# Extensive quantities and monads ${ }^{1}$ 

## Anders Kock

University of Aarhus

The basis of Functional Analysis is the ability to form function spaces. The categorical expression for this is: Cartesian Closed Categories. To say that $\mathscr{E}$ is Cartesian Closed means that for $X$ and $Y$ "spaces" (objects in $\mathscr{E}$ ), there is a function "space" in $\mathscr{E}$, denoted $Y^{X}$ "consisting of" maps (in the category $\mathscr{E}$ ) from $X$ to $Y$. More precisely, there is a bijection ("exponential transposition" or "lambda-conversion") between maps in $\mathscr{E}$

$$
Z \rightarrow Y^{X}
$$

and maps, likewise in $\mathscr{E}$,

$$
Z \times X \rightarrow Y
$$

and this bijection is to be mediated by an "evaluation" map $e v: Y^{X} \times X \rightarrow Y$, or equivalently $X \times Y^{X} \rightarrow X$.

If further $X$ and $Y$ have some algebraic kind of structure, say vector space structure, one may form a subspace $L(X, Y) \subseteq Y^{X}$ consisting of the those maps $X \rightarrow Y$ which are furthermore homomorphisms ("linear"); but the non-linear category is the basic one.

Now the word "space" could mean many other things than "topological space", one has e.g. a category of bornological spaces, or of diffeological spaces; these categories are already Cartesian Closed, whereas if "space" means "manifold", one needs to extend the category to get function spaces.

I shall not settle on any specific of these categories of "spaces", but treat them in a uniform way, by a category theoretic/axiomatic exposition. But for motivation, let me mention two results by Frölicher and Kriegl, [FK] Theorem 5.1.1.

They construct several interesting cartesian closed categories of spaces, let me mention $\underline{l}^{\infty}$, a full subcategory of the category of bornological spaces, and Lip ${ }^{\infty}$, a full subcategory of the category of diffeological spaces. A convenient vector space has canonical structure of both kinds. So there are forgetful functors ("CVS" means "convenient vector space", and also the category of such, with bounded linear maps)

$$
C V S \rightarrow \underline{l}^{\infty} \quad \text { and } \quad C V S \rightarrow \text { Lip }^{\infty}
$$

Both of these forgetful functors have left adjoints, meaning that any $l^{\infty}$ space $X$ embeds in a universal way into a CVS denoted $\lambda(X)$, (in this lecture: $T(X)$ ) and similarly for $L i p^{\infty}$ spaces.

Composing a pair of adjoint functors category $\mathscr{E} \leftrightarrow \mathscr{E}$ gives rise to an endofunctor $T$ on $\mathscr{E}$ (a monad, in fact). Let me for concreteness describe the endofunctor coming from the first mentioned adjoint situation: it is the functor $T$, which to a bornological space $X$

[^0]associates the space $T(X)$ of those functions $f: X \rightarrow \mathbb{R}$ which have the property that the support of $f$ is countable and bounded (w.r.to the given bornology on $X$ ), and such that
$$
\left.\sum_{x \in X} \mid f(x)\right]<\infty .
$$

For $X \in \underline{l}^{\infty}$, the set $T(X)$ of such functions has a natural bornology, and is in fact an $\underline{l}^{\infty}$ space. It clearly has vector space structure as well; with its a natural bornology, it is even a CVS. There is a map $\eta_{X}: X \rightarrow T(X)$, sending $x \in X$ to $\delta_{x}$ (value 1 on $x$, value 0 else). [FK] prove that this map is universal for bornological maps of $X$ into CVSs.

They also construct a universal map from any $L i p^{\infty}$ space $X$ into a CVS $T(X)$; this $T(X)$ is constructed by a double dulization procedure, which when $X$ is a smooth manifold is vector space $T(X)$ of Schwartz distributions of compact support on $X$, likewise a convenient vecor space.

