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The basis of Functional Analysis is the ability to form function spaces. The categorical
expression for this is: Cartesian Closed Categories. To say that E is Cartesian Closed
means that for X and Y “spaces” (objects in E ), there is a function “space” in E , denoted
Y X “consisting of” maps (in the category E ) from X to Y . More precisely, there is a bijection
(“exponential transposition” or “lambda-conversion”) between maps in E

Z→ Y X

and maps, likewise in E ,
Z×X → Y

and this bijection is to be mediated by an “evaluation” map ev : Y X×X→Y , or equivalently
X×Y X → X .

If further X and Y have some algebraic kind of structure, say vector space structure,
one may form a subspace L(X ,Y ) ⊆ Y X consisting of the those maps X → Y which are
furthermore homomorphisms (“linear”); but the non-linear category is the basic one.

Now the word “space” could mean many other things than “topological space”, one
has e.g. a category of bornological spaces, or of diffeological spaces; these categories are
already Cartesian Closed, whereas if “space” means “manifold”, one needs to extend the
category to get function spaces.

I shall not settle on any specific of these categories of “spaces”, but treat them in a uni-
form way, by a category theoretic/axiomatic exposition. But for motivation, let me mention
two results by Frölicher and Kriegl, [FK] Theorem 5.1.1.

They construct several interesting cartesian closed categories of spaces, let me mention
l∞, a full subcategory of the category of bornological spaces, and Lip∞, a full subcategory
of the category of diffeological spaces. A convenient vector space has canonical structure
of both kinds. So there are forgetful functors (“CVS” means “convenient vector space”, and
also the category of such, with bounded linear maps)

CV S→ l∞ and CV S→ Lip∞.

Both of these forgetful functors have left adjoints, meaning that any l∞ space X embeds in
a universal way into a CVS denoted λ (X), (in this lecture: T (X)) and similarly for Lip∞

spaces.
Composing a pair of adjoint functors category E ↔ E gives rise to an endofunctor T

on E (a monad, in fact). Let me for concreteness describe the endofunctor coming from
the first mentioned adjoint situation: it is the functor T , which to a bornological space X

1Manuscript for talk at DGMP 2011 in Krakow, in honour of Wlodzimierz Tulczyjew
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associates the space T (X) of those functions f : X → R which have the property that the
support of f is countable and bounded (w.r.to the given bornology on X), and such that

∑
x∈X
| f (x)]< ∞.

For X ∈ l∞, the set T (X) of such functions has a natural bornology, and is in fact an l∞

space. It clearly has vector space structure as well; with its a natural bornology, it is even a
CVS. There is a map ηX : X → T (X), sending x ∈ X to δx (value 1 on x, value 0 else). [FK]
prove that this map is universal for bornological maps of X into CVSs.

They also construct a universal map from any Lip∞ space X into a CVS T (X); this
T (X) is constructed by a double dulization procedure, which when X is a smooth manifold is
vector space T (X) of Schwartz distributions of compact support on X , likewise a convenient
vecor space.

In either of the two cases: just because of the universal property of ηT (X) : T (X)→
T (T (X)), there is a (linear) map µX : T (T (X))→ T (X), namely the unique linear CVS map
making the triangle

T (T (X))
µX- T (X)

T (X)

ηT (X)

6

id

-

(1)

commute. The maps ηX and µX are natural in X ∈ E , so we have natural transformations

η : I⇒ T and µ : T ◦T ⇒ T (2)

This is the situation T,η ,µ , (plus one more data, a “strength”, see below) which I shall
describe in general category theoretic terms, in particular, the relationship between T and a
suitable double-dualization construct. Such T provides, under certain assumptions, a “uni-
versal” link between non-linear and linear functional analysis. The endofunctor T : E → E ,
together with the transformations η and µ , constitute a monad, meaning that there is an as-
sociative law for µ and two unitary laws, “η as a two-sided unit for µ . There is a notion of
T -algebra (in the sense of Eilenberg and Moore) for such monad, namely a B ∈ E together
with an ”action” β : T (B)→ B, satisfying an associative and unitary law. For the case we
are interested in, it is better to use the phrase that such β makes B into a T -linear space.
The map µX : T (T (X))→ T (X) makes T (X) into such a T -linear, called the free T -algebra
on X . There is an evident notion of T -homomorphism between T -linear spaces: essentially
a map that preserves the action by T ; see e.g. Borceux’s “Handbook in Cat. Algebra” for
these standard monad theoretic notions.

