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The basis of Functional Analysis is the ability to form function spaces. The categorical
expression for this is: Cartesian Closed Categories. To say that & is Cartesian Closed
means that for X and Y “spaces” (objects in &), there is a function “space” in &, denoted
YX “consisting of”” maps (in the category &) from X to Y. More precisely, there is a bijection
(“exponential transposition” or “lambda-conversion”) between maps in &

Z—YX

and maps, likewise in &,
ZxX =Y

and this bijection is to be mediated by an “evaluation” map ev: YX x X — Y, or equivalently
XxY¥ =X

If further X and Y have some algebraic kind of structure, say vector space structure,
one may form a subspace L(X,Y) C YX consisting of the those maps X — ¥ which are
furthermore homomorphisms (“linear’’); but the non-linear category is the basic one.

Now the word “space” could mean many other things than “topological space”, one
has e.g. a category of bornological spaces, or of diffeological spaces; these categories are
already Cartesian Closed, whereas if “space” means “manifold”, one needs to extend the
category to get function spaces.

I shall not settle on any specific of these categories of “spaces”, but treat them in a uni-
form way, by a category theoretic/axiomatic exposition. But for motivation, let me mention
two results by Frolicher and Kriegl, [FK] Theorem 5.1.1.

They construct several interesting cartesian closed categories of spaces, let me mention
[, a full subcategory of the category of bornological spaces, and Lip™, a full subcategory
of the category of diffeological spaces. A convenient vector space has canonical structure
of both kinds. So there are forgetful functors (“CVS” means “convenient vector space”, and
also the category of such, with bounded linear maps)

CVS = I7 and CVS — Lip™.

Both of these forgetful functors have left adjoints, meaning that any /” space X embeds in
a universal way into a CVS denoted A(X), (in this lecture: 7(X)) and similarly for Lip™
spaces.

Composing a pair of adjoint functors category & <+ & gives rise to an endofunctor T
on & (a monad, in fact). Let me for concreteness describe the endofunctor coming from
the first mentioned adjoint situation: it is the functor 7', which to a bornological space X
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associates the space T(X) of those functions f : X — R which have the property that the
support of f is countable and bounded (w.r.to the given bornology on X), and such that

Y ()] <.

xeX

For X € [, the set T(X) of such functions has a natural bornology, and is in fact an [
space. It clearly has vector space structure as well; with its a natural bornology, it is even a
CVS. There is a map 1My : X — T(X), sending x € X to §, (value 1 on x, value 0 else). [FK]
prove that this map is universal for bornological maps of X into CVSs.

They also construct a universal map from any Lip™ space X into a CVS T(X); this
T(X) is constructed by a double dulization procedure, which when X is a smooth manifold is
vector space T (X) of Schwartz distributions of compact support on X, likewise a convenient
vecor space.

In either of the two cases: just because of the universal property of N7 (x) : TX)—
T(T (X)), there is a (linear) map py : T(T(X)) — T(X), namely the unique linear CVS map
making the triangle

T(r(x)) 2 7(x)

Nr(x) d (H

T(X)

commute. The maps Ny and ty are natural in X € &, so we have natural transformations

N:I=T and wp:ToT=T 2)

This is the situation 7', 1, U, (plus one more data, a “strength”, see below) which I shall
describe in general category theoretic terms, in particular, the relationship between T and a
suitable double-dualization construct. Such T provides, under certain assumptions, a “uni-
versal” link between non-linear and linear functional analysis. The endofunctor 7 : & — &,
together with the transformations 1 and p, constitute a monad, meaning that there is an as-
sociative law for y and two unitary laws, “n as a two-sided unit for . There is a notion of
T-algebra (in the sense of Eilenberg and Moore) for such monad, namely a B € & together
with an “action” f : T(B) — B, satisfying an associative and unitary law. For the case we
are interested in, it is better to use the phrase that such § makes B into a T-linear space.
The map py : T(T (X)) — T(X) makes T(X) into such a T-linear, called the free T-algebra
on X. There is an evident notion of 7-homomorphism between 7 -linear spaces: essentially
a map that preserves the action by T'; see e.g. Borceux’s “Handbook in Cat. Algebra” for
these standard monad theoretic notions.

