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Introduction

For any finitary algebraic theory T, one has a certain topos & with a T-algebra
object R in it, which classifies T-algebra objects in arbitrary toposes; this T-
algebra R € & is called the generic T-algebra. The description of this “classifying
topos”&’, and the T-algebra R in it, is simple and well known: & is the presheaf
topos [F'PT, Set|, where FPT is the category of finitely presented T-algebras, and
R is the “forgetful functor” FPT — Set; see e.g. [10] Ch. VIII, or [2] Ch. D.3.
For any C € FPT, we have two particular objects in &, namely y(C), where y is
the Yoneda embedding, and y*(C), where ¥* is left adjoint to the global sections
functor 7, : & — Set. There is a canonical pairing

Y'(C) xy(C) = R,

which we shall describe. The two exponential transposes of this map give rise to
some duality isomorphisms. !

1 Generalities on exponential objects

Let & ba a Cartesian closed category, and let Q and R be arbitrary objects in it.
The exponential object R, which we shall denote Q R, is characterized by a
universal property: it gives rise to the processes of “exponential transposition”;
these transpositions associate to k: Px Q — Ramap i : Q — P h R, as well
as amap j: P — QM R; the one comes about from the other via the symmetry

I'The main result presented here (Theorem 5) was presented at the 17th PSSL in 1980 in Sussex,
and announced in [5] (1981). I apologize for the long delay in publishing a complete account.



PxQ=QxP.Themapi:Q— PmhRand j:P— QR are twisted exponential
adjoints of each other. They are related by a map 8, in a commutative diagram

P

(PHR) MR

imR
OMmR

where § itself is the twisted exponential adjoint of the identity map of P th R. We
refer to 6 as a “Dirac” map - a natural “embedding” of an object P into its double
dual w.r.to a fixed R. (It need not be a monic, but often is). All this belongs to the
elementary theory of Cartesian closed categories, or to “pure lambda calculus”.

For the case where & is a presheaf topos [A,Set] , we shall recall the one of
these processes of exponential transposition in elementary terms (the other one
then comes by the symmetry). The Set-valued hom-functor of A we denote by
square brackets like [X,Y]. First, we describe the exponential object Q r R itself,
namely for B € A,

(@NR)(B) = [ hom(Q(X),R(X))
gEB/A

where X denotes the codomain of g, and where hom denotes the hom functor for
the category of sets. (We shall also use the notation |, gBX> for | cB/ a-) Thus,
for an object S € [A, Set] to qualify for the name Q M R, the object S should for
each B € A be equipped with maps 7, : § — hom(Q(X),R(X)) for each object
g € B/A, (X denoting the codomain of g), subject to certain naturality conditions
and a certain universal property. Then in terms of the maps 7,, the exponential
transpose of a map k : P x Q — R is given as the map i = k : P — Q th R, with (k)
the unique map such that for each g € B/A, we have

—

g0 (k)p = (kx) o P(g). (1)

Here kx is a map P(X) x Q(X) — R(X) in the category of sets, so its exponential
transpose (kx) : P(X) — hom(Q(X),R(X)) makes immediately sense.

Two cases will be of particular interest, namely the case where Q is repre-
sentable, and where Q is constant.



In the case where Q is representable, say Q = y(C) for C € A, one has a well
known explicit presentation of Q rh R, provided binary coproducts exist in A. Then
y(C) th R may be taken to be Ro (— ®C) : A — Set; let us be explicit about the
maps 7, which qualify Ro (—®C) as y(C) hR. Solet B€ A, andlet g: B — X.
Then

g : R(B®C) — hom([C,X],R(X)) = I ycic x)R(X)

is described by describing its f-coordinate, for f € [C,X]:

promg:=R({g,f}) 2)

where {g, f} : B®C — X denotes that map out of the coproduct whose compo-
nents are g and f, respectively, and where p; denotes the projection to the f-
factor of the product (or, seeing the latter as Hom([C,X],R(X)), as evaluation at
the element f € [C,X]).

In the case where Q is constant Q = y*(C) for some set C, i.e. Q(X) = C for
all X € A, we have the following simple presentation of (y*(C) h R)(B); namely

(7"(C) M R)(B) = Hom(C, R(B)), 3)

which qualifies for this name by virtue of 7, = Hom(C,R(g)), for g : B— X. This
can also be seen from the | formula for (y*(C) h R)(B); for

/ ~_Hom(C,R(X)) = Hom(C, / _R(X))=Hom(C,R(B)),
g:B—X g:B—X

using that [,.5 ,x R(X) = R(B) via 75, by Yoneda’s Lemma.

