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GEOMETRIC CONSTRUCTION OF THE LEVI-CIVITA
PARALLELISM

To Bill Lawvere on the occasion of his 60th birthday

ANDERS KOCK
Transmitted by Michael Barr

ABSTRACT. In terms of synthetic differential geometry, we give a variational char-
acterization of the connection (parallelism) associated to a pseudo-Riemannian metric
on a manifold.

Introduction

A basic result in differential geometry is: to a Riemannian metric on a manifold, there
exists a unique symmetric affine connection compatible with it. This connection is the
Levi-Civita or Riemannian connection. (‘Parallelism’ is the original word used for what
nowadays is called ‘affine connection’, cf. [10]. We shall follow modern usage, even
though the word ’parallelism’ has more geometric connotations.) The (modern) standard
proof/construction (cf e.g. [2], Theorem 3.6) is an elegant algebraic manipulation with
vector fields, their Lie brackets, their inner products, and their covariant derivatives along
each other. This manipulation is purely algebraic, and the geometry is not very explicit.
A more geometric, or rather dynamic, construction, is due to J. Radon, cf. the Chapter
in [3] entitled: “J. Radons mechanische Herleitung des Parallelismus von T. Levi-Civita”.
We shall give an alternative construction which is purely geometric (involving a variational
principle). We do this by utilizing the method of Synthetic Differential Geometry. This
method, quite generally, allows one to interweave more closely geometric language and
figures with the notions of differential geometry; for instance, the data of an affine connec-
tion can be understood (cf. [7]) as a prescription for forming infinitesimal parallelograms,
in a sense we shall recall and accompany by exact figures.

In the present note, I shall present a geometric construction of these parallelograms,
starting with a pseudo-Riemannian metric g on the manifold M . The construction stays
entirely within the geometry of points of M , thus does not deal with tangent vectors;
formally, consideration of the tangent bundle, and the iterated tangent bundle, of M , is
replaced by consideration of the first and second neighbourhood of the diagonal. This
is in the spirit of [4], [6], [7], [8], and [5] I.18 (but unlike [11], [9], or most of [5]). In
particular, we want to describe the notion of pseudo-Riemannian metric in these terms.
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Roughly, this description of the notion of metric, and the subsequent description of
parallelograms, go lie this. The metric g associates to a pair of second-order neighbours
x, z a number g(x, z) ∈ R, thought of as the squared distance of x and z. (Thus we
require g(x, z) = 0 if x and z are first order neighbours.) Assuming a (standard) non-
degeneracy property of g, we can prove the existence of a well defined geodesic midpoint y
of such x and z; namely y is determined by a variational principle: it is a critical value for
the “energy”, g(x, y)+g(y, z). Finally, having such midpoint formation, we can construct
parallelograms by a piece of truly synthetic, and well known, Euclidean geometry, relating
parallelogram and midpoint formation.

We prove that the parallelogram notion thus arrived at is indeed a connection. By
coordinate calculations, not particularly elegant, we establish that it is the Levi-Civita
connection. This would also follow if we could prove directly that it is compatible with the
metric; one would hope that such compatibility property could be proved by geometric
means, but we haven’t yet been able to do so.

I want to thank Prakash Panangaden, who explained to me the importance of paths
“with critical energy”, in the context of Discrete Analytical Mechanics [1]. The idea of
considering variation of energy rather than variation of arc length (which is ill behaved
for 1- and 2-neighbours) is crucial to our approach here. (Classically, geodesics can be
characterized by either of these variational principles, cf. e.g. [2] Ch. 9.)

1. Reminders

Recall that if R is a commutative ring, we may consider the subset Dk(n) ⊆ Rn (affine
n-space over R): it is the set of (x1, . . . , xn) ∈ Rn such that the product of any k + 1 of
the x’s (repetitions allowed) is 0. We call two “vectors” x and y in Rn k-neighbours if
x − y ∈ Dk(n); we often write this as x ∼k y. This is clearly a symmetric and reflexive
relation. It is not transitive, but a simple binomial expansion proves that x ∼k y and
y ∼l z implies x ∼k+l z. Also x ∼k y implies x ∼k+1 y.