Henceforth, we consider a Cartesian Closed Category E , and a monad T = (T,η ,µ)
on it. There is one piece more of structure, also present in the quoted Theorem of [FK],
namely a strength or E -enrichment [EK]: not only does T , being a functor, give a map
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homE (X ,Y )→ homE (T (X),T (Y )), but it gives a map between the hom-objects (exponetial
objects) in E ,

Y X → T (Y )T (X), (3)

called the strength or E -enrichment of T . (In the l∞ case, say, the strength follows from
the assertion, likewise in loc. cit., that homE (X ,Y )→ homE (T (X),T (Y )) is a bornological
map.)

The strength of the functor T is assumed to be compatible with η and µ , in a rather
straightforward sense (so (T,η ,µ) is a “strong monad”); but for a moment, we consider
just T , not η or µ . The strength (3) of an endofunctor T : E → E can equivalently, cf.
[K70]. . . [K71b], be encoded in two other forms, the “tensorial” form

t ′′X ,Y : X×T (Y )→ T (X×Y ),

(or its twin sister t ′X ,Y : T (X)×Y → T (X ×Y )) natural in X and Y , and the “cotensorial”
form

λX ,Y : T (Y X )→ T (Y )X ,

likewise natural in X and Y . When E is the category of sets, either of the three manifes-
tations of the strength are automatic; for the basic form (3), this is just because Y X equals
homE (X ,Y ); for the two other forms, let us be explicit. For the tensorial strength, we re-
think X ×Y as a coproduct of X copies of Y , X ×Y =

⊔
x∈X Y . Let inx be the inclusion of

the xth summand in an X-fold coproduct. Then t ′′ is the unique map making the diagram

⊔
x∈X

T (Y )
t ′′X ,Y- T (

⊔
x∈X

Y )

T (Y )

inx
6

T (inx)

-

commute, for all x ∈ X . (The twin sister t ′ comes about similarly by rethinking X ×Y as⊔
y∈Y X). The cotensorial strength is “dual”; rethink Y X as a product of X copies of Y ,

Y X = ∏x∈X Y :

T (∏
x∈X

)Y
λX ,Y- ∏

x∈X
T (Y )

T (Y )

prx

?
T (prx) -

where prx is the projection to the xth factor.
In the category of sets, one knows how to define algebraic structure on a product like

∏X B = BX “coordinatewise”, given algebraic structure on B. For the case of T -linear struc-
ture in the sense of Eilenberg-Moore, say β : T (B)→ B, the combinator λ implies that this
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can be generalized to BX in E with X a space, X ∈ E , namely BX is endowed with the
structure

T (BX )
λX ,B- T (B)X β X

- BX

(recall that (−)X for fixed X is a covariant functor E → E ).
This construction gives us a way to ask when a map f : X ×C→ B is a “T -linear in the

second variable”, provided C = (C,γ) and B = (B,β ) are T -algebras; this is taken to mean
that the exponential transpose of f , which is a map f̂ : C→ BX , is a T -homomorphism, with
the T -algebra structure on BX described above. Similarly, one can make sense to C×X→ B
is a T -homomorphism in the first variable. (These notions of “partial” T -homomorphisms
can also be described in terms of, respectively, t ′C,X and t ′′X ,C, see [K71].)

It is well known how T (X) is a free T -linear space on ηX : X → T (X); given B = (B,β )
a T -linear space, and a map φ : X→ B, the map φ : T (X)→ B given as β ◦T (φ) is a T -linear
map T (X)→ B, and the unique one with φ ◦ηX = φ .

Similarly, if B = (B,β ) is a T -linear space, and φ : X ×Y → B is any map, there is a
unique map φ : T (X)×Y → B which is T -linear in the first variable with φ ◦ (ηX ×Y ) = φ .
It can be described explicitly using t ′X ,Y , or it can be obtained by passing to the exponential
transpose X → BY , and using the T -structure on BY described in terms of λY,B.

