
Appl Categor Struct (2010) 18:165–183
DOI 10.1007/s10485-008-9143-6

Cubical Version of Combinatorial Differential Forms

Anders Kock

Received: 19 November 2007 / Accepted: 26 March 2008 / Published online: 23 May 2008
© Springer Science + Business Media B.V. 2008

Abstract The theory of combinatorial differential forms is usually presented in
simplicial terms. We present here a cubical version; it depends on the possibility of
forming affine combinations of mutual neighbour points in a manifold, in the context
of synthetic differential geometry.
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1 Introduction

The motivation for the present investigation of a “cubical” formulation of combi-
natorial differential forms (as in [7] I.18, [1, 10]) was a desire to generalize it to a
combinatorial theory of higher connections in higher groupoids.

For the 1-dimensional case, (connections in groupoids), such combinatorial notion
exists [8]: a 1-connection in a groupoid over a manifold M is a morphism of a
certain reflexive graph M(1) ⇒ M into the (underlying graph of) the groupoid. (The
domain graph here is the graph of 1-dimensional infinitesimal simplices in M, or,
equivalently, the first neighbourhood of the diagonal of M.) If the groupoid is
a “constant” groupoid M × G for a group G, such connection is equivalent to a
combinatorial G-valued 1-form on M.

Now M(1) ⇒ M is the 1-skeleton of that simplicial complex which carries the
theory of combinatorial differential forms. But it turns out also to be the 1-skeleton
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of a cubical complex M[•], as will be explained. There already exists a notion of
higher “cubical groupoid” [2]; the 2-dimensional case is essentially the notion of
“special double groupoid” or “edge symmetric double groupoid” of [3]. This opens
up for the possibility of considering higher connections as morphisms of cubical
complexes, from M[•] into the underlying cubical complex of a cubical groupoid. This
turns out to be a natural frame for discussing things like curvature, Bianchi Identity,
and holonomy, of higher connections, generalizing the 1-dimensional combinatorial
theory in [8] and [11]. (This is the subject of a forthcoming paper, a preliminary
account of which is in [14]; see also Section 8 for some sketchy indications.)

Any abelian group R defines a k-dimensional “constant” cubical groupoid on M,
and a connection in this cubical groupoid is tantamount to a cubical-combinatorial
differential k-form, – a notion to be defined and developed in the present note. Under
this correspondence, curvature corresponds to exterior derivative (=coboundary),
and holonomy corresponds to integration of differential forms.

This note is part of the theory that I presented at the Carvoeiro meeting 2007
(see also [14]); there, however, the emphasis was on the general theory of higher
connections, leaving the theory of cubical differential forms implicit as a special case.
Here, we do the special case with a little more patience, since differential forms are
anyway more basic, and of independent interest.

It should also be said that the cubical version of combinatorial differential forms
makes the integration theory more transparent than the simplicial version. The
reason is essentially that any cube naturally can be subdivided into smaller cubes.
This, we develop in Sections 5 and 6 below.

The context of the theory here (from Section 4 on) is that of Synthetic Differential
Geometry (SDG), cf. [7] and references therein.

2 The Complex of Singular Cubes

In the present section, we place ourselves in the context of smooth manifolds. So
all maps mentioned are smooth. The content is probably not new; it is formulated
in completely classical terms, and we shall be brief. For a manifold M, we consider
“singular k-cubes in M”; by this is usually meant maps Ik → M, where I = {x ∈ R |
0 ≤ x ≤ 1}; however, to simplify things, we do not want to consider a partial order ≤
on the number line R (hence there is no such ting as the unit interval I); we prefer to
define singular cubes as maps Rk → M. The set of these is denoted S[k](M).

As k ranges, the sets S[k](M) form a cubical complex, which we denote S[•](M). It
has face- and degeneracy maps, induced by certain affine maps Rk±1 → Rk (partly
recalled below); it has a symmetry structure: the symmetric group in k letters acts on
S[k](M), by an action induced by permutation of the coordinates of Rk; it also has a
“reversion” structure [5], which we shall not need here (although it is important in
[14]). Finally, it has also a subdivision structure. This structure is likewise induced by
certain affine maps Rk → Rk, and this is crucial for the present theory.

The face maps ∂α
i : S[k](M) → S[k−1](M) (α = 0 or 1, i = 1, . . . , k) are induced by

the maps δα
i : Rk−1 → Rk given by

δα
i (t1, . . . , tk−1) = (t1, . . . , α, . . . , tk−1)
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with α inserted as ith coordinate. Then for a singular γ : Rk → M, ∂α
i (γ ) := γ ◦ δα

i .
The degeneracy operators are similarly precomposition by the projection maps
Rk → Rk−1; we don’t need to be more specific here.

We do, however, need to be specific about the notion of subdivision. First, for
any a, b ∈ R, we have an affine map R → R, denoted [a, b ] : R → R; it is the
unique affine map sending 0 to a and 1 to b, and is given by t �→ (1 − t) · a + t · b .
Precomposition with it, γ �→ γ ◦ [a, b ] defines an operator S[1](M) → S[1](M) which
we denote | [a, b ], and we let it operate on the right, thus

γ | [a, b ] := γ ◦ [a, b ].
Heuristically, it represents the restriction of γ to the interval [a, b ]. Note that γ =
γ | [0, 1], since [0, 1] : R → R is the identity map.

More generally, for ai, bi ∈ R for i = 1, . . . , k, we have the map

[a1, b1] × . . . × [ak, bk] : Rk → Rk.

It induces by precomposition an operator S[k](M) → S[k](M), which we similarly
denote γ �→ γ | [a1, b1] × . . . × [ak, bk].

Given an index i = 1, . . . , k, and a, b ∈ R. We use the abbreviated notation [a, b ]i

for the map [0, 1] × . . . × [a, b ] × . . . × [0, 1] with the [a, b ] appearing in the ith
position; the corresponding operator is denoted γ �→ γ |i [a, b ]. Given a, b and
c ∈ R, and an index i = 1, . . . , k, we say that the ordered pair

γ |i [a, b ], γ |i [b, c]
forms a subdivision of γ |i [a, c] in the ith direction.