Henceforth, we consider a Cartesian Closed Category &, and a monad T = (7,7, 1)
on it. There is one piece more of structure, also present in the quoted Theorem of [FK],
namely a strength or &-enrichment [EK]: not only does T, being a functor, give a map



homg(X,Y) — homg (T (X),T(Y)), but it gives a map between the hom-objects (exponetial
objects) in &,

YX - 1(r)T™), 3)

called the strength or &-enrichment of 7. (In the [~ case, say, the strength follows from
the assertion, likewise in loc. cit., that homg (X,Y) — homg (T (X),T(Y)) is a bornological
map.)

The strength of the functor T is assumed to be compatible with n and u, in a rather
straightforward sense (so (7,7,1) is a “strong monad”); but for a moment, we consider
just T, not  or u. The strength (3) of an endofunctor T : & — & can equivalently, cf.
[K70]...[K71b], be encoded in two other forms, the “tensorial” form

txy XxT(Y)—=T(XxY),

(or its twin sister #y  : T(X) x ¥ — T(X x ¥)) natural in X and Y, and the “cotensorial”
form
Axy :T(YY) = T(¥)X,

likewise natural in X and Y. When & is the category of sets, either of the three manifes-
tations of the strength are automatic; for the basic form (3), this is just because Y* equals
homg(X,Y); for the two other forms, let us be explicit. For the tensorial strength, we re-
think X x Y as a coproduct of X copies of Y, X XY = |,cxY. Let in, be the inclusion of
the xth summand in an X-fold coproduct. Then ¢” is the unique map making the diagram

L] T(Y) éY. T(|]Y)
xeX xeX
mx‘ T (iny)

T(Y)

commute, for all x € X. (The twin sister ' comes about similarly by rethinking X x ¥ as
Llyey X). The cotensorial strength is “dual”; rethink ¥ X as a product of X copies of ¥,

Y¥ =TLex?:
T[]y Ay 17

xeX xeX

Prx
T(prx)

T(Y)

where pry is the projection to the xth factor.

In the category of sets, one knows how to define algebraic structure on a product like
[1x B = BX “coordinatewise”, given algebraic structure on B. For the case of T-linear struc-
ture in the sense of Eilenberg-Moore, say 3 : T(B) — B, the combinator A implies that this



can be generalized to BX in & with X a space, X € &, namely B¥ is endowed with the

structure Py ¥
7(BY) X5 7(B)X B
(recall that (—)* for fixed X is a covariant functor & — &).

This construction gives us a way to ask when a map f: X x C — B is a “T-linear in the
second variable”, provided C = (C,7y) and B = (B, B) are T-algebras; this is taken to mean
that the exponential transpose of f, which is amap f : C — BX, is a T-homomorphism, with
the T -algebra structure on BX described above. Similarly, one can make sense to C x X — B
is a T-homomorphism in the first variable. (These notions of “partial” T-homomorphisms

can also be described in terms of, respectively, t’C_X and tg_c, see [K71].)

It is well known how T'(X) is a free T-linear space on ny : X — T'(X); given B= (B, 3)
a T-linear space, and amap ¢ : X — B, themap ¢ : T(X) — B given as foT(¢) is a T-linear
map T(X) — B, and the unique one with ¢ o1y = ¢.

Similarly, if B = (B, ) is a T-linear space, and ¢ : X x Y — B is any map, there is a
unique map ¢ : 7(X) x Y — B which is T-linear in the first variable with ¢ o (nx x Y) = ¢.
It can be described explicitly using 74 ,, or it can be obtained by passing to the exponential
transpose X — BY, and using the 7'-structure on BY described in terms of Ay.B.

We shall have occasion to use the uniqueness assertion in the universal properties thus
described many times.