We shall have occasion to use the uniqueness assertion in the universal properties thus
described many times.

We can now present a fundamental construction for T -linear spaces B = (B,β ): it gives,
for any X ∈ E a “pairing” map

T (X)×BX 〈−,−〉- B. (4)

The bracket should ideally be decorated by symbols X and (B,β ), and it will be natural in
both these. Ultimately, the pairing will have as a special case that pairing between distribu-
tions and test functions2 which define the notion of (Schwartz-) distribution; in our context,
it is defined as the unique map, T -linear in the first variable, which extends over ηX ×B the
evaluation map ev : X×BX → B, thus the diagram

T (X)×BX 〈−,−〉- B

X× (X t B)

ηX ×B

6

ev

-

(5)

commutes. If T is a commutative monad, see below, the pairing is T -bilinear.
The exponential transpose of the pairing is a map

T (X)
τ- B(BX ), (6)

2the test functios here are not supposed to have bounded support, therefore, the distribution notion will be:
distribution of compacr support.
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which is T -linear, because the pairing is a T -linear in the first variable. (Again, τ ought to
be decorated with symbols X and (B,β ).) Alternatively, τ may be described as the unique
T -linear map with τ ◦ηX = δ , where δ is the standard embedding into double dual, (x ∈
X maps to “evaluation at x”, in set theoretic terms). – The codomain of τ is a “double
dualization” construction. Such will appear quite often in the following, and it is clearly
typographically inconvenient with the exponential notation; an on-line notation is to be
preferred, and we shall use one such (used e.g. in [HW]), namely

X t Y := Y X .

Thus, τ (for given X and B = (B,β )) is a map (T -homomorphism, in fact, by construction)

T (X)
τ- (X t B) t B. (7)

It is natural in X ; note that the codomain is the value on X of the covariant functor (− t
B) t B; it is covariant, being the composite of two contravariant ones (− t B).

Remark. One way to interpret τ , for E the category of sets is: P ∈ T (X) is a name for
an X-ary operation on T -algebras; τ(P) ∈ (X t B) t B is the X-ary operation on B named
by P: τ(P) is an X-ary operation on B, since it is a map X t B→ B, thus a construction
which to X-tuples of elements in B returns single elements of B. Thus if “algebra” means
“commutative ring”, T (X) is the set of formal polynomials in variables from X , and τ itself
returns to such a polynomial P the polynomial function X t B→ B to which P gives rise,
for B is a commutative ring. Here, the word T -linear is misleading; this is because T here
is not a commutative monad, in the sense to be described.

Thus, τ itself is: “semantics”.

Let A= (A,α) and B= (B,β ) be T -linear spaces. Under a weak completeness condition
on E (existence of equalizers), one can describe a subobject A tT B of A t B, consisting
of those maps A→ B which happen to be T -linear. Recall that a T -linear structure on B
gives rise to a T -linear structure on X t B for any X . In particular, A t B inherits a T -linear
structure from that of B. But A tT B ⊆ A t B need not be a T -linear subspace. It is a a
T -linear subspace, if T is what is called a commutative monad, [K70], [K71], [K71b]. In
particular, the subobject,

(X t B) tT B⊆ (X t B) t B

is a sub-T -linear space. Therefore, since δ : X → (X t B) t B in any case factors through
the subobject (X t B) tT B, it follows that, for T is commutative, τ factors through (X t
B) tT B, so that we have

T (B)
τ- (X t B) tT B, (8)

(and it is T -linear since the original τ was so).

Remark continued. Recall that when E is the category of sets, the values of τ are the
“operations” on T -algebras; so commutativity of T thus implies (in fact, is equivalent to)
the assertion “the operations of T are themselves T -homomorphisms”. This is a classical
notion of commutativity in universal algebra.
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Example. If E is the category Lip∞, and T the free-convenient vector space monad of [FK],
then R is T (1), in particular, it is a T -algebra. Then for a [paracompact] manifold X (which
may be considered as an object of E ), X t R is the CVS of smooth R-valued functions on
X ; the space (X t R) t R of smooth maps X t R→ R is a (quite unwieldy) convenient
vector space, but the subspace of the linear smooth maps X t R→ R is the convenient
vector space of (compactly supported) Schwartz distributions on X , cf. [FK] (with (X t R
the CVS of (unbounded) test functions; and the τ of (8) is in this case an isomorphism, cf.
[FK]).