There are compatibilities between the subdivision relation and the face maps; we
shall record some of these relations. First, let us note that the maps δα

i : Rk−1 → Rk

considered above for α = 0 or = 1, may be similarly defined for any α = a ∈ R;
namely

δa
i (t1, . . . , tk−1) = (t1, . . . , ti−1, a, ti, . . . , tk−1).

The corresponding S[k](M) → S[k−1](M) we denote of course ∂a
i . It is easy to see that

we have [a, b ]i ◦ δ0
i = δa

i , and similarly [a, b ]i ◦ δ1
i = δb

i , from which follows, for any
γ ∈ S[k](M), that

∂0
i (γ |i [a, b ]) = ∂a

i (γ ) and ∂1
i (γ |i [a, b ]) = ∂b

i (γ ). (1)

Also, for α = 0, 1 (in fact for every α = a ∈ R) [a, b ]i ◦ δα
j = δα

j ◦ [a, b ]i if i < j
and = δα

j ◦ [a, b ]i−1 if i > j, and from this follows, for any γ ∈ S[k](M), that

∂α
j (γ |i [a, b ]) = (

∂α
j (γ )

) |i [a, b ] for i < j (2)

and = (∂α
j (γ )) |i−1 [a, b ] for i > j.

Recall that an affine combination in a vector space is a linear combination where
the sum of the coefficients is 1. An affine space is a set E where one may form affine
combinations, and where these combinations satisfy the same equations as those that
are valid for affine combinations in vector spaces. An affine map is a map preserving
affine combinations. The vector space Rn is a free affine space on n + 1 generators.
More concretely, given a n + 1-tuple of points (x0, x1, . . . , xn) in an affine space E,
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there is a unique affine map Rn → E, which we denote [x0, x1, . . . , xn], with 0 �→ x0

and ei �→ xi for i > 0, where e j is the jth canonical basis vector e j ∈ Rn.
This map [x0, x1, . . . , xn] is given by

(t1, . . . , tn) �→
(

1 −
∑

ti
)

x0 + t1x1 + . . . + tnxn. (3)

An affine map between vector spaces is of the form: a constant plus a linear map.
This allows us to have a matrix calculus for affine maps between the coordinate
vector spaces Rn. Recall that a linear map f : Rn → Rm is given by an m × n matrix,
and that composition of maps corresponds to matrix multiplication. The jth column
a j ∈ Rm of such matrix A is f (e j) (e j ∈ Rn).

An affine map Rn → Rm may be given by an m × (1 × n) matrix, where the first
column a0 ∈ Rm denotes the constant, and the remaining m × n matrix A is the m × n
matrix of the linear map. We display this “augmented” matrix in the form [a0 | A] or
[a0 | a1, . . . , an] where as before a j ( j = 1, . . . , n) is the jth column of A.

With this notation, composition of affine maps corresponds to “semi-direct matrix
multiplication”:

[a0 | A] · [b0 | B] = [a0 + A · b0 | A · B].

For E = Rm, the affine map [x0, . . . , xn] : Rn → Rm considered above has as aug-
mented matrix the matrix [x0 | x1 − x0, . . . , xn − x0], and conversely, the augmented
matrix [x0 | a1, . . . , an] defines the affine map [x0, x0 + a1, . . . , x0 + an].

Let us also give the augmented matrices for the affine maps δα
i that were used for

defining the cubical face maps ∂α
i , α = 0 or 1, i = 1, . . . , k:

δ0
i = [0 | e1, . . . ,̂ i, . . . , ek] (4)

(the e js here are the canonical basis vectors of Rk), and

δ1
i = [ei | e1, . . . ,̂ i, . . . , ek]. (5)

With the matrix calculus for augmented matrices, we can calculate the cubical faces
of a singular k-cube in Rn of the form [x0, x1, . . . , xk]; We have

∂0
i ([x0, x1, . . . , xk]) = [x0, x1, . . . x̂i, . . . , xk] (6)

and

∂1
i ([x0, x1, . . . , xk]) = [xi, x1 − x0 + xi, . . . ,̂ i, . . . , xk − x0 + xi]. (7)

(Note that the entries like xk − x0 + xi are affine combinations , so they also make
sense for points in an affine space E; xk − x0 + xi is the fourth vertex (opposite x0)
of a parallelogram whose three other vertices are x0, xi and xk. If the xis are mutual
neighbours in a manifold, as elaborated in Section 4 below, it also makes sense there.)

Among the affine maps [x0, x1, . . . , xk] from Rk to Rk are the “axis-parallel
rectangular boxes”, for short: rectangles; they are those where xi − x0 (“the ith side”)
is of the form ti · ei where ei is the ith canonical basis vector. In matrix terms, these
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are matrices of the form [x0 | T] where T is a diagonal matrix. Let us spell out a
subdivision for rectangles in matrix terms:

⎡

⎢
⎢⎢⎢
⎢⎢
⎣

x01 t1
...

. . .

x0i ti + si
...

. . .

x0k tk

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

(8)

is subdivided in the ith direction into
⎡

⎢⎢⎢
⎢⎢⎢
⎣

x01 t1
...

. . .

x0i ti
...

. . .

x0k tk

⎤

⎥⎥⎥
⎥⎥⎥
⎦

and

⎡

⎢⎢⎢
⎢⎢⎢
⎣

x01 t1
...

. . .

x0i + ti si
...

. . .

x0k tk

⎤

⎥⎥⎥
⎥⎥⎥
⎦

We invite the reader to spell out subdivisions of [x0, x1, . . . , xk] explicitly, and in
particular to prove that [x0, x1, . . . , x0, . . . , xk] (with x0 appearing again in the ith
position) subdivides in the ith direction into two copies of itself.

3 The Chain Complexes of Singular Cubes

Out of the cubical complex S[•](M), we can manufacture a chain complex C•(M) in
the standard way. We let Ck(M) be the free abelian group generated by S[k](M). The
boundary operator ∂ : Ck(M) → Ck−1(M) is defined on the generators γ ∈ S[k](M)

by the standard formula (see e.g. [6] 8.3) with 2k terms

∂(γ ) :=
k∑

i=1

(−1)i(∂0
i (γ ) − ∂1

i (γ )
)
. (9)

We let Nk(M) ⊆ Ck(M) be the subgroup generated by

γ − γ ′ − γ ′′

for all γ which are subdivided in some direction into γ ′ and γ ′.

