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Fibrations as Eilenberg-Moore algebras

Anders Kock
Dept. of Mathematics, University of Aarhus

Introduction

We give an elementary account of some fundamental facts about fibered (or rather
opfibered) categories, in terms of monads and 2-categories.The account avoids
any mention of category-valued functors and pseudofunctors.

I make no claim to originality; a large part of it may in substance be found in
the early French literature on the subject (early 1960s - Grothendieck, Chevalley,
Giraud, Benabou), as reported in [Gray 1966]. The remainingpart makes use of
some tools that were not fully available then: monads, and their algebras, and KZ
monads; it is extracted from [Kock 1973, 1995] and [Street 1974]. Some more
historical comments are found in the last Section.

1 Cocartesian arrows

Given a functorπ : X → B. For a : A → B in B, we let hom(X ,π)
a denote the

set of arrowsx in X with π(x) = a; if π : X → B is clear from the context, we
write just homa. We fix aπ : X → B in this Section.

If a is the identity arrow ofA, homX
a is also written homXA ; it consists of the

vertical arrows ofX over A (relative toπ : X → B)1. We denote byXA the
category whose objects are the objectsX ∈ X with π(X) = A, and whose arrows
are the vertical arrows overA. It is a (non-full) subcategory ofX , often called
the fibre overA.

1Sometimes, one needs to say “π-vertical” rather than just “vertical”, namely in contextswhere
one also wants to talk about “vertical arrows” meaning arrows displayed vertically in the graphics
of a certain diagram. Often in diagrams, one likes to displayπ-vertical arrows by graphically
vertical arrows.
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Given arrowsx : X →Y in andy : Y → Z in X . Let a andb denoteπ(x) and
π(y), respectively, thusx ∈ homa(X,Y) andy ∈ homb(Y,Z). Thena andb are
composable inB, andx.y∈ homa.b(X,Z)2 . Thus, for fixedx∈ homa(X,Y), we
have a map “precomposition withx”,

x∗ : homb(Y,Z)→ homa.b(X,Z). (1)

The following notion is the crucial one for the presentationhere.

Definition 1.1 The arrow x∈ homa(X,Y) is cocartesian3 if for all arrows b inB

with domainπ(Y) and all Z∈ XC (where C denotes the codomain of b), the map
(1) is bijective.

Note that the only “data” in the definition (besidesπ : X → B) is the arrowx.
To keep track of the “book-keeping” involved, we display a diagram, in which the
symbol “:” is meant to indicate “goes byπ to . . . ”. The “data”a, A, andB are
derived fromx (with a= π(x), andA andB the domain and codomain ofa); and
b,C andZ are arbitrary.

X
x

✲ Y Z

: : : :

A
a

✲ B
b

✲ C.

(2)

Another way of describing when an arrowx (over a, say) is cocartesian is to
say that it has a certain (co-)universal property: for any arrow in X with same
domain asx and living over a composite arrow of the forma.b, factorizes asx.y
for a uniquey over b. This is reminiscent of the (co-)universal property of a

2We compose arrows in an abstract category from left to right,a.b means “firsta, thenb;
whereas we compose functors between given categories from right to left, thusG◦F means “first
F, thenG”.

3or op-cartesian, or, cf. [Johnstone 2002], supine. Note that in the classical definition ([Giraud
1971] p. 18) “(co-)cartesian morphism” means something weaker, namely as above, but withb
an identity arrow; an op-fibered category is then defined as one where there are enough of these
“weakly” (co-)cartesian arrows,andwhere such arrows compose. In this case, the weak and strong
notions coincide. Thus, in the set up of loc.cit., the notionof op-fibered category is needed prior
to the definition of coartesian arrow, in the strong sense as given above. See [Borceux 1994] 8.1
for a comparison of the weak (“pre-”) and the strong notion.
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coequalizerx: “any arrow with same domain asx (and with a certain property)
factors uniquely overx.”

We have the following, in case the compositex.y in X is defined:

Proposition 1.2 Suppose x cocartesian. Then y is cocartesian iff x.y is cocarte-
sian.

Proof. Straightforward verification; or see [Borceux 1994] Section 8.1.

We may read the bijections in (1) as a universal property of cocartesian arrows
x. Using this viewpoint, one gets

Proposition 1.3 If x : X →Y and x′ : X →Y′ are cocartesian arrows withπ(x) =
π(x′), then there exists a unique vertical isomorphism t: Y → Y′ with x.t = x′.
Conversely, if x: X →Y is cocartesian, and t: Y →Y′ is a vertical isomorphism,
then x.t is cocartesian. A vertical arrow is cocartesian iff it is invertible.

