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 THE BULLETIN OF SYMBOLIC LOGIC

 Volume 9. Number 2. June 2003

 DIFFERENTIAL CALCULUS AND NILPOTENT REAL NUMBERS

 ANDERS KOCK

 Do there exist real numbers d with d2 = 0 (besides d = 0, of course)?
 The question is formulated provocatively, to stress a formalist view about

 existence: existence is consistency, or better, coherence.
 Also, the provocation is meant to challenge the monopoly which the num-

 ber system, invented by Dedekind et al., is claiming for itself as THE model of
 the geometric line. The Dedekind approach may be termed "arithmetization
 of geometry".
 We know that one may construct a number system out of synthetic ge-

 ometry, as Euclid and followers did (completed in Hilbert's Grundlagen der
 Geometrie, [2, Chapter 3]): "geometrization of arithmetic". (Picking two
 distinct points on the geometric line, geometric constructions in an ambient
 Euclidean plane provide structure of a commutative ring on the line, with
 the two chosen points as 0 and 1).

 Starting from the geometric side, nilpotent elements are somewhat rea-
 sonable, although Euclid excluded them.1 The sophist Protagoras presented
 a picture of a circle and a tangent line; the apparent little line segment D
 which tangent and circle have in common, are, by Pythagoras' Theorem,
 precisely the points, whose abscissae d (measured along the tangent) have
 d2 = 0. Protagoras wanted to use this argument for destructive reasons: to
 refute the science of geometry.2

 D

 A couple of millenia later, the Danish geometer Hjelmslev revived the
 Protagoras picture. His aim was more positive: he wanted to describe
 Nature as it was. According to him (or extrapolating his position), the Real

 Received December 4, 2001; accepted August 8, 2002.
 'The geometric number system constructed by Euclid is afield. Geometrically expressed:

 through two non-equal points passes a unique line.
 2According to Hermann Weyl, Hume presented a similar "refutation".

 ( 2003. Association for Symbolic Logic
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 Line, the Line of Sensual Reality, had many nilpotent infinitesimals, which
 we can see with our naked eyes.3

 He called his geometry "Natural Geometry", or "The Geometry of Real-
 ity". The ensuing number system is not a field, because it considers nilpotent
 elements; in fact, the ring of dual numbers R[E] is a model of the geometric
 line in his system. The study of geometry, based on this and related rings,
 has been developed further by a school of, mainly German, geometers, cf.
 e.g., [7].

 Hjelmslev is not one of the forefathers of the "synthetic calculus" and
 "synthetic differential geometry", as we understand it and which we shall
 describe briefly below. Rather, he is brought in here for contrast.

 First a mathematical contrast. Even though uniqueness of the line con-
 necting two points may fail, in Hjelmslev's conception, he maintains the
 existence of at least one connecting line, for any two points in the plane.
 Algebraically, this implies that given two elements on the number line, one
 of them divides the other.4 In particular, the preorder relation given by
 divisibility is linear, and the nilpotents (=infinitesimals) are not only small,
 but their smallness has a quantitative (linearly ordered) character. This is
 incompatible with the synthetic calculus we are expounding here, see below.

 Secondly, the identification of a mathematical structure with physical ob-
 jects leads to the idea that the laws of logic have limited use. According to
 Hjelmslev, there are in the theory " ... conflicts [with reality] which testify to
 the strong limitation of formal logic. And here, as in all other fields of human
 cognition, observation of reality must be the highest judge" ([6, p. 55]).

 This is a denial of the right and duty of mathematical theories to make
 those formalizations, abstractions, idealizations, simplifications, extrapola-
 tions, etc. which make the theory beautiful and hence teachable and useful.
 The appearance of nilpotent elements in synthetic calculus is a formalism,
 which is coherent and simple; but it is not something one ascertains or
 refutes by observation of reality, or in Hjelmslev's words [4], by "genaue
 Untersuchungen (Experimente und Wahrnehmungen)".

 Before I embark on expounding synthetic calculus, let me remind you of
 an analogous use of a formalism. When we teach calculus, we use as an
 example population growth as something which may be modelled by certain
 differential equations. Clearly, "observations of reality", as Hjelmslev talks
 about, will reveal that populations are counted by integers -to which
 differential calculus does not apply. The formalist view I am advocating, is

 3Hjelmslev was teaching draughtmanship at the Polytechnic High School in Copenhagen,
 and knew, and taught, that the line you can draw between two points on the paper is not
 unique if the two points are too close to each other.

 4Take line to be a set described by an equation ax + by = c with a or b invertible. If now
 u and v are arbitrary numbers, there is a line ax + by = 0 connecting (u, v) to (0, 0). If a is
 invertible, u = (-b/a)v, so v divides u; similarly, if b is invertible, u divides v.
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 DIFFERENTIAL CALCULUS AND NILPOTENT REAL NUMBERS

 that applying calculus here, i.e., replacing integers by continuous numbers,
 is a typical good formalization, allowing a much simpler theory/calculus to
 be employed. The continuum is simpler than the discrete.