This applies also when R is a “ring of line type” in a model of Synthetic Differential
Geometry (cf. e.g. [5] or [9]), which we shall henceforth assume, so R is to be thought of
as the number line, Rn as affine n-space. Any (locally defined) map Rn → Rm preserves
the relation ∼k. An n-dimensional manifold is an M which is locally diffeomorphic to
Rn. It follows that the relation ∼k can be defined on M from a chart Rn → M , but is
independent of the choice of the chart. The subset of pairs x, y ∈M with x ∼k y is called
the k’th neighbourhood of the diagonal and denoted M[k] ⊆ M ×M . In pictures, when
we want to state that x and y are k-neighbours, we will connect them with an edge and
write the number k on that edge:

✘✘✘✘✘✘k

x

y
.
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For k = 1, the edge itself has a geometric meaning, since we can canonically form affine
combinations of 1-neighbours, see Theorem 2.2 below. For k = 2, some further structure
on the manifold is needed to give geometric meaning (“geodesic”) to such edge, see the
last remarks of Section 3 below.

Recall from [7] that an affine connection λ on a manifold M is a law λ which allows
one to complete any configuration (with x ∼1 y, x ∼1 z))

✘✘✘✘✘✘
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into a configuration
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(with z ∼1 λ(x, y, z) ∼1 y), and configurations arising this way are called λ-parallelograms.
There is only one axiom assumed:

λ(x, x, z) = z; λ(x, y, x) = y.

If λ(x, y, z) = λ(x, z, y) for all x ∼1 y, x ∼1 z, we call the connection symmetric; these
are the only ones we shall consider in the present note. For M = Rn, an example of a
(symmetric) connection is given by

λ(x, y, z) = y + z − x,

and any connection λ on Rn is of form

λ(x, y, z) = y + z − x− Γ(x; y − x, z − x), (1)

where for each x ∈ Rn, Γ(x;−,−) : Rn ×Rn → Rn is a bilinear map (symmetric iff λ is).
(The bilinear map Γ(x;−,−) : Rn × Rn → Rn is given by the Christoffel symbols Γk

ij of
the connection.)

If besides x ∼1 y and x ∼1 z, we also have y ∼1 z (so x, y, z form an infinitesimal
2-simplex in the terminology of the next Section), then there is no information contained
in λ(x, y, z), see Proposition 2.3 below.
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2. Infinitesimal affine structure

It is a well known idea that a manifold is a space which is infinitesimally like an affine
space (of finite dimension, say Rm). We intend here to make this seed of truth grow a
little more into a plant.

Recall that an affine space is a set equipped with an algebraic structure allowing one
to form linear combinations where the sum of the coefficients is 1. Any vector space
is an affine space. An affine space is finite dimensional if it isomorphic to some finite
dimensional vector space, hence to some Rm. Contrasting the finite dimensional affine
spaces, we shall right away encounter some affine spaces which are not of this kind (which
is not to say, though, that they are “infinite dimensional”, in any reasonable sense). In
fact, the affine space ensuing from the following result, is an example.

Recall from [8] that an infinitesimal n-simplex in a manifold M is an n + 1-tuple of
points z0, . . . , zn ∈M with zi ∼1 zj for all i, j = 0, . . . , n.

2.1. Lemma. Let z0, z1, . . . , zn be an infinitesimal n-simplex in a finite dimensional affine
space W . Then the set of affine combinations of the zi’s form an affine subspace, and any
two points in it are 1-neighbours.

Proof. Clearly, the subset described is an affine subspace. Consider two arbitrary points
in it, say

∑n
i=0 tizi and

∑n
i=0 sizi. We want to prove that they are 1-neighbours. Without

loss of generality, we may assume that W is a vector space, and that z0 = 0 ∈ W . Then
we have to prove that (

∑n
i=1 tizi −

∑n
i=1 sizi) ∼1 0. In fact we prove that

∑n
i=1 rizi ∼1 0

for any n-tuple of scalars r1, . . . , rn. This we do by calculating in coordinates, assuming
that W = Rm (by the finite-dimensionality assumption). Let the p’th coordinate of zi be
denoted zp

i . Then we have to prove that the product of the p’th and q’th coordinate of
the linear combination

∑
rizi is 0, for any pair of indices p, q = 1, . . . ,m. This product is

(
∑

i

riz
p
i )(

∑

j

rjz
q
j ) =

∑

i<j

rirjz
p
i z

q
j +

∑

i

ririz
p
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q
i +

∑

i>j

rirjz
p
i z

q
j .