2 The 2-categoryCat/B

Let B be a category. The objects ofCat/B are the functors with codomainB,
like the π : X → B considered in Section 1. The morphisms are the strictly
commutative triangles (“functorsoverB”)

X
F

✲ Y

B,

π ′

✛

π
✲

(3)

thusCat/B is a standard slice category. Note that since the triangle commutes
(strictly), F preserves the property for arrows of “being overa”, and in particular
preserves the property of being vertical. To make the slice categoryCat/B into a
(strict) 2-category, we describe what are the 2-cells:
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Given two parallel morphisms inCat/B, as displayed in

X
F1

✲

F2

✲ Y

B,

π ′

✛

π
✲

the 2-cells between these are taken to be the natural transformationsτ : F1 ⇒ F2

which arevertical, meaning that for all objectsX ∈ X , τX is a vertical arrow in
Y . Composition (horizontal as well as vertical) is inheritedfrom the standard
composition of natural transformations inCat. – Having a 2-category, one has a
notion ofadjoint arrows “F ⊣ G by virtue of 2-cellsη, ε”. In particular, for the
2-categoryCat/B, adjointness of two arrows (functors overB)

X
F

✲
✛

G
Y

B

π ′

✛

π
✲

amounts to an ordinary adjointnessη,ε between the functorsF andG, subject to
the further requirement thatη andε arevertical natural transformations. In this
case, one may writeF ⊣B G. If F ⊣B G, then the bijection, due toF ⊣G, between
hom(F(X),Y) and hom(X,G(Y)), restricts to a bijection

homa(F(X),Y)∼= homa(X,G(Y))

whenevera : A → B, X ∈ XA, Y ∈ YB; for, let f : F(X)→ Y be an arrow inY
over a. The arrowX → G(Y) corresponding to it under the adjointness is the
compositeηX.G( f ), which an arrow overa sinceG( f ) is so, and sinceηX is
vertical, by assumption onη. Similarly, verticality ofεY proves that the inverse
correspondence preserves the property of being overa.

Proposition 2.1 (Key Lemma) Let F and G be vertically adjoint, F⊣B G, as
above. Then F preserves the property of being cocartesian.
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Proof. Let x : X →Y in X be cocartesian overa : A→ B, and letb : B→C be an
arbitrary arrow inB. For anyZ ∈ XC, the standard naturality square for hom set
bijections induced by the ordinary adjointnessF ⊣ G restricts to a commutative
square

homb(Y,G(Z))
∼=
✲ homb(F(Y),Z)

homa.b(X,G(Z))

x∗

❄

∼=
✲ homa.b(F(X),Z).

F(x)∗

❄

The hom set bijections are displayed horizontally. The lefthand vertical map is a
bijection sincex is cocartesian. Hence so is the right hand vertical map; soF(x)
is cocartesian.

3 Opfibrations; cleavages and splittings

Definition 3.1 Given a functorX → B. It is called anopfibration if it has
enough cocartesian arrows, in the sense that for any arrow a inB and any X∈X

with π(X) = d0(a), there exists a cocartesian arrow over a with domain X.

A cocartesian arrowx overa is called an “cocartesianlift ” of a. It is a cocarte-
sian lift of a from X if furthermore its domain isX.

For the remainder of the present Section,π : X → B is assumed to be an
opfibration.

Proposition 3.2 Given an arrow z inX with π(z) = a.b for arrows a and b in
B. Then z may be factorized x.y with π(x) = a andπ(y) = b, with x cocartesian.
This facorization is unique modulo a unique vertical isomorphism in the middle.
And y is cocartesian iff z is cocartesian.

Proof. Let x be a cocartesian lift ofa with same domain asz, and constructy over
b, with x.y= z, using the universal property ofx. – The last assertion now follows
from Proposition 1.2.

A special case is (takeb to be the relevant identity arrow):
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Proposition 3.3 Every arrow z inX may be factored into a cocartesian followed
by a vertical arrow. This factorization is unique modulo a unique vertical isomor-
phism.

Definition 3.4 A cleavagefor X → B consists in achoiceX ⊲a of a cocartesian
lift of a from X, for every X and for every a withπ(X) = d0(a).

If there is given a cleavage⊲, it is convenient to have a separate notation for
the codomain of the chosen cocartesian arrowX ⊲a; common notations area!(X),
Σa(X) or ∃a(X), or, the one we shall use,a∗(X) := d1(X ⊲a),

X
X ⊲a

✲ a∗(X). (4)

If a cleavage is given, the uniqueness assertions “modulo vertical isomor-
phisms” in the Propositions 3.2 and 3.3 may be sharpened to strict uniqueness,
by requiring the cocartesian arrows to be provided by the cleavage, in an evident
way, thus for Proposition 3.3:z : X →Y factors uniquely asX ⊲π(z) followed by
a vertical arrow.