In either of the two cases: just because of the universal property of $\eta_{T(X)}: T(X) \rightarrow$ $T(T(X))$, there is a (linear) map $\mu_{X}: T(T(X)) \rightarrow T(X)$, namely the unique linear CVS map making the triangle

commute. The maps $\eta_{X}$ and $\mu_{X}$ are natural in $X \in \mathscr{E}$, so we have natural transformations

$$
\begin{equation*}
\eta: I \Rightarrow T \quad \text { and } \quad \mu: T \circ T \Rightarrow T \tag{2}
\end{equation*}
$$

This is the situation $T, \eta, \mu$, (plus one more data, a "strength", see below) which I shall describe in general category theoretic terms, in particular, the relationship between $T$ and a suitable double-dualization construct. Such $T$ provides, under certain assumptions, a "universal" link between non-linear and linear functional analysis. The endofunctor $T: \mathscr{E} \rightarrow \mathscr{E}$, together with the transformations $\eta$ and $\mu$, constitute a monad, meaning that there is an associative law for $\mu$ and two unitary laws, " $\eta$ as a two-sided unit for $\mu$. There is a notion of $T$-algebra (in the sense of Eilenberg and Moore) for such monad, namely a $B \in \mathscr{E}$ together with an "action" $\beta: T(B) \rightarrow B$, satisfying an associative and unitary law. For the case we are interested in, it is better to use the phrase that such $\beta$ makes $B$ into a $T$-linear space. The map $\mu_{X}: T(T(X)) \rightarrow T(X)$ makes $T(X)$ into such a $T$-linear, called the free $T$-algebra on $X$. There is an evident notion of $T$-homomorphism between $T$-linear spaces: essentially a map that preserves the action by $T$; see e.g. Borceux's "Handbook in Cat. Algebra" for these standard monad theoretic notions.

Henceforth, we consider a Cartesian Closed Category $\mathscr{E}$, and a monad $T=(T, \eta, \mu)$ on it. There is one piece more of structure, also present in the quoted Theorem of [FK], namely a strength or $\mathscr{E}$-enrichment [EK]: not only does $T$, being a functor, give a map
$\operatorname{hom}_{\mathscr{E}}(X, Y) \rightarrow \operatorname{hom}_{\mathscr{E}}(T(X), T(Y))$, but it gives a map between the hom-objects (exponetial objects) in $\mathscr{E}$,

$$
\begin{equation*}
Y^{X} \rightarrow T(Y)^{T(X)} \tag{3}
\end{equation*}
$$

called the strength or $\mathscr{E}$-enrichment of $T$. (In the $\underline{l}^{\infty}$ case, say, the strength follows from the assertion, likewise in loc. cit., that $\operatorname{hom}_{\mathscr{E}}(X, Y) \rightarrow \operatorname{hom}_{\mathscr{E}}(T(X), T(Y))$ is a bornological map.)

The strength of the functor $T$ is assumed to be compatible with $\eta$ and $\mu$, in a rather straightforward sense (so $(T, \eta, \mu)$ is a "strong monad"); but for a moment, we consider just $T$, not $\eta$ or $\mu$. The strength (3) of an endofunctor $T: \mathscr{E} \rightarrow \mathscr{E}$ can equivalently, cf. [K70]... [K71b], be encoded in two other forms, the "tensorial" form

$$
t_{X, Y}^{\prime \prime}: X \times T(Y) \rightarrow T(X \times Y)
$$

(or its twin sister $t_{X, Y}^{\prime}: T(X) \times Y \rightarrow T(X \times Y)$ ) natural in $X$ and $Y$, and the "cotensorial" form

$$
\lambda_{X, Y}: T\left(Y^{X}\right) \rightarrow T(Y)^{X}
$$

likewise natural in $X$ and $Y$. When $\mathscr{E}$ is the category of sets, either of the three manifestations of the strength are automatic; for the basic form (3), this is just because $Y^{X}$ equals $\operatorname{hom}_{\mathscr{E}}(X, Y)$; for the two other forms, let us be explicit. For the tensorial strength, we rethink $X \times Y$ as a coproduct of $X$ copies of $Y, X \times Y=\bigsqcup_{x \in X} Y$. Let $i n_{x}$ be the inclusion of the $x$ th summand in an $X$-fold coproduct. Then $t^{\prime \prime}$ is the unique map making the diagram

commute, for all $x \in X$. (The twin sister $t^{\prime}$ comes about similarly by rethinking $X \times Y$ as $\left.\bigsqcup_{y \in Y} X\right)$. The cotensorial strength is "dual"; rethink $Y^{X}$ as a product of $X$ copies of $Y$, $Y^{X}=\prod_{x \in X} Y$ :