2 T-algebras in a topos

Let & be a topos. The category T-Alg(&’) of T-algebras in & will be monadic
over & ([9] and [1] Chapter V). This monad will in fact be &-enriched; see (the
proof of) Lemma 5.5 in [1]. We denote the & enriched hom functor of it by mMr.
If X and Y are objects in & carrying T-structures, have X My Y CX Y. If S € &,
and Y carries T-structure, then also S rh Y inherits a T-structure, in a canonical
way. But for T-algebras X and Y, the T-structure, which X MY inherits from Y,
need not restrict to one on X M7 Y, unless T is a commutative theory (and e.g. the
theory of commutative rings is not commutative).

If R € T-Alg(&), we have the category R/(T-Alg(&£)), which we call the
category of R-algebras, denoted R-Alg(&) or just R-Alg. 1It, too, is enriched in
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&, with enriched hom functor denoted rhz. (When T is the theory of commutative
rings, and R is such a ring, the terminology “R-algebra” agrees with the standard
use in commutative algebra; however, g may in this context mean something
different, namely the set (or object) of “R-linear maps”, as relevant in the theory
of Schwartz distributions, (typically with R = R or = C); see also [6] and [8],
which deal with such cases.)

When X and Y are R-algebras, we have X Mg Y CX hp Y CX Y.

We shall use ® to denote finite coproducts in the category of T-algebras, be-
cause one primary example is that of some category of commutative rings; and
also, because the notation + may incorrectly suggest that products x distribute
over the coproduct +. There is an &-enriched (monadic) adjointness between
T-algebras in &, and R-algebras (in &), whose left adjoint is R® —.

3 The pairing and its transposes

We now specialize to the case where A is some small category of T-algebras,
closed under finite coproducts (for instance, A may be the category of finitely
presented T-algebras). We consider & = [A, Set].

Let 7% be the global-sections functor of &’; it has a left adjoint y* : Set —
[A,Set] = &. Tt associates to a set S the functor A — Set whose value is the
functor with constant value S. Since y* preserves finite limits, it preserves alge-
braic structure, thus if C € A, C carries T-structure, and therefore y*(C) will carry
structure of T-algebra in &.

By R, we denote the “forgetful” functor A — Set. As an object in &, it carries
T-algebra structure, and hence so does any object of the form S h R.

Let C € A. We describe a map k : y*(C) x y(C) — R, and its two exponential
transposes i : y(C) — y*(C) MR and j : v*(C) — y(C) M R. Since C will be fixed in
the following, we shall omit the upper index C from notation. The map k = k¢ will
be a T-homomorphism in the first variable - this notion makes sense for enriched
monads, see [4]. Therefore, by loc.cit., i will factor through y*(C) thy R C y*(C) rh
R, and j will be a T-homomorphism.

First, we describe k by describing kg : ¥*(C)(B) x y(C)(B) — R(B). Recall
that y*(C)(B) = C for all B, that y(C)(B) = [C, B] (where square brackets denote
the hom functor of A), and recall that R(B) = B. Then the map kg : C x [C,B| — B
is simply the evaluation map (c, f) — f(c) forc€Cand f:C— Bin A. Itis a
T-homomorphism in the variable ¢ because f is a T-homomorphism. Thus, we



have three maps

k:y*(C) x y(C) — R, a T-homomorphism in the first variable 4)
i:y(C) =y (C)MrRC Y (C)MR %)
77" (C) = y(C) MR, a T-homomorphism (6)

Using the explicit description of exponential transposition given above, and using
(3), it is straightforward to see that ig : y(C)(B) — (v*(C) M R)(B) is given by the
following recipe. We need to give a map ip : y(C)(B) — Hom(C,R(B)) this is
just the inclusion [C, B] C Hom(C, B), which is the B-component of the inclusion
Y*(C) hy R C y*(C) th R. This proves

Proposition 1 The map i : y(C) — y*(C) Mt R is an isomorphism.

The right hand side of this isomorphism deserves the name “Spec,C”, since it
takes finite colimits to limits, and, for C = the free T-algebra in one generator, it
gives R, cf. [7] 1.12; this notion does not depend on the specifics of the topos &'.