There are dual notions: cartesian arrows, cartesian lifts,fibrations, with as-
sociated cleavage/splitting terminology. By experience,they are more important
than opfibrations. The reason we discuss opfibrations ratherthan fibrations is that
they are more straightforward in so far as variance is concerned. Otherwise, the
mathematics is the same. Let us right away describe our notation, corresponding
to (4), for a cleavage of a fibration:

a∗(X)
a⊳X

✲ X (5)

where nowπ(X) = d1(a). (In Giraud’s notation:Xa Xa
✲ X.)

Consider a functorF : X → Y over B, as displayed in (3). Assume both
X → B andY → B are opfibrations. Then theF is called amorphism of opfi-
brationsif it takes cocartesian arrows to cocartesian arrows.

Note that both being an opfibration and being a morphism of opfibrations are
propertiesof categories (resp. functors) overB, not astructurethat is given (resp.
is preserved). In contrast, a cleavage is a structure, and morphisms of opfibrations
may or may not preserve cleavages.

If the chosen lifts of identity arrows are identity arrows, the cleavage is called
normalized; thus, ifπ(X) = A, we have

X ⊲1A = 1X.
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If furthermore the composite of two chosen cocartesian arrows is again chosen,
the clevage is called asplitting:

(X ⊲a).(a∗(X)⊲b) = X ⊲ (a.b). (6)

Taking the codomain of the two sides of this equation gives inparticular that

b∗(a∗(X)) = (a.b)∗(X). (7)

Some of the literature on (op-) fibrations formulate the theory of (op-) fibra-
tions mainly in terms of a cleavages/splittings – which in turn can be reformulated
in terms ofCat-valued pseudofunctors/functors.

Example. A group may be considered as a category, in which there is onlyone
object, and where all arrows are invertible. IfX andB are groups, a functor
π : X → B is the same as a group homomorphism. The vertical arrows form
the kernel ofπ . All arrows in X are cocartesian. A group homomorphismπ :
X → B is an opfibration iff it is surjective. A (normalized) cleavage is a (set
theoretical) sections of π (taking the identity arrow ofB to the identity arrow of
X ). Thens is a splitting iff s is a group homomorphism. Not every surjective
group homomorphism admits such a splitting. So there are opfibrations which do
not admit splittings.

Remark. Any opfibration may, by the axiom of choice, be supplied with anor-
malized cleavage; but not necessarily with a splitting, as the example shows. How-
ever, every opfibered categoryX → B is equivalentin the 2-categoryCat/B to
(the underlying opfibration of) a split opfibration overB, see Section 7 below.

This does not contradict the fact just mentioned about non-existence of split-
tings of surjective group homomorphism. For, a category equivalent to a group
need not be a group; it may have several objects.

4 The “opfibration” monad on Cat/B

Given an object inCat/B, i.e. a functorπ : X → B. One derives from this a
newT(π : X → B) ∈ Cat/B: it is the comma categoryπ ↓ B, equipped with
the “codomain” functor toB. Recall that an object ofπ ↓ B is a pair(X,a),
whereX ∈ X anda is an arrow inB with domainπ(X). The codomain functor
d1 : π ↓ B → B takes this object to the codomain ofa. The arrows inCat/B
are given by arrows inX together with suitable commutative squares inB; for a
display, see e.g. (11) below.
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A more succinct classical description, cf. [Gray 1966], is thatT(π : X → B)
is the left hand column in the following diagram, in which thesquare is a (strict)
pull back:

T(X → B) ✲ X

B
2
❄

d0

✲ B

π

❄

B.

d1

❄

(8)

Here,B2 denotes the standard category of arrows inB, andd0 andd1 are the
“domain” and “codomain” functors, respectively.

Thus, an object(X,a) overA∈ B may be depicted

X

:

A
a

✲ B

(9)

(with X ∈ X , andπ(X) = A). If (X′,a′) is another such object (wherea′ : A′ →
B′), and ifβ : B→ B′ is an arrow inB, then

homT(X )
β ((X,a),(X′,a′)) = {x : X → X′ | π(x).a′ = a.β} (10)

It is a subset of homX (X,X′). Thus, an arrowa : (X,a)→ (X′,a′) overβ : B→B′
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may be depicted

X

: X′

x

✲

A
a

✲ B

A′

a′
✲

π(x)
✲

B′

β

✲

(11)

(with the bottom square commutative), and it may be denoted(x,β ) : (X,a) →
(X′,a′); it is an arrow overβ .