We can now present a fundamental construction for 7-linear spaces B = (B, 3): it gives,
for any X € & a “pairing” map
<77 7>
—_—

T(X) x BX B. 4

The bracket should ideally be decorated by symbols X and (B, 3), and it will be natural in
both these. Ultimately, the pairing will have as a special case that pairing between distribu-
tions and test functions? which define the notion of (Schwartz-) distribution; in our context,
it is defined as the unique map, 7T-linear in the first variable, which extends over nx x B the
evaluation map ev : X x BX — B, thus the diagram

T(X) x BX =0 g
Nx X B o 5
X x (X hB)

commutes. If 7 is a commutative monad, see below, the pairing is 7'-bilinear.
The exponential transpose of the pairing is a map

T(X) BEY), ©)

2the test functios here are not supposed to have bounded support, therefore, the distribution notion will be:
distribution of compacr support.



which is T-linear, because the pairing is a T-linear in the first variable. (Again, T ought to
be decorated with symbols X and (B, B).) Alternatively, T may be described as the unique
T-linear map with To 1y = &, where § is the standard embedding into double dual, (x €
X maps to “evaluation at x”, in set theoretic terms). — The codomain of 7 is a “double
dualization” construction. Such will appear quite often in the following, and it is clearly
typographically inconvenient with the exponential notation; an on-line notation is to be
preferred, and we shall use one such (used e.g. in [HW]), namely

XMy :=v~.

Thus, 7 (for given X and B = (B, 8)) is a map (T-homomorphism, in fact, by construction)

T(X) —> (X hB) M B. )

It is natural in X; note that the codomain is the value on X of the covariant functor (—
B) M B; it is covariant, being the composite of two contravariant ones (— r B).

Remark. One way to interpret 7, for & the category of sets is: P € T(X) is a name for
an X -ary operation on T-algebras; 7(P) € (X th B) M B is the X-ary operation on B named
by P: t(P) is an X-ary operation on B, since it is a map X M B — B, thus a construction
which to X-tuples of elements in B returns single elements of B. Thus if “algebra” means
“commutative ring”, T (X) is the set of formal polynomials in variables from X, and 7 itself
returns to such a polynomial P the polynomial function X h B — B to which P gives rise,
for B is a commutative ring. Here, the word T-linear is misleading; this is because T here
is not a commutative monad, in the sense to be described.
Thus, 7 itself is: “semantics”.

LetA = (A, o) and B = (B, ) be T-linear spaces. Under a weak completeness condition
on & (existence of equalizers), one can describe a subobject A thy B of A th B, consisting
of those maps A — B which happen to be T-linear. Recall that a T-linear structure on B
gives rise to a T-linear structure on X rh B for any X. In particular, A i B inherits a T-linear
structure from that of B. But A 7 B C A th B need not be a T-linear subspace. It is a a
T-linear subspace, if T is what is called a commutative monad, [K70], [K71], [K71b]. In
particular, the subobject,

(XMhB)hy BC(XMhB)hB

is a sub-T-linear space. Therefore, since 6 : X — (X M B) h B in any case factors through
the subobject (X rh B) rhy B, it follows that, for T is commutative, 7 factors through (X
B) Mr B, so that we have

T
T(B) — (X B) Mz B, ®)
(and it is T-linear since the original T was so).

Remark continued. Recall that when & is the category of sets, the values of 7 are the
“operations” on T-algebras; so commutativity of T thus implies (in fact, is equivalent to)
the assertion “the operations of T are themselves T-homomorphisms”. This is a classical
notion of commutativity in universal algebra.



Example. If & is the category Lip*, and T the free-convenient vector space monad of [FK],
then R is 7'(1), in particular, it is a 7-algebra. Then for a [paracompact] manifold X (which
may be considered as an object of &), X M R is the CVS of smooth R-valued functions on
X; the space (X h R) M R of smooth maps X M R — R is a (quite unwieldy) convenient
vector space, but the subspace of the linear smooth maps X m R — R is the convenient
vector space of (compactly supported) Schwartz distributions on X, cf. [FK] (with (X h R
the CVS of (unbounded) test functions; and the 7 of (8) is in this case an isomorphism, cf.
[FK]).