where $p r_{x}$ is the projection to the $x$ th factor.
In the category of sets, one knows how to define algebraic structure on a product like $\Pi_{X} B=B^{X}$ "coordinatewise", given algebraic structure on $B$. For the case of $T$-linear structure in the sense of Eilenberg-Moore, say $\beta: T(B) \rightarrow B$, the combinator $\lambda$ implies that this
can be generalized to $B^{X}$ in $\mathscr{E}$ with $X$ a space, $X \in \mathscr{E}$, namely $B^{X}$ is endowed with the structure

$$
T\left(B^{X}\right) \xrightarrow{\lambda_{X, B}} T(B)^{X} \xrightarrow{\beta^{X}} B^{X}
$$

(recall that $(-)^{X}$ for fixed $X$ is a covariant functor $\mathscr{E} \rightarrow \mathscr{E}$ ).
This construction gives us a way to ask when a map $f: X \times C \rightarrow B$ is a " $T$-linear in the second variable", provided $C=(C, \gamma)$ and $B=(B, \beta)$ are $T$-algebras; this is taken to mean that the exponential transpose of $f$, which is a map $\hat{f}: C \rightarrow B^{X}$, is a $T$-homomorphism, with the $T$-algebra structure on $B^{X}$ described above. Similarly, one can make sense to $C \times X \rightarrow B$ is a $T$-homomorphism in the first variable. (These notions of "partial" $T$-homomorphisms can also be described in terms of, respectively, $t_{C, X}^{\prime}$ and $t_{X, C}^{\prime \prime}$, see [K71].)

It is well known how $T(X)$ is a free $T$-linear space on $\eta_{X}: X \rightarrow T(X)$; given $B=(B, \beta)$ a $T$-linear space, and a map $\phi: X \rightarrow B$, the map $\bar{\phi}: T(X) \rightarrow B$ given as $\beta \circ T(\phi)$ is a $T$-linear map $T(X) \rightarrow B$, and the unique one with $\bar{\phi} \circ \eta_{X}=\phi$.

Similarly, if $B=(B, \beta)$ is a $T$-linear space, and $\phi: X \times Y \rightarrow B$ is any map, there is a unique map $\bar{\phi}: T(X) \times Y \rightarrow B$ which is $T$-linear in the first variable with $\bar{\phi} \circ\left(\eta_{X} \times Y\right)=\phi$. It can be described explicitly using $t_{X, Y}^{\prime}$, or it can be obtained by passing to the exponential transpose $X \rightarrow B^{Y}$, and using the $T$-structure on $B^{Y}$ described in terms of $\lambda_{Y, B}$.

We shall have occasion to use the uniqueness assertion in the universal properties thus described many times.

We can now present a fundamental construction for $T$-linear spaces $B=(B, \beta)$ : it gives, for any $X \in \mathscr{E}$ a "pairing" map

$$
\begin{equation*}
T(X) \times B^{X} \xrightarrow{\langle-,-\rangle} B \tag{4}
\end{equation*}
$$

The bracket should ideally be decorated by symbols $X$ and $(B, \beta)$, and it will be natural in both these. Ultimately, the pairing will have as a special case that pairing between distributions and test functions ${ }^{2}$ which define the notion of (Schwartz-) distribution; in our context, it is defined as the unique map, $T$-linear in the first variable, which extends over $\eta_{X} \times B$ the evaluation map $e v: X \times B^{X} \rightarrow B$, thus the diagram

commutes. If $T$ is a commutative monad, see below, the pairing is $T$-bilinear.
The exponential transpose of the pairing is a map

$$
\begin{equation*}
T(X) \xrightarrow{\tau} B^{\left(B^{X}\right)}, \tag{6}
\end{equation*}
$$

[^1]which is $T$-linear, because the pairing is a $T$-linear in the first variable. (Again, $\tau$ ought to be decorated with symbols $X$ and $(B, \beta)$.) Alternatively, $\tau$ may be described as the unique $T$-linear map with $\tau \circ \eta_{X}=\delta$, where $\delta$ is the standard embedding into double dual, ( $x \in$ $X$ maps to "evaluation at $x$ ", in set theoretic terms). - The codomain of $\tau$ is a "double dualization" construction. Such will appear quite often in the following, and it is clearly typographically inconvenient with the exponential notation; an on-line notation is to be preferred, and we shall use one such (used e.g. in [HW]), namely
$$
X \pitchfork Y:=Y^{X}
$$