Proposition 1 The boundary operator ∂ : Ck(M) → Ck−1(M) maps Nk into Nk−1.

Proof Assume γ is subdivided in the ith direction into γ ′ and γ ′′. By (2) we have
that, for j 	= i, ∂α

j (γ ) is subdivided, (in the ith direction, or in the i − 1th direction,
according to whether j > i or j < i) into ∂α

j (γ
′) and ∂α

j (γ
′′); the difference of these

terms is in Nk−1. In ∂(γ − γ ′ − γ ′′) only remain the six ∂α
i -terms. Omitting i from

notation, these sum of these six terms are (plus or minus)

[∂0(γ ) − ∂0(γ ′) − ∂0(γ ′′)] − [∂1(γ ) − ∂1(γ ′) − ∂1(γ ′′)].
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The two first terms in the left hand square bracket cancel by (1), and the two outer
terms in the last square bracket cancel for the same reason . So we are left with
∂1(γ ′) − ∂0(γ ′′). This is 0, likewise by (1). This proves the Proposition. 
�

We have the cochain complex of R-valued cochains on the cubical complex just
described. A k-cochain on M is thus a map � : S[k](M) → R, or equivalently an
additive map � : Ck(M) → R. Such cochains behave contravariantly, i.e. given a
map f : M′ → M between manifolds and a cochain � on M, we get a cochain F∗(�)

on M′.
Also, the (cubical) boundary operator ∂ : Ck+1(M) → Ck(M) gives rise to a

coboundary operator d from k-cochains to k + 1-cochains.
A k-cochain � is said to satisfy the subdivision law if

�(γ ) = �(γ ′) + �(γ ′′)

whenever a singular cube γ subdivides, in some direction, into γ ′ and γ ′′. This is
equivalent to saying that � : Ck(M) → R kills Nk(M).

A k-cochain � is called alternating if �(γ ◦ σ) = sign(σ ) · �(γ ), for any map σ :
Rk → Rk given by some permutation σ of the coordinates.

Definition 1 Consider a k-cochain, i.e. a map � : S[k](M) → R. It is called an observ-
able (of dimension k) if it satisfies the subdivision law and is alternating.

(The term “observable”, I picked up from Meloni and Rogora [17], who consid-
ered such functionals, for similar reasons as ours. I don’t know the motivation for the
terminology. Similar notions appear in Félix and Lavendhomme’s [4], reproduced
also in [16] 4.5.3.)

Proposition 2 If � is an observable, then so is d�.

Proof Since N•(M) is stable under the boundary operator, it follows that if � satisfies
the subdivision law, then so does d�. Next, for the alternating property: It suffices
to consider those permutations σi which interchange ith and i + 1st coordinate. We
must prove that �(∂(γ ◦ σi)) = −�(∂(γ )). Writing ∂α

j (γ ) in terms of its definition by
the affine maps δα

j : Rk → Rk+1,

∂(γ ◦ σ) =
k+1∑

j=1

(−1) j(γ ◦ σi ◦ δ0
j − γ ◦ σi ◦ δ1

j

)
.

Now we need some relations between the σi and δα
j . They can be found in formula [5]

(29) (middle line). Let us elaborate on the case i = 1, and leave the remaining cases
to the reader. For j ≥ 3, σ1 ◦ δα

j = δα
j ◦ σ1, so when applying �, we get the required

sign change. There remains the terms j = 2 and j = 1. Here, the sign change occurs
already at the level of the chain complex: The j = 2-term of the chain ∂(γ ◦ σ1) is

(−1)2
(
γ ◦ σ1 ◦ δ0

2 − γ ◦ σ1 ◦ δ1
2

);
now, by loc.cit. σ1 ◦ δα

2 = δα
1 , so the j = 2 term in ∂(γ ◦ σ1) equals minus the

j = 1-term in ∂(γ ). Similarly, the j = 1-term in ∂(γ ◦ σ1) equals minus the j = 2-term
in ∂(γ ), because σ1 ◦ δα

1 = δα
2 by loc.cit.

This proves the Proposition. 
�
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We thus have a cochain complex of observables; but we don’t give it a name, since
we shall see that this is isomorphic to the cochain complex of (cubical) differential
forms, see Section 6.

4 Combinatorial Cubical Forms

We now place ourselves in the context of SDG, e.g. in a well adapted (topos) model
which contains the category of smooth manifolds in a good way as a full subcategory,
but also contains sufficiently many infinitesimal objects, cf. [7] and the references
therein. In this context, any manifold M acquires a reflexive and symmetric (not
transitive) neighbour relation,1 denoted ∼. For M = R, x ∼ y iff (x − y) ∈ D, where
D ⊆ R is the set of elements d ∈ R with d2 = 0. More generally, for vectors x, y ∈ Rn,
x ∼ y if (x − y) ∈ D(n), where D(n) is the set of vectors (d1, . . . , dn) such that
di · d j = 0 for all i, j = 1, . . . n. A basic axiom scheme (“KL axiom”, see e.g. [16]
2.1.3, satisfied in the well adapted models) implies that any map D(n) → R extends
uniquely to an affine map Rn → R. In particular, a map D(n) → R which takes 0
to 0 extends uniquely to a linear map Rn → R. In this sense, D(n) is a “linear-map
classifier”. It follows that D(n)k similarly is a “multilinear map classifier”, i.e. a map
D(n)k → R which takes value 0 if one of the k input vectors is 0, extends uniquely to
a k-linear map (Rn)k → R.

The following infinitesimal object D̃(k, n) ⊆ D(n)k was introduced in [7] I.16: it
consists of k-tuples of vectors di in D(n) which are furthermore mutual neighbours,
di − d j ∈ D(n). We are here in particular interested in D̃(k, k). The crucial property
of it, cf. loc.cit., (and likewise a consequence of the KL axiom scheme) is that D̃(k, k)

is a k-linear alternating map classifier, i.e. a map D̃(k, k) → R which takes value 0
if one of the k input vectors is 0, extends uniquely to a k-linear alternating map
(Rk)k → R, and thus is a constant times the determinant formation of k × k matrices.
(A remarkable property of matrices in D̃(k, k) is that the k! terms in the usual sum
formula for determinants are all equal; see [12].)

