
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al
wW—=F Xxfl —> Xy

| l/do

XxAx: X ——a—>A

We denote a'(x,z) by x_lz, and

x-lz = y_lu iff u=yx "Z.

X, carries the structure of groupoid X,3 A, namely

do(x—lz) = a(z) dl(x-lz) = a(x).

(X_IZ)° (u_lt) i= x  (zu

As for the X*-case, dg : X,+ A is a descent map.
The groupoid X, acts on the right on @:X * A, the action being
given by

y.(x-lz) 1= yx_lz.

For each be B, Xb := B _¥b) is stable under the X,-action, and the
action of X, on Xb is principal homogeneous.
Finally, the X*- and ZX,-actions commute with each other.

Note. Part of the information contained in a regular pregroupoid
and its associated groupoids may be recorded in the following “"butter-

fly" diagram, considered by Pradines |9] (for reasons related to ours):

X%, X '

% Xx X
' \*Ls A ki//' h o
V.o TS

where i(x,z) = (%,x,2,z), p(x,y,z,u) = yx-1 etc., and where the

Bl

diagonal sequences in a certain sense are exact sequences of groupoids

(for a ''diagonal" groupoid structure on A).

Example. Assume that the groupoid G3A acts in a free way on
the right of some «:X+A. Then we can equip X with structure of
pregroupoid, namely by letting Ac:XA consist of the 'set' of all
(x,y,X+g,y~8) Wwhere alx) = aly) = dl(g). If a is a descent map,
and the equivalence relation on X given by the action of G is
a descent equivalence, with quotient g :X +B, say, the pregroupoid
is a pregroupoid with respect to A «X + B, and is regular. By the
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constructions above, we thus get groupoids X,3 A and X*3 B acting
on X from the right and the left, respectively. It is easy to see

that X,3 A is canonically isomorphic to G% A (in a way compatible
with the action), the isomorphisms X, + G and G-+ X, being given by

x_l(x-g) - g
and

-1
g ¥ x (x-g) (for some/any xeXdl(g)),

respectively.(Note that Xd (g) is inhabited since a« is stable re-
gular epi.) :

On the other hand, the groupoid X*3 B provides a new way of |
encoding some of fhe information of the G-action on X. For the case
where A =1, this is essentially Ehresmann's construction |[2| of a 2
groupoid XX_1 out of a free action of a group on a space, i.e. out
of a principal fibre bundle.

§3. Generalized fibre bundles.

Assume that A% X 4 B is a regular pregroupoid. To make ¢:

E+ B into a generalized fibre bundle for X with fibre ¢:F-+A
means, by definition, to give an invertible map

(3.1) Xx,F —G).XxBE,

commuting with the projections to X, and satisfying (3.2) below; to
state (3.2), let us write x(f) for the unique element in E satis-
fying

o(x,f) = (x,x(f))

(where =xeX, feF, and a(x) = ¢(£f)), and similarly, we write x—l(e)

for the unique element in F satisfying
lx,e) = (x,x7He)),

(where xeX, ecE, and B(x) = e(e)). We then have e(x(£f)) = B(x)
-1 _
and ¢{(x “(e)) = a(x).

The condition we require on ¢ is, in this notation, expressed
-1 -1
(3.2) (yx “2)(£) = y(x “(z(£)))
whenever it makes sense, i.e. whenever

9(f) = a(z), B(x) =8(z), alx) =aly);

or, equivalently
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(3.2") yx ey = 2 txGTHen
whenever it makes sense, i.e. whenever
e(e) = B(y), B(x) = B(z), a(x) = a(y).

Note that the data o of (3.1) may (in the category of sets, say)
be thought of as providing for each xeX a bijection from the a(x)-
fibre of F to the B(x)-fibre of E, in a way which is compatible
with the pregroupeid structure, by (3.2). The pregroupoid of bijective
maps from fibres of F to fibres of E 1is a special case of Example
1.1, by taking H % S there to be the groupoid of all (bijections be-
tween) sets.

