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Abstract

In the context of synthetic di�erential geometry (SDG), we provide, for any manifold, a
homotopy equivalence between its de Rham complex, and a complex of in�nitesimal singular
cochains. The equivalence takes wedge product of forms to cup product of singular cochains.
c© 2000 Elsevier Science B.V. All rights reserved.
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The purpose of the present note is to identify the de Rham complex of di�erential
forms on a manifold M with a certain cochain complex related to the singular complex
of M . In fact, this cochain complex is dual to a certain simplicial subcomplex of the
singular complex, consisting of “in�nitesimal simplices”. The notions make sense in
the context of an embedding of the category of smooth manifolds into a suitable topos,
more precisely, into a “model for synthetic di�erential geometry” (SDG).
Our comparison is based on some results from [4], and is inspired by Felix and

Lavendhomme’s [2]. They also provide an identi�cation of the de Rham complex with
a complex related to the singular one; they, however, use cubical rather than simplicial
theory, and, more importantly, their cochains are �nite, not in�nitesimal 1 .
Recall that if ! is a di�erential k-form on a manifold M , and s : �k → M is a

smooth map from the standard k-dimensional simplex, we may form the real number∫
s !, “the integral of the k form ! along the smooth singular k-simplex s”.
We thus get the classical map


∗(M)

∫
−→Hom(Sing∗(M);R);

1 In fact, in spite of their statement to the contrary, it seems to me that their identi�cation of di�erential
forms with certain functionals on smooth singular cubes does not need the context of SDG.
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where the left-hand side is the de Rham complex of di�erential forms on M , and
the right-hand side is the cochain complex dual to the simplicial complex Sing∗(M)
of smooth singular simplices on M . Stokes’ Theorem asserts that this map commutes
with coboundary formation; so it is a map of cochain complexes.
Recall that a di�erential k form on M is a law which to each point x ∈ M

and each k-tuple of tangent vectors at x associates a number, in a k-linear alter-
nating way (and everything smooth). On the other hand, in the context of SDG,
there is another notion of di�erential form, which is already of the type of simpli-
cial cochain; it was considered in the late 1970s by Bkouche, Joyal, and Kock (cf.
[4, I.18]). It hinges on the notion of the �rst neighbourhood of the diagonal, M[1],
of a manifold, or scheme, M . This notion originated in algebraic geometry, where
one was never afraid of nilpotent elements in rings, such nilpotent elements being
the basis of SDG. Recall that the set-up of SDG is a topos E containing the cat-
egory Mf of smooth manifolds as a full subcategory, i : Mf ⊆E. The ring R of
reals goes by i to a ring object R, which has many more subobjects than R has,
in particular, we require it to have a su�ciently large subobject D⊆R of “elements
of square zero”, as well as many other similar su�ciently large objects of nilpo-
tent elements. (What is meant by “su�ciently large” will be elaborated below; this
is the “Kock–Lawvere axiom scheme”.) Of course, we nowadays know well how to
speak of the objects of a topos “as if they were sets”, and we shall do this, and
we shall call R ∈ E “the Reals”, and so we are led to allowing ourselves to speak
of all the nilpotent elements in the reals. This we shall consistently do. So when
we say “let d be a real number whose square is zero”, we are not necessarily talk-
ing about the number 0. (Likewise, working in E, we do not have to say that the
functions we consider or construct are smooth, this is built into the context.) Now,
the �rst neighbourhood of the diagonal of the manifold Rm (m-dimensional coordi-
nate vector space) is easy to describe; it is the subset of Rm × Rm consisting of
pairs of vectors x; y such that x − y belongs to D(m)⊆Rm, where D(m)⊆Rm in
turn consists of vectors d = (d1; : : : ; dm) with di · dj = 0 for all i and j (in par-
ticular d2i = 0 for all i). The notion of �rst neighbourhood M[1] of the diagonal
of an m-dimensional manifold M can now be de�ned, using charts from Rm, and
the notion is independent of choice of charts. We say that x ∈ M and y ∈ M
are neighbours if (x; y) ∈ M[1], and then we write x ∼1 y or just x ∼ y.
The neighbour relation is re
exive and symmetric, but not transitive. A certain