The middle sum is zero because zi ∼1 0. The ij = kl term of the first sum (k < l) cancels
the ij = lk term of the last sum because

zp
l z

q
k = −zp

kz
q
l ;

this is a fundamental consequence of zk ∼1 0, zl ∼1 0 and zk ∼1 zl,(cf. [5] I.16, or
calculate).

We can now prove

2.2. Theorem. Let x0, x1, . . . xn be an infinitesimal n-simplex in a manifold M (of di-
mension m, say). Then any formal affine combination of the vertices xi can be canonically
given a value inM . The subset span(x0, x1, . . . xn) ofM consisting of points that can be ob-
tained in this way is canonically an affine space; and any two points of span(x0, x1, . . . xn)
are 1-neighbours.
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Proof/Construction. Pick a chart φ, i.e. a diffeomorphism from an open subset of
a finite dimensional vector space V to an open subset of M containing the xi’s. For ease
of notation, we shall write φ : V →M , although φ may not be everywhere defined on V .
Let yi be the unique element in V with φ(yi) = xi. Let t0, t1, . . . , tn be scalars with sum
1. Then we put

n∑

i=0

tixi := φ(
n∑

i=0

tiyi).

If ψ : W → M is another such chart, with ψ(zi) = xi, there is a (locally defined)
diffeomorphism f : W → V with φ ◦ f = ψ and hence f(zi) = yi (i = 0, . . . , n). Since
xi ∼1 x0, zi ∼1 z0. The restriction of f : W → V to M1(z0) (=the set of 1-neighbours
of z0, being a set ∼= D1(n)) extends by the fundamental axioms of Synthetic Differential
Geometry (“Kock-Lawvere axiom”), (cf. [5] or [9]) to a unique affine map F : W → V .
Now we calculate:

f(
n∑

i=0

tizi) = F (
n∑

i=0

tizi) =
n∑

i=0

tiF (zi) =
n∑

i=0

tif(zi),

using that (by the Lemma)
∑n

i=0 tizi ∈ M1(z0) on which f agrees with F , and the fact
that F commutes with affine combinations.

From this, and from ψ = f ◦φ, the well definedness immediately follows. The fact that
any two points thus obtained as canonical affine combinations of the xi’s are 1-neighbours,
is immediate from the similar fact, proved in the lemma, about affine combinations of the
zi’s.

2.3. Proposition. Let λ be a symmetric affine connection on the manifold M . If x, y, z
form an infinitesimal 2-simplex, then λ(x, y, z) equals the affine combination y − x+ z.
Proof. If we pick a chart φ : V → M with V an affine space, the data of λ can be
expressed (for fixed x, and omitting φ from notation) as

λ(x, y, z) = y − x+ z − Γ(y − x, z − x)
with Γ : V × V → V bilinear, and symmetric, since λ is assumed to be so. But if u ∼ 0,
v ∼ 0, and u ∼ v in a finite dimensional vector space V , then any symmetric bilinear
form Γ(−,−) vanishes on (u, v), by the calculations of [8].

3. Metrics

Although we shall not need here the notion of differential form, expressed in point-terms
(see [8] for a recent account), we shall, for comparison, recall that a 1-form on a manifold
M is a map ω : M[1] → R, vanishing on M[0], i.e. with ω(x, x) = 0 for all x; it is
automatically alternating, ω(x, y) = −ω(y, x).

Now we pose our version of pseudo-Riemannian metric on a manifold M : it is a
quadratic differential form on M , with a non-degeneracy condition (to be made explicit
later), where
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3.1. Definition. A quadratic differential form g on a manifold M is a map

g :M[2] → R,

vanishing on M[1].

3.2. Proposition. Let g :M[2] → R be a quadratic differential form on M ; then for all
x ∼2 y, we have

g(x, y) = g(y, x).