The following shows thatT(X →B), as a category overB, has some canon-
ical cocartesian arrows:

Proposition 4.1 Given an object(X,a) in T(X → B) over B, and given an ar-
row b : B → C in B. Then there is a canonical cocartesian arrow over b from
(X,a) to (X,a.b), depicted in

X

: X

1X

✲

A
a

✲ B

A
a.b

✲

1A
✲

C.

b

✲

(12)
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We denote this arrow inT(X → B) by ((X,a);b), it is an arrow overb from
(X,a) to (X,a.b). We may define a cleavage by putting(X,a) ⊲b) := ((X,a);b,
thus

(X,a)
(X,a)⊲b

✲ (X,a.b).

Proof. To see that the depicted arrow((X,a);b) : (X,a) → (X,a.b) is co-
cartesian overb : B → C, let c : C → D and let (Z,δ ) be an object overD
(whereδ : D′ → D andπ(Z) = D′). Then as subsets of hom(X,Z), we see that
homc((X,a.b),(Z,δ )) consists of thoseh : X → Z which satisfyπ(h).δ = (a.b).c,
and homb.c((X,a),(Z,δ )) of thoseh : X → Z which satisfyπ(h).δ = a.(b.c), and
these two subsets are equal. Precomposition with (12) is provided by precompo-
sition with theX component which here is 1X, so is indeed the identity mapping
of the described subset onto itself.

From the Proposition immediately follows thatT(X → B) → B has suffi-
ciently many cocartesian arrows to deserve the title “opfibration”, and in fact, the
very construction of the canonical cocartesian arrows shows that it provides this
opfibration with asplitting: the codomain of((X,a);b) is (X,a.b), and clearly

((X,a);b).((X,a.b);c)= ((X,a);b.c).

The functorial character ofT is straightforward from the construction (8). Ex-
plicitly: for a functor overB, as depicted in (3),T(F) is the functorT(X →
B)→ T(Y → B) which on objects is given byT(F)(X,α) = (F(X),α), and on
arrowsT(F)(x) = F(x) (if x satisfies the equation (10), then so doesF(x) (with π
replaced byπ ′)).

We makeT into a monad by supplying natural transformationsy : Id ⇒ T and
m : T2 ⇒ T. We describe first the objects ofTn(X → B): an object overA∈ B

of Tn(X → B) may be depicted

X

:

A(n) ✲ . . . ✲ A′′ ✲ A′ ✲ A.

The unit y and multiplicationm of the monad come about from the units and
the composition in the chain ofA(i)s (and this makes the unit and associative
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laws for y andm evident). Thus (if we suppressπ from notation), the functor
yX : X → T(X ) takes anX ∈ XA to the configuration

X

:

A
1A

✲ A,

or X 7→ (X,1A). Similarly, the object(X,a,b)∈ T2(X ) goes byµX to the object
(X,a.b)∈ T(X ).

Consider an object(X,a)∈ T(X ), as depicted in (9); thenT(yX )(X,a) is the
object(X,1,a), depicted in

X

:

A
1A

✲ A
a

✲ B,

(13)

andyT(X )(X,a) is the object(X,a,1) depicted in

X

:

A
a

✲ B
1B

✲ B,

(14)

The reader may, as an exercise, describe a vertical arrow inT2(X ) from the
first of these objects to the second.

The endofunctorT on Cat/B is clearly canonically enriched overCat: its
value on a 2-cell between 1-cellsF andG, i.e. on a vertical natural transformation
t : F ⇒ G, is the vertical natural transformation whose instantiation at (X,a) ∈
T(X ) (wherea : A → B) associatestX : F(X) → G(X) (it may be viewed as
an element in homYA ((F(X),a)(G(X),a)) since it satisfies an equation like (10):
π ′(tX).a= a.1A, becauseπ ′(tX) is an identity arrow). Andy andm are 2-natural.
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The name “opfibration monad” should really be, more precisely: the “split-
opfibration monad”; we have already argued that everyT(X → B) has canon-
ically the structure of asplit opfibration; we shall see thatT(X → B) is the
free such onX → B, in fact, we shall see that the category of Eilenberg-Moore
algebras for this monad is the category of split opfibrationsoverB.