Next, we study the T-homomorphism j : y*(C) — y(C) h R. For B € A, we
consider jp : Y*(C)(B) — (y(C) h R)(B). Let us first note that the transpose of the
set theoretic map ky : C x [C,X]| — X is the “Dirac” map ky :C— Hom([C,X],X).
Next, we utilize the “coproduct” description of y(C) h R = R(— ® C), being an
exponential object y(C) h R by virtue of the maps 7, described in (2) above. In
terms of this, we prove

Proposition 2 The map j: y*(C) — y(C) R = R(— ® C) has for its B-compo-
nent just the inclusion map incly : C — B® C into the second component of the
coproduct.

Proof. Using the explicit characterization of exponential transposition given in
(1), it suffices to see that incl; has the property that (for g : B — X), 7z oincl = %;
- note that the P(g) occuring in (1) here is an identity map. We analyzed above
that %; here is the relevant Dirac map 0, so the task is to prove that the upper



triangle in the following diagram commutes:

incl;
C -BxC

and this follows if for all f: C — X, it commutes after postcomposition by p¢,
displayed as the vertical arrow in the diagram. Here we write ([C,X],X) instead
of Hom([C,X],X), for typographical reasons. The right hand triangle commutes,
by construction of 7, and the left hand triangle commutes, by lambda calculus.
Finally, the outer triangle commutes, by definition of {g, f}. Therefore, the upper
triangle commutes, and this shows that incl, is indeed the claimed exponential
transpose. This proves the Proposition.

We already know from more abstract reasons that j is a T-homomorphism; this
also appears explicitly from the above Proposition, since the coproduct inclusion
C — B®C is a T-homomorphism. Now B® C is not only a T-algebra, but it is a
B-algebra by virtue of the coproduct inclusion incl; : B— BQC. Any T-algebra X
extends uniquely to a B-algebra B ® X, the “free B-algebra in X”. The canonical
extension of the T-algebra morphism i : C - B® C to a B-algebra morphism
B®C — B®C is clearly the identity map. The R-algebra structure R — y(C) h R
of y(C) M R = (— ®C) has for its B-component just incl;. Since coproducts @ of
T-algebras in a presheaf topos are calculated coordinatewise, the free R-algebra
R®v*(C) on y*(C) has for its B coordinate B® C. This proves

Theorem 3 The extension of the T-homomorphism j : y*(C) — y(C) M R to an
R-algebra morphism j : R® y*(C) — y(C) R is an isomorphism.

Example 1. If T is the theory of commutative rings, and C is the ring of dual
numbers Z[¢g], then in the commutative ring classifier topos [FPT, Set|, the iso-
morphism j in this Proposition gives in particular the isomorphism of the simplest
KL axiom, saying that the map R x R — RP is an isomorphism of R-algebras
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(with algebra structure on R X R being “the ring of dual numbers R[g]). (here
D = y(Z[e)).

Similarly R[X] (= the free R-algebra in one generator) is isomorphic, via j for
Z|X],to RMR.

Example 2. If T is the initial algebraic theory (so T-algebras are just sets), the
generic algebra R is called the generic object, and the classifying topos is called
the object classifier, cf. [1] Ch. IV (they write U rather than R). Coproducts & of
“algebras” are here better denoted +; and the isomorphism j in this case is a map
R+1— RMR. The “added” point in the domain of this j is mapped by j to the
identity map of R.

If X is a T-algebra in &, and Z is an R-algebra, we have an isomorphism in &
between X t Z and (R® X) Mg Z, expressing the enrichment of the adjointness
between T-algebras in E and R-algebras (in &). Using the notion of R-algebra
and this isomorphism, we may reformulate Proposition 1. There is no harm in
denoting the isomorphism y(C) — y*C it R of Proposition 1 and the isomorphism
y(C) = (R® y*C) hr R, by the same symbol i: So Proposition 1 is reformulated:

Theorem 4 The map i:y(C) — (R®y*(C)) g R is an isomorphism.

4 Duality

The theme of double dualization occurs in many guises in many areas of math-
ematics. In a Cartesian closed category, the simplest is full double dualization
functor (— M R) rh R into an object R; there is a natural transformation, whose
instantiation at X is a map Ox : X — (X M R) M R (where “8” is for “Dirac”, as
in Section 1). There are restricted variants of J, in case R carries some alge-
braic structure, say, of T-algebra. Then one has X — (X h R) iy R (as studied
above); and in case that also X carries T-structure, we have a T-homomorphism
X — (X hr R) M R, obtained by postcomposing dx : X — (X h R) th R with s M R,
where s denotes the inclusion of X Mt R into X M R. This composite will also be
denoted dx. Similarly, if X is an R-algebra, we have an R-algebra homomorphism
6X X — (X thR) M R.