Proof. Since the question is local, we may assume that M is the n-dimensional vec-
tor space Rn; then M[2]

∼= Rn × D2(n) canonically, and under this isomorphism g(x, y)
corresponds to G(x, y − x), with G : Rn × D2(n) → R. The assumption that g van-
ishes on M(1) means that for each x, G(x,−) : D2(n) → R vanishes on D1(n). By the
fundamental axiom of Synthetic Differential Geometry, this implies that, in coordinates,
G(x,−) is given by a homogeneous degree 2 polynomial Rn → R, so G(x, d) = G(x,−d)
for any d ∈ D2(n). Furthermore, G(x,−d) = G(x+ d,−d), since the Taylor expansion of
the latter from x yields G(x,−d) plus terms which are of degree 3 in the coordinates of
d ∈ D2(n), and therefore vanish. Translating G(x, d) = G(x + d,−d) back into g-terms
yields g(x, y) = g(y, x).

The following “unique extension” result will be a fundamental tool in our construction:

3.3. Theorem. Given a quadratic differential form g :M[2] → R on M , there is a unique
map g :M[3] → R which extends g and which is symmetric, g(x, z) = g(z, x) for all x ∼3 z.

Proof/Construction. We first prove uniqueness; this will also provide the right for-
mula. Again, we work in coordinates, assuming M = Rn. We use notation as in the
proof of the Proposition above. Let x ∈ M be fixed. Then G(x,−) : Rn → R is a
homogeneous polynomial of degree 2; an extension of g to M[3] at x amounts to: adding
to G(x,−) : Rn → R a polynomial T (x,−) : Rn → R, homogeneous of degree 3. So such
T we assume given for each x. Now let x ∼3 z. The assumed symmetry g(x, z) = g(z, x)
reads, in terms of G and T :

G(x, z − x) + T (x, z − x) = G(z, x− z) + T (z, x− z).

We Taylor expand the right hand side here from x, in the first variable. In the T term,
this has the effect of just writing T (x, x− z) instead of T (z, x− z), since the expression is
already cubic in x−z, so that the correction term is killed. For the G term, G(z, x−z) =
G(x, x − z) + Dz−xG(x, x − z), where Dv means derivative along v (applied in the first
variable), i.e. the differential of G applied to v. We call this the “directional derivative”,
even though v is not a unit vector. Thus the displayed equation becomes

G(x, z − x) + T (x, z − x) = G(x, x− z) +Dz−xG(x, x− z) + T (x, x− z).
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(Here, Dv again refers to directional derivative in the first variable, and the whole for-
mula refers to some coordinate chart, where it makes sense to extend g to a quadratic
polynomial, etc.) But T (x, x− z) = −T (x, z−x), since T is an odd function of its second
argument (being homogeneous of degree 3). Similarly G(x, z − x) = G(x, x − z). This
term may be removed from both sides of the equality sign, and rearranging the remaining
terms gives

2T (x, z − x) = Dz−xG(x, x− z),
from which the uniqueness of T (x,−) follows. So in coordinates,

g(x, z) = G(x, z − x) + 1

2
Dz−xG(x, z − x).

If we rewrite the homogeneous degree 2 polynomial G(x,−) in terms of a symmetric
bilinear form A(x;−,−) with A(x; v, v) = G(x, v) for all v, then we get as coordinate
expression for g:

g(x, z) = A(x; z − x, z − x) + 1

2
Dz−xA(x; z − x, z − x). (2)

A quadratic differential form g on M is called non-degenerate if for every x ∈ M ,
and for one (hence every) coordinate system, the symmetric bilinear form Rn × Rn → R
to which the homogeneous degree 2 polynomial G(x,−) : Rn → R polarizes, is non-
degenerate, i.e. has invertible determinant. A non-degenerate quadratic differential form
on a manifold is called a pseudo-Riemannian metric; this is standard (except for the un-
derlying notion of quadratic differential form); this is why we don’t give it a displayed defi-
nition number. Our aim is to derive some synthetic geometry out of a pseudo-Riemannian
metric, notably geometric notions like parallelism and geodesics. In classical differential
geometry, this transition from the quantitative aspect, the metric, on the one hand, to
the qualitative one, the synthetic geometry, on the other, is furnished by Levi-Civita’s
construction of a connection or parallelism out of the metric. This derivation is classically
made as an analytic/algebraic calculation. The description we give is more geometric.

3.4. Definition. Let x ∼2 z in a manifold M with a pseudo-Riemannian metric g. We
say that y0 is geodesic midpoint (relative to g) of x and z if y0 ∼2 x, y0 ∼2 z and for any
y ∼1 y0, we have g(x, y) + g(z, y) = g(x, y0) + g(z, y0).