5 KZ aspects

The monad(T,y,m) on Cat/B has now been enhanced to a (strict) 2-monad.
It can be even further enhanced, namely to a KZ monad in the sense of [Kock
1973, 1995]. This means that it is provided with a modification λ : T(y) ⇒ yT ,
with certain equational properties. Concretely, it here means that for each object
X = (π : X → B) in Cat/B, there is provided a vertical natural transformation
λ = λX ,

T(X )

T(yX )
✲

⇓ λ
yT(X )

✲
T2(X )

satisfying two “whiskering” equations (16) and (17) below.Consider an object
(X,a)∈ T(X ), as in (9); we describeλ(X,a). Recall the description of the objects
T(yX )(X,a) andyT(X )(X,a) given in (13) and (14), respectively. Thenλ(X,a)

is the arrow inT2(X ) given by the following. The unnamed arrows are identity
arrows.

X

: X

✲

A ✲ A
a

✲ B

A
a

✲

✲

B ✲

a

✲

B
✲

(15)
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(Cf. the Exercise comparing (13) and (14)). It is clear that if a is an identity arrow
in B, thenλ(X,a) is an identity arrow inT(X ), which implies that the whiskering

X
yX

✲ T(X )

T(yX)
✲

⇓ λ
yT(X )

✲
T2(X ) (16)

is an identity natural transformation. Also, applyingmX to the arrow inT2(X )
exhibited in (15) produces the identity arrow of(X,a) in T(X ), and this implies
that the whiskering

T(X )

T(yX)
✲

⇓ λ
yT(X )

✲
T2(X )

mX
✲ T(X ) (17)

is the identity natural transformation. These two whiskering equations are what
a modificationλ should satisfy in order to make a (strict) monad on a 2-category
into a KZ monad, cf. [Kock 1995], Axioms T0-T3 (with T0 and T3 being redun-
dant if (T,y,m) is a strict monad, which is the case here).

Whenever one has a monadT on a categoryC, one has the category of (Eilen-
berg -Moore) algebras for it, i.e. an objectX ∈ C together with a “structure” map
ξ : T(X )→ X , satisfying the standard unit- and associativity equations.

Recall that in a 2-category, the notion of adjointness between 1-cells makes
sense.

We denote objects in a 2-categoryC by script letters likeX , because of the
example we have in mind. Also, we compose the arrows inC from right to left.

Here is a basic construction in the context of KZ monads (cf. [Kock 1973,
1995]). To produce an adjointnessξ ⊣ yX out of an Eilenberg-Moore algebra
X ,ξ , we produce unitη and counitε. For the counitε, we just take the identity
2-cell onξ ◦ yX . = idX . The unitη is constructed usingλ : we have the 2-cell
obtained by whiskeringλX with T(ξ ):

T(X )

T(yX )
✲

⇓ λ
yT(X )

✲
T2(X )

T(ξ )
✲ T(X ). (18)

The top composite is an identity 1-cell, sinceξ ◦yX = 1X . The lower composite
may be rewritten asyX ◦ξ , using naturality ofy w.r.toξ . So the whiskering (19)
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gives a 2-cell

T(X )

id
✲

⇓

yX ◦ξ
✲

T(X ), (19)

and this is the unitη of the adjointnessξ ⊣ yX . The triangle equation holds
by virtue one of the whiskering equation (16). In particular, sincemX is a T-
homomorphism, we havemX ⊣ yT(X ).

If ξ ⊣ yX , it does not conversely follow thatξ is an Eilenberg-Moore algebra
structure, since the associative lawξ ◦T(ξ ) = ξ ◦mmay not hold strictly; but we
have from [Kock 1973, 1995]

Proposition 5.1 If T is a KZ monad, and ifξ : T(X )→ X is a left adjoint for
yX , then there is a canonical isomorphism (2-cell)α between the two 1-cells
ξ ◦T(ξ ) andξ ◦mX .

Proof. Sinceξ ⊣ yX , andT is a 2-functor, it follows thatT(ξ ) ⊣ T(yX ). Also,
sincemX : T2(X )→ T(X ) is an Eilenberg-Moore structure by general monad
theory, and becauseT is KZ, it follows thatmX ⊣ yT(X). We therefore have that

ξ ◦T(ξ ) ⊣ T(yX )◦yX

and partly that
ξ ◦mX ⊣ yT(X ) ◦yX ;

but the two right hand sides here are equal, by naturality ofy, so it follows that the
two left adjoints exhibited are canonically isomorphic.

For a KZ monad, it can be proved (cf. loc.cit) that the canonical isomorphism
α satisfies those coherence equations which makeX ,ξ into an Eilenberg-Moore
pseudo-algebra, in the standard sense of 2-dimensional monad theory; vice versa,
a pseudo-algebraX ,ξ ,α in the standard sense hasξ ⊣ yX.

6 Cleavages and splittings in terms of the opfibra-
tion monad

We now return to the case whereC = Cat/B, and whereT is the “opfibration
KZ monad” described. Recall thatX is also used as a shorthand for an object
π : X → B in Cat/X .