Thus, $\tau$ (for given $X$ and $B=(B, \beta)$ ) is a map ( $T$-homomorphism, in fact, by construction)

$$
\begin{equation*}
T(X) \xrightarrow{\tau}(X \pitchfork B) \pitchfork B . \tag{7}
\end{equation*}
$$

It is natural in $X$; note that the codomain is the value on $X$ of the covariant functor ( $-\pitchfork$ $B) \pitchfork B$; it is covariant, being the composite of two contravariant ones $(-\pitchfork B)$.
Remark. One way to interpret $\tau$, for $\mathscr{E}$ the category of sets is: $P \in T(X)$ is a name for an $X$-ary operation on $T$-algebras; $\tau(P) \in(X \pitchfork B) \pitchfork B$ is the $X$-ary operation on $B$ named by $P: \tau(P)$ is an $X$-ary operation on $B$, since it is a map $X \pitchfork B \rightarrow B$, thus a construction which to $X$-tuples of elements in $B$ returns single elements of $B$. Thus if "algebra" means "commutative ring", $T(X)$ is the set of formal polynomials in variables from $X$, and $\tau$ itself returns to such a polynomial $P$ the polynomial function $X \pitchfork B \rightarrow B$ to which $P$ gives rise, for $B$ is a commutative ring. Here, the word $T$-linear is misleading; this is because $T$ here is not a commutative monad, in the sense to be described.

Thus, $\tau$ itself is: "semantics".
Let $A=(A, \alpha)$ and $B=(B, \beta)$ be $T$-linear spaces. Under a weak completeness condition on $\mathscr{E}$ (existence of equalizers), one can describe a subobject $A \pitchfork_{T} B$ of $A \pitchfork B$, consisting of those maps $A \rightarrow B$ which happen to be $T$-linear. Recall that a $T$-linear structure on $B$ gives rise to a $T$-linear structure on $X \pitchfork B$ for any $X$. In particular, $A \pitchfork B$ inherits a $T$-linear structure from that of $B$. But $A \pitchfork_{T} B \subseteq A \pitchfork B$ need not be a $T$-linear subspace. It is a a $T$-linear subspace, if $T$ is what is called a commutative monad, [K70], [K71], [K71b]. In particular, the subobject,

$$
(X \pitchfork B) \pitchfork_{T} B \subseteq(X \pitchfork B) \pitchfork B
$$

is a sub- $T$-linear space. Therefore, since $\delta: X \rightarrow(X \pitchfork B) \pitchfork B$ in any case factors through the subobject $(X \pitchfork B) \pitchfork_{T} B$, it follows that, for $T$ is commutative, $\tau$ factors through ( $X \pitchfork$ $B) \pitchfork_{T} B$, so that we have

$$
\begin{equation*}
T(B) \xrightarrow{\tau}(X \pitchfork B) \pitchfork_{T} B \tag{8}
\end{equation*}
$$

(and it is $T$-linear since the original $\tau$ was so).
Remark continued. Recall that when $\mathscr{E}$ is the category of sets, the values of $\tau$ are the "operations" on $T$-algebras; so commutativity of $T$ thus implies (in fact, is equivalent to) the assertion "the operations of $T$ are themselves $T$-homomorphisms". This is a classical notion of commutativity in universal algebra.

Example. If $\mathscr{E}$ is the category Lip $^{\infty}$, and $T$ the free-convenient vector space monad of [FK], then $\mathbb{R}$ is $T(1)$, in particular, it is a $T$-algebra. Then for a [paracompact] manifold $X$ (which may be considered as an object of $\mathscr{E}$ ), $X \pitchfork \mathbb{R}$ is the CVS of smooth $\mathbb{R}$-valued functions on $X$; the space $(X \pitchfork \mathbb{R}) \pitchfork \mathbb{R}$ of smooth maps $X \pitchfork \mathbb{R} \rightarrow \mathbb{R}$ is a (quite unwieldy) convenient vector space, but the subspace of the linear smooth maps $X \pitchfork \mathbb{R} \rightarrow \mathbb{R}$ is the convenient vector space of (compactly supported) Schwartz distributions on $X$, cf. [FK] (with ( $X \pitchfork \mathbb{R}$ the CVS of (unbounded) test functions; and the $\tau$ of (8) is in this case an isomorphism, cf. [FK]).