Unique existence of geodesic midpoints will be proved below. Note that y ∼1 y0 implies
x ∼3 y ∼3 z, but not, in general x ∼2 y, or y ∼2 z, so that we need the extension g to
M[3], whose unique existence is asserted in Theorem 3.3.

The condition in the Definition may be viewed as a variational condition, in fact as
an infinitesimal aspect of ’geodesics as critical (or stationary) for kinetic energy’.

3.5. Theorem. For any x ∼2 z in a manifold M with a pseudo-Riemannian metric,
there is a unique geodesic midpoint y0 of x and z.

We will deduce this by putting t = 1
2
in a more general result:
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3.6. Theorem. For any x ∼2 z in a manifold M with a pseudo-Riemannian metric, and
for any t ∈ R, there is a unique y0 with y0 ∼2 x, and which is a critical point for the
function of y

tg(x, y) + (1− t)g(z, y). (3)

Proof. We are going to make an appeal to a version of the implicit function theorem:
locally, a certain implicitly defined function η will define y0 as a function of z where z ∼2 x
(keeping x fixed). To state a version of the implicit function theorem in the synthetic
context (and hence to investigate its validity in the models) requires that one makes
explicit the use of the word ‘local’. The version we need here is the cheapest possible,
where we take ‘local’ to mean “in the infinitesimal neighbourhood of x”, i.e. the set of y’s
with y ∼k x for some k. With this form of ‘local’, the implicit function theorem holds in
all models for SDG (assuming that the model contains the rational numbers), since the
required implicitly defined function is (uniquely) given by a formal power series, whose
coefficients are successively calculated.

So let us use an affine chart around x, and use (2) to rewrite the function (3). We get

tg(x, y) + (1− t)g(z, y)

= tA(x; y − x, y − x) + t

2
Dy−xA(x; y − x, y − x)

+(1− t)A(z; y − z, y − z) + 1− t
2
Dy−zA(z; y − z, y − z).

We shall replace terms involving A(z;−,−) by A(x;−,−) by a Taylor expansion from x
(taking only the linear and quadratic terms in z − x, since z ∼2 x). We get

tA(x; y − x, y − x) + (1− t)A(x; y − z, y − z)

plus terms which contain y−x, z−x, and y−z in a trilinear way, e.g. (1−t)Dz−xA(x; y−
z, y− z), and using z−x = (y−x)− (y− z), these terms can be rewritten as terms which
are of total degree 3 in y − x and y − z. Let us write briefly

tg(x, y) + (1− t)g(z, y)

= tA(x; y − x, y − x) + (1− t)A(x; y − z, y − z) + C(x, z; y − x, y − z), (4)

with C of total degree 3 in the arguments after the semicolon. The condition on y that it
is a critical value for this expression is that its directional derivative Dv is zero, for any
direction v (viewing the expression as a function of y alone, keeping x, z fixed). Calculating
this directional derivative, we get the following condition for criticalness of y for (3)

0 = 2tA(x; y − x, v) + 2(1− t)A(x; y − z, v) + C(x, z; y − x, y − z, v), (5)
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where C(x, z; y−x, y−z, v) is linear in v and of total degree 2 in the two other arguments
after the semicolon. We simplify the expression here into

2A(x; y − (tx+ (1− t)z), v) + C(x, z; y − x, y − z, v); (6)

call this expression φ(z, y, v) (x is fixed, so we omit it from the notation). We reconsider
it as a function Φ : V × V → V ∗

(z, y) 
→ [v 
→ φ(z, y, v)].

We clearly have Φ(x, x) = 0. Also the differential of Φ with respect to its second variable
y can be calculated from (6); the C-term yields zero, since it is of total degree 2 in
y − x, y − z, and the first term yields the linear map V → V ∗ given by

u 
→ [v 
→ 2A(x;u, v)]

which is an invertible linear map V → V ∗, by the assumption of non-degeneracy of A.
Thus, for each x, we get by the Implicit Function Theorem (in the version given by, say,
[12] p. 380-381, with ‘local’ as explained above) a function η : U → V (defined in the
infinitesimal neighbourhood U of x) with η(x) = x, and for each z picking out the unique
y = η(z) ∈ U with

Φ(z, η(z)) = 0.