A generalized fibre bundle for X 1is a triple {¢:F+ A,e:E+B,0 >,

with ¢ as in (3.1) and satisfying (3.2). We denote it short {F,E,0>.
They form a category Fib(X), a morphism <F,E,0> + <F',E',d'> being
a pair of maps F +F', E~+E', compatible with the ¢'s, e€'s, and o's
in the evident way. There are evident forgetful functors Fib(X) + E/A
and Fib(X)+ E/B.

If <F,E,0> is a fibre bundle fo X, there is a natural left action
of the groupoid X,3 A on F +A, and a natural left action of the
groupoid X*3 B on E +B, decribed by

(x1z)-f 1= x M(z(£))
where ¢(f) = al(z), B(x) = B(z), and
(yx1yee i= yix"L(e))
where e(e) = B(x), a(x) = a(y). These descriptions are well defined,

due to (3.2) and (3.2'), respectively, and provide in fact functors

(3.3) Fib(X) » EX* , Fib(X) » EX,
respectively.

When A = 1, one talks about fibre bundles instead of generalized
fibre bundles. This is the situation considered in |8|, where we prove
(Theorem 4.1) that the functors of (3.3) in this case are equivalences
of categories. The proof does not depend on the assumption A =1, so
that we have

Theorem 3.1. The functors (3.3) are equivalences of categories.




202 !

In Remark 4.4 below, we shall indicate the inverse functors;
their construction of course depends on constructing objects by descent.

§4. A peneral descent construction.

Let G = (G3A) be a groupoid in E, and B an object of E.
A G-valued cocycle on B consists of a descent map q:C+B and
a functor y = (yl,yo) from the kernel pair R = (R3C) of gq to
G*A. (Sometimes we also say that y 1is a G-valued cocycle on the
covering C of B). Such y:R+G gives rise to a functor EG > g?,
and thus, since q is a descent map, i.e. ER = E/B, we get by com-
position a functor

! G

Y : E° = E/B.

Now dI:G-rA carries a canonical left action by G, given by

G

composition, so it is an object of E’. With <y a cocycle as above,

we thus get an object y!(dl); we denote it also Y!(G). We have

Theorem 4.1. Assume that dl:G->A (2r equivalently dO:G+-A),
and Yo! C+A are descent maps. Then <y’(G) carries canonically
a structure of regular pregroupoid, with respect to maps to A and
B; and (Y!(G))* % ¢ canonically.

| ]
Proof/construction. By construction of «~°, y'(G) sits in a
pull back diagram

ql
Gx,¢ ——>v! (@)

l 8
- |
B

C —>
q
1
Since q is descent, q' 1is descent, and we define a map a: v G-+ A
by defining it on representatives from GfAC: a(g,c) := do(g).

Since the left hand vertical map in (4.1) comes about by pulling
dl:G->A back, and d1 was assumed a descent map, it is itself a
descent map, and from the stability properties of such, it follows

that B is descent. Also, a sits by construction in a commutative
square
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whose left hand vertical map comes about by pulling back YO:C+~A,
and since d0 is descent, it follows from the stability properties
of descent maps that o is descent. Now a (regular) pregroupoid

!
structure can be defined on A « Y G+ B, namely by the ternary ope-

ration defined (on representatives from GgAC) by
2) (8,¢,)(815c1) Lga,cq) 1= ( Loy (eq,ea Legare,)
(4. 82:¢2)181,¢1) 183,¢3) % 18p°8) °Y11€12C37 ¢83>C)

(note that (CI,CB)eRJZCXC, since (gl,cl) and (g3,c3) are supposed
to represent elements in the same B-fibre; also do(gl) = dO(gZ)’
since (gljcl) and (gz,cz) are supposed to represent elements in
the same A-fibre). We leave the further details to the reader. The

]
isomorphism (v (G)), 26 is given by

-1 -1 -1
(g1501) "(83,¢3) P gy “ev(ey,eg) “eogy
in one direction, and by
-1
g b (1 ,¢) ~ (8,c)

in the other (for some/any c¢ with ~y(c) = dl(g) = a).