14



Theorem 6.1 1) Assumeξ : T(X )→X is vertically left adjoint to yX in Cat/X ,
and with the identity functor onX as counit (soξ ◦yX = idX ).4 ThenX carries
a canonical structure of normalized cleavage. Conversely,a normalized cleavage
defines a functorξ , left adjoint to yX and withξ ◦yX = id.

2) This normalized cleavage is a splitting if and only ifξ is strictly associative,
T(ξ )◦ξ = m◦ξ .

3) If (X ,ξ ) and(X ′,ξ ′) are strict T -algebras, then a functorX →X ′ over
B is a T-homomorphism iff it preserves the corresponding splittings strictly.

Proof/Construction. Givenξ . Let X ∈ XA, and leta : A→ B in B. We produce
our candidate for a cocartesian liftX ⊲a : X → a∗(X) by applyingξ to the arrow
((X,1A);a) in T(X ) exhibited in the following

X

: X

1X

✲

A
1A

✲ A

A
a

✲

1A
✲

B

a

✲

(20)

Thusa∗(X) is ξ (X,a). Note that (20) is a special case of the general canonical
cocartesian arrow (12) inT(X ). So (20) is cocartesian, and therefore, applying
ξ to it gives, by the Key Lemma (Proposition 2.1), a cocartesian arrow inX . Its
domain isX, since the top line in the (20) isyX (X) andξ ◦ yX = idX . It lives
overa, since the right hand slanted arrow in (20) isa. Thus we have constructed
a cleavage forX . The fact that the constructed cleavage is normalized follows
becauseξ ◦ yX is the identity functor, and becauseξ , as a functor, takes identity
arrows to identity arrows.

Conversely, given a normalized cleavage⊲ of X → B. Then a functorξ :
T(X ) → X is constructed as follows: on objects, we putξ (X,a) := a∗(X) (=

4[Gray 1966] introduced the short hand “lali” for a left adjoint left inverse, likeξ .
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d1(X ⊲a)), and on morphism we use the universal property of cocartesian arrows.
More explicitly,ξ applied to the arrowa in T(X ) overβ displayed in (11) is the
unique arrowξ (a) overβ which makes the square inX

X
X ⊲a

✲ a∗(X)

X′

x

❄

X′ ⊲a′
✲ a′∗(X

′)

ξ (a)

❄

...............

(21)

commute.
The fact thatξ ◦ yX = id to left to the reader. The fact thatξ is indeed a

left adjoint foryX follows because it solves a universal problem; the unit of the
adjunction at the object(X,a) is the arrow(X,a)→ (a∗X,1B) in T(X ) given by
the diagram

X

: a∗(X)

X ⊲a

✲

A
a

✲ B

B
1B

✲

a
✲

B.

1B

✲

This proves the assertion 1) of the Theorem.
Assume next thatξ is associative, i.e.ξ ◦T(ξ ) = ξ ◦m. The arrows picked

out by the clevage⊲ derived fromξ are those that are of the form:ξ applied to an
arrow inT(X ) of the form((X,1A);a), as in (20); whereasξ applied to a more
general canonical cocartesian arrow inT(X ) of the form((X,a);b), as exhibited
in (12), is not apriori picked out by the cleavage⊲. However, we have, with⊲ and
the resultinga∗(X) derived fromξ , the following

16



Lemma. 6.2 Assume thatξ is associative. Then

ξ ((X,a);b) = a∗(X)⊲b.

Proof. Consider the following arrow overb in T2(X ):

X

: X

✲

A
a

✲ B ✲ B

A
a

✲

✲

B
b

✲

✲

C

b

✲

(22)

(unnamed arrows are identity arrows); applyingmX yields

X

: X

✲

A
a

✲ B

A
a.b

✲

✲

C

b

✲

(23)

i.e. ((X,a);b); whereas applyingT(ξ ) to (22) yields
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a∗(X)

: a∗(X)

✲

B ✲ B

B
b

✲

✲

C

b

✲

(24)

(sinceξ (X,a) = a∗(X) and since the first square of (22) is an identity arrow in
T(X )). By the strict associativity ofξ , the value ofξ on (23) and (24) is the
same, and these values areξ ((X,a);b) anda∗(X) ⊲ b, respectively. This proves
the Lemma.