If $X$ is a more general Lip $^{\infty}$-space, $\tau$ may not be an isomorphism, but it does make $T(X)$ a subspace of $(X \pitchfork \mathbb{R}) \pitchfork_{T} \mathbb{R}$, in fact, [FK] construct $T(X)$, with the requisite universal property, as a subspace of $(X \pitchfork \mathbb{R}) \pitchfork_{T} \mathbb{R}$.

## Tensor products and convolution

The contention is that many aspects of distribution theory live already at the level of the monad $T$, independent of its relationship to the double-dualization construction, which is a 20th century sophistication (Schwartz distributions), whereas $T$ embodies a more fundamental notion of "extensive quantity", e.g. with $T(X)$ (a mathematical model of) the vector space of distributions of electric charge over the space $X$.

It is well known that for Schwartz distributions, we have notions of tensor product, and convolution. They exist at the level of the monad $T$, provided $T$ is commutative (and it is preserved by the canonical comparison $\tau$ with "Schwartz distributions").

Recall that we have the tensorial strength, natural in $X$ and $Y$,

$$
t^{\prime \prime}: X \times T(Y) \rightarrow T(X \times Y)
$$

By the universal property quoted above, it extend in a unque way over $\eta_{X} \times T(Y)$ to a map $T(X) \times T(Y) \rightarrow T(X \times Y)$ to a map which is a $T$-homomorphism in the first variable; the extended map we call $\otimes_{X, Y}$ or just $\otimes$; thus, we have a commutative

with $\otimes$ a $T$-homomorphism in the first variable. If $T$ is commutative, one can prove that $\otimes$ is also a $T$-homomorphism in the second variable. With some simple properties on $T$ to be quoted in a moment, it will follow that $R:=T(1)^{3}$ carries structure of commutative ring, that $T$-algebras in particular are $R$-modules, and $T$-linear maps $R$-linear.

One might instead use $t^{\prime}$ and construct a $\bar{\otimes}: T(X) \times T(Y) \rightarrow T(X \times Y)$, which is $T$-linear in the second variable. We proved in [K70]... that $\otimes=\bar{\otimes}$ is equivalent to commutativity of the monad. (The equation that $\otimes=\bar{\otimes}$ agree as maps $T(X) \times T(Y) \rightarrow T(X \times Y)$ is essentially

[^2]Fubini's Theorem, for the case of compact Schwartz distribution on a manifold.) Also we proved in loc. cit. that commutativity of $T$ is equivalent to bilinearity of the map $\otimes$, for all $X$ and $Y$.

We shall henceforth assume henceforth that $T$ is a commutative monad, so that in particular we have the $T$-bilinear map $\otimes: T(X) \times T(Y) \rightarrow T(X \times Y)$ (natural in $X$ and $Y$ ). Then if $M$ is a space with a monoid structure, $m: M \times M \rightarrow M$, we get a multiplication "convolution along $m$ " on $T(M)$; it is the composite map

$$
\begin{equation*}
T(M) \times T(M) \xrightarrow{\otimes} T(M \times M) \xrightarrow{T(m)} T(M) \tag{9}
\end{equation*}
$$

It will actually be a monoid structure again, and will be commutative if $m$ is so.
Similarly, if the monoid $M$ acts on a space $X$ by $a: M \times X \rightarrow X$, we will get an action of $T(M)$ on $T(X)$, which is unitary and associative if $a$ is so.

We have in particular a unique (and trivial) monoid structure on the space 1. Convolution along this unique $1 \times 1 \rightarrow 1$ yields a monoid structure in $T(1)$, written $\cdot$; this monoid will play the role of (the multiplicative monoid of the ring of) scalars, and we denote it $R$. In both the specific examples quoted from [FK], it will be $\mathbb{R}$.

