A general algebra/geometry duality, and synthetic scheme theory^{*}

Anders Kock

Let \mathbb{T} be an algebraic theory, and $FP\mathbb{T}$ the category of finitely presented \mathbb{T} -algebras. There is a full and faithful functor

$$\mathbb{T} \stackrel{F}{\longleftrightarrow} FP\mathbb{T}^{op}$$

given by $n \mapsto F(n)$, the free algebra in n generators, and this functor is known to have the following universal property: if \mathcal{E} is a cartesian closed category with finite inverse limits, and $A : \mathbb{T} \to \mathcal{E}$ is a finite-product preserving functor (in other words, an algebra for \mathbb{T}), then A extends in an essentially unique way over F to a finite limit preserving functor $\overline{A} : FP\mathbb{T}^{op} \to \mathcal{E}$. Furthermore, for any functor $B : FP\mathbb{T}^{op} \to \mathcal{E}$, any natural transformation

$$B \circ F \xrightarrow{t} A$$

extends uniquely to a natural transformation

$$B \xrightarrow{\overline{t}} \overline{A}.$$

Let us now further assume that \mathcal{E} is Cartesian closed, and R is a T-algebra in \mathcal{E} . Let R-Alg denote the comma-category $R \downarrow T$ -Alg (\mathcal{E}) of T-algebras under R in \mathcal{E} . We may in \mathcal{E} form the internal hom-object

$$\underline{\operatorname{Hom}}_{R-\operatorname{Alg}}(A_1, A_2)$$

whenever A_1 and $A_2 \in R$ -Alg.

Let $A \in R$ -Alg. In particular, we have $\overline{A} : FP\mathbb{T}^{op} \to \mathcal{E}$. Using the above mentioned universal property of \overline{A} , we may construct a map, natural in $B \in FP\mathbb{T}$

$$\underline{\operatorname{Hom}}_{R}\operatorname{-Alg}(R^{\overline{R}(B)}, A) \xrightarrow{\nu_{(B,A)}} \overline{A}(B)$$

(note that, for any $X, R^X \in R$ -Alg in a natural way). It suffices to give $\nu_{F(n),A}$ which is a map

$$\underline{\operatorname{Hom}}_{R-\operatorname{Alg}}(R^{R^n}, A) \longrightarrow A^n;$$

^{*}The content of this note was part of an exposition at the 17th PSSL, Sussex Nov. 1980; it is a retyping (Jan. 2009) of an article that appeared in *Prépublications Math.*, U. Paris Nord 23 (1981), 33-34. It is quoted as entry [38] in the author's 1981 book "Synthetic Differential Geometry".

in naive description, it sends ϕ to $(\phi(\text{proj}_1), \ldots, \phi(\text{proj}_n))$.

We say that R is a model for synthetic scheme theory if $\nu_{B,A}$ is an isomorphism for any $A \in R$ -Alg, and any $B \in FP\mathbb{T}$.

Theorem Let $R \in FP\mathbb{T}$ be the generic \mathbb{T} -algebra (= the forgetful functor). Then it is a model for synthetic scheme theory.

The reason for the name is that if R is such, then the canonical map η into the double dual

$$M \longrightarrow \underline{\operatorname{Hom}}_{R}\operatorname{Alg}(R^{M}, R)$$

is an isomorphism for any $M = \overline{R}(B)$, with $B \in FP\mathbb{T}$; namely η is inverse to $\nu_{B,R}$. So internally in \mathcal{E} , the "affine scheme" M can be recovered from its "internal coordinate ring" \mathbb{R}^M . Also, the functor $FP\mathbb{T} \to \mathbb{R}$ -Alg given by $B \mapsto \mathbb{R}^{\overline{R}(B)}$ preserves finite colimits, and $\mathbb{R}^{\mathbb{R}^n}$ is internally the free \mathbb{R} -algebra in n generators.

If \mathbb{T} is the theory of commutative rings, and R is a model for synthetic scheme theory, it is automatically a model for synthetic differential geometry.