To prove the splitting condition (6), let an arrowb : B→C be given. Consider
the composite inT(X )

(X,1A)
((X,1A);a)

✲ (X,a)
((X,a);b)

✲ (X,a.b). (25)

One sees that applyingξ (using the Lemma for the second factor) gives the com-
posite composite(X ⊲ a).(a∗(X) ⊲ b). On the other hand, the composite (25) is
((X,1A);a.b), which by ξ givesX ⊲ (a.b). This proves that the cleavage⊲ pro-
duced by a strictly associativeξ is in fact a splitting.

Conversely, given a splitting⊲, then since⊲ is in particular a normalized cleav-
age, it gives rise to a functorξ : T(X ) → X , with ξ ◦ yX the identity functor
onX , as described above. It remains to prove thatξ satisfies the associative law
ξ ◦T(ξ ) = ξ ◦m : T2(X ) → X . Consider an object(X,a,b) in T2(X )B, as

18



displayed in
X

:

A
a

✲ B
b

✲ C.

Then
ξ (T(ξ )(X,a,b)) = ξ (a∗(X),b) = b∗(a∗(X)).

On the other hand

ξ (m(X,a,b)) = ξ (X,a.b) = (a.b)∗(X),

and then (7) gives the associativity result, in so far as objects of T2(X ) is con-
cerned. Next, consider a morphism inT2(X ) from (X,a,b) to (X′,a′,b′) given
by (x,β ,γ) (with α = π(x)), displayed as the full arrows in the three-dimensional
diagram

X ...............................................
X ⊲a

✲ a∗(X) .......................................
a∗(X)⊲b

✲ b∗(a∗(X))

: X′ ..............................................
X′ ⊲a′

✲

x

✲

a′∗(X
′) .....................................

a′∗(X
′)⊲b′

✲

ξ (x,β )
..............................

✲

b′∗(a
′
∗(X

′))

ξ (ξ (x,β ),γ)
..............................

✲

A
a

✲ B
b

✲ C :

A′

a′
✲

α

✲

B′

b′
✲

β

✲

C′

γ

✲

The slanted dotted arrows in the top layer are, by construction of the value ofξ
on arrows inT(X ), the unique ones (overβ andγ, respectively) which make the
squares on the top commute.
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So ξ ◦T(ξ ) applied to the given arrow inT2(X ) is the rightmost slanted
arrow on the top. On the other hand,mX applied to the given morphism inT2(X )
is given by the full arrows in

X ............................................................
X ⊲ (a.b)

✲ (a.b)∗(X)

: X′ .........................................................
X′ ⊲ (a′.b′)

✲

x

✲

(a′.b′)∗(X
′)

ξ (ξ (x,β ),γ)
..............................

✲

A
a.b

✲ C :

A′

a′.b′
✲

α
✲

C′

γ

✲

(26)

so ξ applied to it is unique one overγ making the top square commute. But
now by the splitting condition for⊲, equation (6), we conclude that the composite
of ⊲ arrows in the previous diagram equals the⊲ arrow in the present one, so
by uniqueness of chosen cocartesian lifts ofγ, we conclude that the two desired
arrows inX agree, provingξ ◦m= ξ ◦T(ξ ).

It is clear that the two processesξ ↔ ⊲ are mutually inverse, and so the asser-
tion 2) is proved.

Finally, consider two strictT-algebras(X ,ξ ) and(X ′,ξ ′). We need to prove
that a functorF : X →X ′ overB is compatible withT-algebra structuresξ and
ξ ′ iff it is compatible with the associated splittings⊲ and⊲′. If F is compatible
with the algebra structures, we get thatF takes the cocartesian arrowsX ⊲ a in
X to the cocartesian arrowF(X) ⊲′ a in X ′; this follows by considering the
canonical cocartesian arrow (20) and applying the two functors (assumed equal)
F ◦ ξ andξ ′ ◦T(F) to it. Conversely, ifF(X ⊲a) = F(X) ⊲′ a, the functorsF ◦ ξ
andξ ′ ◦T(F) give equal value inX ′ on the object(X,a) ∈ T(X ); for,

F(ξ (X,a)) = F(d1(X ⊲a)) = d1(F(X ⊲a)) = d1(F(X)⊲′a)

= ξ ′(F(X),a) = ξ ′(T(F)(X,a)).
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The two functors in question then agree also on morphisms; this follows from the
fact that they agree on objects, and from the fact that their values on morphisms
is determined by universal properties. This proves assertion 3) and thus the Theo-
rem.

The two last assertions of the Theorem immediately lead to

Corollary 6.3 The category of split (op-)fibrations overB, and strict splitting
preserving functors, is monadic over Cat/B by the KZ monad T.