If X is a more general Lip∞-space, τ may not be an isomorphism, but it does make
T (X) a subspace of (X tR)tT R, in fact, [FK] construct T (X), with the requisite universal
property, as a subspace of (X t R) tT R.

Tensor products and convolution

The contention is that many aspects of distribution theory live already at the level of the
monad T , independent of its relationship to the double-dualization construction, which is
a 20th century sophistication (Schwartz distributions), whereas T embodies a more funda-
mental notion of “extensive quantity”, e.g. with T (X) (a mathematical model of) the vector
space of distributions of electric charge over the space X .

It is well known that for Schwartz distributions, we have notions of tensor product, and
convolution. They exist at the level of the monad T , provided T is commutative (and it is
preserved by the canonical comparison τ with “Schwartz distributions”).

Recall that we have the tensorial strength, natural in X and Y ,

t ′′ : X×T (Y )→ T (X×Y ).

By the universal property quoted above, it extend in a unque way over ηX ×T (Y ) to a map
T (X)×T (Y )→ T (X ×Y ) to a map which is a T -homomorphism in the first variable; the
extended map we call ⊗X ,Y or just ⊗; thus, we have a commutative

T (X)×T (Y )
⊗- T (X×Y )

X×T (Y )

ηX ×T (Y )

6

t ′′

-

with ⊗ a T -homomorphism in the first variable. If T is commutative, one can prove that ⊗
is also a T -homomorphism in the second variable. With some simple properties on T to be
quoted in a moment, it will follow that R := T (1)3 carries structure of commutative ring,
that T -algebras in particular are R-modules, and T -linear maps R-linear.

One might instead use t ′ and construct a⊗ : T (X)×T (Y )→ T (X×Y ), which is T -linear
in the second variable. We proved in [K70]. . . that ⊗=⊗ is equivalent to commutativity of
the monad. (The equation that⊗=⊗ agree as maps T (X)×T (Y )→ T (X×Y ) is essentially

3here, 1 denotes the terminal object of E ; the “one point space”
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Fubini’s Theorem, for the case of compact Schwartz distribution on a manifold.) Also we
proved in loc. cit. that commutativity of T is equivalent to bilinearity of the map ⊗, for all
X and Y .

We shall henceforth assume henceforth that T is a commutative monad, so that in partic-
ular we have the T -bilinear map⊗ : T (X)×T (Y )→ T (X×Y ) (natural in X and Y ). Then if
M is a space with a monoid structure, m : M×M→M, we get a multiplication “convolution
along m” on T (M); it is the composite map

T (M)×T (M)
⊗- T (M×M)

T (m)- T (M). (9)

It will actually be a monoid structure again, and will be commutative if m is so.
Similarly, if the monoid M acts on a space X by a : M×X → X , we will get an action of

T (M) on T (X), which is unitary and associative if a is so.
We have in particular a unique (and trivial) monoid structure on the space 1. Convolution

along this unique 1× 1→ 1 yields a monoid structure in T (1), written ·; this monoid will
play the role of (the multiplicative monoid of the ring of) scalars, and we denote it R. In
both the specific examples quoted from [FK], it will be R.

Since the trivial monoid 1 acts uniquely (and trivially) on any space X , we get an (uni-
tary and associative) action of the monoid R = T (1) on the space T (X). Any T -linear
map f : T (X)→ T (Y ) will be equivariant for this action; this is clear for f of the form
T (φ) where φ : X → Y ; for general T -linear f : T (X)→ T (Y ), an argument is needed,
see [MEQ] Proposition 11 for an even more general result; or observe that the two maps
T (X)×T (1)→ T (Y ) to be compared are both T -bilinear, so that it suffices to check that
their precomposition with ηX ×η1 agree, and this is easy.