Since the trivial monoid 1 acts uniquely (and trivially) on any space $X$, we get an (unitary and associative) action of the monoid $R=T(1)$ on the space $T(X)$. Any $T$-linear map $f: T(X) \rightarrow T(Y)$ will be equivariant for this action; this is clear for $f$ of the form $T(\phi)$ where $\phi: X \rightarrow Y$; for general $T$-linear $f: T(X) \rightarrow T(Y)$, an argument is needed, see [MEQ] Proposition 11 for an even more general result; or observe that the two maps $T(X) \times T(1) \rightarrow T(Y)$ to be compared are both $T$-bilinear, so that it suffices to check that their precomposition with $\eta_{X} \times \eta_{1}$ agree, and this is easy.

If $M \rightarrow M^{\prime}$ is a monoid homomorphism, it follows from the naturality of $\otimes$ that the induced map $T(M) \rightarrow T\left(M^{\prime}\right)$ is a homomorphism with respect to the respective convolution structures. In particular, the unique map $!: M \rightarrow 1$ (=the terminal object of $\mathscr{E}$ ) is trivially a monoid homomorphism, and it induces a monoid homomorphism $T(M) \rightarrow T(1)=R$.

For any $P \in T(X)$, we have a scalar $\in R$ associated, the total of $P$, namely: apply $T(!): T(X) \rightarrow T(1)=R$ to $P$. From naturality of $\otimes$ follows that for $P \in T(X)$ and $Q \in T(Y)$, the total of $P \otimes Q \in T(X \times Y)$ is the product in the monoid $R$ of the totals of $P$ and $Q$.

## Extensive quantities

According to Lawvere, a mathematical model, which makes aspects of the physical and philosophical notion of extensive quantity explicit, is: it is a covariant functor from a cartesian closed category into an additive category, with certain properties.

We show here that if a commutative monad $T$ on a cartesian closed category $\mathscr{E}$ has a certain property, then the Kleisli category $K l(T)$ for $T$, i.e. category of free $T$-algebras, with its $T$-linear maps, is such a category, and the functor $T$ (viewed as a functor $\mathscr{E} \rightarrow$ $K l(T)$ ), satisfies the properties stated by Lawvere. The category $K l(T)$ is in fact an additive subcategory of the category of modules over the rig $R$ (rig = commutative semiring). (I don't know in general when $K l(T)$ is in fact a full subcategory of the, likewise additive, category of $T$-algebras.)

According to Kant, a quantity is extensive, provided the concept of its parts is condition for the concept of the whole quantity. We read this here in over-simplified form: if $X=$ $X_{1}+X_{2}$ (making $X$ a disjoint union of two parts), then a quantity $P$ distributed over $X$, i.e. a $P \in T(X)$, is conditioned (= given) by its parts, i.e. by a pair $\left(P_{1}, P_{2}\right)$ with $P_{i}$ distributed over $X_{i}$, i.e. with $P_{1} \in T\left(X_{1}\right)$ and $P_{2} \in T\left(X_{2}\right)$; so there is a bijection

$$
T\left(X_{1}+X_{2}\right) \cong T\left(X_{1}\right) \times T\left(X_{2}\right)
$$

To make this precise, one has to describe how the isomorphism here is obtained, in terms of the functorality of $T: \mathscr{E} \rightarrow \mathscr{E}$.

This is rather straightforward, and it is probably known since early days of category theory. Most recently, it was (re-) discovered by Coumans and Jacobs 2010 [CJ], and by myself [K11]. The short story is that one has to assume, first that $T(\emptyset)=1$ (where $\emptyset$ is the initial object of $\mathscr{E}$, "the empty space"); this makes 1 into a zero object in $K l(T)$. Secondly, using the zero object, one can construct a natural map $T(X+Y) \rightarrow T(X) \times T(Y)$, and the property is then the assumption that this map is invertible. When this is the case, $K l(T)$ has biproducts $T(X) \oplus T(Y)=T(X+Y)$, and therefore becomes an additive category; so all objects in $K l(T)$ are abelian monoid objects (in $K l(T)$ as well as in $\mathscr{E}$ ); and $T$-linear maps $T(X) \rightarrow T(Y)$ preserve the additive structure

In particular, $R:=T(1)$ carries such structure, denoted + , and from $T$-bilinearity of the multiplication $\cdot: R \times R \rightarrow R$ already described, it follows that this multiplication is biadditive, so $R$ with + and $\cdot$ is a commutative rig ${ }^{4}$. Likewise, the multiplicative action of $R$ on objects of the form $T(X)$ is $T$-bilinear, hence bi-additive, so any $T(X)$ carries $R$ module structure, and $T$-linear maps between such are $R$-linear. (I don't know under which conditions the converse holds.)