Also, the category of opfibrations with a cleavage is the category of pseudo-
algebras for the monadT, with morphisms: functors overB preserving the cle-
vages strictly; and with pseudo-morphisms: the functors over B that preserve
cocartesian arrows. We rephrain from making these “pseudo-” notions explicit,
but it should be mentioned that those natural isomorphisms that occur in the pre-
cise definition of the “pseudo-” notions for the case of KZ monads automatically
satisfy the coherence conditions that usually must be required for such isomor-
phisms, because they solve universal problems.

7 Replacing cleavages with splittings

Every opfibration admits a normalized clevage (granted the axiom of choice); but
as remarked in the Example and Remark at the end of Section 3, it may not admit
a splitting. On the other hand, one has ([Giraud] I.2):

Theorem 7.1 Every opfibrationπ : X → B is equivalent (in the 2-category
Cat/B) to one with a splitting.

Proof. Choose a normalized cleavage⊲ for X → B, and construct the corre-
sponding left adjoint left inverseξ : T(X ) → X for yX . Then take the full
image ofξ in X . Recall that the full imageF (ξ ) of a functorξ : Y → X has
the same objects asY , and that the set of arrowsY1 → Y2 in F (ξ ) is the set of
arrowsξ (Y1)→ ξ (Y2) in X . (If you want disjoint hom-sets inF (ξ ), then put on
some labelsYi). There is an evident factorization ofξ :

Y
ξ1

✲ F (ξ )
ξ2

✲ X

whereξ1 is bijective on objects andξ2 is full and faithful. If ξ is surjective on
objects,ξ2 is an equivalence of categories. In our case,ξ : T(X ) → X is sur-
jective on objects, becauseξ ◦ yX is the identity functor onX . Also, it is easy
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to see that the full image constructionF (ξ ) respects the “augmentations” toB.
So the proof is completed if we can provideF (ξ )→ B with the structure of a
split opfibration. ButT(X ) carries a canonical splitting, which we can transfer
to F (ξ ) usingξ . If we denote the canonical splitting ofT(X ) by ⊲0, then we
define a cleavage⊲1 onF (ξ ) by the formula

Y ⊲1 a := ξ1(Y
Y ⊲0 a

✲ a∗(Y))

wherea∗(Y) denotes the codomain ofY⊲0 a. We note that this arrow inF (ξ ) has
indeed the correct domain, namelyξ1(Y) = Y; we also note that its codomain is
againa∗(Y). To prove that the cleavage⊲1 is a splitting, we consider the equation
(Y ⊲0 a).(a∗Y ⊲0 b) =Y ⊲0 (a.b), which holds, since⊲0 is a splitting. We then get
the desired equation for⊲1 using thatξ1 is a functor, and applying the definition
of ⊲1 to each of the three terms of the equation.

8 Comparisons

Apparently, Chevalley was the one to formulate the notion offibration in adjoint-
ness terms; [Gray 1966] (p. 56) uses the term “Chevalley Criterion” for the fol-
lowing (which I here state for opfibrations rather than fibrations):

a functorπ : X → B is an opfibration iff the canonical functorπ : X 2 → π ↓B

admits a left adjoint right inverse (lari) K.

Recall that the criterion considered presently is thatyX : X → T(X ) admits a
(vertical) left adjointleft inverse (lali)ξ ; and recall also thatT(X ) is π ↓B (seen
as a category overB). For a lari, it is the counit of the adjunction which carriesthe
information (the unit being an identity); for a lali, it is the unit which carries the
information. [Street 1974] analyzed (p.118-119), in abstract 2-categorical terms,
that the data ofK andξ are equivalent. I shall here describe, in elementary terms,
the passage fromξ to K, and describe the counit for the lari adjunctionK ⊣ π .
Recall the notation applied in the present article: for(X,a)∈ π ↓B, ξ returns the
valuea∗(X), and the unit of the adjunction is essentiallyX ⊲a. Out of this data,
one constructsK : π ↓B →X 2 by sending(X,a) to the arrowX⊲a : X → a∗(X).
The counit of the lari adjunctionK ⊣ π , instantiated at an objectx : X →Y in X 2
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is an arrow inX 2, namely the commutative square

X
X ⊲π(x)

✲ π(x)∗(X)

X

1X

❄

x
✲ Y

❄

................

where the right hand vertical arrow comes from the universalproperty of the co-
cartesian arrow on the top.

Street was probably the first to observe that opfibrations could be described
as pseudo-algebras for a KZ monad; in fact, in [Street 1974] p. 118, he uses this
description as hisdefinitionof the notion of opfibration, so therefore, no proof
is given. Also, loc.cit. gives no proof of the fact that splitopfibrations then are
the are the strict algebras. So in this sense, Section 6 of thepresent article only
supplements loc.cit. by providing elementary proofs of these facts.
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