If M → M′ is a monoid homomorphism, it follows from the naturality of ⊗ that the
induced map T (M)→ T (M′) is a homomorphism with respect to the respective convolution
structures. In particular, the unique map ! : M→ 1 (=the terminal object of E ) is trivially a
monoid homomorphism, and it induces a monoid homomorphism T (M)→ T (1) = R.

For any P ∈ T (X), we have a scalar ∈ R associated, the total of P, namely: apply
T (!) : T (X)→ T (1) =R to P. From naturality of⊗ follows that for P∈ T (X) and Q∈ T (Y ),
the total of P⊗Q ∈ T (X×Y ) is the product in the monoid R of the totals of P and Q.

Extensive quantities

According to Lawvere, a mathematical model, which makes aspects of the physical and
philosophical notion of extensive quantity explicit, is: it is a covariant functor from a carte-
sian closed category into an additive category, with certain properties.

We show here that if a commutative monad T on a cartesian closed category E has a
certain property, then the Kleisli category Kl(T ) for T , i.e. category of free T -algebras,
with its T -linear maps, is such a category, and the functor T (viewed as a functor E →
Kl(T )), satisfies the properties stated by Lawvere. The category Kl(T ) is in fact an additive
subcategory of the category of modules over the rig R (rig = commutative semiring). (I don’t
know in general when Kl(T ) is in fact a full subcategory of the, likewise additive, category
of T -algebras.)
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According to Kant, a quantity is extensive, provided the concept of its parts is condition
for the concept of the whole quantity. We read this here in over-simplified form: if X =
X1 +X2 (making X a disjoint union of two parts), then a quantity P distributed over X , i.e.
a P ∈ T (X), is conditioned (= given) by its parts, i.e. by a pair (P1,P2) with Pi distributed
over Xi, i.e. with P1 ∈ T (X1) and P2 ∈ T (X2); so there is a bijection

T (X1 +X2)∼= T (X1)×T (X2);

To make this precise, one has to describe how the isomorphism here is obtained, in terms of
the functorality of T : E → E .

This is rather straightforward, and it is probably known since early days of category
theory. Most recently, it was (re-) discovered by Coumans and Jacobs 2010 [CJ], and by
myself [K11]. The short story is that one has to assume, first that T ( /0) = 1 (where /0 is the
initial object of E , “the empty space”); this makes 1 into a zero object in Kl(T ). Secondly,
using the zero object, one can construct a natural map T (X +Y )→ T (X)×T (Y ), and the
property is then the assumption that this map is invertible. When this is the case, Kl(T ) has
biproducts T (X)⊕ T (Y ) = T (X +Y ), and therefore becomes an additive category; so all
objects in Kl(T ) are abelian monoid objects (in Kl(T ) as well as in E ); and T -linear maps
T (X)→ T (Y ) preserve the additive structure

In particular, R := T (1) carries such structure, denoted +, and from T -bilinearity of
the multiplication · : R×R→ R already described, it follows that this multiplication is bi-
additive, so R with + and · is a commutative rig4. Likewise, the multiplicative action of
R on objects of the form T (X) is T -bilinear, hence bi-additive, so any T (X) carries R-
module structure, and T -linear maps between such are R-linear. (I don’t know under which
conditions the converse holds.)

Extensive quantities on R

For any space X , we have the space T (X) of extensive quantities on X . The case where X
is R itself (or, more generally, Rn), the extensive quantities on it have special significances,
and a rich structure. One significance is that random variables (on an arbitrary outcome
space) have probability distributions which may be construed as elements of T (R) with
total 1. Among the important structures on T (R) is the convolution ∗ along the addition
map + : R×R→ R (which in the particular case of random variables gives the probability
distribution of a sum of two independent random variables).

There are also certain scalars ∈ R associated to a P ∈ T (R). The most important is
〈P, idR〉, which for the case of probability distributions deserves the name expectation of P;
let us denote it E(P) ∈ R. So E is a map T (R)→ R, and it is T -linear since the pairing
T (X)× (X t R)→ R is T -linear in the first variable. If X = R, then it is easy to see that

〈ηR(r), idx〉= r

for any r ∈ R, so E(ηR(r)) = r, or E ◦ ηR = idR. (You may want to view ηR(r) as the
probability distribution of a random variable whose value is r with certainty; in this verbal
garbe, the equation says that the expectation of such a random variable is r.)