If X is a more general Lip™-space, T may not be an isomorphism, but it does make
T(X) a subspace of (X MR) hz R, in fact, [FK] construct 7' (X ), with the requisite universal
property, as a subspace of (X M R) hy R.

Tensor products and convolution

The contention is that many aspects of distribution theory live already at the level of the
monad 7, independent of its relationship to the double-dualization construction, which is
a 20th century sophistication (Schwartz distributions), whereas 7' embodies a more funda-
mental notion of “extensive quantity”, e.g. with T'(X) (a mathematical model of) the vector
space of distributions of electric charge over the space X.

It is well known that for Schwartz distributions, we have notions of tensor product, and
convolution. They exist at the level of the monad 7', provided 7' is commutative (and it is
preserved by the canonical comparison T with “Schwartz distributions”).

Recall that we have the tensorial strength, natural in X and Y,

" X<XTY)—=T(XxY).

By the universal property quoted above, it extend in a unque way over nx x T(Y) to a map
T(X)xT(Y)— T(X xY) to amap which is a T-homomorphism in the first variable; the
extended map we call ®y y or just ®; thus, we have a commutative

T(X) x T(Y) S T(X xY)

nx xT(Y) i

XxT(Y)

with ® a T-homomorphism in the first variable. If T is commutative, one can prove that ®
is also a T-homomorphism in the second variable. With some simple properties on T to be
quoted in a moment, it will follow that R := T(l)3 carries structure of commutative ring,
that T-algebras in particular are R-modules, and 7'-linear maps R-linear.

One might instead use 7' and constructa ® : T(X) x T(Y) — T (X x Y), which is T-linear
in the second variable. We proved in [K70]...that ® = ® is equivalent to commutativity of
the monad. (The equation that ® = ® agree as maps T (X) x T(Y) — T (X x Y) is essentially

3here, 1 denotes the terminal object of &’; the “one point space”



Fubini’s Theorem, for the case of compact Schwartz distribution on a manifold.) Also we
proved in loc. cit. that commutativity of T is equivalent to bilinearity of the map ®, for all
XandY.

We shall henceforth assume henceforth that 7 is a commutative monad, so that in partic-
ular we have the T-bilinear map ® : T(X) x T(Y) — T(X x Y) (natural in X and Y). Then if
M is a space with a monoid structure, m : M x M — M, we get a multiplication “convolution
along m” on T (M); it is the composite map

Ty < 7)o T x ) L 7). ©)

It will actually be a monoid structure again, and will be commutative if m is so.

Similarly, if the monoid M acts on a space X by a: M X X — X, we will get an action of
T (M) on T(X), which is unitary and associative if a is so.

We have in particular a unique (and trivial) monoid structure on the space 1. Convolution
along this unique 1 x 1 — 1 yields a monoid structure in T'(1), written -; this monoid will
play the role of (the multiplicative monoid of the ring of) scalars, and we denote it R. In
both the specific examples quoted from [FK], it will be R.

Since the trivial monoid 1 acts uniquely (and trivially) on any space X, we get an (uni-
tary and associative) action of the monoid R = T(1) on the space T(X). Any T-linear
map f: T(X) — T(Y) will be equivariant for this action; this is clear for f of the form
T(¢) where ¢ : X — Y; for general T-linear f : T(X) — T(Y), an argument is needed,
see [MEQ)] Proposition 11 for an even more general result; or observe that the two maps
T(X)xT(1) = T(Y) to be compared are both T-bilinear, so that it suffices to check that
their precomposition with 1y x 1; agree, and this is easy.

If M — M’ is a monoid homomorphism, it follows from the naturality of ® that the
induced map T (M) — T (M’) is a homomorphism with respect to the respective convolution
structures. In particular, the unique map ! : M — 1 (=the terminal object of &) is trivially a
monoid homomorphism, and it induces a monoid homomorphism 7(M) — T(1) = R.