By an infinitesimal k-simplex in a manifold M we understand, like in [7], a k + 1-
tuple (x0, x1, . . . , xk) of mutual neighbour points in M. Note that if (d1, . . . , dk) ∈
D̃(k, n), then the k + 1 tuple (0, d1, . . . , dk) is an infinitesimal k-simplex in Rn; and
any infinitesimal k-simplex in Rn with first entry = 0 is of this form.

It was proved in [9] (see also [10]) that if (x0, x1, . . . , xk) is an infinitesimal k-
simplex in a manifold M, then affine combinations

∑k
0 ti · xi may be formed, using a

coordinate chart, but independent of the chart chosen; furthermore, any two of these
affine combinations are neighbours. Also equations between affine combinations of
these affine combinations behave as if they were formed in a genuine affine space.
And any map M → N preserves the neighbour relation, and preserves the formation
of affine combinations of mutual neighbour points.

1A way of extending the notion of “neighbour relation” to a larger class of spaces than finite
dimensional manifolds has been begun in [13]; but one should not expect such theory to be as simple
as in the finite dimensional case.
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The possibility of forming affine combinations of mutual neighbour points implies
that the formula (3) describing the map [x0, . . . , xk], in case M is an affine space,
makes sense even if M is just a manifold, provided (x0, . . . , xk) is an infinitesimal
simplex. Thus such infinitesimal simplex in M defines a singular k-cube [x0, . . . , xk] :
Rk → M in M.

Definition 2 An infinitesimal k-dimensional parallelepipedum in M is a singular
k-cube Rk → M which arises in this way from an infinitesimal k-simplex.

Note that there is a bijective correspondence between infinitesimal k-simplices
and infinitesimal k-dimensional parallelepipeda in M. (Warning: the “infinitesimal
singular rectangles” of [7], or the “marked microcubes” of [16], are in [15], and in [18]
IV.1, called “infinitesimal k-cubes”; these things are not infinitesimal parallelepipeda
in the sense of the present Definition. A comparison is made in Section 7.)

The set of infinitesimal k-dimensional parallelepipeda in M we shall denote M[k].
The infinitesimal parallelepipeda in M, as k ranges, form a subcomplex of the cubical
complex S[•](M), stable under the symmetry operations. Also, a subdivision of an
infinitesimal parallelepipedum consists of two infinitesimal parallelepipeda. – We
denote the cubical complex of infinitesimal parallelepipeda by M[•].

Remark The set of infinitesimal k-simplices, as k ranges, naturally organize them-
selves into a simplicial complex M<•>, out of which grows the simplicial theory
of combinatorial differential forms, [1, 7, 10].) So we have a somewhat surprising
phenomenon that we have a cubical complex M[•] and a simplicial complex M<•>
with isomorphic underlying graded sets.

A map ω : M[k] → R may be called an R-valued infinitesimal cubical k-cochain
on M. As k ranges, they form a cochain complex with the coboundary formula for
cochains derived from the boundary formula (9) for the chain complex associated to
a cubical complex. We shall not give a name to this complex, since we are more
interested in a certain subset (actually, a subcomplex), consisting of the cubical-
combinatorial differential forms, as defined below. We first need a “degeneracy
notion”: by a degenerate infinitesimal k-dimensional parallelepipedum, we shall
understand one of the form [x0, x1, . . . , xk] with xi = x0 for some i > 0.

Definition 3 A cubical-combinatorial differential k-form (briefly, a cubical k-form)
on M is a map (cochain) M[k] → R which takes degenerate infinitesimal paral-
lelepipeda to 0.

When we in the following say “k-form” without further decoration, we mean
“cubical-combinatorial differential k-form”. Also, d denotes the coboundary oper-
ator in the cochain complex associated to the cubical complex M[•]. (It is denoted dc

in [14], “c” for “cubical”.)
If ω is a k-form on M, and (x0, . . . , xk) is a k + 1-tuple of mutual neighbours points

(i.e. an infinitesimal k-simplex) in M, we sometimes write ω(x0, . . . , xk) rather than
ω([x0, . . . , xk]).

Proposition 3 If ω is a k-form, then dω is a k + 1-form.
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Proof This is a matter of checking that dω vanishes on degenerate k + 1-dimensional
parallelepipeda. Let γ be a degenerate k + 1-dimensional parallelepipedum,

γ = [x0, x1, x2, . . . , xk+1]
with xi = x0 for some i > 0; for simplicity, let us assume x1 = x0. Now all faces of
γ , except possibly the first, are themselves degenerate, so ω vanishes. The two faces
∂0

1 (γ ) and ∂1
1 (γ ) are equal, by (6) and (7), and so cancel. 
�

Remark In a forthcoming book, we prove that the cochain complex of differential
k-forms in this sense is isomorphic to the deRham complex of M; the cubical
coboundary dc equals exterior derivative. The analogous assertion for the simplicial
version of combinatorial differential forms was proved in [10], but requires modifica-
tion by scalar factors of the type (k + 1)!; the cubical case is actually easier.

We note that the various complexes described are functorial w.r.to maps
f : M → N between manifolds. This follows because any such f preserves the
neighbour relation, and also preserves the formation of affine combinations of
mutual neighbour points. Thus, for θ a differential k-form on N, we get a differential
k-form f ∗(θ) on M by f ∗(θ)(x0, . . . , xk) := θ( f (x0), . . . , f (xk)), where the xis are
mutual neighbours in M.

If θ is a k-form on N and g : N → R is a function, we get a new k-form g · θ on N
by putting

(g · θ)(x0, . . . , xk) := g(x0) · θ(x0, . . . , xk).

(The privileged role of x0 in the formula is spurious; it can be proved that choosing
any of the other xis will produce the same g · θ .) The multiplication thus defined is
functorial: if f : M → N is a map, we have

f ∗(g · θ) = f ∗(g) · f ∗(θ), (10)

where f ∗(g) denotes g ◦ f .
We need to know the structure of k-forms on Rk. There is a privileged one, called

the volume form, and denoted Vol or dx1 ∧ . . . ∧ dxk, given by

Vol(x0, x1, . . . , xk) := det(x1 − x0, . . . , xk − x0).