amount of the di�erential geometry of M can be expressed entirely in terms of this
combinatorial structure M[1] on M . For instance, one immediately gets a simplicial
complex M[∗] (the “coskeleton of M[1]”), with M[n] being the “set of n + 1-tuples of
mutual neigbours”, so an n-simplex x ∈ M[n] is an n+1-tuple x0; x1; : : : ; xn of elements
in M with xi ∼ xj for all i; j = 0; : : : ; n. The elements x = (x0; : : : ; xk) in M[k] we may
call in�nitesimal k-simplices in M , and the xi’s the vertices of x. A k-simplex x is
called degenerate if two of its vertices are equal.
Maps ! : M[k] → R are now naturally called in�nitesimal k-cochains on M , and !

is called a normalized cochain if it vanishes on all degenerate k-simplices. Since M[∗]
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is a simplicial complex, the collection Hom(M[∗]; R) of all cochains form a cochain
complex.
In [4], I presented in terms of coordinates, (using the basic axiom scheme of SDG),

an isomorphism between the object 
k(M) of “classical” k-forms, on the one side, and
the set of normalized k-cochains on M[∗] on the other. Such isomorphism b will be
recalled below, di�ering from the one of [4], though, by a factor k!. Also it is an easy
fact (cf. e.g. [5, Proposition 2]) that normalized cochains are alternating, i.e. the value
of such cochain changes sign if two of the vertices of the simplex are interchanged.
From this follows easily that the subset of normalized cochains form a subcomplex
of the cochain complex of all in�nitesimal cochains. Denoting it Homnorm(M[k]; R), we
thus have the situation of the following diagram (the dotted arrows yet to be �lled in):

(1)

We shall provide a map a of simplicial sets (far right). It induces clearly a map
a∗ of cochain complexes. The horizontal maps in (1) are likewise maps of cochain
complexes, as observed; from the commutativity of (1) (to be proved), it then follows
that b is also a cochain map.
The result of the present note is summarized in:

Theorem 1. The diagram commutes; and it establishes a homotopy equivalence be-
tween the cochain complexes 
∗(M) and Hom(M[∗]; R). The equivalence 
∗(M) →
Hom(M[∗]; R) preserves the product structure.

(The product structure in Hom(M[∗]; R) is the well-known cup product, which exists
by virtue of the fact that the complex in question is the dual of a simplicial set. The
product structure on 
∗(M) is the classical wedge product of forms (possibly modulo
some factors of type p!q!=(p+ q)!, depending on the conventions).)

Proof=Construction. There are two new constructions to be performed, and several
equations to be checked. The constructions are: (1) the construction of the simplicial
map a, and (2) the construction of a homotopy inverse of the inclusion of cochain
complexes (bottom line of the diagram).
(1) The construction of a is essentially contained in Theorem 1 in [6], which I

quote. Recall that an a�ne combination is a linear combination where the sum of
the coe�cients is 1 (and it is a convex combination if further the coe�cients are
non-negative).
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Theorem 2. Given an in�nitesimal k-simplex x = (x0; : : : ; xk) in a manifold M; a�ne
combinations of the xi’s can be formed by choice of coordinates; but the result
does not depend on the choice. All a�ne combinations thus obtained are mutual
neighbours.

Thus there is a canonical map Rk → M , taking an a�ne combination of 0 and the k
unit vectors e1; : : : ; ek in Rk into the corresponding a�ne combination of x0; x1; : : : ; xk .
Restricting this map to the a�ne combinations with non-negative coe�cients (= the
convex combinations) provides a map <x= : �k → M , where �k is the k-simplex in
Rk consisting of the convex combinations of 0; e1; : : : ; ek . We put a(x):=<x= : �k → M .
The construction a is evidently compatible with face- and degeneracy formation of
simplices, thus collectively, a provides a simplicial map as displayed in (1). The name
‘a’ is to suggest ‘a�ne singular simplex’. The map a is a monic map of simplicial
sets, so we may think of the in�nitesimal simplices as forming a subcomplex of the
complex of singular ones. It follows that a∗ is a homomorphism of cochain complexes.
(2) The construction of a homotopy inverse of the inclusion map