 Now to the formalism of synthetic calculus. This has been expounded in
 many texts [9, 17, 12, 1], so I shall be brief. We follow Euclid in abstracting
 as a decisive abstract general relationship in geometry: that the line R has
 the structure of a commutative ring (once two distinct points 0 and 1 have
 been chosen). Unlike Euclid, but like in the formalism of Hjelmslev, this
 ring structure is not that of a field. In fact, there are "sufficiently many"
 elements d with d2 = 0 (cf. the above picture). Let D be the set of these.
 To say that there are sufficiently many such d's, or that D is big enough, is
 rendered precise by the following axiom:5

 for every function f: D -+ R, there are unique elements a, b E R so that

 (1) f(d) = a + b d for all d e D,

 or "every function D -X R extends uniquely to an affine function R -- R".
 Putting d = 0 in the axiom shows that the unique a mentioned there is in
 fact f(O); whereas the unique b mentioned deserves a new name, we call it
 f'(0), so that with this notation

 f(d) = f(O) + d . f'(O) for all d e D,

 and this determines f'(O). More generally, from the axiom follows that for
 any function f: R -+ R, and for each x e R, there is a unique f'(x) such
 that "1st order Taylor expansion" holds:

 f(x +d) = f(x) + d f'(x) for all d E D,

 (apply, for each x, the axiom to the function d -+ f(x + d)).
 A fair amount of differential calculus follows then purely algebraically

 chain rule, Leibniz rule, etc.- as well as Taylor series calculus, and some
 differential geometry, cf. the literature quoted.

 We now make the comparison with Hjelmslev's geometry. Applying the
 axiom (1) twice, one gets that any function f: D x D -+ R is uniquely of
 the form

 (2) f(dl, d2) = a + bl d + b2 d2 + c - dd2

 (or in function space notation: from RD = R x R (which follows from the
 axiom), one gets

 RDXD (RD)D (R x R)D RD x RD _ (R x R) x (R x R),
 so RDXD R R4). However, in Hjelmslev's formalism, the term dld2 in (2)
 vanishes, since one of the di's divides the other, and has square zero. And if

 5"Kock-Lawvere axiom", cf. [17, 12].
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 d1 d2 vanishes, c cannot be uniquely determined. So his formalism is incom-
 patible with ours. Put geometrically, in terms of points in the coordinate
 plane: in Hjelmslev's formalism, two points can always be connected by at
 least one line; this is not so in our formalism. Another way of formulating
 the difference between Hjelmslev's number system and ours goes as follows:
 call two numbers x and y neighbours if x - y c D. In Hjelmslev's formal-
 ism, the neighbour relation is transitive, or equivalently, D is stable under
 addition. This is not so in our formalism: arithmetically, if dl E D and
 d2 c D (i.e., have square zero), (d1 + d2)2 = 2dld2, so dl + d2 e D only if
 dl d2 = 0, and in Hjelmslev geometry, this is so, but in Synthetic Differential
 Calculus not.6 Fortunately so! Pairs of such infinitesimals dl, d2 with d2 = 0
 and d2 = 0, without dld2 = 0, occur crucially in the work of Sophus Lie
 under the name of (a pair of) independent infinitesimals (these are crucial for
 instance in the synthetic construction of Lie brackets of two vector fields,
 which Lie in essence gives).

 There is another incompatibility. Namely, our formalism is incompatible
 with the law of excluded middle. With the law of excluded middle, one can
 for instance construct the Kronecker delta function 6

 6(x) = 1 ifx = 0; 6(x) = 0ifx - 0,

 and a Taylor expansion of this function 8 from 0 leads to absurdity.
 However, our formalism is compatible with intuitionistic logic. So, here

 we see intuitionistic logic, not as over-cautiousness and self-inflicted pain,
 but as something that permits a certain useful and strong theory to flourish
 - a theory which cannot coexist with the law of excluded middle.

 The necessity of intuitionistic logic here is a trace of the origins of our
 formalism in category theoretic thinking (recall that intuitionistic logic ap-
 plies to more categories than classical logic does); this brings us back to the
 question of existence. Do there exist numbers d with d2 = O?

 Mathematical theories are constructions of the mind, "existence" of the
 objects of the theories is a matter of consistency of the theory, or better,
 of its coherence. Coherence is here construed as something more extrovert
 than mere inner logical consistency: I take it to mean that the theory is
 embedded in a network (cf. [11]) of other good theories, through relative
 interpretations, and that these theories directly or indirectly formalize and
 reflect aspects of the real world.

 The network justifies the theories; the theories justify the objects they
 talk about; the objects justify their "elements". The synthetic calculus and
 synthetic differential geometry is a theory which has interpretations in topos
 theory, and it reflects aspects of the real world: namely the reasoning and the

 6However, d1 + d2 has cube zero, so is a second order infinitesimal: the resulting notion of
 1st order, second order, ... infinitesimals has predecessors in French Algebraic Geometry,
 with Grothendieck et al., cf. e.g., [18].
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 concepts used over at least three centuries -with or without the aritmeti-
 zation of the continuum. This old reasoning is the essence of the existence
 of the d's of square zero.

 To make the statement "the theory justifies the objects it talks about" more
 explicit, I would like to think of the theory as a theory about a category - the
 category whose objects are the objects of the theory, and whose morphisms
 are those transformations, constructions, etc., which are allowed by the
 theory.7 Thus, any category of synthetic calculus and synthetic differential
 geometry deals with smooth objects, and smooth transformations -only
 smooth constructions are allowed; hence by the nature of smoothness, the
 law of excluded middle has no role.

 Objects do not exist per se, but only by virtue of a context. They are social
 beings, objects, interacting in a category. There is a trace of this viewpoint
 in Euclid already: the line only exists in the context of the plane, and in the
 context of certain constructions and transformations that are "presupposed"
 (like ruler and compass constructions). Likewise, there is such a trace in
 Klein's Erlangen program.

 So returning to the question "Do there exist enough real numbers d with
 d2 = 0?"; the answer is Yes, in suitable contexts!

 But you have to refute the monopoly which the arithmetically constructed
 continuum (Dedekind Cuts), has claimed for itself as the only mathematical
 model of the continuum. And you have to refute the "model of ZF set
 theory" as the only context of mathematics.8
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