It can be proved that any k-form ω on Rk is of the form ω̃ · Vol for a unique function
ω̃ : Rk → R. (For, this is well known for differential forms in the classical sense;
the bijection between classical forms and (simplicial) combinatorial forms was estab-
lished in [7], Corollary I.18.4. Finally, there is an evident bijection between simplicial-
combinatorial forms, and cubical-combinatorial forms; it is just the coboundaries that
are different.)

Let α : Rk → Rk be a map. Then α∗(Vol) is a k-form on Rk, and therefore it
may be written α∗(Vol) = Jα · Vol for a unique function Jα : Rk → R (“the Jacobi
determinant of α”). From (10) then follows that

α∗( f · Vol) = ( f ◦ α) · Jα · Vol . (11)
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We shall not prove in general that Jα comes about from determinants of the Jacobi
matrices, but shall only do it for the case of an affine map α : Rk → Rk, which is what
we need here. Let α be a + A, with a constant ∈ Rk, and with A : Rk → Rk linear.
Then for an infinitesimal k-simplex (x0, x1, . . . , xk) in Rk,

(α∗(Vol))(x0, x1, . . . , xk) = Vol(α(x0), α(x1), . . . , α(xk))

= Vol(a + A(x0), a + A(x1), . . . , a + A(xk))

= Vol(A(x0), A(x1), . . . , A(xk))

= det(A(x1) − A(x0), . . . , A(xk) − A(x0))

= det(A(x1 − x0), . . . , A(xk − x0))

since A is linear

= det(A) · det(x1 − x0, . . . , xk − x0)

by the product rule for determinants. But the expression on the right is det(A) ·
Vol(x0, x1, . . . , xk). This proves that for an affine α : Rk → Rk, α∗(Vol) = det(A) · Vol,
where A is the linear part of α. Equivalently, for an affine α, Jα is the function
Rk → R with constant value det(A).

(The case of a not necessarily affine map α : Rk → Rk is an easy consequence,
since on the set of neighbours of x0, like the xis, α in any case agrees with an affine
map, whose linear part is represented by the Jacobi matrix of α at x0.)

5 Integration of Differential Forms

If ω is a (cubical-combinatorial) k-form on a manifold M, and γ : Rk → M a singular
cube in M, we would like to define the integral of ω along γ , to be denoted

∫
γ

ω. It
should be functorial w.r.to maps f : M → N between manifolds, i.e. if θ is a k-form
on N, and γ a singular k-cube on M, the integral should satisfy

∫

γ

f ∗(θ) =
∫

f◦γ
θ.

Therefore, the essence resides in defining integrals
∫

id ω, where id is the “generic
k-cube”, i.e. the identity map Rk → Rk, and ω is a k-form on Rk. Recall that the
identity map Rk → Rk may be described as the map [0, 1] × . . . × [0, 1], so

∫
id ω is

also denoted
∫
[0,1]×...×[0,1] ω.

To define these integrals, recall that a k-form ω on Rk may be written ω̃ · Vol for a
unique function ω̃ : Rk → R. Therefore, we can define

∫

[0,1]×...×[0,1]
ω :=

∫ 1

0
. . .

∫ 1

0
ω̃(t1, . . . , tk) dtk . . . dt1.
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The right hand side is an ordinary iterated integral, and as such is something that
can be dealt with in the synthetic context, without reference to “approximation by
Riemann sums”. Let us be more explicit. For the case k = 1, and for any a, b ∈ R,
we may define

∫ b

a
f (t) dt := F(b) − F(a),

where F is any anti-derivative of f , i.e. F is a function F : R → R with F ′ = f . This
definition does not depend on whether a ≤ b , in fact, we have not assumed any
order relation ≤ on R. The chain rule ( f ◦ α)′ = ( f ′ ◦ α) · α′ immediately leads to
the substitution rule for one-dimensional integrals,

∫ b

a
f (α(t)) · α′(t) dt =

∫ α(b)

α(a)

f (t) dt (12)

where α and f are functions R → R.
If f : Rk → R is a function, and a1, . . . , ak, b 1, . . . , bk ∈ R, we define the iterated

integral in the expected way, by iteration of one-dimensional integrals.
All this can be copied out of the Calculus Books.
One reason why iterated integrals in general are not sufficient for calculus is

the fact that they are only defined over rectangular boxes (and a few other simple
kind of regions); therefore a theory of substitution in such integrals cannot be well
formulated, say substitution along an arbitrary map Rk → Rk; such a map may
destroy rectangular shape.

However, the success of the substitution rule (12) for one-variable integrals does
leave some trace on the theory of iterated integrals, namely substitution along maps
α : Rk → Rk of the form α=α1 × . . . × αk : Rk → Rk, where each αi is a map R→ R.
Then the one-variable rule generalizes into

∫ b1

a1

∫ b 2

a2

. . .

∫ bk

ak

f (α(x)) · α′(x1) · . . . · α′(xk) dxk . . . dx1

=
∫ α1(b1)

α1(a1)

. . .

∫ αk(bk)

αk(ak)

f (x1, . . . , xk) dxk . . . dx1 (13)

(here x is short for (x1, . . . , xk)).
The following is essentially from [10], (Proposition 1), except that loc. cit. deals

with the simplicial, rather than with the cubical, combinatorial form.

Proposition 4 Let ω be a (cubical-combinatorial) k-form on a manifold M. Then for
any k + 1-tuple (x0, x1, . . . , xk) of mutual neighbours in M,

[x0, x1, . . . , xk]∗(ω) = ω(x0, x1, . . . , xk) · Vol .
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From this we deduce

Proposition 5 Let ω be a (cubical-combinatorial) k-form on a manifold M. Then for
any k + 1-tuple (x0, x1, . . . , xk) of mutual neighbours in M, we have

∫

[x0,x1,...,xk]
ω = ω(x0, x1, . . . , xk).