Homnorm(M[∗]; R)→ Hom(M[∗]; R)

can essentially be derived from a recent proof of Barr [1]. Barr �rst noted that a
simplicial complex of the form Sing∗(M) has some further structure: the permutation
group in k + 1 letters acts on the set of singular k-simplices in an evident way. This
action restricts to an action on the sub-simplicial complex of in�nitesimal k-simplices.
Secondly, barycentric subdivisions can be made on singular simplices. This subdivision
process likewise restricts to in�nitesimal simplices (as will be argued).
I shall sketch a version of Barr’s theory, which is explicit enough to handle our case

of in�nitesimal simplices.
Let C(X ) denote the free R-module-object on an object X . (Actually, it su�ces

that “R perceives C(X ) to be free”, which sometimes will be the case for C(X )=
the “internal object of distributions on X ”, a much more concrete object than the
abstractly-free R-module F(X ) on X .) We get in any case

Hom(M[k]; R) ∼= HomR(C(M[k]); R); (2)

HomR(−;−) denoting the set of R- linear maps. The C(M[k])’s jointly form a chain
complex C(M[∗]), since M[∗] is a simplicial set, and its R-dual cochain complex may be
identi�ed, by (2), with the Hom(M[∗]; R) considered above. Now we may, like in [1],
form the subcomplex 2 U[∗](M)⊆C(M[∗]), where U[k] is the R-submodule of C(M[k])
generated by “alternating chains”, meaning expressions x−sign(�)x� (where x� denotes
the result of acting with the permutation � on the simplex x). Thus, a k-cochain ! is
alternating (which is the same as normalized, see above) precisely when its extension
to an R-linear map C(M[k]) → R annihilates U[k]. In other words, the inclusion of
cochain complexes Homnorm(M[∗]; R)⊆Hom(M[∗]; R) is induced by the quotient map

2 The proof that this is a subcomplex is identical to that of [1].
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of chain complexes

C(M[∗])→ C(M[∗])=U[∗]: (3)

The following is a version of Barr’s result.

Theorem 3. The chain map (3) is a chain equivalence.

We sketch the proof, because we need it in a more explicit form than in loc.cit.
to see that the homotopy inverse, constructed by Barr on the level of singular chains,
restricts to the in�nitesimal ones. To construct a candidate for a homotopy inverse

C(M[∗])=U[∗] → C(M[∗])

for (3), one needs a chain map C(M[∗]) → C(M[∗]) annihilating U[∗]. The “explicit
computation” of Barr in loc.cit. carried out in low dimensions (≤ 2), shows that here,
the classical barycentric subdivision chain map � (cf. e.g. [3, p. 331]) will do the job.
We claim that it will do so in all dimensions. For simplicity, we only document this
for in�nitesimal chains, which is all we need. To see that � annihilates the alternating
chains (and thus U[∗]), it is better to give an explicit description of �, rather than the
usual inductive one: If x = (x0; : : : ; xk) is an in�nitesimal k-simplex, �(x) is a linear
combination of (k + 1)! in�nitesimal k-simplices. These simplices may be labelled by
the permutations � of the k + 1 symbols 0; 1; : : : ; k as follows: to the permutation �
corresponds the k-simplex

(x�(0); [x�(0); x�(1)]; [x�(0); x�(1); x�(2)]; : : : ; [x�(0); x�(1); : : : ; x�(k)]);

where square brackets denote ‘barycenters of’, thus for instance [x�(0); x�(1)] denotes
the a�ne combination (midpoint) 1