4“rig” means commutative semiring”, i.e. like commutative ring, but not necessarily with “minus” (negatives),
hence the missing “n”
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Now, the very construction of pairing (4) depends on a T -algebra structure β : T (B)→ B
on the codomain B; in the case at hand, B = R = T (1), and β : T (R)→ R is µ1 : T 2(1)→
T (1). Recall that µX in general was constructed as the unique T -linear extension over
ηT (X) of the identity map on T (X). In particular, µ1 ◦ηR is the identity map on R. By the
uniqueness of T -linear extensions over η , we conclude that E = µ1 as maps T (R)→ R.

If P∈ T (R) has that its total λ is an invertible element in the multiplicative monoid of R,
it may be viewed as (a mathematical model of) a distribution of mass on the line R, and in
this case λ−1 times the total of P may be viewed as the center of gravity of this distributed
mass. It is easy to prove (see Prop. 24 in [MEQ] in this generality) the physically obvious
fact that affine maps R→ R preserve the formation of center of gravity.

Physical quantities as torsors

It is a reasonable idea that some particular kind of physical quantity, like mass, is a
covariant functor M from the category of spaces to the category of modules over the rig R≥0
of non-negative reals; M(X) is the module of possible distributions of mass over the space
X . If P ∈M(X) is such a mass distribution, we can form its total ∈M(1), by applying the
covariant functor M to the unique map ! : X → 1. We note that M(1) is not a number: M(1)
is not = T (1) = R≥0; M(1) is isomorphic to T (1), but not canonically. An isomorphism
amounts to choosing a unit of mass; then M(1)∼= R≥0 = T (1) by an isomorphism which is
linear.

We shall make an explicit theory of why it is that choosing a unit of mass provides an
ismorphism of functors T ∼= M.

Let T be a commutative monad on E . Consider another strong endofunctor M on E ,
equipped with an action ν by T ,

ν : T (M(X))→M(X)

strongly natural in X , and with ν satisfying a unitary and associative law. Then every M(X)
is a T -linear space by virtue of νX : T (M(X))→M(X), and morphisms of the form M( f )
are T -linear. Let M and M′ be strong endofunctors equipped with such T -actions. There is
an evident notion of when a strong natural transformation λ : M⇒M′ is compatible with
the T -actions, so we have a category of T -actions. The endofunctor T itself is an object in
this category, by virtue of µ . We say that M is a T -torsor if it is isomorphic to T in the
category of T -actions. Note that no particular such isomorphism is chosen.

Our contention is that the category of T -torsors is a mathematical model of (not neces-
sarily pure) quantities M of type T (which is the corresponding pure quantity). Thus if T is
the free R-vector space monad, the functor M which to a space X ∈ E associates the space
of distributions of electric charges5 over X , is a T -torsor.

The following Proposition expresses that isomorphisms of actions λ : T ∼= M are de-
termined by λ1 : T (1)→ M(1); in the example, the latter data means: choosing a unit of
electric charge.

5I take electric charge rather than mass as the kind of physical quantity for this discussion, because then we
have negatives: vector spaces over the ring R rather than over the rig R≥0
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Proposition If g and h : T ⇒ M are isomorphisms of T -actions, and if g1 = h1 : T (1)→
M(1), then g = h.

Proof. By replacing h by its inverse M→ T , it is clear that it suffices to prove that if ρ : T →
T is an isomorphism of T -actions, and ρ1 = idT (1), then ρ is the identity transformation. As
a morphism of T -actions, ρ is in particular a strong natural transformation, which implies
that right hand square in the following diagram commutes for any X ∈ E ; the left hand
square commutes by assumption on ρ1:

X×1
X×η1- X×T (1)

t ′′- T (X×1)

X×1

=

?

X×η1

- X×T (1)

X×ρ1

?

t ′′
- T (X×1)

ρX×1

?

Now both the horizontal composites are ηX×1, by general theory of tensorial strengths. Also
ρX×1 is T -linear. Then uniqueness of T -linear extensions over ηX×1 implies that the right
hand vertical map is the identity map. Using the natural identification of X ×1 with X , we
then also get that ρX is the identity map of T (X).
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