This theorem has as a special case the construction of a prin-
cipal fibre bundle out of a system of coordinate transformations. The
next theorem has similarly as a special case the construction of
fibre bundles associated with it.

Let G = (G#*A) and vy be as above; then

Theorem 4.2. Assume that YO:C-»A and d1: G+A are descent
- 1

maps. Then the functor <y : EF N

>

+ E/B 1lifts to a functor E
1
Fib(y (G)). This functor is an equivalence.

Proof/construction. Let ¢: F+A be equipped with a left G-
action. We construct a map

1 ! 1
Y 6x,F —T5y 6 x i F
as follows:
c((g,c),f) = ((g,C),(g'f,C))
where dl(g) =c, ¢(f) = do(g). It has an inverse, given by

0_1((g,0),(f',C’)) = ((g,C),g_loy(c',c)-f')).

We omit the details in checking the well-definedness of O and o1
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and that the ¢ does indeed provide Y!F with structure of fibre
bundle for Y!G with fibre F.

The fact that the functor is an equivalence follows from
Fib(Y!G) & E(Y!«D)*(Theorem 3.1), together with (Y!(G))* % G (The-
orem 4.1).

In the standard applications, the 'covering' 4q:C+ B considered
in the present § will typically be derived (with E the category of
topological spaces, say) from an open covering {Uic:B|ieI} , With
C =llUi, the disjoint union of the Ui's; then the Y1 will be a
fami]y\iyijl(i,j)e IxI} of transition maps.

However, coverings may be taken quite more general than that,

(and is perhaps a novelty in our presentation), and this generality
comes to work now:

Let A+ X +B be a regular pregroupoid; the we have a canonical

X4~valued cocycle on B, defined on the covering B: X+ B, (which

is usually not of the form llUi+-B). This canonical cocycle is descri-
bed as follows; Yp 1s just a: X+ A; and Yq* XxBX + X, 1is given
by

Yl(x,z) = z_lx.
Since dl: X+ A and Yo (= a) are descent maps, the construction

!
in Theorem 4.1 applies, so that + (X,) is a regular pregroupoid
w.r.to A - and B. We have

Proposition 4.3. Let A «X + B be a regular pregroupoid, and
consider the canonical X -valued cocycle y on the covering X+ B.
v
Then v (X,) ®ox, canonically.

]
Proof/construction. Let (g,x) represent an element of vy (X.),

so geX, and dl(g) = a(x). Associate to it the element x.g e X.

1
Conversely, to x ¢ X, associate the element in y (X,) represented
bY (1u(x),x).

Remark 4.4. We may remark that the Y!-construction, when applied
tc the canonical X,-valued cocycle y for a regular pregroupoid
A+« X + B, yields the inverse for the equivalence described in Theo-
rem 3.1. We have in fact functors

N __x!  Fib(y' (X)) > Fib(X),

the first ome by Theorem 4.2, and the second (isomorphism) by Propo-
sition 4.3.
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§5. Foliations.
§5. Folia om0

A groupoid H#3B is usually called transitive if the map (do,dl):
g + BxB is epic in some strong sense, say a descent map. If A«X-+B
is a regular pregroupoid in E, the groupoids X*3B and X,3¥A
need not be transitive: in the category of sets, for example, take
R to be an equivalence relation on an inhabited set X, let A = X/R,
B = X, with obvious o and B8, and define A by

A(x,y,z,u) iff =x =1z, vy = u, xRy.

Then X, 1is the discrete groupoid on A, whereas X**B is R*B.
So X* .is tramnsitive iff R is the codiscrete equivalence relation

on X, iff A =1, iff X, is transitive.

In general, if A<« X+ B 1is a regular pregroupoid, we have a

commutative

X%, X e XxX

X* ——— > BxB

If A =1, the top map is an isomorphism, and then the fact that B8xB
is descent implies that (dO’dl) is descent, so that

Proposition 5.1. If A <«X~+ B is a regular pregroupoid, and

A =1, then X*3 B is transitive.