## Extensive quantities on $R$

For any space $X$, we have the space $T(X)$ of extensive quantities on $X$. The case where $X$ is $R$ itself (or, more generally, $R^{n}$ ), the extensive quantities on it have special significances, and a rich structure. One significance is that random variables (on an arbitrary outcome space) have probability distributions which may be construed as elements of $T(R)$ with total 1. Among the important structures on $T(R)$ is the convolution $*$ along the addition map $+: R \times R \rightarrow R$ (which in the particular case of random variables gives the probability distribution of a sum of two independent random variables).

There are also certain scalars $\in R$ associated to a $P \in T(R)$. The most important is $\left\langle P, i d_{R}\right\rangle$, which for the case of probability distributions deserves the name expectation of $P$; let us denote it $E(P) \in R$. So $E$ is a map $T(R) \rightarrow R$, and it is $T$-linear since the pairing $T(X) \times(X \pitchfork R) \rightarrow R$ is $T$-linear in the first variable. If $X=R$, then it is easy to see that

$$
\left\langle\eta_{R}(r), i d_{x}\right\rangle=r
$$

for any $r \in R$, so $E\left(\eta_{R}(r)\right)=r$, or $E \circ \eta_{R}=i d_{R}$. (You may want to view $\eta_{R}(r)$ as the probability distribution of a random variable whose value is $r$ with certainty; in this verbal garbe, the equation says that the expectation of such a random variable is $r$.)

[^3]Now, the very construction of pairing (4) depends on a $T$-algebra structure $\beta: T(B) \rightarrow B$ on the codomain $B$; in the case at hand, $B=R=T(1)$, and $\beta: T(R) \rightarrow R$ is $\mu_{1}: T^{2}(1) \rightarrow$ $T(1)$. Recall that $\mu_{X}$ in general was constructed as the unique $T$-linear extension over $\eta_{T(X)}$ of the identity map on $T(X)$. In particular, $\mu_{1} \circ \eta_{R}$ is the identity map on $R$. By the uniqueness of $T$-linear extensions over $\eta$, we conclude that $E=\mu_{1}$ as maps $T(R) \rightarrow R$.

If $P \in T(R)$ has that its total $\lambda$ is an invertible element in the multiplicative monoid of $R$, it may be viewed as (a mathematical model of) a distribution of mass on the line $R$, and in this case $\lambda^{-1}$ times the total of $P$ may be viewed as the center of gravity of this distributed mass. It is easy to prove (see Prop. 24 in [MEQ] in this generality) the physically obvious fact that affine maps $R \rightarrow R$ preserve the formation of center of gravity.

## Physical quantities as torsors

It is a reasonable idea that some particular kind of physical quantity, like mass, is a covariant functor $M$ from the category of spaces to the category of modules over the rig $\mathbb{R}_{\geq 0}$ of non-negative reals; $M(X)$ is the module of possible distributions of mass over the space $X$. If $P \in M(X)$ is such a mass distribution, we can form its total $\in M(1)$, by applying the covariant functor $M$ to the unique map $!: X \rightarrow 1$. We note that $M(1)$ is not a number: $M(1)$ is not $=T(1)=\mathbb{R}_{\geq 0} ; M(1)$ is isomorphic to $T(1)$, but not canonically. An isomorphism amounts to choosing a unit of mass; then $M(1) \cong \mathbb{R}_{\geq 0}=T(1)$ by an isomorphism which is linear.

We shall make an explicit theory of why it is that choosing a unit of mass provides an ismorphism of functors $T \cong M$.