For any P € T(X), we have a scalar € R associated, the total of P, namely: apply
T(!):T(X)—T(1)=Rto P. From naturality of ® follows that for P€ T(X)and Q € T(Y),
the total of P® Q € T (X x Y) is the product in the monoid R of the totals of P and Q.

Extensive quantities

According to Lawvere, a mathematical model, which makes aspects of the physical and
philosophical notion of extensive quantity explicit, is: it is a covariant functor from a carte-
sian closed category into an additive category, with certain properties.

We show here that if a commutative monad 7 on a cartesian closed category & has a
certain property, then the Kleisli category KI(T) for T, i.e. category of free T-algebras,
with its 7-linear maps, is such a category, and the functor 7 (viewed as a functor & —
KI(T)), satisfies the properties stated by Lawvere. The category KI(T) is in fact an additive
subcategory of the category of modules over the rig R (rig = commutative semiring). (I don’t
know in general when KI(T) is in fact a full subcategory of the, likewise additive, category
of T-algebras.)



According to Kant, a quantity is extensive, provided the concept of its parts is condition
for the concept of the whole quantity. We read this here in over-simplified form: if X =
X1 + X, (making X a disjoint union of two parts), then a quantity P distributed over X, i.e.
a P € T(X), is conditioned (= given) by its parts, i.e. by a pair (P, P,) with P; distributed
over X;, i.e. with P, € T(X;) and P, € T(X2>; so there is a bijection

T(Xl -|—X2) = T(Xl) X T(Xg);

To make this precise, one has to describe how the isomorphism here is obtained, in terms of
the functorality of T : & — &.

This is rather straightforward, and it is probably known since early days of category
theory. Most recently, it was (re-) discovered by Coumans and Jacobs 2010 [CJ], and by
myself [K11]. The short story is that one has to assume, first that 7(0) = 1 (where 0 is the
initial object of &, “the empty space”); this makes 1 into a zero object in KI(T'). Secondly,
using the zero object, one can construct a natural map 7 (X +Y) — T(X) x T(Y), and the
property is then the assumption that this map is invertible. When this is the case, KI(T) has
biproducts T(X) @ T(Y) = T(X +7Y), and therefore becomes an additive category; so all
objects in KI(T') are abelian monoid objects (in KI(T') as well as in &); and T-linear maps
T(X) — T(Y) preserve the additive structure

In particular, R := T(1) carries such structure, denoted +, and from 7-bilinearity of
the multiplication - : R X R — R already described, it follows that this multiplication is bi-
additive, so R with + and - is a commutative rig*. Likewise, the multiplicative action of
R on objects of the form 7(X) is T-bilinear, hence bi-additive, so any 7(X) carries R-
module structure, and 7 -linear maps between such are R-linear. (I don’t know under which
conditions the converse holds.)

Extensive quantities on R

For any space X, we have the space T'(X) of extensive quantities on X. The case where X
is R itself (or, more generally, R"), the extensive quantities on it have special significances,
and a rich structure. One significance is that random variables (on an arbitrary outcome
space) have probability distributions which may be construed as elements of 7 (R) with
total 1. Among the important structures on T(R) is the convolution * along the addition
map + : R x R — R (which in the particular case of random variables gives the probability
distribution of a sum of two independent random variables).

There are also certain scalars € R associated to a P € T(R). The most important is
(P,idg), which for the case of probability distributions deserves the name expectation of P;
let us denote it E(P) € R. So E is a map T(R) — R, and it is T-linear since the pairing
T(X) x (X M R) — R is T-linear in the first variable. If X = R, then it is easy to see that

(& (r),ide) =r

for any r € R, so E(ng(r)) =r, or Eong = idg. (You may want to view ng(r) as the
probability distribution of a random variable whose value is r with certainty; in this verbal
garbe, the equation says that the expectation of such a random variable is r.)