This is the situation which occurs for fibre bundles in contrast
to the present generalized fibre bundles, which rather come up in
foliation theory, as we shall now sketch (essentially following [41]).

A smooth foliation F of codimension q on a manifold B may
be presented by giving an open cover {UilieI} of B, and for each
i, a smooth surjective submersion fi: Ui+ Aicqu, with cqnnected
fibres. The Ai's may be assumed disjoint. The leaves of the folia-
tion are the equivalence classes for the equivalence relation =g omn

B generated by the relation ", where
b ~b' iff (i with b,b’ ey and fi(b) = fi(b')).

If b €UinU., there is a unique germ t = tb,i,j of a diffeo-
morphism from fi(b) to fj(b), with t°fi having same germ at b
as fj' Let A = LJAAi, let G2A be the groupoid of germs generated
algebraically by germs of form tb,i,j'
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The data of the fi and tb,i,j then provide a cocycle vy on
the covering JlUi + B of B with values in the groupoid G *A.
(Such a cocycle, or rather, an equivalence class of such, is a Haef-
liger structure on B with values in the groupoid G *A.)

The corresponding groupoid (Y!G)* + B deserves the name holo-
nomy groupoid of the foliation. An example of a generalized fibre
bundle for the pregroupoid A +« Y!G + B is the normal bundle of the

1
foliation, which one gets by applying the v ‘-construction to the tan-
gent bundle RY xA + A of A.

The holonomy groupoid is a glorified version of the equivalence
relation %E , in the sense that two points in B are %E-related '
iff they can be connected by an arrow of the holonomy groupoid (y'G)*.
To prove this in a general context, we need that we out of a groupoid-
H *B can induce an equivalence relation R on B, namely by taking
the 'image' of (dO’dl) : H+BxB,

H— R >—»>B xB;

so let us assume for simplicity that E is the category of sets (or
any topos).

We consider, as in §4, a groupoid G = (G *A) with d0 and d1
surjective, and a G-valued cocycle vy defined on a covering q: C +B;
we assume as in §4 that YO:C*-A is surjective, so th?t the construc-~
tion in §4 provides us with a regular pregroupoid y G with respect
to A and B, and with (Y!G)* < G.

Proposition 5.2. The equivalence relation R induced on B by
the groupoid (Y!G)* ¥ B equals the relation given by: b ab' iff

Jc,c'eC with g(ec) = b, q(c') = b', and 3 an arrow
y(c) » y(e') in G.

In particular, the relation thus described is an equivalence relation.

Proof. Let b ~ b' in virtue of g :vy (c)ay (¢') in G. Con-
- !
sider the elements x and y in <y G given by

X = (1Y(C),C) y = (g,C')-

Then g(x) = b, B(y) = b', and aolx) = aly) = y(c). So yx_l makes
sense and is an arrow in (Y!G)* from b to b', so DbRb'.

To prove the converse, we first prove
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f
Lemma 5.3. Let gq(c) = Db, q(c') = b'. Any arrow b-+b' in (YG)*

- !
may be written in form wuz 1, for elements u,z ¢ y G, with

(5.1) z = (1 c), u = (k,c'),

v{c)’
where ki y(c)~ v(c') is an arrow of G.

proof. Let the given arrow be yx_l; x and y may be represen-

ted (in fact uniquely) in form x = (g,c), v = (h,c'), with g and
h arrows of G

Y(e)
a
h
v(c')
Let k := h°g_1, and let z and u then be given by (5.1). To prove
- - ! = 1
yx 1. uz e in (y'G)* means to prove u = yX 1z in Y G, but the

]
recipe (4.2) for this ternary operation of Y'G yields

(h°g—1°ﬁ(C,C)-1°1,C'), which is u.

To finish the proof of the proposition, we may by the, Lemma assume
that bDRb' holds in virtue of an arrow uz—l, with u and z as
in (5.1). Then k: y(c)+y(c') witnesses b= b'.
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