2x�(0) +
1
2x�(1). All the barycenters in question are

mutual neighbours, by the last clause in Theorem 2, so the above (k + 1)-tuple is
indeed an in�nitesimal k-simplex. The coe�cients in the linear combination are +1 or
−1 according to whether the � is even or odd.
From the description in terms of permutations, it is almost immediate to prove

that �(x) = sign(�)�(x�), and in particular � annihilates alternating chains. As in [3,
p. 332], a chain homotopy � between � and the identity map can be explicitly given
also, and by inspecting the description of � in loc.cit., one sees by induction that
(1) � restricts to in�nitesimal chains, and (2) it maps U[∗] into itself. It follows that
C(M[∗])→ C(M[∗])=U[∗] is a chain equivalence.
We now prove the commutativity of diagram (1), for any manifold M . The clockwise

composite is clearly invariantly de�ned (independent of choice of coordinates). The
construction of the left-hand vertical map (which we shall recall from [4], but with
the slight convention change already mentioned), is given in terms of coordinates, i.e.
assuming that M = Rm, but from the commutativity it then follows that it, too, is
independent of the choice of coordinate system.
So assume M = Rm. Then we may identify (classical) di�erential k-forms �! on it

with functions �!(x0; v1; : : : ; vk) of k+1 variables from M , multilinear and alternating in
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the k arguments after the semicolon. In these terms, the in�nitesimal cochain !=b( �!)
is given by

!(x0; x1; : : : ; xk):=
1
k!
�!(x0; x1 − x0; : : : ; xk − x0)

whenever the xi’s form an in�nitesimal k-simplex. (The factor 1=k! was not included
in the description in [4], but is necessary to make the diagram commutative, with the
conventions we otherwise have chosen.)
(The proof that this passage from di�erential k-forms to normalized in�nitesimal

cochains can be inverted is an application of one of the more subtle instances of
the fundamental Axiom Scheme for SDG, see [4, I.18] (notably Corollary 18:4). For
k = 1; m= 1, however, it is just the statement that, given x0, any map to R from the
set x0 +D of neighbours x1 of x0, taking x0 to 0, extends uniquely to a map, linear in
x1− x0, de�ned for all x1 ∈ R; this statement is essentially the original Kock–Lawvere
Axiom.)
To prove the commutativity of (1), let �! ∈ 
k(Rm), and let (x0; : : : ; xk) be an

in�nitesimal k-simplex. Proving the commutativity thus means proving∫
<x0 ;:::;xk =

�!= 1=k! �!(x0; x1 − x0; : : : ; xk − x0): (4)

For this, we need some generalities. Recall the following standard facts from mul-
tilinear algebra: (1) a k-linear alternating function on Rk is entirely determined by its
value on the k-tuple of standard basis vectors e1; : : : ; ek ; and (2) (k + 1)-linear alter-
nating functions on Rk are zero. Finally, since we assume that (2) is invertible, (3) a
multilinear function is alternating i� it has the property that it vanishes whenever two
of its arguments are equal.

Lemma 1. Let L : Rk → Rm be a linear function with the property that all its
values are ∼ 0; and let H be a (k + 1)-linear function on Rm. Then the function
H ◦ (L× · · · × L) is zero.

Proof. The function in question is a (k + 1)-linear function on Rk . It is alternating,
for if two arguments are equal, H gets supplied with two equal arguments which
furthermore are ∼0; but any multilinear expression returns the value 0 when supplied
with two equal vectors ∼0 as some of its arguments. Thus the lemma follows from
facts (2) and (3) above.
To describe the k-form <x0; : : : ; xk =∗( �!) on Rk , it su�ces, by fact (1), to calculate,

for each t ∈ Rk , its value at t on the k-tuple of standard basis vectors; for this, we
have

Proposition 1. For any t ∈ Rk; we have
<x0; : : : ; xk =∗( �!)(t; e1; : : : ; ek) = �!(x0; x1 − x0; : : : ; xk − x0);

(and; in particular; the expression does not depend on t).