Proof It is immediate that for any constant λ (like ω(x0, x1, . . . , xk)), we have the
second equality sign in

∫
id λ · Vol=∫ 1

0 . . .
∫ 1

0 λ dtk . . . dt1 =λ. So the claim follows. 
�

Consider a k-form ω = g · Vol on Rk, where g : Rk → R is a function. By defini-
tion, we have

∫
id ω = ∫ 1

0 . . .
∫ 1

0 g(t1, . . . , tk) dtk . . . dt1. But we have more generally:

Proposition 6 Consider the map α : Rk → Rk given, as in (13), by α = [a1, b1] ×
. . . × [ak, bk], and let ω = g · Vol. Then

∫

α

ω =
∫ b1

a1

. . .

∫ bk

ak

g(t1, . . . , tk) dtk . . . dt1. (14)

Proof The determinant of the linear part of the affine map α is here clearly
∏

(bi−ai).
From (11), we therefore have that

∫
id α∗(ω) is

∫ 1

0
. . .

∫ 1

0
g([a1, b1](t1), . . . , [ak, bk](tk)) ·

∏
(bi − ai) dtk . . . dt1;

now using (13), we see that this equals

∫ b1

a1

. . .

∫ bk

ak

g(t1, . . . , tk) dtk . . . dt1. 
�

We can now prove:

Proposition 7 Let θ be a k-form on a manifold M. Then the functional γ �→ ∫
γ

θ

satisfies the subdivision property.

Proof Let γ : Rk → M be a map (a singular k-cube). With the notation of Section 2,
we need to prove that for i = 1, . . . , k and a, b, c ∈ R, we have

∫

γ |i[a,c]
θ =

∫

γ |i[a,b ]
θ +

∫

γ |i[b,c]
θ.

Let γ ∗(θ) = g · Vol, (g a function Rk → R). Then

∫

γ |i[a,b ]
θ =

∫

[a,b ]i

γ ∗(θ) =
∫ 1

0
. . .

∫ b

a
. . .

∫ 1

0
g(t1, . . . , tk) dtk . . . dt1,



Cubical version of combinatorial differential forms 177

by Proposition 6, and similarly for
∫
γ |i[a,c] and

∫
γ |i[b,c]. The result now follows from

the subdivision rule
∫ c

a = ∫ b
a + ∫ c

b for one-variable integrals (which immediately gives
similar rules for subdivision of k-variable integrals). 
�

Some of the results proved lead to

Theorem 1

1) For θ a k-form on a manifold M, the functional γ �→ ∫
γ

θ is an observable on M.
2) Let γ be an infinitesimal k-dimensional parallelepipedum; then

∫

γ

θ = θ(γ ).

Proof The functional described has the subdivision property, by Proposition 7, and
the fact that it is alternating is an immediate consequence of (11) applied to the
affine map α which interchanges ith and jth coordinate. Finally, the last assertion
is contained in Proposition 5. 
�

6 Uniqueness of Observables

We shall in this section prove that a k-dimensional observable is completely de-
termined by its value on infinitesimal parallelepipeda. Since the k-dimensional
observables on a manifold M clearly form a linear subspace of the space of all
functions MRk → R, it suffices to prove

Theorem 2 Let � be a k-dimensional observable which takes value 0 on all infinitesi-
mal parallelepipeda. Then � is constant 0.

Proof Let γ : Rk → M be a singular cube. Consider the observable � := γ ∗(�)

on Rk. Because any map, in particular γ , preserves infinitesimal parallelepipeda, it
follows that � vanishes on all infinitesimal k-dimensional parallelepipeda in Rk. We
shall prove that � vanishes on all rectangles in Rk; by a rectangle in Rk, we understand
(cf. Section 1) a singular cube α : Rk → Rk which is not only affine, but whose linear
part is given by a diagonal matrix, α = [a | A] with A a diagonal matrix; the diagonal
entries of this matrix are called the sides of the rectangle. If we can prove this, then
� will certainly vanish on the identity map [0 | I, ] where I is the identity matrix, and
�(id) = γ ∗(�)(id) = �(γ ) which therefore is 0.

So the Theorem will be proved by proving the following two Lemmas.

Lemma 1 Assume that a k-dimensional observable � on Rk vanishes on all infini-
tesimal k-dimensional parallelepipeda in Rk. Then it vanishes on all rectangles with
infinitesimal sides.

(Note that an infinitesimal parallelepipedum need not be a rectangle; in fact, those
infinitesimal k-dimensional parallelepipeda in Rk that are also rectangles have the
property that any observable vanishes on them. See Section 7.)
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Lemma 2 Assume that a k-dimensional observable � on Rk vanishes on all rectangles
with infinitesimal sides. Then it vanishes on all rectangles.

Proof of Lemma 1 We prove in fact more, namely that � vanishes on all singular
cubes of the form [x0, x1, . . . , xk] where xi ∼ x0 for all i. (Note that such cube is not
necessarily an inf initesimal parallelepipedum, since we have not required xi ∼ x j.)
There is no harm in assuming that x0 = 0. The k-tuple (x1, . . . , xk) is therefore an ele-
ment of D(k)k. Let φ : D(k)k → R be the function (x1, . . . , xk) �→ �([0, x1, . . . , xk]).
It is an easy consequence of the subdivision property for � that φ vanishes if one of
the xis is 0. It therefore follows from the KL axioms that φ extends to a k-linear map
(Rk)k → R, and this map is alternating because of the alternating property assumed
for �. By the assumption that � vanishes on infinitesimal parallelepipeda, it follows
that φ vanishes on D̃(k, k) ⊆ D(k)k. But a k-linear alternating map (Rk)k → R is
completely determined by its restriction to D̃(k, k). So φ is the zero map. 
�

Proof of Lemma 2 This is by a downward induction, starting from k: by assumption,
� vanishes on rectangles with all k sides infinitesimal. Assume we have already
proved that � vanishes on all rectangles with the i first sides infinitesimal; we prove
that it then also vanishes on rectangles with the i − 1 first sides infinitesimal. Consider
such a rectangle [x0, x0 + t1e1, . . . , x0 + ti−1ei−1, x0 + tiei, . . . , x0 + tkek], where the
t1, . . . , ti−1 are in D. Consider this as a function of ti alone, in other words, consider
the function g : R → R given, for fixed x0 and t j ( j 	= i), by

g(t) := �([x0, x0 + t1e1, . . . , x0 + ti−1ei−1, x0 + tei, . . . , x0 + tkek]).