For z ∼2 x, we have η(z) ∼2 η(x) = x, since the function η preserves ∼k. But also the
function z 
→ η(z)− z preserves ∼k, so for z ∼2 x,

η(z)− z ∼2 η(x)− x = 0,

so η(z) ∼2 z. Since for such points y, Φ(z, y) = 0 was the criterion for criticalness of y
for the function (3), we get the unique existence, as claimed. So y0 = η(z) for the given
z. The theorem is proved.

The Theorem, with its appeal to the implicit function theorem, does not provide us
with an explicit formula for geodesic midpoints; such formula will be given later (Lemma
4.1 below).

3.7. Proposition. Let x ∼1 z, and let t ∈ R. The unique y0 asserted in Theorem 3.6 is
the point given as the affine combination tx+ (1− t)z.

(The affine combination here makes canonical sense, by the results of Section 2, because
x ∼1 z.)

Proof. Since y0 ∼1 x and y0 ∼1 z, by Theorem 2.2, the 1-neighbours y of y0 needed
to state that y0 is critical, have y ∼2 x and y ∼2 z. This means that the expression
(3) involves g only, not its extension g, and it yields, again by a Taylor expansion of
A(z;−,−) from x,

tA(x; y − x, y − x) + (1− t)A(x; y − z, y − z),
whose directional derivative in direction v is easily calculated to be 2A(x; y − (tx+ (1−
t)z, v), and is therefore zero for all v iff y = tx+ (1− t)z.
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For x ∼2 z, the function f : R → M taking t ∈ R to the critical point of (3) has the
property that f(0) = z, f(1) = x, and, by the Proposition, reduces to the canonical affine
line spanned by z, x if x ∼1 z.

4. Parallelism from metric

Given a manifold M with a pseudo-Riemannian metric g, we would like to describe a
notion of parallelism, i.e. an affine connection λ, cf. Section 1.

We construct such λ now, out of the construction of geodesic midpoints from the
previous section (recall that the latter notion depends on the metric g). Write gm(u, v)
for the geodesic midpoint of u ∼2 v ∈M . Recall also that for x ∼1 y, we may form affine
combinations; in particular, we may form 2y − x. Then the construction of a connection
λ is achieved by the following formula:

λ(x, y, z) = gm(2y − x, 2z − x); (7)

the geometry of this is given in the picture (and summarized in the statement of Theorem
4.2 below):

✘✘✘✘✘✘✘✘✘✘✘✘
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We shall prove that this λ is indeed a connection. Consider λ(x, x, z) (where z ∼1 x).
We have λ(x, x, z) = gm(2x − x, 2z − x) = gm(x, 2z − x), but since 2z − x ∼1 x, by
Theorem 2.2, it follows from Proposition 3.7 that their geodesic midpoint agrees with
their affine midpoint which is just z. Similarly λ(x, y, x) = y. As stated in Section 1,
this is the only thing needed in order to have a connection λ. In fact, the connection
constructed is clearly symmetric, since the notion of geodesic midpoint is so.

We would like to argue that the connection thus described is the Levi-Civita connec-
tion; the desirable proof would be to argue geometrically that it is compatible with the
metric. Alternatively, we may calculate its Christoffel symbols, and compare them with
Levi-Civita’s. We haven’t been able to carry out the first, so we shall be content with
doing the latter. It may be of some interest in its own right, though, since it gives a
variational status to the “Christoffel symbols of the first kind”.

Let us work in coordinates, with metric g(x, z) given by A(x; z − x, z − x), as above,
and let a connection λ be given by the analytic expression λ(x, y, z) = y+z−x−Γ(x; y−
x, z − x), where Γ(x;−,−) is a symmetric bilinear form. For simplicity, we shall state
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the following result for the case where the “origin” of the parallelograms considered is 0,
and rename the y into x, and Γ(x;−,−) = Γ(0;−, ) into Γ(−,−); so we are investigating
λ(0, x, z) (which thus is x + z − Γ(x, z)). Since x ∼1 0, 2x makes unique sense (as an
affine combination of 0 and x), by the results of Section 2; similarly for 2z. Recall that g
denotes the unique symmetric extension of g to the third neighbourhood of the diagonal,
cf. Theorem 3.3, and that it is given in coordinates, in terms of A, by the expression (2),
g(x, z) = A(x; z − x, z − x) + 1

2
Dz−xA(x; z − x, z − x).

4.1. Lemma. In order that y := x+ z− Γ(x, z) be a critical point for g(2x, y) + g(2z, y),
it is necessary and sufficient that for all v

A(0; Γ(x, z), v) =
1

2
{DzA(0;x, v) +Dx(0; z, v)−DvA(0;x, z)}.