A. Kock / Journal of Pure and Applied Algebra 154 (2000) 257–264 263

Proof. The map <x0; : : : ; xk = is a�ne, with all its values being neighbours, and 0 goes
to x0. Therefore, it is of form t 7→ x0 + L(t), where L is a linear map, all of whose
values are ∼0. By construction of <x0; : : : ; xk =; L takes ej to xj − x0. Pulling back a
form along a smooth map involves the di�erential of the map, and in our case, this
di�erential is the map L, so that

<x0; : : : ; xk =∗( �!)(t; e1; : : : ; ek) = �!(x0 + L(t); x1 − x0; : : : ; xk − x0):
Now, we Taylor expand the function �! in its non-linear argument (before the semi-
colon). We get

�!(x0; x1 − x0; : : : ; xk − x0) + DL(t) �!(x0;L(e1); : : : ; L(ek));
and no more terms since L(t)∼0. The second term is linear in all arguments (except
possibly the one just before the semicolon), and these (k+1)-linear arguments are �lled
with vectors of form “L of something”. Therefore, by the lemma, this term vanishes,
and the proposition now follows.
Recall that if �� is a k-form on Rk , it is of form f(t)vol where vol denotes the volume

form (taking value 1 on the k-tuple of standard basis vectors). The proposition above
says that the form <x0; : : : ; xk =∗( �!) equals Kvol where K is the constant �!(x0; x1 − x0;
: : : ; xk − x0). Recall also that if �⊆Rk is an a�ne k-simplex, then ∫

�
�� is de�ned as

the “measure-theoretic” integral
∫
� f(t) d� (where � is Lebesgue measure), so∫

�k

<x0; : : : ; xk =∗( �!) = �!(x0; x1 − x0; : : : ; xk − x0)(volume of �k);

where �k is the standard k-simplex used for singular cochains previously, i.e. the set
of convex combinations of 0 and e1; : : : ; ek . It has volume 1=k!.
So

∫
<x0 ;:::;xk = �! = 1=k! �!(x0; x1 − x0; : : : ; xk − x0); but the cochain ! = b( �!) associated

to the form �! was de�ned to have this latter value on x0; : : : ; xk . This proves the
commutativity of square (1).
We shall �nally prove the assertion about products. So consider again the total map

b : 
∗(M) → Hom(M[∗]; R) of (1). Let �! and �� be a p- and a q-form, respectively.
Again it su�ces to consider the case where M = Rm, so, as before, we exhibit the
values of �! in the style �!(x0; v1; : : : ; vp), and similarly for ��. Let ! and � denote the
cochains b( �!) and b( ��), respectively. The p+ q form �! ∧ �� is de�ned by

( �! ∧ ��)(x0; v1; : : : ; vp+q)

=
∑

sign(�) �!(x0; v�(1); : : : ; v�(p)) · ��(x0; v�(p+1); : : : ; v�(p+q)); (5)

where the summation is ranging over the set of shu�es � of p+q, i.e. the permutations
of p+q letters which do not change the relative order of the p �rst letters, nor change
the relative order of the last q letters. Now consider the value of b( �!∧ ��) on a p+ q
simplex x0; : : : ; xp+q. Write xi = x0 + vi; then the value b( �! ∧ ��)(x0; : : : ; xp+q) is given
by 1=(p+ q)! times the expression in (5) above, but because the vi’s now are mutual
neighbours, as well as neighbours of 0, it follows that any multilinear function of the
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arguments v1; : : : ; vp+q behaves as if it were alternating (cf. [4, I.18]), so the terms in
(5) are alternating, and hence all the terms in the sum are equal, so are all equal to

�!(x0; v1; : : : ; vp) · ��(x0; vp+1; : : : ; vp+q):
Since there are (p+ q)!=p!q! shu�es, hence also this many terms in the sum, we get
that

b( �! ∧ ��)(x0; : : : ; xp+q) =
1
p!q!

�!(x0; v1; : : : ; vp) · ��(x0; vp+1; : : : ; vp+q):

On the other hand, the classical simplicial cup product ! ∪ � is de�ned by
(! ∪ �)(x0; : : : ; xp+q) = !(x0; : : : ; xp) · �(xp; xp+1; : : : ; xp+q):

Now as argued in [5] Section 5, this value does not change if we replace the �rst argu-
ment xp in the �-factor by x0 (using the in�nitesimal nature of the simplex x0; : : : ; xp+q).
If we do this, and recall the factorials 1=p! and 1=q! that we supply in the passage
b from forms �!, resp. ��, to cochains !; �, the preservation of the product structure
follows.
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