If t = 0, the input to � is a rectangle with i infinitesimal sides, and so g(0) = 0.
Let us spell out g(t) in the matrix notation for affine maps;

g(t) = �

⎛

⎜⎜
⎜⎜⎜
⎜
⎝

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

x01 t1
...

. . .

x0i t
...

. . .

x0k tk

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

⎞

⎟⎟
⎟⎟⎟
⎟
⎠

.

By the subdivision of rectangles exhibited in (8), it is now clear that g(t + d) − g(t)
equals

�

⎛

⎜⎜⎜
⎜⎜⎜
⎝

⎡

⎢⎢⎢
⎢⎢⎢
⎣

x01 t1
...

. . .

x0i + t d
...

. . .

x0k tk

⎤

⎥⎥⎥
⎥⎥⎥
⎦

⎞

⎟⎟⎟
⎟⎟⎟
⎠

The input of � here is a rectangle with its first i sides infinitesimal, so by the induction
assumption, the value of � on it is 0. Thus g(t + d) = g(t) for all d ∈ D, i.e. g′ ≡ 0.
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Since also g(0) = 0, we conclude that g ≡ 0. So � vanishes on all rectangles with
basic vertex in x0, but x0 was arbitrary; so � vanishes on all rectangles. This proves
the Lemma. (This is essentially the argument given already in [15], after Lemma 4.4
in there, and reproduced in [7] and [16].) 
�

With these Lemmas, the theorem follows. 
�

Proposition 8 Every k-dimensional observable � is of the form
∫

ω for a unique
k-form ω. In particular, the process ω �→ ∫

ω is a bijection between k-forms and k-
dimensional observables.

Proof If such an ω exists, then by the second assertion in Theorem 1, we have for
any infinitesimal parallelepipedum [x0, . . . , xk] that

ω(x0, . . . , xk) = �([x0, . . . , xk]);

this proves that there is at most one k-form ω which gives rise to � by integration.
Conversely, let us define ω by this formula. To see that the ω thus defined is indeed
a differential form, we have to see that it vanishes on degenerate infinitesimal
parallelepipeda. So suppose the parallelepipedum is degenerate by virtue of xi = x0.
Then it is easy to see that this parallelepipedum γ subdivides in the ith direction into
two copies of itself, and so it follows from the subdivision property for � that �(γ ) =
�(γ ) + �(γ ), whence �(γ ) = 0, so ω does get value 0 on this parallelepipedum.

The fact that for this form ω,
∫

ω = � follows from Proposition 5 and from the
uniqueness in Theorem 2. 
�

Consider now a k-form ω on a manifold M, and its coboundary (= exterior
derivative) dω. Since dω is a k + 1-form, it defines a k + 1-dimensional observable
on M, γ �→ ∫

γ
dω, γ a singular k + 1-cube. There is another functional on the set of

singular k + 1-cubes, namely γ �→ ∫
∂γ

ω, where ∂γ is a k-chain in the chain complex
described in Section 3. This is, in the notation from there, the coboundary of the
cochain

∫
ω, and since

∫
ω is an observable, then so is d

∫
ω, by Proposition 2.

Theorem 3 (Stokes’ Theorem) Let γ be a singular k + 1 cube in a manifold, and let
ω be a k-form on M. Then

∫

∂γ

ω =
∫

γ

dω.

Proof As functions of γ ∈ Sk+1(M) (the set of singular k + 1-cubes), both
sides are observables (alternating and with subdivision property). On infinitesi-
mal parallelepipeda, the two sides agree, because d for the cochain complex of
differential forms was defined in terms of the ∂ in the chain complex of infinites-
imal parallelepipeda. The result therefore follows from uniqueness of observables
(Theorem 2). 
�

Some aspects of the theory presented here may be summarized: the cubical com-
plex of infinitesimal parallelepipeda in M is a subcomplex of the cubical complex of
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singular cubes. In the associated cochain complexes, the differential forms constitute
a subcomplex of the first, and the observables constitute a subcomplex of the second
cochain complex. The inclusion map of the complex of infinitesimal parallelepipeda
into the complex of singular cubes induces a bijection between k-forms and k-
observables. And these bijections, as k ranges, are compatible with the coboundary
operators, so that the two cochain complexes are isomorphic.

This line of reasoning and the proofs presented in this Section run in parallel with
the one in Félix and Lavendhomme’s [4] (see also [16] 4.5); however, they deal with
the a somewhat different synthetic notion of differential form, based on “marked
microcubes”, as described in the next Section.

7 Comparison with other Differential Form Notions

We shall compare the treatment of differential forms both with the classical treat-
ment, with the standard synthetic treatments, and with the simplicial theory of
combinatorial forms.

In all cases, a differential form on a space M (a manifold, say) is an R-valued
function which takes a suitable kind of infinitesimal entities on M as inputs. A classi-
cal differential k-form on a manifold M thus takes k-tuples of tangent vectors (with
common base point) as inputs. This can immediately be paraphrased synthetically, cf.
[7] Def. I.14.1, (and in this context, the theory applies not just to finite dimensional
manifolds, but to arbitrary microlinear spaces, see [7] I.14 or [16] Chapter 4, say).
For some other synthetic treatments, as in [7, 15] Def. I.14.2, [16] Def. 4.1.1, the
inputs of a differential form are rather the “k-tangents” or the “k-microcubes” in
M, meaning maps τ : Dk → M. The problem with these notions is that there is no
geometric way to associate cubical boundary faces, neither to a k-tuple of tangents,
nor to a microcube. More concretely (for k = 1, say), for a tangent τ : D → M, one
naturally puts ∂0(τ ) := τ(0) ∈ M, but there is no particular d ∈ D to give ∂1(τ ) by
putting ∂1(τ ) := τ(d).

To be able to assign a boundary to a k-microcube Dk → M, the treatments of
[7, 15] I.14, [4, 18] IV.1, [16] 4.2.1 all take resort to what [16] calls marked microcubes
(and we shall follow this terminology here); these are pairs (τ, d), where τ : Dn →
M is a microcube and d = (d1, . . . , dk) ∈ Dk. Then 2k boundary faces ∂α

i (τ, d) can
naturally be defined as marked k − 1-microcubes. This leads to a cubical complex of
marked microcubes. The cochain complex of differential forms will then, in this set
up, be a subcomplex of the cochain complex associated to the cubical complex of
marked microcubes. The conditions which qualify a cochain as a differential form is
now that it is alternating, and satisfies homogeneity conditions, both with respect to
the input entity τ , and with respect to the input entity d.