Proof. This is a rather long calculation: Let B be any vector with the property that for
any bilinear φ, φ(B, x) = 0, φ(x,B) = 0, φ(B, z) = 0, and φ(z,B) = 0 for the given x, z,
and also φ(B,B) = 0. This will surely be the case for B = Γ(x, z) with Γ(−,−) bilinear.
Also assume v is a vector ∼1 0, so φ(v, v) = 0 for any bilinear φ. Now we calculate the
variation of g(2x, y)+ g(2z, y) from y = z+ x−B in the direction of v, i.e. the difference

g(2z, z + x−B + v) + g(2x, z + x−B + v)− [g(2z, z + x−B) + g(2x, z + x−B)].

(In the square bracket, we might write g rather than g, since 2z ∼2 z + x − B, and
similarly for 2x.) This expression we rewrite, using (2), and then we calculate. We
first expand, using bilinearity of A(2x;−,−) and A(2z;−,−); next we Taylor expand
A(2x;−,−) or A(2z;−,−) from 0 (the relevant ’series’ has only two terms, since 2x ∼1

0 and similarly for 2z); and then we expand again, using bilinearity of A(0;−,−) or
trilinearity of its directional derivatives (i.e. trilinearity of DuA(0;w1, w2) in u,w1, w2).
Many terms disappear during this expansion, e.g. those that contain x twice in linear
positions, or contain x and B in linear positions, etc. We end up with

−4A(0;B, v) + 2DzA(0;x, v) + 2DxA(0; z, v)− 2DvA(0;x, z).

So the variation of g(2x, y) + g(2z, y) (with y = x+ x−B) is 0 for all directions v iff
this expression vanishes for all v. This proves the Lemma.

Remark. The unique y provided by Lemma 4.1 solves the variational problem defin-
ing the notion of geodesic midpoint, so one may be tempted to think that Theorem
3.5/Theorem 3.6, asserting the unique existence of such, were subsumed. However, the y
that Lemma 4.1 provides is unique under the assumption that it is of a special form. The
description of what kind of form this is, depends not only on x and z, but on a third point
as well (in the calculation chosen to be the 0 of the coordinate system); essentially, the y
provided by Lemma 4.1 does suffice to complete 0, 1

2
x, 1

2
z into a parallelogram. Thus it

does suffice to give a variational description of the fourth point y of this parallelogram,
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but for a notion of geodesic midpoint, the independence of y on the third point 0 must
be argued, and I could not do this except by an appeal to the uniqueness assertion of
Theorem 3.5.

If A(0;−,−) is a non-degenerate bilinear form, we can, by the Lemma, express the
unique B(x, z) that must be subtracted from x + z in order to get the critical point for
energy, i.e. our λ(0, x, z), namely

A−1(
1

2
{DzA(0;x, v) +Dx(0; z, v)−DvA(0;x, z)}).

This is the classical “Christoffel symbols of the second kind” for the connection derived
from the metric, cf. e.g. [2] Ch. 2 formula (10).

This proves that the connection we have constructed from the metric agrees with the
classical Levi-Civita parallelism (and of course, we would have been surprised if it did not).
If we agree to write g also for the symmetric extension g of g to the third neighbourhood
of the diagonal, we may summarize our result as follows. (To say that m is infinitesimally
close to x is here meant: m ∼k x for some k.)

4.2. Theorem. Let g be a pseudo-Riemannian metric on a manifold. Then the Levi-
Civita parallelism can be described geometrically as the following procedure for forming
infinitesimal parallelograms x, y, z, λ(x, y, z): take λ(x, y, z) to be the geodesic midpoint of
2y − x and 2z − x, i.e. the unique critical point (infinitesimally close to x and z) m for
the function g(2y − x,m) + g(2z − x,m).
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: r.brown@bangor.ac.uk
Jean-Luc Brylinski, Pennsylvania State University: jlb@math.psu.edu
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