In our context, the dualization functors (are contravariant and) go from “geo-
metric objects” (objects in &), to “algebraic objects” (T-algebras, say), and vice
versa; the object R is, as a geometric object, the line, but it is canonically en-
dowed with a T-algebra structure, so it lives in both worlds. Similarly, C € A is



a T-algebra, but it represents a geometric object y(C). This is the reason for the
title of the announcement [5].

Duality Theorems often have as conclusion that one or the other of the Dirac
maps mentioned above is an isomorphism. Such duality results occur in our con-
text, as Corollaries of the results above; we shall prove

Theorem 5 For any C € A, we have that

)

y(c) - Y(C) = (y(C) M R) g R
is an isomorphism in &.

This one may see as a “Gelfand duality” result; it will follow from a duality result
concerning the R-algebra R ® y*(C):

Theorem 6 For any C € A, we have that
Sy (c) : R2Y(C) = (R®Y*(C)) hr R) h R
is an isomorphism of R-algebras in &.

We begin by proving Theorem 6. We replace the pairing k : y*(C) x y(C) — R
(which is a T-homomorphism in the first variable) by its extension to a pairing

k:(R®Y(C))*xy(C) =R, )

(which is an R-algebra morphism in the first variable), and its two exponential
transposes i and j; here, i factors as

i

Y(C) (R@YC) hg R —» (R®Y'C) MR

where s denotes the inclusion of the rhg into rh; and j is the extension of the T-
homomorphism j to an R-homomorphism. By “pure lambda calculus”, as steted
in Section 1, we have commutativity of the upper left triangle in

R&YC—Or (R&YC) MR)MR

ihR

112

sMR

~.|

>~

R~——((R R)MR.
YCMR < (REY'C)he R)



The composite (s M R) o in this diagram is the Dirac map considered in the
statement of the Theorem. From the commutativity of the diagram, and the fact
that j and i M R are isomorphisms (Theorems and 3), we deduce that the § of the
Theorem is an isomorphism, as claimed.

To prove Theorem 5, we apply the dualization functor — Mg R to the isomor-
phism of Theorem 6, and conclude that we get an isomorphism 8y Mz R (in &)
from the right to the left in

Ox Mr R

(R2Y'C) g R (R®Y'C) thg R) M)R) thg R

where X := R® ¥*C and Y := (R® ¥*C) hg R. However, the map Jy here is a
splitting of dx Mg R, by the triangle identity for the adjointness

— MR

& (R-Alg)”

— Mg R

(or by “pure lambda-calculus™). But a splitting of an isomorphism is an isomor-
phism, so we conclude that dy is an isomorphism. Now by Theorem 4, the Y here
is isomorphic to y(C), whence also J,c) is an isomorphism, proving Theorem 5.

The theorems 5 and 6 together provide an example of a complete pairing in
a sense to be described now. I don’t many examples, but the notion itself seems
to have an aesthetic value. Let 77 and 7> be &-enriched (= strong) monads on a
Cartesian closed category &, and let R € & be an object equipped with algebra
structures for both the monads; these two structures should commute with each
other, in the sense described in [3], Section 4. Let P be a Tj-algebra and Q a
T>-algebra, and let k : P x Q — R be a map which is a 7T1-homomorphism in the
first variable, and a 7>-homomorphism in the second varaible. There results, by
general theory, a 71- homomorphism i : P — Q Mz, R, and a T>-homomorphism
Jj:Q — Py, R. Then k deserves the name complete pairing if both i and j are
isomorphisms. A complete pairing gives rise to two Dirac maps, both of which
are isomorphisms, and may in fact be described in these terms.

If 77 is the monad whose algebras are R-algebras, as in the theorems quoted,
and T is the identity monad, then the k considered in (7) satisfies the conditions.
Another example is with 77 the theory of boolean algebras, 75 the inital theory,
& the category of sets, and R = 2. Then for any finite set C, one has a complete
pairing, namely the evaluation map (C th R) x C — R. This example one may see
as the origin of Stone duality.
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