Let $T$ be a commutative monad on $\mathscr{E}$. Consider another strong endofunctor $M$ on $\mathscr{E}$, equipped with an action $v$ by $T$,

$$
v: T(M(X)) \rightarrow M(X)
$$

strongly natural in $X$, and with $v$ satisfying a unitary and associative law. Then every $M(X)$ is a $T$-linear space by virtue of $v_{X}: T(M(X)) \rightarrow M(X)$, and morphisms of the form $M(f)$ are $T$-linear. Let $M$ and $M^{\prime}$ be strong endofunctors equipped with such $T$-actions. There is an evident notion of when a strong natural transformation $\lambda: M \Rightarrow M^{\prime}$ is compatible with the $T$-actions, so we have a category of $T$-actions. The endofunctor $T$ itself is an object in this category, by virtue of $\mu$. We say that $M$ is a $T$-torsor if it is isomorphic to $T$ in the category of $T$-actions. Note that no particular such isomorphism is chosen.

Our contention is that the category of $T$-torsors is a mathematical model of (not necessarily pure) quantities $M$ of type $T$ (which is the corresponding pure quantity). Thus if $T$ is the free $\mathbb{R}$-vector space monad, the functor $M$ which to a space $X \in \mathscr{E}$ associates the space of distributions of electric charges ${ }^{5}$ over $X$, is a $T$-torsor.

The following Proposition expresses that isomorphisms of actions $\lambda: T \cong M$ are determined by $\lambda_{1}: T(1) \rightarrow M(1)$; in the example, the latter data means: choosing a unit of electric charge.

[^4]Proposition If $g$ and $h: T \Rightarrow M$ are isomorphisms of $T$-actions, and if $g_{1}=h_{1}: T(1) \rightarrow$ $M(1)$, then $g=h$.

Proof. By replacing $h$ by its inverse $M \rightarrow T$, it is clear that it suffices to prove that if $\rho: T \rightarrow$ $T$ is an isomorphism of $T$-actions, and $\rho_{1}=i d_{T(1)}$, then $\rho$ is the identity transformation. As a morphism of $T$-actions, $\rho$ is in particular a strong natural transformation, which implies that right hand square in the following diagram commutes for any $X \in \mathscr{E}$; the left hand square commutes by assumption on $\rho_{1}$ :


Now both the horizontal composites are $\eta_{X \times 1}$, by general theory of tensorial strengths. Also $\rho_{X \times 1}$ is $T$-linear. Then uniqueness of $T$-linear extensions over $\eta_{X \times 1}$ implies that the right hand vertical map is the identity map. Using the natural identification of $X \times 1$ with $X$, we then also get that $\rho_{X}$ is the identity map of $T(X)$.

## References.

[CJ] D. Coumans and B. Jacobs, Scalars, monads, and categories, arXiv [math.RA] 1003.0585
[EK] S. Eilenberg and M. Kelly, Closed Categories, Proc. Conf. Categorical Algebra La Jolla 1965, 421-562, Springer Verlag 1966.
[FK] A. Frölicher and A. Kriegl, Linear Spaces and Differentiation Theory, Wiley 1988.
[K70] A. Kock, Monads on symmetric monoidal closed categories. Arch. Math. (Basel), 21:1-10, 1970.
[K71] A. Kock, Bilinearity and Cartesian closed monads. Math. Scand., 29:161-174, 1971.
[K71b] A. Kock, Closed categories generated by commutative monads. J. Austral. Math. Soc., 12:405-424, 1971.
[K11] A. Kock, Monads and extensive quantities, arXiv [math.CT] 1103.6009
[K11b] A. Kock, Calculus of extensive quantities, arXiv [math.CT] 1105.3405
[FWL] F.W. Lawvere, Categories of space and of quantity, in: J. Echeverria et al (eds.), The Space of Mathematics, de Gruyter, Berlin, New York (1992).


[^0]:    ${ }^{1}$ Manuscript for talk at DGMP 2011 in Krakow, in honour of Wlodzimierz Tulczyjew

[^1]:    ${ }^{2}$ the test functios here are not supposed to have bounded support, therefore, the distribution notion will be: distribution of compacr support.

[^2]:    ${ }^{3}$ here, 1 denotes the terminal object of $\mathscr{E}$; the "one point space"

[^3]:    "rig" means commutative semiring", i.e. like commutative ring, but not necessarily with "minus" (negatives), hence the missing " n "

[^4]:    ${ }^{5}$ I take electric charge rather than mass as the kind of physical quantity for this discussion, because then we have negatives: vector spaces over the ring $\mathbb{R}$ rather than over the rig $\mathbb{R}_{\geq 0}$