The many requirements to be put on a cochain in order to qualify as a differential
form may be said to have their source in the fact that a marked microcube contains
an amount of redundant information in so far as differential forms go. In fact, there
is a bijection between the set of differential k-forms ω in the sense of marked
microcubes, and the set of differential forms ω, in the sense of just microcubes;
ω is characterized by

d1 · . . . · dk · ω(τ) = ω(τ, (d1, . . . , dk)),
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for all microcubes τ and all d = (d1, . . . , dk) ∈ Dk. From this, it is easy also to prove
the following for any differential form ω (in the sense of cochain on the complex of
marked microcubes):

Proposition 9 Let (τ, d) and (τ ′, d′) be two marked microcubes in a manifold M, such
that τ(0) = τ ′(0) and τ(di) = τ ′(d′

i) for i = 1, . . . , k, and let ω be a differential k-form
on M. Then ω(τ, d) = ω(τ ′, d′).

It follows that differential k-forms could be defined by taking as their inputs
k + 1-tuples of points in M which come about from marked microcubes (τ, d) as
(τ (0), τ (d1e1), . . . , τ (dkek)) where ei is the ith canonical basis vector for Rk; however,
this k + 1 tuple is in general not an infinitesimal k-simplex in M, since there is no
reason why τ(diei) should be ∼ τ(d je j). Therefore the affine combinations in M
needed to form an infinitesimal singular parallelepipedum from them are not well
defined, and the cubical faces ∂1

i depend on the formation of these singular cubes. (Of
course, the requisite affine combinations can be formed in Rk, and then transported
to M using (an extension of) τ , but then the result depends on τ .)

It is actually the case that an infinitesimal parallelepipedum in Rk (k ≥ 2) which is
of the form [0, d1e1, . . . , dkek] is trivial in so far as differential k-forms go; this follows
from the fact that the determinant of any diagonal matrix in D̃(k, k) is 0.

8 Outlook into Higher Connection Theory

The notion of “cubical complex” has obvious truncations at each dimension p
(disregarding all the structure in dimensions > p). We call such a truncated object
a p-cubical complex. A 1-cubical complex is the same thing as a reflexive graph. Any
groupoid has an underlying 1-cubical complex.

If C = (C1 ⇒ M) is a groupoid with a manifold M as its set of objects, a connection
in C may be construed as a morphism of reflexive graphs (fixing M) from M[1] ⇒ M
to C1 ⇒ M, cf. [8] and [11]. (Note that the combinatorial encoding of differential
geometric notions in terms of the neighbour relation makes it unnecessary to
consider, alongside with the groupoid itself, linearized infinitesimal versions of it, like
some kind of “(Lie-) algebroid”. This also applies to higher groupoids/connections.)

If C1 ⇒ M is the “constant” groupoid on M given by the additive group (R,+)

(so the arrows in it from x to y are triples (x, a, y) with a ∈ R, and composition given
by addition of the as), then a connection in this groupoid may be identified with a
combinatorial 1-form on M.

We may utilize our understanding of (cubical-combinatorial) differential forms to
arrive at a notion of a higher connection on M, with values in a “cubical groupoid”
on M. We shall sketch this in the dimension 2.

We first note that there is a forgetful functor from 2-cubical complexes to 1-cubical
complexes. This functor has adjoints on both sides. We shall describe the right adjoint
C �→ C′ in case the 1-cubical complex is the underlying one of a groupoid C. The right
adjoint then gives the double groupoid C′ whose 0- and 1-cells agree with those of C
and whose 2-cells are the (not necessarily commutative) squares in C. It is a “special”
or “edge symmetric” double groupoid ([3]), meaning that the set of “horizontal” and
“vertical” arrows agree.
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Now consider a connection ∇ in a groupoid C = (C1 ⇒ M). By the universal
property of right adjoints, we get a morphism ∇̂ of (the 2-truncation of) M[•]
into C′. This ∇̂ agrees with ∇ in dimension 1, and in dimension 2, it associates
to an infinitesimal singular parallelogram γ = [x0, x1, x2] in M the (not-necessarily
commutative) square in the groupoid

where u is x1 − x0 + x2 = ∂1(∂1
1 (γ )) (the fourth corner in the parallelogram spanned

by x0, x1, x2; this makes sense by the assumption that (x0, x1, x2) form an infinitesimal
2-simplex).

This 2-cell in C′ we call (cf. [14]) (the value at (x0, x1, x2) of) the formal curvature
of ∇. It is an example of a 2-connection in the edge symmetric double groupoid C′,
in the sense of loc.cit. We shall not here go further into the theory from loc.cit. of
higher cubical groupoids, the higher connections in them, curvature = coboundary,
holonomy = integrals, Stokes’ Theorem etc., but only argue why formal curvature
of a 1-connection ∇ agrees with coboundary of the corresponding cubical 1-form, in
case the groupoid C is the constant groupoid given by (R,+) (considered above).
The relationship between ∇ and ω is

∇(x0, x1) = (x0, ω(x0, x1), x1).

Now a square in a groupoid gives rise to an endo-arrow at the (first, say) vertex of
the groupoid, by taking cyclic composite. In our case, this cyclic composite gives

ω(x0, x1) + ω(x1, u) − ω(x2, u) − ω(x0, x2),

which is just dω applied to the infinitesimal parallelogram γ .
For higher connections, say 2-connections in an edge-symmetric double groupoid

C, one needs similarly to describe cyclic composites of the faces of a cube (see [2]) in
the 3-cubical groupoid C′; this is more delicate, and requires a “folding” composite of
2-cells in the 3-cubical groupoid, which the simplicial account of combinatorial forms
does not seem to provide.

The bijection between forms and observables, for k = 1, may be generalized into
a bijection between connections and path-connections, (holonomies), see [11], and
this can be generalized to higher connections and their holonomies, [14].
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