4“rig” means commutative semiring”, i.e. like commutative ring, but not necessarily with “minus” (negatives),
hence the missing “n”



Now, the very construction of pairing (4) depends on a T-algebra structure 8 : T(B) — B
on the codomain B; in the case at hand, B=R =T(1), and B : T(R) — R is u; : T*(1) —
T(1). Recall that iy in general was constructed as the unique T-linear extension over
Nr(x) of the identity map on T(X). In particular, {1 o ng is the identity map on R. By the
uniqueness of T-linear extensions over 7], we conclude that E = p; as maps T(R) — R.

If P € T(R) has that its total A is an invertible element in the multiplicative monoid of R,
it may be viewed as (a mathematical model of) a distribution of mass on the line R, and in
this case 2! times the total of P may be viewed as the center of gravity of this distributed
mass. It is easy to prove (see Prop. 24 in [MEQ)] in this generality) the physically obvious
fact that affine maps R — R preserve the formation of center of gravity.

Physical quantities as torsors

It is a reasonable idea that some particular kind of physical quantity, like mass, is a
covariant functor M from the category of spaces to the category of modules over the rig R>(
of non-negative reals; M(X) is the module of possible distributions of mass over the space
X. If P € M(X) is such a mass distribution, we can form its fotal € M(1), by applying the
covariant functor M to the unique map ! : X — 1. We note that M(1) is not a number: M(1)
is not =T (1) = Rsg; M(1) is isomorphic to T (1), but not canonically. An isomorphism
amounts to choosing a unit of mass; then M(1) 2 R>o = T'(1) by an isomorphism which is
linear.

We shall make an explicit theory of why it is that choosing a unit of mass provides an
ismorphism of functors 7 = M.

Let T be a commutative monad on &. Consider another strong endofunctor M on &,
equipped with an action v by T,

v T(M(X)) — M(X)

strongly natural in X, and with v satisfying a unitary and associative law. Then every M (X)
is a T-linear space by virtue of vx : T(M(X)) — M(X), and morphisms of the form M(f)
are T-linear. Let M and M’ be strong endofunctors equipped with such T-actions. There is
an evident notion of when a strong natural transformation A : M = M’ is compatible with
the T-actions, so we have a category of T-actions. The endofunctor T itself is an object in
this category, by virtue of tt. We say that M is a T-torsor if it is isomorphic to T in the
category of T-actions. Note that no particular such isomorphism is chosen.

Our contention is that the category of T-torsors is a mathematical model of (not neces-
sarily pure) quantities M of type T (which is the corresponding pure quantity). Thus if T is
the free R-vector space monad, the functor M which to a space X € & associates the space
of distributions of electric charges® over X, is a T-torsor.

The following Proposition expresses that isomorphisms of actions A : T =2 M are de-
termined by A; : T(1) — M(1); in the example, the latter data means: choosing a unit of
electric charge.

31 take electric charge rather than mass as the kind of physical quantity for this discussion, because then we
have negatives: vector spaces over the ring R rather than over the rig R>¢



Proposition If g and h : T = M are isomorphisms of T-actions, and if gy = h; : T(1) —
M(1), then g = h.

Proof. By replacing 4 by its inverse M — T, it is clear that it suffices to prove thatif p : T —
T is an isomorphism of T-actions, and p; = idy (1), then p is the identity transformation. As
a morphism of T-actions, p is in particular a strong natural transformation, which implies
that right hand square in the following diagram commutes for any X € &’; the left hand
square commutes by assumption on p1:

X1 "

X
Xx1 220 X xT(1) — T(X x1)

= X xpi Pxx1

X x1 X><T(1)7T(X><l)

X xm
Now both the horizontal composites are Ny x 1, by general theory of tensorial strengths. Also
Pxx1 is T-linear. Then uniqueness of T-linear extensions over Ny implies that the right
hand vertical map is the identity map. Using the natural identification of X x 1 with X, we
then also get that py is the identity map of T'(X).
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